Are Multi-Agents the new Pipeline Architecture for Data-to-Text Systems?
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Abstract

Large Language Models (LLMs) have achieved
remarkable results in natural language gener-
ation, yet challenges remain in data-to-text
(D2T) tasks, particularly in controlling out-
put, ensuring transparency, and maintaining fac-
tual consistency with the input. We introduce
the first LLM-based multi-agent framework
for D2T generation, coordinating specialized
agents to produce high-quality, interpretable
outputs. Our system combines the reasoning
and acting abilities of ReAct agents, the self-
correction of Reflexion agents, and the qual-
ity assurance of Guardrail agents, all directed
by an Orchestrator agent that assigns tasks to
three specialists—content ordering, text struc-
turing, and surface realization—and iteratively
refines outputs based on Guardrail feedback.
This closed-loop design enables precise control
and dynamic optimization, yielding text that
is coherent, accurate, and grounded in the in-
put data. On a relatively simple dataset like
WebNLG, our framework performs competi-
tively with end-to-end systems, highlighting its
promise for more complex D2T scenarios.

1 Introduction

Data-to-text (D2T) generation is the process of con-
verting structured data, like meaning representa-
tions or knowledge graphs, into coherent and fluent
natural language text (Gatt and Krahmer, 2018;
Reiter and Dale, 2000). Traditional D2T systems
typically employ rule-based methods, using explic-
itly defined rules or templates to generate textual
outputs (Reiter and Dale, 2000; Mille et al., 2023,
2024a). Although rule-based systems offer trans-
parency and interpretability, they face challenges
with respect to scalability and adaptability to new
or diverse domains and data types (Heidari et al.,
2021). In contrast, end-to-end (E2E) neural archi-
tectures achieve impressive results, but limited su-
pervision during generation makes their processes
largely opaque (Gatt and Krahmer, 2018; Ferreira
etal., 2019).
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Figure 1: Data-to-text Multi-Agent Framework.

Modern pipeline architectures offer a partial so-
lution to these challenges by decomposing the gen-
eration task into distinct modular phases, including
content selection (choosing the relevant data), plan-
ning (organizing this data logically), and surface re-
alization (constructing the final output text) (Reiter
and Dale, 2000). Each phase can independently uti-
lize various methods, such as rule-based, statistical,
or neural approaches (Mille et al., 2017; Lapalme,
2024, Ferreira et al., 2019; Cunha et al., 2024; Os-
uji et al., 2024b,a). Despite providing modular-
ity and transparency, neural pipeline systems still
struggle with complex or ambiguous inputs and
usually lack integrated mechanisms for error detec-
tion and correction, a shortcoming highlighted by
concepts such as self-monitoring through feedback
loops and revision-based architectures (Pickering
and Garrod, 2013; Gatt and Krahmer, 2018).

To overcome these limitations, we introduce a
multi-agent framework that segments the D2T gen-
eration process into specialized subtasks, each man-
aged by a dedicated large language model (LLM)-
powered agent. At the center of this framework is a
supervisor (orchestrator) agent, which directs three
worker agents tasked with content ordering, text
structuring, and surface realization. After each
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stage, the outputs are rigorously evaluated by a
set of inspection agents—structured as Guardrails
(Rebedea et al., 2023) and designed to assess es-
sential quality aspects, including fluency, semantic
adequacy, and ensuring fidelity to the input data.

When errors are detected, guardrails provide tar-
geted feedback that the orchestrator incorporates
into subsequent prompts for correction. This dy-
namic and feedback-driven process draws inspi-
ration from recent innovations such as Reflexion
(Shinn et al., 2023), ReAct (Yao et al., 2023), and
Self-Refine (Madaan et al., 2023), which have
demonstrated the value of combining reasoning,
acting, and reflective iteration. As a recent addition
to the D2T field, this multi-agent framework opens
up new possibilities for improving textual fidelity
and control through its iterative, inspectable, and
role-oriented architecture. The code and results are
publicly available'.

2 Related Work

Traditional approaches to D2T generation, includ-
ing early pipeline architectures (Reiter and Dale,
2000), segment the generation process into modular
stages. Although interpretable, these systems suffer
from error propagation and lack flexibility. End-to-
end neural models, particularly those powered by
LLMs (Radford et al., 2019; Brown et al., 2020;
OpenAl, 2023), offer impressive performance, but
their generation processes are typically opaque and
challenging to audit when errors occur.

