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Abstract

Inconsistent naming of menu items across mer-
chants presents a major challenge for businesses
that rely on large-scale menu item catalogs. It
hinders downstream tasks like pricing analysis,
menu item deduplication, and recommendations.
To address this, we propose the Cross-Platform Se-
mantic Alignment Framework (CPSAF), a hybrid
approach that integrates DBSCAN-based cluster-
ing with SIGMA (Semantic Item Grouping and
Menu Abstraction), a Large Language Model based
refinement module. SIGMA employs in-context
learning with a large language model to generate
generic menu item names and categories. We evalu-
ate our framework on a proprietary dataset compris-
ing over 700,000 unique menu items. Experiments
involve tuning DBSCAN parameters and apply-
ing SIGMA to refine clusters. The performance
is assessed using both structural metrics i.e. clus-
ter count, coverage and semantic metrics i.e. intra
and inter-cluster similarity along with manual qual-
itative inspection. CPSAF improves intra-cluster
similarity from 0.88 to 0.98 and reduces singleton
clusters by 33%, demonstrating its effectiveness in
recovering soft semantic drift.

1 Introduction

In a highly competitive and rapidly evolving
ecosystem, restaurants increasingly seek to expand
their menus and align offerings with consumer pref-
erences. Traditionally, such decisions are based
on manual market surveys and limited feasibility
analysis. This mechanism is resource-intensive
and lacks scalability. Therefore, data-driven ap-
proaches can help restaurant owners to make in-
formed decisions. A persistent challenge in this
domain is the absence of standardized naming con-
ventions across menu item listings. For instance,
menu items such as “Spicy Chicken Wrap” and

“Zinger Wrap” may refer to identical products but
are described differently across vendors or plat-
forms. These inconsistencies hinder effective com-
parative analysis of menu data, limiting the ability
to extract actionable insights. Addressing this prob-
lem through semantically informed techniques can
enable consistency among the products and enable
a wide range of applications i.e. data-driven recom-
mendation systems, competitive pricing strategies,
and targeted business expansion.

Researchers have employed various clustering
algorithms that group the menu items based on lex-
ical or embedding-based similarity (Gumelar et al.,
2023), (Messaoudi et al., 2024). Although the meth-
ods are effective to some extent, they often fail to
represent deeper semantic relationships, leading to
fragmented or imprecise clusters. Recent advance-
ments integrate Large Language Models (LLM) to
improve clusters via prompting and few-shot learn-
ing (Huang and He, 2024), (Zhang et al., 2023),
(Viswanathan et al., 2024), (Feng et al., 2024), (Lin
et al., 2025). Despite these improvements, current
approaches overlook subtle name variations that
occur across restaurants. Consequently, they strug-
gle to consistently align semantically equivalent
menu items, limiting their utility in downstream
analytical and recommendation tasks.

To address these challenges, we propose the
Cross-Platform Semantic Alignment Framework
(CPSAF), a hybrid pipeline that combines tradi-
tional clustering algorithms with LLM- driven re-
finement. The contributions of this study are as
follows:

1. We propose CPSAF, a hybrid clustering frame-
work that combines DBSCAN with LLM-
based refinement to align semantically similar
menu items across vendors.

2. We develop SIGMA (Semantic Item Group-
ing and Menu Abstraction), an in-context
LLM pipeline that assigns category labels and
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generic names to improve semantic consis-
tency.

3. We design a hierarchical assignment strat-
egy to address soft semantic drift by cluster-
ing menu items with subtle lexical variations
through multi-stage refinement.

