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Abstract

In this paper, we generate two types of explana-
tions, Impact and Critique, of predictions made
by a Goal Recognizer (GR) – a system that in-
fers agents’ goals from observations. Impact
explanations describe the top-predicted goal(s)
and the main observations that led to these pre-
dictions. Critique explanations augment these
explanations with evidence that challenges the
GR’s predictions if so warranted.

Our user study compares users’ goal recogni-
tion accuracy for Impact and Critique expla-
nations, and users’ views about these explana-
tions, under three prediction-correctness con-
ditions: correct, partially correct and incorrect.
Our results show that (1) users stick with a
GR’s predictions, even when a Critique expla-
nation highlights its flaws; yet (2) Critique ex-
planations are deemed better than Impact ex-
planations in most respects.

1 Introduction
Goal recognition is a field that infers agents’ goals
from observations.1 Sample applications include
games (Singh et al., 2020) and autonomous vehi-
cles (Yurtsever et al., 2020). Goal Recognizer (GR)
predictions are characterized by the existence of
a partial order between observations, i.e., in gen-
eral, certain actions can be performed only after
some other actions, which differs from feature in-
dependence or correlational dependencies between
features in Machine Learning (ML). In this paper,
we offer two approaches for generating explana-
tions of the predictions of GRs; and compare their
effect on users’ goal recognition accuracy (how ac-
curately they assign likelihoods to goals) and users’
views of the explanations.

1We focus on keyhole recognition, where agents’ goals are
inferred from unobtrusive observations (Carberry, 2001).

Our explanation-generation approach follows Bi-
ran and McKeown (2017)’s human-centered view,
whereby an explanation is “not about the model,
but about the evidence that led to the prediction”.
Our explanations are aimed at non-expert users
wishing to understand the reasons for a prediction.
Specifically, we offer domain-agnostic algorithms
for generating two types of explanations:

• Impact explanations describe the top-predicted
goal(s) and the most influential observations
that led to these predictions.

• Critique explanations, inspired by (Kim et al.,
2016), augment Impact explanations with evi-
dence that challenges a GR’s predictions if so
warranted. These explanations differ markedly
from Impact explanations when the predictions
are not entirely plausible.

XAI systems generally do not vary the type of ex-
planation they generate, irrespective of whether the
ML model produced correct or wrong predictions,
leaving it to users to discern between these options.
In contrast, the Critique explanations generated in
this research differ for predictions that seem plau-
sible and predictions that require further scrutiny.
In our evaluation, we distinguish between three
levels of GR prediction correctness (correct, par-
tially correct and incorrect) and three explanatory
conditions (prediction only, Impact and Critique),
and examine their influence on users’ goal recogni-
tion accuracy and opinions about the explanations.
For the latter we employ six explanatory attributes
from (Hoffman et al., 2018; Maruf et al., 2024).

Our results show that users stick with the GR’s
prediction, even when a Critique explanation high-
lights its flaws; yet Critique explanations are
deemed better than Impact ones in most respects.
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Our main contributions are: (1) two explanation
types with algorithms that select goals and observa-
tions to be mentioned; (2) an evaluation approach
that distinguishes between different levels of pre-
diction correctness; and (3) results about the effect
of explanations on users’ goal recognition accuracy
and about users’ explanation-type preferences.

This paper is organized as follows. Section 2 dis-
cusses related work. Our demonstration domain ap-
pears in Section 3, and our explanation-generation
algorithms in Section 4. Section 5 describes our
user study, followed by its results in Section 6. Sec-
tion 7 presents concluding remarks.

2 Related Work
XAI is a subfield of AI that studies the generation
of explanations for the predictions made by ML
models. XAI has recently gained popularity owing
to the success of ML models and the opacity of
powerful ML models such as neural networks.

We focus on Explainable Goal Recognition
(XGR) which generates explanations for GR pre-
dictions (Alshehri et al., 2023). Even though
the number of GR applications is growing, e.g.,
traffic monitoring (Pynadath and Wellman, 2013),
human-robot interaction (Buerkle et al., 2021),
games (Singh et al., 2020) and autonomous ve-
hicles (Yurtsever et al., 2020), generating explana-
tions for GR predictions has gathered relatively
little attention. A notable exception is the au-
tonomous vehicle domain, where several models
have been developed to explain the predictions of
GRs regarding the intentions of other vehicles (Al-
brecht et al., 2021; Hanna et al., 2021; Brewitt et al.,
2021, 2023). These XGR models leverage GR
transparency to extract intuitive explanations from
a GR’s internal features — an approach that makes
sense in this high-stakes domain, but may not be
feasible for every domain. Hence, it seems advis-
able to develop model-agnostic XGR approaches
which treat GRs as a black box.

Goal recognition resembles time-series classifi-
cation (TSC) in that both process observations over
time, and yield a distribution over predicted out-
comes. However, unlike goal recognition, an entire
distribution must be explained for TSC, which is
often done using heatmaps (Theissler et al., 2022).

Feature attribution methods explain how indi-
vidual features influence ML model predictions
by distributing importance across features (Ribeiro
et al., 2016; Lundberg and Lee, 2017), which aligns
with human-centered XAI goals (Biran and McKe-

own, 2017). While some feature-attribution meth-
ods can handle correlational dependencies between
features (Aas et al., 2021; Janizek et al., 2021),
the dependencies in planning, and hence in goal
recognition, are structural (e.g., preconditions, goal
hierarchies). This motivates our Critique method,
which explicitly accounts for such dependencies.

Alshehri et al. (2023, 2025) adapted feature at-
tribution to goal recognition, identifying one key
observation supporting or opposing a goal G or G′

to address “Why G?” or “Why not G′?” ques-
tions respectively; they also generate counterfac-
tual explanations that suggest alternative actions
leading to different predictions. Our work differs
from Alshehri et al. (2023, 2025)’s in several key
respects: (1) we automatically identify top-ranked
goals (Section 4.1), removing the need for users to
specify goals initially; (2) we avoid the potential in-
troduction of bias during observation selection, and
determine which observations to mention – often
more than one (Section 4.2); and (3) we introduce
evidence-based Critique explanations that highlight
potential inconsistencies between the GR’s predic-
tions and domain knowledge (Sections 4.3 and 4.4).

3 Domain and Dataset
We use the Rovers dataset (Pereira and Meneguzzi,
2017) to demonstrate our algorithms. This dataset
contains (1) a set of missions (goals) attempted by
planetary rovers, which require different types of
data from specific waypoints (locations); (2) rovers
with possibly different capabilities (e.g., collecting
rocks or soil, traveling between specific waypoints),
who collaborate to achieve a mission; and (3) a
sequence of observations (which may miss some
entries) of the actions performed by the rovers and
their waypoints. Given a sub-sequence of observa-
tions, the GR predicts which mission(s) are being
attempted by the rovers.

Table 1 displays three segments that describe a
problem instance: Missions’ Specifications, Rovers’
Capabilities and Observations. For example, ac-
cording to the Missions segment, Mission M1 re-
quires data about rock samples from waypoints 2
and 6, and about soil samples from waypoints 2,
3 and 5; and according to the Rovers segment,
Rover0 can collect soil samples only, starts at way-
point 4, and can navigate between waypoint 0 and
1 and between waypoint 0 and 7 among others.
The Observations segment shows ten observations
made so far, e.g., Rover1 navigated to waypoint 2
(Obs. 1), where it sampled rock (Obs. 2), and then

555



Table 1: Scenario from our user study: six missions,
three rovers, and ten observations. Missions require
rock and/or soil data from specific waypoints. Rovers
can sample rock and/or soil, start at a specific way-
point, and navigate between waypoints — denoted as
origin ↔ (dest1, . . . , destn).

Missions’ Specifications

Mission Rock Soil Mission Rock Soil
Id Wpts. Wpts. Id Wpts. Wpts.