Multi-agent systems have recently emerged as
a promising solution to combine modularity with
the expressive power of LLMs (Guo et al., 2024;
Xi et al., 2025). These systems simulate collabo-
rative problem solving by assigning different roles
to agents and enabling structured communication
between them. Techniques like ReAct (Yao et al.,
2023) combine verbal reasoning and actions, while
Reflexion (Shinn et al., 2023) enables agents to it-
eratively self-improve using natural language feed-
back. Guardrails or inspection agents further en-
hance quality control by enforcing constraints on
output behavior.

The evaluation process in multi-agent systems
also benefits from structured feedback. ChatEval
(Chan et al., 2024) and other debate-style eval-
uators (Du et al., 2024) use agent discussion to
reach consensus on generation quality, highlight-

lhttps://github.com/NonsoCynthia/
Data-to-text-Agent

ing the importance of diverse roles and feedback
loops. Parameter-free optimization methods lever-
age prompt engineering and agent reflection with-
out fine-tuning, enabling lightweight adaptation
(Du et al., 2025).

Our framework synthesizes these developments
by integrating role-based agent specialization,
feedback-driven orchestration, and robust eval-
vation guardrails into a single D2T generation
pipeline. To the best of our knowledge this is the
first attempt to apply a multi-agent system to a D2T
task.

3 Methodology

This study uses the English Enriched WebNLG
2020 test set (Castro Ferreira et al., 2020), a widely
adopted benchmark for data-to-text generation.
This version includes sub-task annotations, which
guided both the design of worker roles and the de-
velopment of guardrail evaluation prompts. The
dataset comprises 1,779 sets of RDF triples paired
with human-written reference texts, requiring mod-
els to verbalize each set as coherent and natural-
sounding text. WebNLG covers multiple domains
and a variety of linguistic styles, supporting com-
prehensive evaluation of factual coverage and gen-
eration fluency. We make use of zero temperature
settings for LLLMs used for this study. Full prompt
templates and human evaluation guidelines are pro-
vided in Appendix 5.

3.1 Multi-Agent System

As shown in Figure 1, our system is organized into
four core modules: i) an Orchestrator Agent, ii)
three specialized Worker Agents—Content Order-
ing (CO), Text Structuring (TS), and Surface Real-
ization (SR), iii) a set of task-specific Guardrail
Agents, and a iv) Finalizer which produces the
final validated text output. All agents in our work-
flow use the GPT-4.1 (OpenAl, 2025a) language
model as the underlying engine, operating with a
temperature setting of zero. The workflow consists
of:

i. Orchestrator: The Orchestrator Agent super-
vises the workflow by breaking down the data-to-
text (D2T) generation task into smaller subtasks,
which are then dynamically assigned to the relevant
Worker Agents. The Orchestrator operates with ac-
cess to the user prompt, its recent interaction histo-
ries between workers, and guardrail feedback if any.
Drawing inspiration from hierarchical communica-
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tion in LLM-based multi-agent systems (Guo et al.,
2024), the Orchestrator not only delegates tasks
but also adapts instructions in response to guardrail
evaluations. Through iterative prompt refinement
at each stage, it ensures that the 3-stage pipeline
advances toward producing coherent, accurate and
validated output.

ii. Worker Agents: Because WebNLG triples
already encode interpreted facts, our system be-
gins at the document planning stage. Building on
prior work (Osuji et al., 2024b,a) that utilized a
3-stage pipeline—and also observed that reducing
the number of stages in the pipeline can improve
results—we structure our framework around three
specialized Worker Agents. Each agent is provided
with an ad-hoc selection of 5-shot task examples
from the dataset and receives detailed, context-
rich instructions from the Orchestrator—including
orchestrator reasoning traces and relevant input
data (Wei et al., 2022). The Content Ordering
agent determines the optimal, fact-preserving se-
quence for the input data. The Text Structuring
agent segments this sequence into paragraphs and
sentences using explicit tags such as <paragraph>
and <snt>. The Surface Realization agent then gen-
erates fluent, factually correct text from the struc-
tured content. To ensure efficiency and prevent
infinite loops, each subtask is limited to three iter-
ations. This modular, iterative approach supports
traceability and facilitates targeted regeneration (Xi
et al., 2025).