2 Related Work

2.1 Clustering and De-duplication
Standardizing menu items across the restaurants
is a challenging task. Gumelar et al. (Gumelar
et al., 2023) employs K-means clustering algo-
rithm, uncovering patterns that assist in managing
varied items in the menu. Messaoudi et al. (Mes-
saoudi et al., 2024) present a text-based approach
for product clustering and recommendation in e-
commerce. DBSCAN is used for product cluster-
ing, followed by a recommender system based on
cosine similarity. Lastly, Latent Semantic Analysis
is used for topic extraction from product descrip-
tion. This integration of different techniques forms
a recommendation system which recommends sim-
ilar products as per user preference. These studies
demonstrate the potential of clustering algorithms,
however, they do not capture semantic variations
present in the menu items. Therefore, it leads to the
challenge of fragmented clustering. For example,
traditional clustering methods such as K-means or
DBSCAN may incorrectly split semantically simi-
lar items like “Spicy Chicken Wrap” and “Zinger
Wrap” into separate clusters because they rely heav-
ily on lexical similarity rather than semantic mean-
ing. Although these items refer to nearly identical
menu offerings, minor variations in wording often
lead to fragmented clusters, motivating the need
for a more robust approach.

2.2 Semantic Labeling and Refinement Using
Large Language Models

Researchers are utilizing the LLMs capabilities for
the data refinement and enhancement tasks. Ka,ath
et al. (Kamath et al., 2024) used LLM to generate
key hotel accommodation insights from descrip-
tions and reviews, with human evaluation assessing
output quality and identifying hallucinations and
areas for improvement. Huang and He (Huang and
He, 2024) transform text clustering into a classifi-
cation task via LLMs. They use prompting tech-
niques to generate potential labels for a dataset and
assign the labels to each sample. Similarly, Zhang
et al. (Zhang et al., 2023) propose ClusterLLM, a

framework that uses LLMs to guide text cluster-
ing through triplet-based prompts. Viswanathan
et al. (Viswanathan et al., 2024) also explores the
potential of LLMs using few-shot learning for clus-
tering scenarios. Their study demonstrates the im-
provement in clusters quality by integrating LLMs
with expert feedback. Researchers are leveraging
the LLMs’ ability to perform name normalization.
Brinkmann et al. (Brinkmann et al., 2024) have
utilized LLMs to expand and generalize the menu
item’s title into a standard form in e-commerce data
extraction tasks.

Recent frameworks like k-LLMmeans generate
textual cluster centroids via LLMs, improving se-
mantic cohesion compared to basic k-means (Diaz-
Rodriguez, 2025). Another study refines clustering
by reassigning edge cases through a three-step pro-
cess (Feng et al., 2024). It begins with K-means
clustering, followed by forming superpoints from
outliers, which are then clustered using agglomera-
tive methods. Finally, an LLM acts as a semantic
oracle to reassign edge cases based on cluster fit.
Combining traditional embedding techniques with
LLMs, Lin et al. (Lin et al., 2025) proposed Se-
lection and Pooling with LLMs (SPILL). It is a
domain-adaptive method that addresses the chal-
lenge of domain generalization by using LLMs
to refine clusters. In a different domain, LLM-
CER (Fu et al., 2025) explores LLM-guided in-
context clustering for entity resolution, achieving
high accuracy highlighting LLM clustering’s poten-
tial in structured, high-precision tasks. The KClus-
ter method (Wei et al., 2025) applies an LLM to
derive a similarity metric between textual items
before clustering and generates descriptive cluster
labels, demonstrating a versatile use of LLMs for
cluster formation in question banks. Furthermore,
Petukhova et al. (Petukhova et al., 2025) empir-
ically demonstrate that embeddings from LLMs
outperform traditional embedding-based clustering
in purity and silhouette.