M1 2, 6 2, 3, 5 M4 2 2, 4, 5, 7
M2 2, 6 2, 5, 6 M5 0, 6 2, 5, 7
M3 6, 7 2, 5, 7 M6 2, 6, 7 2, 6

Rovers’ Capabilities

Rover Coll. Init. Wpt. Waypoint Navigability

Rover0 Soil 4 0↔ (1, 7); 1↔ (0, 4, 6);
only 2↔ (3, 4, 5); 3↔ (2, 5, 7);

4↔ (1, 2); 5↔ (2, 3);
6↔ (1, 7); 7↔ (0, 3)

Rover1 Rock 5 0↔ (4, 6); 1↔ 3;
only 2↔ (5, 6); 3↔ (1, 4, 5, 6);

4↔ (0, 3, 7); 5↔ (2, 3);
6↔ (0, 2, 3); 7↔ 4

Rover2 Soil 2 0↔ (3, 5); 1↔ 4; 2↔ 6;
only 3↔ 0; 4↔ (1, 5);

5↔ (0, 4, 6); 6↔ (2, 5)

Observations

1-Rover1 nav. Wpt. 5→ 2 6-Rover2 nav. Wpt. 6→ 5
2-Rover1 samp. rock Wpt. 2 7-Rover0 samp. soil Wpt. 2
3-Rover1 sent rock Wpt. 2 8-Rover0 sent soil Wpt. 2
4-Rover2 nav. Wpt. 2→ 6 9-Rover0 dropped sample
5-Rover0 nav. Wpt. 4→ 2 10-Rover0 nav. Wpt. 2→ 3

sent data about this rock sample (Obs. 3).
Table 2 shows the predictions generated by

the GR in (Vered et al., 2018) for this instance
with their probabilities, and the corresponding
Impact and Critique explanations. The Impact
explanation lists the top-ranked missions with
their probabilities, and presents the observation(s)
that had the largest influence on these proba-
bilities – only one observation in this example
(blue shaded). The Critique explanation reiterates
this information, and presents two types of informa-
tion that are incongruent with the GR’s prediction
(yellow shaded): (i) challenges to the predicted
goals (M2 and M6), and (ii) support for goals that
are not predicted (M1 and M4).

4 Generating Explanations

To generate Impact explanations, we select top-
predicted goals and identify observations with the
highest impact on these predictions. These are then
fed into explanatory templates. Additionally, Cri-
tique explanations require evidence that supports
or challenges a GR’s predictions. This evidence is

Table 2: GR predictions for the problem in Table 1 and
explanations for the predictions. Impact information is
blue shaded and critique information is yellow shaded.

GR’s Predictions with their Probabilities

M2 = 0.237 M6 = 0.225 M1 = 0.184
M4 = 0.177 M3 = 0.099 M5 = 0.079

Impact Explanation

According to the AI, Missions #2 and #6 are the most likely
(probabilities of 23.7% and 22.5%, respectively). The obser-
vation that most influenced this result was:

• (#1) “Rover1 navigated from Waypoint5 to Waypoint2”,
which increased the probabilities of Missions #2 and #6
by about 10% and 8%, respectively.

Critique Explanation
According to the AI, Missions #2 and #6 are the most likely
(probabilities of 23.7% and 22.5%, respectively). The obser-
vation that most influenced this result was:

• (#1) “Rover1 navigated from Waypoint5 to Waypoint2”,
which increased the probabilities of Missions #2 and #6
by about 10% and 8%, respectively.

Up to now:

• Even though Missions #2 and #6 are the most likely
missions, a few observations do not contribute to any
of their requirements. For example: Observation #10
“Rover0 navigated from Waypoint2 to Waypoint3”
contributes to “send soil data from Waypoint3” and

“send soil data from Waypoint7”, which are not required
by Missions #2 and #6; and

• Even though Missions #1 and #4 are not the most likely
missions, all the observations contribute to their require-
ments. For example: Observation #10 (above) con-
tributes to requirements of Missions #1 and #4.

obtained from a domain model. Here, we provide
details about these steps.

4.1 Selecting top-ranked goals
Our approach to selecting goals for inclusion in
an explanation balances conciseness and complete-
ness: mentioning every goal may lead to verbose
explanations, while focusing only on the highest-
probability goal may omit important information.

Computing confidence intervals (CIs) for goal
probabilities plays a central role in our approach.
However, GRs do not provide these intervals. To
overcome this limitation, we introduce a novel
technique leveraging the Dirichlet distribution – a
multivariate continuous distribution widely used
to model proportions and compositional data (Ng
et al., 2011). Estimating the Dirichlet parameters
from goal probabilities enables us to calculate ro-
bust CIs, which we use to discriminate between
higher-probability goals to include in an explana-
tion and lower-probability goals to exclude.

Goals to be included are determined by two
criteria: (i) they have the highest probability af-
ter the last observation; or (ii) their probability is
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greater than or equal to the lower bound of the CI
for the highest-probability goal. The idea behind
criterion (ii) is that if the probability of a not-top-
ranked goal falls within the CI of a top-ranked goal,
their probabilities are statistically indistinguishable.
This suggests that the not-top-ranked goal is a plau-
sible alternative given the GR’s uncertainty. As an
example, consider the final goal probability distri-
bution in the GR’s Predictions segment in Table 2,
where Mission M2 satisfies criterion (i). Assuming
the estimated CI for M2 is [0.222, 0.244], M6 is in-
cluded in the explanation, as it meets criterion (ii),
unlike M1,M3,M4 and M5, which are excluded.
Using the Dirichlet distribution to model goal
probabilities. We apply the Fixed-point Iteration
algorithm (Minka, 2000) to estimate the parameters
of a Dirichlet distribution from the goal probability
distributions generated by the GR. That is, given
k observations and n goals, the GR generates k
distributions of these goals – one distribution after
each observation. These distributions are used to
estimate a Dirichlet parameter vector of size n.
We then draw a large number of goal probability-
distribution samples (e.g., 1000) from the Dirichlet
distribution specified by this vector, and determine
the CI for each goal from its probabilities across
these samples — the lower/upper bounds for each
goal correspond to its minimum/maximum drawn
probabilities. Details about the calibration of this
algorithm appear in Appendix A.

4.2 Identifying high-impact observations
We identify high-impact observations by first quan-
tifying the contribution of each observation, and
then selecting those with the highest contributions.
Calculating the contribution of an observation
to a goal. We define C(ot, G), the contribution
of an observation ot to goal G, as the change in
the probability of G after observing ot at time t,
weighted by a factor γ∈(0, 1] that discounts earlier
observations (Davison and Hirsh, 1998).
C(ot, G) = [Pr(G | Ωt)− Pr(G | Ωt−1)]× γ|ΩT |−t

where ΩT = (o1, . . . , oT ) is the observation se-
quence seen so far up to time T , and Ωt is a subse-
quence of ΩT that ends in observation ot.

In this formulation, the exponent of γ is higher
for earlier observations than for later ones, leading
to lower contributions of earlier observations. For
example, if T = 10, γ10−3 = γ7 for o3, while
γ0 = 1 for oT . Also, higher/lower γs lead to high-
er/lower contributions of earlier observations. Ad-
ditional details appear in Appendix B.

To identify the most influential observations, we
apply a clustering algorithm over all unique posi-
tive observation contributions, for each top-ranked
goal separately. We employ a clustering algorithm
because it handles cases where several observa-
tions have high but slightly different contributions,
while a threshold-based approach may arbitrarily
include or exclude observations of interest. We
have chosen the Ckmeans.1d.dp algorithm (Song
and Zhong, 2020), which is guaranteed to find the
optimal cluster configuration (that minimizes the
sum of squares of within-cluster distances) for one-
dimensional variables such as ours. The algorithm
is run for k clusters, where k=2, . . . , |C+

G |−1, and
C+
G is the set of all unique positive contributions

for goal G; the clustering solution with the high-
est average Silhouette score (Rousseeuw, 1987) is
selected. This solution comprises kbest clusters of
observations, and we select the cluster containing
observations that have the highest contribution to
a particular top-ranked goal. The generated expla-
nation incorporates observations from the highest-
impact cluster for each top-ranked goal – usually
five observations or less.