ili. Guardrails: The output of each Worker
Agent is rigorously assessed by dedicated, LLM-
powered Guardrail Agents, each operating accord-
ing to structured evaluation criteria expressed in
natural-language prompts. Specifically, the Con-
tent Ordering Guardrail checks for completeness,
logical sequencing, and format adherence; the
Text Structuring Guardrail ensures sentence and
paragraph coherence; and the Surface Realization
Guardrails perform parallel assessments of qual-
ity (fluency and grammaticality), flow (coherence
and naturalness), and factuality (faithfulness and
semantic adequacy). See Appendix 5 for the corre-
sponding prompt templates. Outputs failing to meet
requirements are returned with detailed feedback
for iterative revision, ensuring that the final output
text is both accurate and linguistically appropriate.
We adopt a parameter-free optimization strategy
called Prompt-Based Feedback Refinement, in-
spired by Reflexion (Shinn et al., 2023) and Self-

Refine (Madaan et al., 2023), where guardrail feed-
back is reformulated into natural-language prompts
for subsequent iterations. Each guardrail agent is
provided with the Orchestrator’s latest instruction,
as well as the worker’s input and output, enabling
precise and actionable evaluation. Whenever feed-
back other than CORRECT is received, it is incor-
porated into the next prompt—provided the same
worker is invoked again — thus enabling the sys-
tem to iteratively refine its outputs without altering
model parameter. For instance, if the surface real-
ization step is flagged for coherence issues, the Or-
chestrator will instruct the corresponding Worker
to improve logical flow in the next round. This
dynamic feedback loop allows agents to continu-
ously adapt their strategies, recover from errors,
and improve robustness in line with recent trends
in prompt-level self-evolution (Du et al., 2025).
iv. Finalizer: After all three Worker Agents
have produced validated outputs, the Finalizer uses
the outputs and interaction histories from the last
two Worker stages to produce the final text. De-
pending on the results, it may remove structural
tags, polish the phrasing, or return the exact text
generated by surface realization. This final step,
analogous to the summarization modules in sys-
tems like ChatEval (Chan et al., 2024), ensures
consistency, fluency, and high overall textual qual-

ity.
3.2 End-to-End (E2E) System

For comparison, we also implemented an end-to-
end (E2E) system that only utilizes an ad-hoc se-
lection of 5-shot example prompting with the GPT-
4.1 (OpenAl, 2025a) model. In this setting, a single
prompt is used to generate the final output directly
from the input data, without modular decomposi-
tion, agent specialization, or intermediate guardrail
feedback. This E2E approach serves as a baseline
to evaluate the effectiveness and interpretability of
our proposed multi-agent architecture.

4 Results

4.1 Automatic Metric Results

Table 1 reports the automatic evaluation scores
for three systems: our End-to-End (E2E) baseline,
the proposed D2T-Agent (GPT-4.1), and Struct-
GPT (Osuji et al., 2024a), which was among the
top performers in the GEM-2024 shared task (Mille
et al., 2024b). StructGPT adopts a 3-stage pipeline
neural architecture, leveraging Flan-T5 (Chung
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| BLEUT | METEORT | ChrF++1 | TER| | BERT_F11 | BLEURT ! | COMET t

StructGPT4 |  49.80 0.40 0.66 0.45 0.96 0.56 0.82
E2E 50.63 042 0.70 0.44 0.96 0.59 0.83
D2T-Agent 48.42 042 0.69 0.46 0.96 0.58 0.83

Table 1: Automatic metrics results. Bold and underlined results denote the best and the second best ones respectively.

Fluency Grammaticality No Addition No Omission
LLM Human LLM Human LLM Human LLM Human
Human 635 6757 652 6917 6.63 6.947 670 697"
Struct 677  695% 694 698 68  698* 608 6397
E2E 688  6.94% 698 6994 692 698" 695  697°
D2T-Agent 689 696" 699 698* 690 6977 696 698"

Table 2: Average scores on a 1-7 Likert scores for LLM-as-Judge and Human Evaluation. Superscript letters mark groups that
do not differ significantly in pair-wise Mann—Whitney U tests (p < 0.05). Bold and underlined results denote the best and the

second best ones respectively.

et al., 2022) for fine-tuning and generation in the
CO and TS stages, and GPT-4 (Achiam et al., 2023)
for surface realization.