Although these methodologies illustrate the po-
tential of LLMs in refining clustering outputs, they
do not focus on capturing soft semantic drifts that
are subtle differences in the meaning between text
menu items. For instance, "Spicy Chicken Wrap"
vs. "Zinger Wrap" share a core identity, they differ
in preparation style or brand-specific naming. Such
variations often coexist, and models may split simi-
lar menu items into separate clusters, undermining
semantic coherence.
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Statistic Count

Total Brands 4000

Total Merchants 8,000

Total Menu Items 80,000,000

Total Unique Menu Items 700,000

Table 1: Summary of Proprietary Dataset (Approximate
Values)

3 Dataset

3.1 Proprietary Dataset
This study uses a proprietary dataset provided by
a leading ride-hailing and delivery platform op-
erating in the Middle East and South Asia. The
dataset includes information on food brand names,
merchants, menu items, menu item descriptions,
and unique identifiers for menu items and brands.
It contains more than 8 million menu items from
more than 4,000 restaurants/merchants, which are
preprocessed into around 700,000 distinct menu
items. Table 1 summarizes the key statistics of the
raw dataset. This rich dataset sets the foundation
for proposing the hybrid approach for clustering
analysis.

3.2 Data Standardization
Identifying Unique Brands and Merchants: We
identify that brands have multiple merchants, and
merchants have similar menu items, therefore, we
group the menu items together to make unique and
distinct menu items.
Filtering Out Inactive Merchants: We ensure
that the dataset includes only relevant and active
merchants.
Grouping Data by Brand: After cleaning the
dataset, we grouped the remaining data by brand.

4 Cross-Platform Semantic Alignment
Framework (CPSAF)

This study proposes a novel hybrid pipeline that
combines a clustering algorithm and LLM refine-
ment to standardized menu item representations. Its
algorithm is given in Algorithm 1. The proposed
framework unfolds in two core stages:

4.1 LLM-driven Refinement on Cluster
Chunks

We present SIGMA (Semantic Item Grouping and
Menu Abstraction), a structured pipeline powered

Algorithm 1: CPSAF: Cross-Platform Se-
mantic Alignment Framework
Input: Menu items M = {m1, . . . ,mn},

embedding function E, LLM API,
category list C

Output: Refined semantic clusters
1 Compute embeddings

V = {E(m) | m ∈M};
2 InitialClusters←

DBSCAN(V, ϵ,min_samples);
3 foreach cluster Ci in InitialClusters do
4 Construct few-shot prompt from

examples in C;
5 foreach item m ∈ Ci do
6 m.category←

LLM_Assign_Category(m);
7 m.generic_name←

LLM_Generate_Generic_Name(m);

8 foreach unclustered item u do
9 if ∃Cj such that cosine_sim(u,Cj) ≥ τ

then
10 Assign u to Cj ;

11 else
12 Create new cluster using u.category

embedding;

13 return FinalClusters;

by LLMs with in-context learning. It enriches
menu item data by augmenting names and descrip-
tions with category labels and generic names. The
process begins with manually curating a vocabulary
of category names (denoted as C in Algorithm 1)
to ensure consistent and interpretable classification.
Menu items are then clustered into semantically
coherent chunks using embedding-based similarity.
This reduces the complexity of prompt construction
and allows the LLM to operate within contextually
relevant groups. For each cluster, prompts are con-
structed using representative examples to enable
in-context learning of how menu item descriptions
map to predefined categories. Using these prompts,
the LLM assigns a category to each menu item,
drawing on its language understanding to align the
menu items with the curated ontology. Following
categorization, the model is prompted again, this
time to generate a small set of candidate generic
names that abstract the core concept of each menu
item, stripping away brand-specific or overly de-
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tailed language. Finally, the LLM selects or refines
the most appropriate generic name using guided
prompting. The result is a semantically enriched
dataset in which each menu item is described by
a standardized category and a concise generalized
name.

4.2 Hierarchical Assignment of Clusters

The menu item clusters are generated using DB-
SCAN in a three-stage refinement process on
generic names and categories Figure 1. In Stage I,
DBSCAN clusters the menu items based on their
concatenated category and menu item names, form-
ing initial semantically coherent groups. In Stage
II, unclustered menu items are matched to exist-
ing clusters using a 90% threshold on embedding-
based semantic similarity of generic name and
menu item name. In Stage III, any remaining menu
items are clustered using semantic embeddings of
their categories. This hierarchical approach en-
sures similar menu items (e.g., “Spicy Chicken
Sandwich” and “Hot Chicken Burger”) are grouped
together.