4.3 Collecting domain evidence
Critique explanations need domain information in
order to present evidence for or against the GR’s
predictions. To obtain this information, we (i) rep-
resent the GR problem with a separate classical
planning domain model (Ghallab et al., 2016),
which updates its state from observed actions; and
(ii) use an AI planner (Hoffmann and Nebel, 2001)
to derive plans that achieve goal requirements.

Our approach to collecting evidence hinges on
the idea that an agent performs actions that reduce
the cost of achieving at least one requirement of
their goal. For instance, when a rover collects rock
from waypoint 1, it reduces the remaining cost of
all the missions that require these data. Hence, this
rock-collection action is positive evidence for these
missions, and negative evidence for missions that
do not require rock data from waypoint 1.

To find these pieces of evidence, we connect
each observation to at least one goal requirement.
This is done by using the separate domain model
to derive a dependency graph that links the ini-
tial state of the model, the observed actions and
achieved goal requirements or potential goal re-
quirements (whose cost has decreased). Figure 1
illustrates this graph for the example in Table 1 —
achieved requirements are represented by purple
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Start

1-Rover1 nav.
Wpt. 5→2

4-Rover2 nav.
Wpt. 2→6

5-Rover0 nav.
Wpt. 4→2

Send rock data
from Wpt. 2

Send soil data 
from Wpt. 2

Send soil data 
from Wpt. 3

Send soil data 
from Wpt. 7

Send soil data 
from Wpt. 5

2-Rover1 samp.
rock Wpt. 2

3-Rover1 sent
rock Wpt. 2

6-Rover2 nav.
Wpt. 6→5

7-Rover0 samp.
soil Wpt. 2

9-Rover0
dropped sample

8-Rover0 sent
soil Wpt. 2

10-Rover0 nav.
Wpt. 2→3

Figure 1: Dependency graph for the example in Table 1.
Rectangles denote observations, with leading digits indi-
cating observation numbers from Table 1; purple ovals
denote achieved goal requirements; orange ovals denote
potential requirements; and edges denote dependencies.

ovals, and potential requirements by orange ovals.
The generation of the dependency graph is detailed
in Algorithm 1, Appendix C, and described below.

The domain model determines which goal re-
quirements have been achieved by particular ob-
served actions, e.g., Obs. 3 (Rover1 sent rock
Wpt. 2) achieves requirement “send rock data from
Wpt. 2”. To identify potential goal requirements,
we calculate the cost (in number of steps) of plans
generated by our planner before and after each
node that is not followed by another observation
or a goal requirement. For example, before com-
pleting the construction of the dependency graph in
Figure 1, Obs. 6 (Rover2 nav. Wpt. 6→5) is such a
node. This observation reduces the cost of a plan
for requirement “send soil data from Wpt. 5”, as
the rover must be in waypoint 5 to collect a soil
sample from there. We can therefore designate this
goal requirement as potential, and directly link it
with Obs. 6.

Upon completion of the graph-generation pro-
cess, all the observations are connected to an
achieved or potential goal requirement. Table 3
illustrates four observation sequences with require-
ment types to which they are linked, and associated
missions (the extraction of observation sequences
from the dependency graph is detailed in Algo-
rithm 2, Appendix C). The link between Obs. 10

Table 3: Observation sequences, linked goal require-
ments derived from the dependency graph in Figure 1,
and supported missions.

# Obs. Rover Req. Goal Supported
Seq. Type Requirement Missions

1 1, 2, 3 1 Achiev. Send rock data
from Wpt. 2

M1,M2

M4,M6

2 4, 6 2 Potent. Send soil data
from Wpt. 5

M1,M2,M3

M4,M5

3 5, 7, 8 0 Achiev. Send soil data
from Wpt. 2

M1,M2,M3

M4,M5,M6

4 9, 10 0 Potent.

Send soil data
from Wpt. 3 M1

Send soil data
from Wpt. 7∗ M3,M4,M5

(∗ Rover0 can go from Wpt.3 to Wpt. 7, Table 1)

in Seq. 4 and the potential requirements of Mis-
sions M1 and M4 is presented as evidence in the
final sentence of the Critique explanation in Table 2
(M3 and M5 are omitted due to their low probabil-
ity). It is worth noting that according to Figure 1,
Obs. 5 and 7 appear in two different observation
sequences, but they are assigned to Seq. 3 (Table 3),
which achieves a goal requirement.

4.4 Using templates to realize explanations

We employ three templates in our explanations:
Prediction, Effect and Analysis. Impact explana-
tions use the first two templates, yielding the first
and second paragraph (blue shaded) in Table 2;
and Critique explanations use all three templates.

The Prediction template (Figure 2) presents the
probabilities of the top-ranked goals after the most
recent observation, and the Effect template (Fig-
ure 3) describes the contributions of observations
to the probabilities of these goals.

To generate Critique explanations, we identify
goals supported by all the observations, and con-
trast them with the top-ranked GR-predicted goals.
To this effect, we determine how the observations
in each observation sequence are connected to a
goal requirement. For instance, looking at Mis-
sion M1 (Table 1), its rock and soil requirements
at waypoint 2 have been achieved (Seq. 1 and 3 in
Table 3). In addition, Obs. 4 and 6 are linked to a
potential soil requirement at waypoint 5 (Seq. 2),
and Obs. 9 and 10 are linked to a potential soil
requirement at waypoint 3 (Seq. 4).

We define three types of relationships between
the GR’s top-ranked goals and those supported by
all observations: Agreement (Gagree) – supported
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According to the AI, goal(s) G1, G2, . . . is/are the most
likely (probability(ies) of Pr(G1 | ΩT ),Pr(G2 | ΩT ), . . .
[respectively]).

Figure 2: Prediction template. Gi is a top-ranked goal
and Pr(Gi | ΩT ) is its probability.

The observation(s) that most influenced this result are:
• o1, which increased the probability of G1, G2, . . . by

about ∆Pr(G1, o1),∆Pr(G2, o1), . . . ;
• o2, which increased the probability of G1, G2, . . . by

about ∆Pr(G1, o2),∆Pr(G2, o2), . . . ;
• . . .

Figure 3: Effect template, where ot is a high-impact
observation for goal Gi and ∆Pr(ot, Gi) is the increase
in Gi’s probability after ot is observed.

goals that are top-ranked by the GR; Commission
(Gcommit) – top-ranked goals that are not supported
by all observations; and Omission (Gomit) – sup-
ported goals that are not top ranked by the GR.
Gagree = {top-ranked goals} ∩ {supported goals};
Gcommit = {top-ranked goals}−{supported goals};
Gomit = {supported goals} − {top-ranked goals}.

Each of these relationships leads to an epony-
mous section of a critique. The Analysis template
(Figure 4) presents these sections together with one
or more examples. The examples in the Commit
section link observations {ocommit} to requirements
{reqcommit} that are not required by goals Gcommit;
and the examples in the Omit section link obser-
vations {oomit} to requirements of goals Gomit. The
type of the link is conveyed through contrib_verb,
which is “contributes to” for potential goal require-
ments or “achieved” for achieved requirements.
The examples are selected algorithmically based
on the type of relation, the type of link, the recency
of the linked observations and the presence of these
examples elsewhere in the critique (Appendix D).
The Analysis template yields the yellow shaded
Critique explanation in Table 2.

5 Experimental Setup

We conducted a user study to address the following
research questions:
RQ1. Do explanations help users attain a better
goal recognition accuracy than no explanations? If
so, which explanation type is better?
RQ2. Which independent variables influence users’
performance?
RQ3. What are users’ views of Impact and Critique
explanations? We consider the extent to which an
explanation is liked (Maruf et al., 2024), and five

Up to now:
• (Agree) All the observations contrib_verb require-

ments of Gagree, which are the most likely goal(s).
• (Commit) Even though Gcommit is/are the most likely

goal(s), one/a few/several observation(s) do(es) not
contribute to any of its/their requirements. For
example: Observation ocommit contrib_verb to
{reqcommit}, which is/are not required by goal(s)
Gcommit.