Across most metrics recorded, including BLEU
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), ChrF++ (Popovi¢, 2017), TER
(Snover et al., 2006), BERT_F1 (Zhang et al.,
2020), BLEURT (Sellam et al., 2020), and COMET
(Rei et al., 2020), the E2E system consistently
achieves the highest scores. The D2T-Agent also
demonstrates competitive performance, frequently
ranking second across most metrics. StructGPT re-
mains robust, outperforming the multi-agent D2T-
Agent in BLEU and TER, while scoring slightly
lower in the other evaluation measures.

4.2 Human Evaluation

Three co-authors served as annotators for the hu-
man evaluation. The assessment was conducted
in a blind fashion, with annotators unaware of the
source system for each output. To ensure a repre-
sentative sample, only examples containing 2 to 7
input triples were included, covering all domains;
examples with a single triple were excluded from
the evaluation. The evaluation began with a pi-
lot phase in which 20 samples were rated—five
outputs each from the three systems and from the
human reference. For the main evaluation, annota-
tors assessed a total of 400 samples: 100 outputs
from each system and 100 human references drawn
from the test set.

Outputs were evaluated on a 7-point Likert scale
(1 - lowest, 7 - highest) using four criteria (as shown
in Table 2 and Table 3): fluency, grammaticality,
no-omission, and no-addition, following the human
assessment protocol established in (Mille et al.,
2024b). See Appendix 5 for definitions of the eval-

uation criteria.

In addition to human annotation, we also applied
an LLM-as-judge approach, using GPT 03 (Ope-
nAl, 2025b), Claude Sonnet 3.7 by Anthropic (An-
thropic, 2024), and Gemini 2.5 Pro (Deepmind,
2025) to assess outputs according to the same cri-
teria, as described in (Mille et al., 2024b). This
combination of human and LLM-based judgments
provides a comprehensive view of system perfor-
mance.

4.3 Analysis

As shown in Table 2, the multi-agent approach did
not show a significant advantage over the end-to-
end GPT-4.1 system; however, LLM-as-a-judge
evaluations suggest it may be less prone to content
omission.

We attribute the lack of difference between agent-
based and end-to-end approaches to the relative
simplicity of the dataset and task, which may not
sufficiently highlight the benefits of multi-agent
coordination and inspection mechanisms. No-
tably, results indicate that the multi-agent system
is competitive with, and in some respects outper-
forms, the StructGPT pipeline, suggesting that
agent-based neural architectures remain a promis-
ing direction. The multi-agent framework offers
modularity, transparency, and some improvements
in omission and fluency, but only marginal gains
over the E2E system in the current setup.

Interestingly, some LLM-generated outputs were
rated higher than human-written references. How-
ever, these findings are based on a relatively simple
benchmark and should be considered preliminary,
as this work is still ongoing.

It is important to note that, due to the long public
availability of the WebNLG dataset, data leakage or
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contamination may have occurred—that is, LLMs
may have been trained on data closely resembling
or identical to the test samples—potentially under-
mining the validity of these evaluations (Balloccu
et al., 2024; Zhou et al., 2023). While large models
such as GPT-4.1 may have benefited from this expo-
sure, enabling end-to-end systems to reproduce test
set content more easily, our multi-agent approach
requires the generation of intermediate structured
outputs (content ordering, text structuring), making
the process more reliant on reasoning and less on
memorization or retrieval.

5 Conclusion

This study presented a new agentic architecture
for NLG that combines the structural benefits of
classical pipeline architectures with the flexibil-
ity of end-to-end models. The new approach was
comprehensively assessed against E2E and 3-stage
pipeline-based D2T generation systems on a sin-
gle (albeit simple) benchmark dataset. The results
show that E2E achieves the highest scores on most
automatic metrics, while the D2T-Agent performs
comparably to E2E in both human and LLM-as-
judge evaluations.

For future work, we plan to perform evaluations
on higher-quality datasets composed of semantic
instances with more triples and longer output texts,
and to apply data perturbations such as creating
fictional entities with LLMs and Counterfactual en-
tities through displacement (Axelsson and Skantze,
2023; Mille et al., 2024b) to assess generalization
and minimize contamination risk. We also aim
to explore new architectural variations, including
single-agent (end-to-end) systems with integrated
feedback and iterative refinement, to strengthen
baseline comparisons. Additionally, we will ex-
periment with a simplified setup in which a single
agent performs all 3-stage pipeline tasks, enabling
a deeper analysis of trade-offs between architec-
tural simplicity and control.