5 Experimental Design

Our evaluation framework measures cluster quality
based on structural and semantic properties, as well
as computation time. We first analyze baseline un-
supervised models K-Means, Agglomerative, Hier-
archical DBSCAN (HDBSCAN), and DBSCAN fo-
cusing on runtime and metrics in Table 3. We then
enhance the clustering results of a high-performing,
low-compute model using our proposed SIGMA
approach. The final evaluation combines quantita-
tive metrics with manual qualitative validation for
a robust assessment of cluster performance.

5.1 Clustering Baseline Experiments

We perform clustering experiments using tradi-
tional unsupervised methods. First, we apply K-
Means clustering on our 700,000 menu items em-
bedding dataset, experimenting with various val-
ues of k determined by the elbow method. How-
ever, K-Means assigns identical or highly similar
menu items to different clusters, due to its reliance
on global distance minimization without semantic
awareness (Petukhova et al., 2025). Then we ex-
periment with Agglomerative Clustering and HDB-
SCAN. Agglomerative clustering shows poor scala-
bility as its bottom-up approach requires computing
and updating a full pairwise distance matrix, which

Algorithm Time (sec) Time (min)

K-Means 1,521 25.4

Agglomerative 65,006 18.1 hours

HDBSCAN 394,000 109.4 hours

DBSCAN 192 3.2

Table 2: Average Computation Time of Clustering Al-
gorithms on 0.7 Mil Menu Items. Computation time is
averaged over 5 runs.

becomes computationally intensive and memory-
heavy at scale. This results in substantial slow-
downs and makes it impractical for datasets of our
size.

HDBSCAN, while appealing for its ability to
handle variable-density clusters and noise, also
under performs due to its dependency on com-
plex graph-based operations. It constructs a min-
imum spanning tree and computes cluster hierar-
chies, which introduces significant overhead at this
data scale. Moreover, the model tends to fragment
semantically similar menu items across multiple
small clusters, reducing its effectiveness for our use
case where preserving semantic cohesion within
clusters is essential. The computation time for the
four clustering models is given in Table 2.

Finally, we apply DBSCAN, experimenting with
various values of ϵ to identify clusters based on the
local density in the embedding space. While DB-
SCAN effectively detects dense groups of similar
menu items, it also results in significant fragmen-
tation. In our experiments, it generates more than
65,000 clusters containing more than one menu
item, and when including singleton clusters, the
total exceeds 200,000. This high degree of frag-
mentation reduces the semantic coherence of the
clusters and limits their practical utility. A key chal-
lenge is the variation in naming conventions across
brands and different descriptions for semantically
similar menu items often result in these menu items
being placed in separate clusters. This outcome
highlights the limitations of relying solely on raw
embedding distances and underscores the need for
a refinement process that can capture fine-grained
semantic similarities more effectively.

5.2 Refinement through the SIGMA
Approach

To overcome the challenges posed by purely unsu-
pervised clustering, we propose SIGMA, a hybrid
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Figure 1: Hierarchical Assignment of Clusters using DBSCAN

refinement framework leveraging LLMs. After ini-
tial clustering with DBSCAN, SIGMA enhances
cluster quality through LLM-driven semantic ab-
straction. We test the SIGMA approach with two
LLMs, Gemini 1.5 Flash1 and DeepSeek R12 7B
models for semantic name generation and refine-
ment. For our usecase Google Gemini 1.5 Flash
performed better.