• (Omit) Even though Gomit is/are not the most likely
goal(s), all the observations contrib_verb to its/
their requirements. For example: Observation oomit
contrib_verb to requirement(s) of goal(s) Gomit.

Figure 4: Analysis template presenting agreement, com-
mission and omission relations with examples.

explanatory attributes: completeness; presence of
misleading or irrelevant information; and helpful-
ness for understanding the AI’s reasoning, assess-
ing the likelihood of the goals and judging when to
trust the AI (Hoffman et al., 2018).

5.1 User study design

Our design comprises two experiments: between-
subjects – one group of participants saw only Im-
pact explanations, and another group saw only Cri-
tique explanations; and within-subject (Combined)
– each participant saw an Impact explanation fol-
lowed by a Critique explanation. We conducted
both types of experiments for the following reason.
Within-subject experiments usually yield stronger
results, but seeing Critique explanations after Im-
pact explanations may influence users’ views of
both explanations as the experiment progresses.

Independent variables. Our experiment has four
intrinsic independent variables, viz explanatory
condition (None = prediction only, Impact, Cri-
tique), GR prediction correctness (correct, partially
correct, incorrect), scenario group (A or B), and
order of scenario presentation (1st, 2nd, 3rd); and
two extrinsic independent variables, viz time spent
on each explanatory condition (minutes) and par-
ticipants’ score on the Need for Cognition Scale
(NCS) (Cacioppo et al., 1984). We used two sce-
nario groups, each comprising three scenarios, to
determine the effect of the actual scenario on the
dependent variables. The NCS assesses people’s
enjoyment of thinking (5-point Likert scale: 1=ex-
tremely uncharacteristic to 5=extremely character-
istic); we used the six questions chosen by Lins de
Holanda Coelho et al. (2020), which yield total
scores between 6-30 (Appendix E).

Scenario characteristics and groups. The sce-
narios from our domain resemble that in Table 1,
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and are of similar complexity: each scenario in-
volves three rovers, eight waypoints, and six pos-
sible missions – each with five requirements; the
number of observed actions per scenario ranges
from nine to eleven, and completing a mission re-
quires twenty actions. To increase task complex-
ity, each scenario includes two high-probability
missions that are not distinguishable based on the
observations. Each scenario group has one cor-
rect scenario (two correctly predicted missions),
one partially correct scenario (one correct and one
wrong prediction), and one incorrect scenario (two
wrongly predicted missions).

5.2 The experiment
Our survey was implemented in the Qualtrics sur-
vey platform and conducted on Connect – a Cloud
Research platform (Litman and Robinson, 2020).
After signing a consent form, participants filled a
demographic and ML expertise questionnaire, and
the NCS questionnaire. They then saw a descrip-
tion of the Rovers space exploration domain, a brief
account of the GR’s output and an overview of the
study (Figure 6, Appendix G). Next, a competency
test about the study and the domain was given,
where at least 3 out of 5 answers had to be correct
in order to continue. The retained participants pro-
ceeded to the body of the survey, which consists
of a demonstration scenario and three actual sce-
narios. Each participant was randomly assigned to
scenario group A or B; all participants within the
same group saw the same three scenarios, but sce-
nario order was randomized for each participant.

Each scenario began with a problem description
(mission requirements, waypoints, rover capabili-
ties and the rovers’ observed actions); an attention-
check question was included to identify unreliable
responses (Figure 7, Appendix G). Participants
then rated the likelihood of each mission without
access to the GR’s prediction. Next, they were
shown the GR’s prediction and asked to reassess
the mission likelihoods.

From this point, the between-subjects and within-
subject arms of the experiment diverge, but each
arm displays scenarios with three different levels
of prediction correctness.
Between-subjects. Participants saw either an Im-
pact or a Critique explanation, then reassessed mis-
sion likelihoods (Figures 8 and 9, Appendix G),
and rated explanatory attributes.
Within-subject. Participants saw an Impact ex-
planation and reassessed mission likelihoods, fol-

lowed by a Critique explanation and another re-
assessment. They then rated explanatory attributes
for both explanations, shown in randomized left-
right order (Figure 10, Appendix G).

Following best practice recommendations in
(van der Lee et al., 2021), all the assessments were
on a 7-point Likert scale: 1= ‘Extremely unlikely’
to 7 = ‘Extremely likely’ for mission probabilities;
and 1 = ‘Strongly disagree’ to 7 = ‘Strongly agree’
for statements about explanatory attributes.

5.3 Participants
Upon recruitment, participants were randomly as-
signed to one cohort (between-subjects Impact or
Critique, or within-subject Combined). The partici-
pants retained after the competency test (178 out of
188) spent 35 minutes on the rest of the experiment
on average. Responses were validated based on
answers to the attention questions and time spent
on each scenario, yielding 141 valid surveys, for
which participants were paid $10-$12 USD.

Table 6 (Appendix H) shows descriptive statis-
tics for the retained participants per cohort. There
were 46-48 participants in each cohort, and they
had similar demographic characteristics, ML ex-
pertise and NCS scores. To validate cohort sim-
ilarity, we compared the NCS scores of each
pair of six groups (3 cohorts × 2 A/B scenario
groups). We used the Kruskal-Wallis H test,
which yielded no statistically significant differ-
ences (H(df = 5) = 4.7571, p-value = 0.4462).

5.4 Dependent variables and statistical models
Dependent variables. We define three dependent
variables to measure participants’ performance:
Lcor and Lincor – the average likelihood assigned
by a participant to correct and incorrect goals re-
spectively; and AG – the agreement between a par-
ticipant’s ranking of the goals and that of the GR.
An effective explanation should lead participants
to increase the likelihoods of correct goals and de-
crease the likelihoods of incorrect goals, provided
these likelihoods are not already maximal for cor-
rect goals (=7) or minimal for incorrect goals (=1).
This, in turn, should yield a reranking of the goals.
Lcor =

1
|Gcor|

∑
G∈Gcor

LikelyG
Lincor =

1
|Gincor|

∑
G∈Gincor

LikelyG
AG = 1− 1

(|G|2/2)
∑|G|

i=1 |RP [i]−RGR[i]|
where G is the set of all goals (missions), Gcor and
Gincor are the sets of correct ground-truth goals (two
missions) and incorrect goals (four missions) re-
spectively, and LikelyG is the likelihood assigned
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by a participant to goal G. We use averages, rather
than sums, because in general, there are more in-
correct than correct goals, and we want to avoid
overwhelming the results for correct goals. RP

and RGR are vectors, such that RP [i] and RGR[i]
are the ranks of goal Gi according to participants’
likelihoods and GR’s probabilities respectively.
Lcor and Lincor range from 1 to 7, where a

higher Lcor denotes better decisions, while a higher
Lincor denotes worse decisions. AG , which was
adapted from the Spearman Footrule distance (Dia-
conis and Graham, 1977), ranges from 0 (no simi-
larity) to 1 (identical ranks).
Statistical models. We used linear mixed-effects
models to examine how the independent variables
influence the dependent variables.

For Lcor and Lincor, the fixed effects correspond
to all the independent variables except presentation
order, which had no effect on task performance.
For AG , the fixed effects correspond to all the inde-
pendent variables except NCS score and presenta-
tion order, which had no effect on agreement with
the GR. In total, we fitted three distinct models
(formulas and details appear in Appendix F).