Limitations

This study is subject to several important limita-
tions. First, all experiments were conducted on
a single, widely used dataset (WebNLG), which
poses risks of data contamination, as large language
models may have been exposed to the test data dur-
ing pretraining. As a result, the high performance
of end-to-end systems may reflect memorization or
retrieval rather than genuine generalization, poten-

tially undermining the validity of the comparison.
Second, WebNLG is relatively simple in terms of
both the number of facts per instance and the com-
plexity of the required text, which may not fully
showcase the advantages of multi-agent coordina-
tion and iterative inspection. Third, the human
evaluation relied on a small pool of annotators, all
of whom were co-authors, which may introduce
bias despite efforts to ensure blind and randomized
assessment. Finally, the multi-agent framework
incurs additional computational cost compared to
simpler approaches.

To address some of these limitations, future work
will evaluate the framework on larger, more com-
plex, and less publicly available datasets, incorpo-
rate data perturbations to better probe generaliza-
tion, and extend the scale and diversity of human
evaluation.
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Appendix

Criterion Name

Definition

Fluency Measures how smoothly and naturally the text reads, including flow, readability,
and whether it sounds like language produced by a native speaker.
Grammaticality Assesses correctness of grammar, syntax, punctuation, and sentence structure

throughout the text.

No Omission

Ensures all relevant facts from the input data are included in the generated text;
no important information is missing.

No Addition

Verifies that the output does not contain extra or hallucinated information not
present in the input triples.

Table 3: Definitions of evaluation criteria for Human

Evaluation.
Fluency Grammaticality
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Figure 2: A graph of LLMs Evaluation Scores
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Guardrail Agent

Prompt (Instruction)

Orchestrator You are the orchestrator agent responsible for supervising a structured data-to-text generation pipeline. Your primary role is to
ensure the pipeline produces fluent, coherent, and contextually accurate textual outputs that fully align with user expectations. The
Prompt pipeline comprises three sequential and strictly ordered stages:
* Content Ordering (CO): Organizes the data logically to form a coherent narrative structure.
¢ Text Structuring (TS): Develops organized textual structures such as paragraphs or lists based on ordered content.
« Surface Realization (SR): Produces the final fluent, grammatically correct, and readable text based on structured content.
WORKFLOW POLICY (Detailed Guidelines)
¢ Strict Stage Order: Always follow the sequence: Content Ordering — Text Structuring — Surface Realization. Do not skip
or change the order of these steps under any circumstances.
* Worker Selection: Assign tasks only to the following named workers: ’content ordering’, ’text structuring’, ’surface
realization’, or, for completion, "FINISH’ or ’finalizer’.
¢ Handling Guardrail Feedback: If automated guardrail feedback (for accuracy, completeness, or fluency) finds issues,
immediately reassign the task to the same worker. Your new instructions must directly address the feedback provided.
« Advance Only on Validation: Progress to the next stage only after guardrail feedback confirms that the current output is
correct, complete, and fluent.
« Improving Surface Realization: If the surface realization output fails fluency, coherence, or readability checks, reassign the
task with explicit guidance for improving naturalness, clarity, and overall quality.
* No Backtracking: Once a stage is complete and you have moved to the next worker, do not return to previous stages—even if
new issues are found later.
* Retry Limit: If a worker is reassigned the same task three times in a row without producing a satisfactory result, advance to
the next stage.
« Avoid Unnecessary Reassignments: Do not repeat assignments once guardrail feedback confirms all requirements are met,
unless there are clearly identified incomplete subtasks.
« Mandatory Feedback Integration: If the guardrail’s OVERALL feedback is 'Rerun worker with feedback’, reassign the
task to that worker and ensure the feedback is included in your new instructions.
WORKER ASSIGNMENT CRITERIA
« Assign clearly named workers based strictly on pipeline progression and outstanding work requirements.
« Immediately indicate completion CFINISH’ or *finalizer’) if the full task is successfully completed or if the provided input is
insufficient or malformed.
« After receiving guardrail feedback labeled "CORRECT”, proceed promptly to the next relevant worker.
« If guardrails provide feedback indicating errors, explicitly reassess and revise worker instructions to address the specific errors
noted, justifying each reassignment decision clearly within your Thought section.
WORKER INPUT REQUIREMENTS
« Consistently provide every worker with:
— The full, original input data provided by the user.
— Complete history of prior pipeline results and evaluations.
— Explicitly incorporate guardrail feedback into any repeated task assignment, clearly highlighting areas needing
improvement.
— Clearly state expectations, requirements, and outcomes desired from the worker’s efforts.
— Strictly prohibit invention of new workers, data fields, or tasks outside the predefined scope.
— Incorporate your explicit instructions clearly into your Thought reasoning.
OUTPUT FORMAT
* Thought: (Provide a detailed reasoning process based on user requirements, completed stages, guardrail feedback, and clearly
justify any task assignments or reassignments.)
* Worker: (Choose explicitly from: "content ordering’, "text structuring’, "surface realization’, "FINISH’, or ’finalizer’.)
* Worker Input: (For "FINISH’ or ’finalizer’, return the refined final text. For other workers, provide clear, detailed
instructions, all relevant data, context, guardrail feedback, and set expectations for the task.)
< Instruction: (List/outline the task, expectations and supply any specific instructions or tips that will help the worker perform it
accurately and efficiently.)
Only include the fields Thought:, Worker:, Worker Input:,and Instruction: in your output.
‘Worker Prompt You are a specialized agent responsible for one of three roles: content ordering, text structuring, or surface realization in a data-to-text
pipeline.
Your Task: Carefully complete the task specified in Worker: using only the information in Worker Input:. Do not add facts that are
not present or omit any essential information.
Output Requirements:
« Explain your reasoning clearly and step by step.
« Ensure your output is fluent, relevant, and directly based on the input data.
¢ Only include information supported by the data—never hallucinate or invent.
« Stay strictly within your assigned role and do not include unrelated content.
Focus on accuracy, completeness, and natural language fluency to maximize the quality of your output.
Content Ordering You are the content ordering agent in a data-to-text pipeline.
Task Overview
Prompt