5.3 Evaluation Metrics
We assess clustering quality and refinement effec-
tiveness using four metrics: intra-cluster similar-
ity, inter-cluster similarity, number of clusters, and
cluster coverage. Intra-cluster similarity measures
the average cosine similarity among menu items
within the same cluster, while inter-cluster similar-
ity captures the cosine similarity between cluster
centroids. The number of clusters reflects total
clusters formed, excluding noise (i.e., single-item
clusters), and cluster coverage indicates the per-
centage of menu items assigned to any cluster. We
categorize these into primary quality metrics and
secondary structural metrics, as detailed in Table 3.
Primary quality metrics assess semantic cohesion
and separation of clusters, while secondary struc-
tural metrics provide insight into clustering density
and data coverage. Manual qualitative verification
of the sample clusters is also carried out to ensure
semantic coherence.

Table 4 presents the evaluation results of various
1https://cloud.google.com/vertex-ai/generative-

ai/docs/models/gemini/1-5-flash
2https://api-docs.deepseek.com/news/news250120

Primary Quality Secondary Structural
Metrics Metrics

Intra-cluster Similarity Number of Clusters

Inter-cluster Similarity Cluster Coverage

Table 3: Evaluation Metrics Categorization

unsupervised clustering methods. Among them,
DBSCAN produced the most cohesive clusters, ex-
hibiting high intra-cluster similarity. In contrast,
K-Means and Agglomerative Clustering showed
better inter-cluster separation but lower internal
cohesion. Unlike K-Means and Agglomerative,
which force full data partitioning, DBSCAN and
HDBSCAN can identify and exclude noise, mak-
ing them more resilient to outliers and irregular
data structures. On the basis of these findings, DB-
SCAN is selected for further experimentation be-
cause of its balance of cohesion and robustness.
HDBSCAN is excluded due to high computational
cost and lower cohesion, while K-Means and Ag-
glomerative Clustering are discarded for producing
semantically inconsistent clusters.

5.4 Experimental Setup

We perform clustering experiments on a proprietary
dataset containing 700,000 unique menu items.
Each menu item is represented through text em-
beddings generated from its name using Google
Gemini “text-embedding-004”. The hyperparam-
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Primary Quality Metrics Secondary Structural Metrics

Algorithm Intra-cluster Inter-cluster Number of Cluster
Similarity Similarity Clusters Coverage

K-Means 0.7133 0.0037 32,000 100%

Agglomerative 0.6990 0.0034 32,000 100%

HDBSCAN 0.9211 0.0040 70,000∗, 200,000@ 49%

DBSCAN 0.9995 0.0117 65,000 ∗, 200,000@ 32%

Table 4: Evaluation Results of Four Unsupervised Clustering Methods on 700,000 Menu Items Embeddings. Note:
These values are an average of 5 runs and rounded off. ∗without single menu item clusters, @with single menu item
clusters

eters for the final DBSCAN clustering are; ϵ =
0.15, min samples: 1. These parameter values are
selected through empirical testing, balancing the
trade-off between cluster granularity and seman-
tic coherence measured via intra-cluster similarity.
All experiments are conducted on a system running
Ubuntu 20.04.6, Intel i7-8700 processor with 12
threads running at 4.6 GHz, an NVIDIA GeForce
RTX 2080 Ti and 64 GB of RAM.

6 Results and Analysis

6.1 Preliminary DBSCAN Evaluation and
Parameter Tuning

We extensively evaluated DBSCAN to determine
optimal parameters and establish baseline perfor-
mance. Using 25k and 82k subsets, we analyzed
the behavior of DBSCAN’s with varying ϵ values.
Lower ϵ produced finer but sparse clusters, while
higher ϵ improved coverage at the cost of semantic
precision (Table A .7). For the 82k set, ϵ = 0.15
offered the best balance, yielding 8,962 clusters
and clustering 46,693 menu items. Final evaluation
on the full dataset with name-only embeddings con-
firmed ϵ = 0.15 as optimal, producing 61,538 clus-
ters, clustering 466,131 menu items, and achieving
the highest intra-cluster similarity of 0.88 (Table A
.8).