6 Results
We applied the following procedures to adjust sta-
tistical significance for multiple comparisons. For
RQ1 and RQ2, we used Tukey’s Honestly Signifi-
cant Difference (HSD) (Tukey, 1949) for compar-
isons among estimated means. For RQ3, we used
the Holm-Bonferroni correction (Holm, 1979). Re-
sults with 0.05 < p-value < 0.1 after adjustment
are designated as trends.
RQ1 and RQ2. We compare participants’ goal
recognition accuracy under Impact, Critique and
None explanatory conditions for the three correct-
ness levels of GR predictions. The only statistically
significant results were for the average likelihoods
assigned to correct goals (Lcor) for the Critique
explanatory condition compared to None (between-
subjects Critique cohort and within-subject cohort)
for the correct and partially correct scenarios (first
two rows of Table 4). No statistically significant
differences were found between the likelihoods as-
signed to correct (not predicted) goals (Lcor) for
the incorrect scenario (last row of Table 4); the
likelihoods assigned to incorrect goals (Lincor) or
participant-GR rank agreements (AG) for the dif-
ferent scenarios and explanatory conditions; or be-
tween Impact explanations and the other explana-
tory conditions across our metrics. Tables 7 and 8

Table 4: Lcor results for the Critique vs None explana-
tory conditions in the between subjects (Critique cohort)
and within subject experiments: mean (standard devi-
ation); statistically significant differences (p-value <
0.05) are boldfaced and trends (0.05 < p-value < 0.1
after adjustment) are italicized.

Correctness Between subjects Within subject
level None Critique None Critique

Correct 5.09 (1.59) 5.56 (1.55) 5.43 (1.27) 5.80 (1.08)
Part. correct 4.60 (1.60) 4.98 (1.41) 4.90 (1.15) 5.26 (1.06)
Incorrect 4.23 (1.20) 4.23 (1.49) 4.61 (0.96) 4.79 (1.21)

Table 5: Estimated slope parameters for significant re-
sults derived from the linear mixed-effects models: sta-
tistically significant differences (p-value < 0.05) are
boldfaced and trends (0.05 < p-value < 0.1 after ad-
justment) are italicized.

Estimated Slopes - Time
Metric Cohort Expl. cond. Estimate p-value

Lcor Between-Critique Critique 0.213 0.047
Lcor Within Critique 0.232 0.002

Lcor Between-Impact None 0.127 0.007
Lincor Within None 0.106 0.076

Estimated Slopes - NCS
Metric Cohort Expl. cond. Estimate p-value

Lcor Between-Critique – 0.097 0.001
Lincor Between-Critique – 0.040 0.057

(Appendix H) respectively display complete results
and contrasts between means.

It is worth noting that Critique explanations for
correct predictions only add one (essentially sum-
mary) sentence to the corresponding Impact expla-
nations: “All the observations contribute to Mis-
sions X and Y , which are the most likely missions”.
Thus, it is surprising that Critique explanations sta-
tistically significantly increased Lcor for the correct
and partially correct scenarios, while Impact expla-
nations had no statistically significant effects.

We also control for the interaction between time
spent and NCS score and each explanatory condi-
tion, and for the effect of scenario group (presen-
tation order had no effect, Section 5.4). Table 5
displays the slope and interactions for the indepen-
dent variables that had statistically significant ef-
fects, viz time spent and NCS score. The time spent
variable interacts with explanatory condition, yield-
ing the following statistically significant effects:
(1) every additional minute spent on a Critique
explanation increased Lcor – between-subject Cri-
tique and within-subject cohorts (first segment of
Table 5); and (2) every additional minute spent on
the None condition increased both Lcor and Lincor

(wrong direction) – between-subject Impact and
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within-subject cohorts (second segment of Table 5).
The NCS score had a similar effect in the between
subjects Critique cohort, with an additional unit
of NCS score statistically significantly increasing
both Lcor and Lincor under all explanatory condi-
tions (no interactions) (last segment of Table 5).
RQ3. We compared participants’ views about our
explanations in terms of six explanatory attributes:
liking an explanation; completeness; presence of
extraneous information; and helpfulness for under-
standing the AI’s reasoning, assessing goal likeli-
hood, and judging when to trust the AI (Section 5).
We used the Wilcoxon rank-sum test to compare
the views of the Critique and Impact cohorts of the
between-subjects experiment, and the Wilcoxon
signed-rank test for the within-subject experiment
(Table 9, Appendix H shows detailed results).

In the between-subjects experiment, Critique ex-
planations were deemed more helpful than Impact
explanations for assessing mission likelihood and
judging when to trust the GR for partially correct
GR predictions, and more complete for incorrect
predictions (p-value ∼ 0.05). However, when par-
ticipants in the within-subject experiment directly
compared the two types of explanations, the Cri-
tique explanations were deemed better than Im-
pact explanations in terms of all explanatory at-
tributes (p-value < 0.05) except for presence of
extraneous information, for which they were equiv-
alent. These findings, like those in (Zukerman and
Maruf, 2024), are not surprising, as when each
cohort saw only one type of explanation, it was
deemed adequate, but when the explanations were
seen side-by-side, Critique explanations were pre-
ferred. This result may be explained by the observa-
tions in (Lombrozo, 2016), whereby users generally
prefer longer explanations (Critique explanations
are markedly longer than the corresponding Impact
explanations for partially correct and incorrect pre-
dictions), though in our case, the content of these
explanations was not absorbed.

7 Discussion
We presented domain-agnostic algorithms that gen-
erate Impact and Critique explanations for predic-
tions made by a GR. Our algorithms treat the GR
as a black box, but derive information from domain
knowledge to generate critiques of predictions.

As mentioned in Section 1, XAI systems gener-
ally do not vary the type of explanation they gen-
erate, irrespective of whether the ML model pro-
duced correct or wrong predictions. In contrast,

our approach distinguishes between explanations
of predictions that seem plausible and predictions
that require further scrutiny.

Our algorithms were tested in several domains
(e.g., Blocks world and Sokoban), demonstrating
their generalizability. However, our user study was
restricted to the Rovers domain, owing to budgetary
constraints. In this study, we evaluated our expla-
nations in terms of their effect on users’ goal recog-
nition accuracy, considering the influence of five
other independent variables; and assessed these
explanations in terms of six explanatory attributes.

Critique explanations led participants to increase
the likelihood of correct goals for correct and par-
tially correct predictions, but did not affect the
likelihood assigned to incorrect goals. Also, addi-
tional time spent increased the likelihood assigned
to correct goals for Critique explanations, while a
higher NCS score increased the likelihood assigned
to correct and incorrect goals for these explana-
tions. Despite their lack of impact with respect to
incorrect goals, users viewed Critique explanations
favourably, when compared directly with Impact
explanations, in terms of five explanatory attributes.
This result calls into question evaluations that are
based solely on such attributes, without considering
task performance.

The results of our user study could be affected by
our Critique explanations not being critical enough,
or by the crowdworkers we recruited not being
sufficiently engaged with the experiment (or by
recruiting crowdworkers at all (Reiter, 2025)). Un-
fortunately, we could not recruit real users who
would be engaged with our Rovers domain, which
is a well-known problem in NLG evaluation. To
address this limitation, we are supplementing our
study with think-aloud sessions involving a small
group of highly engaged participants.

Finally, it is worth noting that explanations may
become unwieldy when many goals or observations
are selected to be mentioned. This suggests another
avenue of investigation, which involves interacting
with users (Maruf et al., 2023; Miller, 2023).
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A Calibrating the Fixed-point Iteration
Algorithm

We employ two hyper-parameters to adjust the oper-
ation of the CI estimation algorithm: the temporal
window percentage wp ∈ (0, 1], and the confi-
dence level cp ∈ (0, 1].

• wp is the proportion of the most recent goal
probability distributions used to estimate the
parameter of the Dirichlet distribution. For ex-
ample, if wp = 0.4 and the GR provides goal
probability distributions for ten observations,
only the four most recent ones will be used.

The Fixed-point Iteration algorithm may not
converge if there is not enough variability in
the probability distributions within the specified
temporal window (wp). This may happen when
the number of observations is small, i.e., at the
beginning, or if wp itself is small. In this case,
we iteratively expand the window to include
one additional probability distribution and then
re-execute the Fixed-point Iteration algorithm.
If convergence is still not achieved after using
all available distributions, we simply select the
goal(s) with the highest probability.