« Arrange structured data in a sequence that best supports the user in generating fluent, coherent, and accurate text.
« The goal is to make the order as natural and easy to read as possible, with related facts appearing close together.
Ordering Principles
* Place pieces of information that are logically or thematically related next to each other in the sequence.
« Arrange facts to avoid abrupt jumps between unrelated topics, making the information flow smoothly and clearly.
« Do not omit, invent, or alter any input information; every input fact must be included exactly as provided.
Terms and Conditions
¢ Ordering: Select the best sequence so that related facts are adjacent or near each other, making it easier for the user to write
smooth and cohesive text.
« Related information: Facts that refer to the same entity, event, or theme, or that build upon each other in a logical or
meaningful way.
Examples
¢ {5 Shot examples}
Use your judgment to choose the most logical and human-like ordering, keeping related facts together and enabling clear, coherent,
and factually faithful text for the user.
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Guardrail Agent Prompt (Instruction)

Content Ordering You are a guardrail evaluating the output of the ’content ordering’ agent in a WebNLG-style data-to-text generation pipeline.

Guardrail Task: Determine whether the agent has reordered the extracted triples from the input Triple Set in a way that supports natural, fluent,
uardrail

and logical text generation.

Evaluation Criteria:

¢ No-Omissions: Every fact (triple) from the original input must be present in the output ordering.

« No-Additions: No new facts, hallucinations, or fabricated information should be present.

¢ Order: The sequence should enhance clarity and readability for sentence/paragraph generation, but there is no single correct order;

accept multiple plausible groupings or sequences.

Diversity in Style: Do not penalize alternative, logically sound orderings or grouping styles. Accept nearly correct or reasonable

results.

« Strictness: Flag only if there are true structural issues (illogical jumps, misplaced groupings, clear confusion, or missing/added
facts).

How to Judge:

1. Check all triples are present, no more, no less.

2. Assess if the ordering is reasonable for conversion into coherent sentences/paragraphs.

3. Do not enforce a specific ordering unless required for clarity.

4. Accept unchanged orders if still coherent.

Output Format:

« Ifall triples are present, and the order is reasonable: respond with CORRECT

¢ Otherwise: provide a short, clear explanation (e.g., “Omitted a triple”, “Order creates confusion”, “Fact hallucinated”).