6.2 Clustering Performance with CPSAF

Table 5 summarizes key metrics and compares base-
line DBSCAN with our proposed CPSAF frame-
work. Initial DBSCAN clustering forms more than
62,000 multi-item clusters and achieves 77% cov-
erage of more than 700,000 unique menu items.
However, it leads to excessive fragmentation, with
33% singleton clusters and more than 88% clusters

that contain fewer than 10 menu items. In contrast,
the hybrid SIGMA refinement reduced the number
of clusters to approximately 11,000 and achieved
100% coverage, ensuring that all menu items are
semantically grouped.

The proposed methodology outperforms DB-
SCAN in all evaluation metrics. Intra-cluster sim-
ilarity improves from 0.88 to 0.98, showing en-
hanced semantic coherence. While inter-cluster
similarity decreases from 0.79 to 0.77, indicating
better separation. These improvements stem from
CPSAF’s ability to normalize textual inconsisten-
cies through SIGMA and assign semantically sim-
ilar menu items in three stages through generic
naming and category embeddings.

6.3 Analysis

The preliminary evaluations of the subsets and the
complete dataset determine the optimal ϵ value and
the embedding configuration. As shown in Table
A .7 and Table A .8, lower ϵ values produced finer-
grained clusters with higher intra-cluster similarity,
but suffered from reduced coverage. In contrast,
higher values improve coverage at the cost of se-
mantic precision. However, even with this config-
uration, DBSCAN struggles with fragmentation,
producing over 62,000 clusters and leaving nearly
23% of menu items ungrouped.

The CPSAF framework, which extends DB-
SCAN with SIGMA-based refinement, signifi-
cantly improves these limitations. The hybrid ap-
proach retains larger clusters while improving co-
herence across small and mid-size clusters, provid-
ing a more balanced and semantically aligned dis-
tribution. The transition from baseline DBSCAN to
the hybrid CPSAF approach results in clusters that
are not only structurally compact but also semanti-
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Metric DBSCAN DBSCAN + SIGMA

Total Unique Items 601,259 601,259

Cluster Coverage (%) 77% 100% ↑
Number of Clusters 62,135 10,834 ↓
Singleton Clusters (%) 33% 0% ↓
Clusters < 10 Items 55,741 5,187 ↓
Clusters 10–50 Items 5,135 4,508

Clusters 50–100 Items 731 661

Clusters > 100 Items 528 478

Intra-cluster Similarity 0.88 0.98 ↑
Inter-cluster Similarity 0.79 0.77 ↓

Table 5: Clustering Metrics Comparison: DBSCAN vs. Hybrid (DBSCAN+ SIGMA)

cally consistent. We further validate this configura-
tion on a diverse set of long, keyword-overlapping
dish names. Qualitative inspection confirms that
items with partial lexical overlap but differing core
semantics—for instance, “Almond Butter” vs. “Al-
mond Milk Chia Seed Pudding”, “Avocado Mix
with Ashta” vs. “Avocado Salmon Salad”, and

“Fried Chicken” vs. “Fried Chicken Roll” are con-
sistently placed in distinct clusters unless embed-
ding similarity indicated strong contextual align-
ment. This illustrates the framework’s ability to
separate similar yet semantically divergent items,
while still grouping related variants when contex-
tual signals are strong. This makes the framework
highly applicable for downstream tasks given in
the Appendix B.

6.4 Clustering Results Visualizations and
Analysis

To assess the effectiveness of clustering in seman-
tically aligning menu items, we visualized the
outputs of DBSCAN, Agglomerative Clustering,
HDBSCAN, and K-Means using t-SNE projections
of menu item embeddings (Figure 2). DBSCAN
produced the most semantically coherent clusters,
capturing irregular shapes and effectively handling
noise. Furthermore, more than 30% of all LLM-
generated categories are manually checked for cor-
rectness and semantic appropriateness. In addition,
approximately 80% of all clusters are manually re-
viewed to ensure that the items grouped together
represent the same or closely related menu offer-
ings. Agglomerative clustering formed balanced

but overlapping clusters, often merging distinct
concepts due to hierarchical linkage. HDBSCAN
improved robustness but tended to over-prune, dis-
carding many valid menu items as noise. K-Means
created clean, spherical clusters but suffered from
semantic fragmentation. These results highlight
the need for a flexible clustering approach. The
expressiveness of DBSCAN in modeling dense yet
irregular semantic spaces justifies its selection as
the foundational step in our CPSAF framework.