• cp is the confidence level parameter that defines
the range of the goal’s CI in terms of percentiles:
lp = (1− cp)/2 is the lower percentile, and
up = 1− lp is the upper percentile. For exam-
ple, if cp = 0.9, the CI for each goal will span
from the 5th percentile (lp = 0.05) to the 95th
percentile (up = 0.95) of the samples drawn
for that goal from the estimated Dirichlet dis-
tribution. This yields the CI [0.222, 0.244] for
Mission M2 in Table 2.

Together, wp and cp control the goal selection
sensitivity to observation recency and fluctuations
in the GR’s goal probabilities. The calibration of
wp and cp depends on the domain, the outputs of
the GR, and the desired maximum number of goals
in an explanation. A low wp emphasizes recent
observations over older ones, while a low cp min-
imizes the impact of goal probability variations
within the window defined by wp. In addition,
higher wp and cp values generally increase the num-
ber of top-ranked goals. For example, in the Rovers
domain, where the scenarios have up to 36 obser-
vations, when wp < 0.25 and 0.5 ≤ cp < 0.8, one
goal was selected in 95.6% of the cases, and at most
two goals in 100%. In contrast, when 0.75 ≤ wp

and 0.8 ≤ cp, one goal was selected in 46.2% of

the cases, at most two goals in 66.6%, and at most
three in 85.1%.

Finally, it is worth noting that the computational
cost of our method, which depends on the number
of observations and the Dirichlet estimation of the
CIs, is low. For example, in the Rovers domain,
CI estimation ranged from 4 ms for fewer than 15
observations to 10 ms for 35–48 observations (on
an Intel i7 laptop with one core).

B Window-based Calculation of the
Contributions of Observations

Our formulation also includes a configurable pa-
rameter, calibrated experimentally, that sets the size
of a window of observations to which the discount
is applied simultaneously. Specifically, the obser-
vation sequence is divided into windows of size W ,
where W is in the range [1, . . . , |ΩT |], and the dis-
count is kept constant within each window. Thus,
the temporal discount factor is defined as:

γ⌊
|ΩT |−t

W
⌋

C Algorithms

Algorithm 1 enhances a dependency graph derived
from the classical domain model by linking obser-
vations to goal requirements. Each link indicates
whether an observation node that is not followed
by another observation node directly achieves a
requirement or reduces the cost of achieving it. In
the former case, the requirement is classified as
achieved, and in the latter case, as potential.

Algorithm 2 receives the graph and the links
generated by Algorithm 1, and extracts sequences
that connect all the observations to the goal require-
ments in those links.

For brevity, the pseudocode for the auxiliary
functions used in Algorithm 1 has been omitted.
An overview of these functions follows.

• COST receives a plan, returning the cost to exe-
cute the plan.

• GETADJREQS receives a dependency graph
and a node, returning the set of goal require-
ments that are adjacent (i.e., directly connected)
to the node.

• GETOBSERVATION receives a node of a depen-
dency graph, returning the observation repre-
sented by the node.

• ISLEAF receives a dependency graph and a
node, returning true if the node has no outgoing
edges, and false otherwise.
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• ISOBSERVATION receives a node of a depen-
dency graph, returning true if the node is asso-
ciated with an observation, and false otherwise.

• PLAN receives an environment state and a goal
requirement, returning a sequence of actions
that achieve the requirement starting from the
environment state.

• STATEBEF and STATEAFT receive an obser-
vation, respectively returning the environment
state immediately before and after the observa-
tion is perceived.

• TIME receives an observation, returning the
time it was perceived.

Algorithm 2 also uses auxiliary functions whose
pseudocode has been omitted. An overview of
these functions is presented below.
• ADDPLANS receives a dependency graph and

the links returned by Algorithm 1, returning a
dependency graph with actions from the derived
plans that achieve a potential goal requirement.

• COST – same as for Algorithm 1.

• FINDOBSNODES receives a dependency graph,
returning all observation nodes from the graph.

• GETADJREQS – same as for Algorithm 1.

• GETADJOBS receives a dependency graph and
a node, returning the observations adjacent to
that node.

• GETLASTOBSNODE receives a set of observa-
tion nodes, returning the last (i.e., most recent)
observation node in that set.

• GETOBSFROMNODES receives a set of obser-
vation nodes, returning the set of observations
associated with these nodes.

• GETREQFROMNODE receives a node of a de-
pendency graph, returning the requirement rep-
resented by the node.

• ISGOALREQNODE receives a node of a depen-
dency graph, returning true if the node repre-
sents a goal requirement, and false otherwise.

• PATHEXISTS receives a dependency graph, a
source node and a target node, returning true if
there is a path connecting the source node to the
target node, and false otherwise.

• SORTBYACHIEVANDSEQASC receives an as-
sociative array of observation sequences and
links to goal requirements, returning the same
type of array sorted first by achievement (i.e.,
achieved requirements first), and next in ascend-
ing order of sequence length.

Algorithm 1 Generate links
1: ▷ Inputs: Dgraph is a dependency graph; GReq is the

set of all goal requirements; and scur is the current
state of the environment.
Output: L is an associative array of goal requirements
and links. ◁

2: function GENERATELINKS(Dgraph,GReq, scur)
3: ▷ Find goal requirements that were not achieved ◁
4: GReq¬achv ← ∅
5: for all req ∈ GReq do
6: if req /∈ scur then
7: GReq¬achv ← GReq¬achv ∪ {req}

8: L ← ∅
9: for all node ∈ Dgraph do

10: if ¬ISOBSERVATION(node) then continue

11: ▷ Discard node if it is not a leaf and its obser-
vation does not achieve any requirements ◁

12: GReqoachv ← GETADJREQS(Dgraph, node)
13: if ¬ISLEAF(Dgraph, node) and GReqoachv =

∅ then continue

14: o← GETOBSERVATION(node)
15: ▷ Link observation o to its achieved goal require-

ments or to its best potential requirements. ◁
16: if GReqoachv = ∅ then
17: for all req ∈ GReq¬achv do
18: πbefore ← PLAN(STATEBEF(o), req)
19: πafter ← PLAN(STATEAFT(o), req)
20: ∆cost← COST(πafter)− COST(πbefore)
21: l← ⟨o, req, πbefore, πafter,∆cost⟩
22: L [req]← SELECTBEST(L [req] , l)
23: else
24: πbefore ← πafter ← ∅; ∆cost← 0
25: for all req ∈ GReqoachv do
26: l← ⟨o, req, πbefore, πafter,∆cost⟩
27: L [req]← l

28: return L

▷ Returns the best of links la and lb
29: function SELECTBEST(la, lb)
30: if la = ∅ then return lb
31: else if lb = ∅ then return la

32: if COST(la [πafter]) < COST(lb [πafter]) then
33: return la
34: else if COST(la [πafter]) > COST(lb [πafter]) then
35: return lb

36: if la [∆cost] < lb [∆cost] then return la
37: else if la [∆cost] > lb [∆cost] then return lb

38: if TIME(la [o]) > TIME(lb [o]) then return la else
return lb

• SORTOBSBYTIMEASC receives a set of obser-
vations, returning these observations is ascend-
ing time order (i.e., earliest first).
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Algorithm 2 Extract observation sequences and
associate them with links.
1: ▷ Inputs: Dgraph is a dependency graph; and L is an

associative array of goal requirements and links.
Output: A is a set of associations. ◁

2: function GENERATESEQUENCES(Dgraph,L)
3: Dgraphπ ← ADDPLANS(Dgraph,L)
4: nodesΩ ← FINDOBSNODES(Dgraphπ)
5: GReqO ← ∅ ▷ Associative array of observation

nodes and reachable goal requirement nodes
6: for all nodereq ∈ Dgraphπ do
7: if ¬ISGOALREQNODE(nodereq) then continue