FEEDBACK:

Text Structuring

Prompt

You are the text structuring agent in a data-to-text pipeline.
Task Overview
« Group a list of ordered facts into coherent sentences and paragraphs, mirroring how a skilled human writer would present them.
« Use <snt> tags for sentences and <paragraph> tags for paragraphs.
Guidelines
* Combine related facts into sentences so the text feels natural and informative.
* Group sentences discussing similar topics or entities into the same paragraph.
« Avoid creating choppy text with one fact per sentence; include two or more related facts in each <snt> whenever possible.
« Do not change, remove, or invent any information—preserve the original sequence and format.
¢ Only add <snt> and <paragraph> tags for structure. The content of each fact must remain unchanged.
Strategy
« Use your judgment to determine which facts belong together in a sentence (<snt>), typically those describing the same entity,
event, or theme.
¢ Organize sentences that share a common subject or logical flow into the same paragraph (<paragraph>).
« For short lists: use a single paragraph with a few sentences.
« For longer lists: divide the text into multiple paragraphs, each with several sentences.
Terms
« Sentence (<snt>): A set of facts that naturally belong together and would be expressed in a single sentence by a human writer.
< Paragraph (<paragraph>): A group of sentences covering related topics, forming a natural and readable unit.
Examples
¢ {5 Shot examples}

Text Structuring

Guardrail

You are a guardrail for the "text structuring’ phase in a WebNLG triple-based data-to-text pipeline.

Task: Decide if the agent grouped the ordered triples into sensible sentence-level (<snt>) and paragraph-level (<paragraph>) units.

Evaluation Criteria:

¢ No-Omissions: Every triple from the input must be present in the output, grouped into some <snt> (sentence) and <paragraph>
(paragraph).

¢ No-Additions: No new or hallucinated facts or tags should be introduced.

¢ Accurate Grouping: <snt> tags must group related facts for a sentence; <paragraph> tags group related sentences.

¢ Order Preservation: The order should follow the content ordering phase, unless there’s a strong structural reason.

¢ Well-Formed Structure: All tags must be valid and closed.

« Flexibility: Allow for different—but reasonable—grouping styles.

How to Judge:

¢ Confirm all triples are included and properly grouped.

* Flag only for missing facts, hallucinated content, or broken grouping/structure.

Output Format:

« If the grouping is logical, complete, and no facts are omitted or added: respond with CORRECT

« Otherwise: give a concise explanation of what is missing or incorrect.

FEEDBACK:

Surface
Realization

Prompt

You are a data-to-text generation agent. Your task is to convert structured content, marked with <snt> and <paragraph> tags, into
fluent, coherent, and accurate natural language text.
Goal
* Produce text that fully conveys every fact from the input in clear, well-formed sentences and paragraphs.
¢ The result must be natural and easy to read, with no information added, omitted, or altered.
Instructions
« Convert all input facts into smooth, logically connected natural language.
« Do not include any tags, labels, or formatting markers in your output.
« Do not invent, omit, or modify any information from the input.
* Combine facts from each <snt> block into fluent sentences, but feel free to merge information from multiple <snt> blocks to
create richer, more informative sentences when appropriate.
* Vary your sentence structure to avoid repetitive or formulaic language.
« Make sure to use correct referring expressions (such as proper names, nouns, pronouns, noun phrases, dates and times, titles,
numeric or unique identifiers) and determiners.
Use natural paragraphing when the input covers different topics or entities.
* Avoid bullet points, lists, or any structured formatting in your output.
« Ensure the final text is fluent, grammatically correct, semantically faithful, and easy to read.
* Avoid repeating any fact—ensure each piece of information appears only once.
« Present the text in a style that is natural, human-like, fluent, clear, and easy to read.
Examples
¢ {5 Shot examples}
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Guardrail Agent

Prompt (Instruction)

Surface
Realization
(Fluency &

Grammaticality)

You are a guardrail focused on evaluating the fluency and grammatical correctness of a generated text in a data-to-text generation

pipeline. You will receive a complete paragraph level or sentence level generated text for evaluation.

Definitions:

¢ Fluency: How smoothly and naturally the output reads. A fluent sentence has appropriate word choice, sentence rhythm, and no
awkward or choppy phrasing.

¢ Grammaticality: Correctness according to standard grammar rules, including subject-verb agreement, tense consistency,
punctuation, and syntactic structure.

Task: Determine whether the generated output is readable, well-formed, and free of grammatical issues.

Evaluation Criteria:

¢ Fluency: Sentences should read naturally and avoid awkward constructions or unnatural collocations.

¢ Grammaticality: The text must be grammatically correct according to formal written English norms.

« Penalize the text if there are repetitions such as in facts.