7 Ablation Study

To assess the contribution of individual compo-
nents within the CPSAF framework, we conducted
an ablation study by selectively removing or mod-
ifying key modules and measuring their impact
on clustering performance. As shown in Table 6,
removing the SIGMA refinement module signifi-
cantly reduced intra-cluster similarity (from 0.98
to 0.88) and cluster coverage (from 100% to 77%),
indicating the central role of LLM-based semantic
enrichment. Excluding the generic name genera-
tion step led to moderate degradation (intra-cluster
similarity of 0.92), underscoring its contribution
to semantic coherence. Finally, omitting Stage III
(final reassignment) of the hierarchical clustering
pipeline resulted in a less pronounced but measur-
able decline in both cohesion and coverage. These
results validate the effectiveness of each component
in improving the semantic quality and structural
compactness of clusters.
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(a) DBSCAN

(b) Agglomerative (c) HDBSCAN

(d) K-Means

Figure 2: t-SNE projections of clustered menu embeddings using four algorithms. DBSCAN exhibits irregular but
semantically coherent clusters; K-Means and Agglomerative form compact, often globular groupings; HDBSCAN
selectively ignores outliers for higher precision.

Component Removed Intra-cluster Similarity % Coverage

Full CPSAF (No components removed) 0.98 100%
SIGMA (LLM refinement removed) 0.88 77%

Generic Names 0.92 85%

Stage III Final reassignment 0.94 90%

Table 6: Ablation Study Results for CPSAF Components, Averaged over 5 runs.

8 Conclusion

This paper addresses the challenge of identifying
inconsistencies in menu item data and transforming
them into actionable insights for business growth
on food delivery platforms. We propose CPSAF, a
Cross-Platform Semantic Alignment Framework,
which integrates DBSCAN-based clustering with
LLM-powered refinement (SIGMA) to enhance
cluster accuracy, cohesion, and coverage. The
framework incorporates a three-stage hierarchical
assignment strategy to resolve textual inconsisten-

cies between brands and merchants. We conducted
extensive experiments across four clustering algo-
rithms, varying dataset sizes and configurations to
determine optimal DBSCAN parameters. It is fol-
lowed by full-scale evaluations of 700,000 unique
menu items. Our hybrid approach achieves 100%
cluster coverage, intra-cluster similarity of 0.98,
and significantly lowers fragmentation compared
to baseline DBSCAN. The analysis confirms that
CPSAF produces structurally compact and seman-
tically coherent clusters. These refined clusters
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enable downstream applications such as pricing
analysis, brand recommendations, and merchant-
level targeting. In future work, our goal is to extend
our system to support advanced features that bene-
fit both customers and merchants. On the customer
side, we plan to incorporate context-aware notifi-
cations, hyper-personalized recommendations, and
natural language chatbot integrations to enhance
user engagement and satisfaction. For merchants,
our future efforts will focus on leveraging data-
driven insights for menu optimization, targeted
marketing, and strategic business intelligence, in-
cluding geo-specific trends and competitive bench-
marking.

Code Availability

The implementation of CPSAF and SIGMA used
in this paper is available at GitHub Repository.

Limitations

Although the proposed CPSAF framework im-
proves the quality of clustering using LLM-based
refinement, its effectiveness is limited when ground
truth category labels are unavailable, making the
evaluation dependent on internal metrics and man-
ual inspection. Furthermore, the proprietary dataset
used for training and testing restricts external re-
producibility, and no experiments are provided on
public benchmarks.