8: GReqO [nodereq]← ∅
9: for all nodeo ∈ nodesΩ do

10: if PATHEXISTS(Dgraphπ, nodeo, nodereq)
then

11: GReqO [nodereq]← GReqO [nodereq]∪
{nodeo}

12: OL ← ∅ ▷ Associative array of candidate observa-
tion sequences and links

13: for all ⟨nodereq, nodeso⟩ ∈ GReqO do
14: if nodeso = ∅ then continue

15: lastNo ← GETLASTOBSNODE(nodeso)
16: Oadj ← GETADJOBS(Dgraphπ, lastNo)
17: GReqadj ← GETADJREQS(Dgraphπ, lastNo)
18: if Oadj ̸= ∅ and GReqadj = ∅ then continue

19: ▷ Associate the observation sequence with links
to the goal requirement node ◁

20: OΦ ← GETOBSFROMNODES(nodeso)
21: sortedOΦ ← SORTOBSBYTIMEASC(OΦ)
22: req ← GETREQFROMNODE(nodereq)
23: OL [sortedOΦ]← OL [sortedOΦ]∪{L [req]}

24: ▷ Update the sequences inOL to ensure that obser-
vations connected to an achieved requirement are
in just one sequence ◁

25: OsingleL ← ∅ ▷ Observations connected to a single
achieved goal requirement

26: A ← ∅ ▷ A set of associations
27: OL ← SORTBYACHIEVANDSEQASC(OL)
28: for all ⟨OΦ,LO⟩ ∈ OL do
29: O ← OΦ \OsingleL
30: if O = ∅ then continue

31: if |LO| = 1 then
32: l← LO[1]
33: if COST(l[πafter]) = 0 then
34: OsingleL ← OsingleL ∪ O

35: ▷ Add links in LO to the set of achieved or po-
tential requirements for sequence O ◁

36: Lachv
O ← Lpot

O ← ∅
37: for all l ∈ LO do
38: if COST(l [πafter]) = 0 then
39: Lachv

O ← Lachv
O ∪ {l}

40: else if j [∆cost] < 0 then
41: Lpot

O ← L
pot
O ∪ {l}

42: a← ⟨O,Lachv
O ,Lpot

O ⟩
43: A ← A∪ {a}
44: return A

D Generating Examples for Critique
Explanations

Let Gcommit be the set of top-ranked goals that were
not supported by all the observations. To select
sample observations for the Commission section
of the Analysis template, we apply the following
procedure.

1. Find all observations that do not contribute to
at least one goal in Gcommit;

2. Sort the selected observations in descending
order of the number of goals not in Gcommit to
which they contribute, and then in descending
order of recency (most recent first);

3. Let ocommit be the first observation in the sorted
list, and add it as an example;

4. Let Gaddress be all the goals in Gcommit that are not
supported by ocommit;

5. Exit if Gaddress = Gcommit. Otherwise, redefine
Gcommit = Gcommit \ Gaddress, and go to Step 1.

Let Gomit be the set of goals that were not top-
ranked and are supported by all the observations.
To select sample observations for the Omission
section of the Analysis template, we apply the fol-
lowing procedure.

1. If Gcommit ̸= ∅, then use the observations from
the Commission section to save space, and exit;

2. Sort all observations in descending order of the
number of goals not in Gomit to which they con-
tribute, and then in descending order of recency
(most recent first);

3. Let oomit be the first observation in the sorted
list, select it as an example, and exit.

E Need for Cognition Scale

The Need for Cognition Scale (NCS), developed by
Cacioppo et al. (1984), consists of 18 statements
that measure an individual’s tendency to engage
in and enjoy cognitive activities. The answers are
given on a 5-point Likert scale, where 1 indicates
that the stated behaviour is extremely uncharacter-
istic for the user, and 5 indicates that it is extremely
characteristic. In our user study, we employed the
six-item version in Figure 5, which was extracted
by Lins de Holanda Coelho et al. (2020) from the
original 18 statements. Participants’ NCS score
is the sum of the ratings in their answers, with
the scores of the “negative” questions (3 and 4)
reversed, which yields total scores between 6-30.

567



1. I would prefer complex to simple problems.

2. I like to have the responsibility of handling a situation
that requires a lot of thinking.

3. Thinking is not my idea of fun.

4. I would rather do something that requires little thought
than something that is sure to challenge my thinking
abilities.

5. I really enjoy a task that involves coming up with new
solutions to problems.

6. I would prefer a task that is intellectual, difficult, and
important to one that is somewhat important but does
not require much thought.

Figure 5: Six statements from the Need for Cognition
Scale – answers are on a 5-point Likert scale (1=ex-
tremely uncharacteristic to 5=extremely characteristic).

F Statistical Models

Linear mixed-effects models were employed to in-
vestigate the influence of the independent variables
on the dependent variables. Models for the three
dependent variables (Lcor, Lincor and AG) were
fitted for each of the three cohorts, but we obtained
only three distinct models.

For Lcor and Lincor, we fitted the model
L ∼ ncs+ t× ec+ (pc/sg)× ec+ (pc | partic)
where:

• ec represents explanatory condition, pc predic-
tion correctness, sg scenario group, t the mean-
centered time spent on each explanatory con-
dition, ncs the mean-centered NCS score, and
partic represents individual participants;

• L represents either Lcor or Lincor;

• the times symbol (×) indicates both the main
effects of the variables and their interaction. For
example, t× ec translates to t+ ec+ t : ec;

• the slash symbol (/) indicates that the variable
on the right is nested within the variable on the
left. For example, pc/sg means pc+ pc : sg,
where sg is nested within pc. Specifically, a
GR problem for a partially correct prediction
/ Scenario group A differs from a GR problem
for an incorrect prediction / Scenario group A.

• the pipe symbol (|) indicates a random effect of
the variable on the left, grouped by the variable
on the right. For example, (pc | partic) means
a random intercept and slope for pc that varies
for each participant.

The fixed effects of the model are: ec, pc, sg,
t and ncs (presentation order was excluded, as it
had no effect on task performance). Since the time

spent depends on the explanatory condition, we in-
cluded the interaction term t×ec. Additionally, we
modeled the interaction between explanatory con-
dition and scenario group nested within prediction
correctness, (pc/sg)× ec, allowing the influence
of the GR prediction to vary for each explanatory
condition, prediction correctness and the nested
scenario group.

The random effects structure of the model in-
cludes a random slope for prediction correctness
within participants, denoted (pc | partic). This
structure was designed to capture individual vari-
ability in how participants responded to prediction
correctness. However, for the Lcor dependent vari-
able and the Impact cohort, this approach led to
a singular model, indicating insufficient variance
to support the specified random effects. To ad-
dress this issue, that structure was simplified to
(1 | partic) just for the Lcor dependent variable
and the Impact cohort, effectively removing ran-
dom slopes for prediction correctness, and model-
ing just random intercepts by participant.

For Ag, we fitted the model
Ag ∼ t× (pc/sg) + (pc/sg)× ec+ (1 | partic)
ncs was removed, as it did not significantly in-
fluence participant-GR agreement. Additionally,
random slopes for prediction correctness were ex-
cluded due to singular model convergence issues.
Instead, we modeled just random intercepts by par-
ticipant: (1 | partic).

G Screenshots from the Experiment

Figure 6 displays a screenshot of the introduction
to the experiment, and Figure 7 shows a scenario
in the Rovers domain. Figures 8 and 9 display the
screens for the explanatory conditions Impact and
Critique respectively. Finally, Figure 10 shows the
screen where users in the within-subject cohort rate
the explanatory attributes of Impact and Critique
explanations.
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Figure 6: Narrative about the Rovers space exploration domain; account of the output of the AI system and an
overview of the study.
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Figure 7: Description of a GR problem; and attention-check question about the description.
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Figure 8: GR problem elements: rover capabilities, waypoints and observations; prediction of the GR alongside an
Impact explanation about the prediction; and question about the likelihood of the missions after presenting the GR’s
prediction and the explanation.
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Figure 9: GR problem elements: rover capabilities, waypoints and observations; prediction of the GR alongside a
Critique explanation about the prediction; and question about the likelihood of the missions after presenting the
GR’s prediction and the explanation.
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Figure 10: Questionnaire for rating explanatory attributes of Impact and Critique explanations in the within-subject
experiment.
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H Experimental Results

In Tables 7-9, statistically significant differences
(p-value < 0.05) are boldfaced, and trends
(0.05 < p-value < 0.1 after adjustment for multi-
ple comparisons) are italicized.