Output Format:

« If both criteria are met: respond with CORRECT

o If either is violated: return a concise one-sentence specific explanation.

FEEDBACK:

Surface
Realization
(Faithfulness &

Adequacy)

You are a guardrail focused on evaluating faithfulness to the input data and the adequacy of the output content in a data-to-text

generation task. You will receive a complete paragraph level or sentence level generated text for evaluation.

Definitions:

< Faithfulness: The output must remain factually accurate and reflect only the information present in the input. No fabricated, altered,
or hallucinated information is allowed.

¢ Adequacy: The output must include all the critical and salient facts from the input data. It should not omit important content
necessary for understanding the data.

Task: Verify that the output is strictly derived from the input and comprehensively conveys its key information.

Evaluation Criteria:

« Faithfulness: Every statement in the output must be traceable to the input data.

* Adequacy: All major data points should be present; the text should not skip or ignore essential facts.

Output Format:

« If both criteria are satisfied: respond with CORRECT

¢ If either is violated: return a concise one-sentence specific explanation.

FEEDBACK:

Surface
Realization
(Coherence &

Naturalness)

You are a guardrail evaluating whether the generated text is coherent and natural in a data-to-text generation task. You will receive a

complete paragraph level or sentence level generated text for evaluation.

Definitions:

¢ Coherence: How well the ideas and facts in the text are organized and connected. A coherent output has a logical structure and
clear flow, even when multiple data points are presented.

* Naturalness: Whether the output sounds like it was written by a human. It should avoid stilted, robotic, or overly templated
language.

Task: Assess whether the text presents the information in a clear, logically connected manner and reads as if authored by a human.

Evaluation Criteria:

« Coherence: Sentences should connect well; transitions between ideas must make sense.

* Naturalness: The phrasing should resemble that of human writing, not mechanical output.

Output Format:

« If both criteria are met: respond with CORRECT

« If either is violated: return a concise one-sentence specific explanation.

FEEDBACK:

Finalizer Prompt

You are the final agent responsible for generating the final output text based on the results of the data-to-text pipeline. The final output
should be fluent, coherent and factually accurate, reflecting the structured data processed through the previous stages.
Your Role
* You are tasked with proofreading, refining and presenting a perfect final text generated by the previous stage.
« Extract and return the final natural language text strictly from the "surface realization’ stage if it is verbalised perfectly.
* Do not generate, rephrase, or embellish any part of the content.
« Ensure the output reflects the final prediction as close as possible to the ground truth.
Instructions
¢ Only return the surface realization output if it is factually accurate and complete.
 The output should match the style, phrasing, and informational structure of the ground truth.
* Do not invent details, add stylistic wrappers, or include filler commentary.
o If the surface realization result is missing, incomplete, or incorrect, report exactly what is missing.
« Remove symbols, tags and special characters (e.g., xml tags <snt>, </snt>) only keep if they are not necessary.
Output Format
< Final Answer: [One fluent, compact sentence that accurately reflects the structured data without deviation]

End-to-End
Generation

Prompt

You are a data-to-text generation agent. Your task is to generate fluent, coherent, and factually accurate text from structured data.
Objective
¢ Convert structured input into clear and natural language text that fully and faithfully represents all provided information.
Ensure the output is easy to read, highly fluent, and logically connected.
Input Format
« Structured data may be presented as triples, attribute-value pairs, tables, or other standardized formats.
Output Requirements
« Include all information present in the input; do not omit or add facts
« Express content using clear, coherent, and well-formed sentences
¢ Prioritize fluency and logical flow throughout the text
* Do not copy format markers or tags from the input
« Do not fabricate, infer, or hallucinate information not present in the input
 Avoid repetitive or mechanical sentence patterns
Writing Guidelines
¢ Present information in a logical and connected manner
¢ Use varied and natural sentence structures for better readability
* Maintain strict fidelity to the input: no additions, no omissions
« Ensure the output is easy to understand and free from awkward phrasing
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Guardrail Agent

Prompt (Instruction)

Input Prompt

You are an agent designed to generate text from data for a data-to-text natural language generation. You can be provided data in the
form of xml, table, meaning representations, graphs etc. Your task is to generate the appropriate text given the data information
without omitting any field or adding extra information in essence called hallucination.

Dataset: {dataset_name}

Here is the data, now generate text using the provided data:

Data: {data}

Output:

Table 4: Prompts for D2T Tasks
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