Ethical Consideration

We confirm that the menu item data used in
our experiments originates from a proprietary,
anonymized dataset provided by a commercial in-
dustry platform and does not contain any personally
identifiable information. In addition, all sensitive
content was excluded during preprocessing. Based
on the above, there are no ethical considerations in
this paper.
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A Finding the ϵ Values for DBSCAN

We conducted a comprehensive evaluation of DB-
SCAN to identify optimal hyperparameters and es-
tablish baseline performance. By experimenting on
25k and 82k subsets, we analyzed the algorithm’s
sensitivity to different values of ϵ. Smaller ϵ val-
ues produced more granular but sparser clusters,
whereas larger ϵ values increased coverage but com-
promised semantic precision 7.

B Operational Extensions of CPSAF

The coherent clusters generated by the Cross Plat-
form Semantic Alignment Framework (CPSAF)
serve as a strong foundation for a range of down-
stream applications. This work extends into two
key areas: Comparative Pricing Analysis and Brand
Recommendation. These applications offer prac-
tical insights for businesses especially restaurants
and food service platforms looking to refine their
menus, adjust pricing strategies, or explore alterna-
tive branding options. By utilizing CPSAF’s struc-
tured outputs, businesses can make more informed,
data-driven decisions in competitive market envi-
ronments.

B.1 Comparative Pricing Analysis

CPSAF’s structured data analysis capabilities can
be extended to comparative pricing analysis, en-
abling the aggregation and comparison of pricing
data for similar products across sources or time
periods. When applied to such datasets, CPSAF
can uncover pricing patterns, detect variations, and
highlight anomalies. For instance, it can analyze
how different retailers price menu items within the
same product line, offering insights into competi-
tive strategies and pricing behavior. This applica-
tion demonstrates CPSAF’s ability to work with
cross-sectional data and generate actionable pricing
metrics. It can incorporate diverse data inputs such
as competitor price listings, historical sales records,
and promotional discounts to assess relative pric-
ing positions. Analysts can use CPSAF to explore
metrics like average price gaps, the frequency of
price changes, or the identification of outlier pric-
ing. This use case illustrates how CPSAF can be
adapted to explore market pricing dynamics, show-
casing its flexibility beyond its original scope.

B.2 Brand Recommendation Framework

CPSAF can also be extended to brand recommen-
dation scenarios, where it analyze consumer prefer-

ences, product attributes, and purchase histories to
suggest alternative brands that fulfill similar needs.
Its analytical capabilities support the evaluation of
brand similarities by comparing product features,
quality ratings, pricing tiers, and user feedback.
For example, CPSAF can cluster products based
on shared brand characteristics and identify com-
parable brands within those groups. This approach
enables the generation of brand suggestions such as
recommending alternatives when a preferred brand
is unavailable demonstrating the framework’s abil-
ity to handle complex relational data. This sce-
nario highlights CPSAF’s flexibility in address-
ing broader recommendation tasks beyond its core
functionality, reinforcing its potential for diverse,
data-driven applications.
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Test Dataset ϵ Number of Number of
Clusters Items Clustered

1 25k 0.20 1,011 8,523

2 25k 0.25 2,713 10,106

3 25k 0.30 2,790 14,013

4 25k 0.32 2,621 15,649

5 82k 0.13 8,878 43,799

6 82k 0.15 8,962 46,693
7 82k 0.17 8,777 50,350

8 82k 0.20 9,184 27,815

9 82k 0.25 9,044 41,060

10 82k 0.30 7,955 54,113

11 82k 0.32 7,281 59,279

Table 7: DBSCAN Subset Evaluation across ϵ Values and Dataset Sizes, Averaged over 5 runs.

ε Clusters Items Intra-cluster Similarity Inter-cluster Similarity

0.17 56,060 482,724 0.85 0.45

0.16 58,651 470,001 0.86 0.43

0.15 61,538 466,131 0.88 0.40

Table 8: DBSCAN Full Dataset Evaluation, Averaged over 5 runs.
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