• Table 6 shows descriptive statistics for our three
cohorts: between subjects Impact and Critique,
and within subject (Combined).

• Table 7 displays means (standard deviations) of
our three metrics (Lcor, Lcor and AG) for three
explanatory conditions in two experiments (be-
tween subjects and within subject) across three
levels of correctness (correct, partially correct
and incorrect).

• Table 8 displays the effects (i.e., contrasts) of
statistically significant results from Table 7,
where a contrast is the estimated mean differ-
ence between two explanatory conditions. For
example, the first row states that, for the within-
subject cohort and Correct prediction level, the
estimated mean value of the Lcor variable is
0.529 higher (p-value < 0.05) for the Critique
condition than for the None condition.

• Table 9 shows the means (standard deviations)
of participants views about six explanatory at-
tributes.

Table 6: Descriptive statistics for the Impact, Critique and Combined groups (number of participants) – two options
with the most participants; and NCS score (on a 5-point Likert scale).

Attribute Option Between subjects Within subject
Impact Critique Combined

(47) (46) (48)
Gender Male / Female 24 / 23 27 / 19 30 / 16
Age 25-34 / 35-44 14 / 17 21 / 14 16 / 16
Ethnicity Caucasian 30 27 27
English proficiency High 46 46 47
Education Bachelor / Some college, no degree 23 / 9 20 / 11 21 / 10
ML expertise Medium / Low 29 / 13 33 / 7 31 /10
NCS score Mean (std. dev.) [range: 6-30] 22.60 (5.83) 23.35 (4.99) 22.25 (5.75)

Table 7: Lcor, Lincor and AG for three explanatory conditions (None, Impact and Critique) grouped by prediction
correctness level for the between-subjects and within-subject experiments: mean (standard deviation); statistically
significant differences of Impact/Critique explanations vs None (p-value < 0.05) are boldfaced and trends
(0.05 < p-value < 0.1 after adjustment) are italicized.

Metric Correctness Between subjects Within subject (Combined)
None vs Impact None vs Critique None vs Impact Critique

Lcor
Correct 5.23 (1.48) 5.64 (1.35) 5.09 (1.59) 5.56 (1.55) 5.43 (1.27) 5.67 (0.96) 5.80 (1.08)
Part. Correct 4.66 (1.47) 4.71 (1.35) 4.60 (1.60) 4.98 (1.41) 4.90 (1.15) 5.12 (1.08) 5.26 (1.06)
Incorrect 4.48 (1.19) 4.36 (1.24) 4.23 (1.20) 4.23 (1.49) 4.61 (0.96) 4.51 (0.97) 4.79 (1.21)

Lincor
Correct 3.49 (0.96) 3.38 (1.00) 3.11 (1.03) 3.13 (0.95) 4.16 (1.09) 4.16 (1.08) 4.15 (1.28)
Part. Correct 3.74 (0.89) 3.84 (0.95) 3.54 (0.95) 3.43 (0.89) 3.82 (1.07) 3.86 (1.09) 3.75 (1.14)
Incorrect 3.85 (1.07) 4.00 (1.07) 3.86 (0.93) 3.80 (0.95) 4.16 (1.09) 4.16 (1.08) 4.15 (1.28)

AG
Correct 0.71 (0.29) 0.76 (0.24) 0.71 (0.26) 0.75 (0.24) 0.73 (0.23) 0.78 (0.18) 0.76 (0.18)
Part. Correct 0.66 (0.25) 0.69 (0.25) 0.67 (0.24) 0.68 (0.20) 0.63 (0.24) 0.69 (0.22) 0.64 (0.20)
Incorrect 0.69 (0.24) 0.68 (0.23) 0.65 (0.22) 0.66 (0.22) 0.69 (0.21) 0.73 (0.20) 0.66 (0.22)

Table 8: Estimated mean contrasts for significant results derived from the linear mixed-effects models: statistically
significant differences (p-value < 0.05) are boldfaced and trends (0.05 < p-value < 0.1 after adjustment) are
italicized.

Estimated Mean Contrasts
Metric Cohort Correctness Contrast Estimate Std. error DF t-value p-value 95% CI

Lcor Within Correct Critique vs None 0.529 0.17 462.7 3.07 0.012 [0.08, 0.97]
Lcor Within Part. Correct Critique vs None 0.449 0.17 460.4 2.68 0.038 [0.02, 0.88]

Lcor Between–Critique Correct Critique vs None 0.623 0.23 299.9 2.66 0.022 [0.07, 1.17]
Lcor Between–Critique Part. Correct Critique vs None 0.447 0.21 293.2 2.08 0.095 [-0.06, 0.95]
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Table 9: Participants’ views about Impact and Critique explanations in terms of six explanatory attributes grouped
by prediction correctness level for the between-subjects and within-subject experiments: mean (standard deviation);
statistically significant differences (p-value < 0.05) are boldfaced and trends (0.05 < p-value < 0.1 after
adjustment) are italicized.

Explanatory Correctness Between-subjects Within-subject
Attribute Impact Critique p-value Impact Critique p-value

The explanation Correct 4.53 (1.61) 4.50 (1.59) 1.000 4.35 (1.48) 4.71 (1.58) 0.153
is complete Part. correct 4.15 (1.56) 4.70 (1.41) 0.332 3.92 (1.57) 5.48 (1.32) 7.97E-06

Incorrect 3.62 (1.65) 4.50 (1.52) 0.051 3.56 (1.75) 5.52 (1.38) 1.28E-05

Helps me Correct 4.91 (1.25) 5.04 (1.19) 1.000 4.96 (1.30) 5.08 (1.38) 0.365
assess mission Part. correct 4.40 (1.57) 5.24 (1.06) 0.045 4.65 (1.52) 5.52 (1.11) 0.001
likelihood Incorrect 4.11 (1.72) 4.84 (1.37) 0.216 4.46 (1.46) 5.42 (1.38) 4.27E-04

Helps me judge Correct 4.60 (1.42) 4.61 (1.37) 1.000 4.48 (1.41) 4.60 (1.32) 0.365
when to trust Part. correct 4.28 (1.48) 5.00 (1.26) 0.054 4.42 (1.40) 5.33 (1.08) 5.72E-04
or not the AI Incorrect 4.40 (1.53) 4.67 (1.33) 1.000 4.54 (1.40) 5.19 (1.18) 0.020

Contains Correct 3.06 (1.45) 2.89 (1.30) 1.000 3.50 (1.64) 3.15 (1.50) 0.363
misleading or Part. correct 3.55 (1.53) 3.72 (1.38) 0.617 3.21 (1.64) 3.50 (1.69) 0.146
irrelevant info Incorrect 3.55 (1.50) 3.46 (1.39) 1.000 3.33 (1.62) 3.73 (1.65) 0.229

Helps me Correct 4.87 (1.41) 5.06 (1.39) 1.000 4.90 (1.37) 5.06 (1.45) 0.365
understand the Part. correct 4.30 (1.68) 4.83 (1.25) 0.617 4.52 (1.38) 5.40 (1.52) 0.001
AI’s reasoning Incorrect 4.02 (1.70) 4.65 (1.55) 0.216 4.23 (1.50) 5.48 (1.40) 6.71E-05

I like this Correct 4.68 (1.56) 4.70 (1.35) 1.000 4.40 (1.45) 4.77 (1.60) 0.216
explanation Part. correct 4.34 (1.55) 4.70 (1.38) 0.617 3.98 (1.73) 5.58 (1.47) 3.87E-05

Incorrect 3.66 (1.70) 4.41 (1.63) 0.213 4.02 (1.69) 5.35 (1.36) 2.55E-04
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