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Abstract

Mixture of Experts (MoEs) have emerged as
strong alternatives to traditional transformers,
offering significant advantages in terms of train-
ing and inference efficiency. At the core of
this architecture lies the router, responsible
for selecting which experts are activated for
each token. However, despite these advances,
routing mechanisms continue to face stability
challenges that the basic architecture fails to
fully address. One such issue is Myopic Rout-
ing, where each token determines its route in-
dependently, without considering the routing
decisions made for other tokens. To address
this limitation, the LogitAttention mechanism
is introduced—a variant of traditional atten-
tion—and, building upon it, the LogitRouter, a
novel routing architecture that incorporates con-
textual information about the routing of other
tokens. Due to budget constraints, a set of sim-
ple experiments is designed to obtain prelim-
inary evidence of performance trends. These
experiments are empirically validated on es-
tablished benchmarks such as BoolQ, MMLU,
and ARC. Finally, the work concludes with
an in-depth discussion of architectural variants,
applicability, limitations, and future directions,
which aims to support continued research in
this area.

1 Introduction

Large Language Models (LLMs) (Radford et al.,
2019; Brown et al., 2020) have represented one of
the most significant breakthroughs in Artificial In-
telligence in recent years. Since the introduction of
the Transformer architecture (Vaswani et al., 2017),
LLMs have continuously improved in both per-
formance and capabilities, largely driven by their
remarkable scaling laws (Kaplan et al., 2020; Hoff-
mann et al., 2022). However, these advances have
come at the cost of substantial energy and compu-
tational requirements (Bender et al., 2021), which
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has prompted the search for more efficient archi-
tectures capable of achieving results comparable to
those of traditional Transformers.
In this context, Mixture of Experts (MoE) (Jacobs
et al., 1991; Jordan and Jacobs, 1994; Shazeer et al.,
2017) has recently emerged as one of the most
prominent architectures, serving as the foundation
for many current state-of-the-art models (Jiang
et al., 2024; Liu et al., 2024; Guo et al., 2025;
Yang et al., 2025). The main advantage of MoE
lies in its ability to reduce overall computational
cost—during both training and inference—without
causing a significant drop in final performance.
This is achieved by replacing the traditional Feed-
Forward Network (FFN) sublayers, which typically
hold the majority of a model’s parameters, with a
Sparse MoE Layer. A Sparse MoE Layer (or sim-
ply MoE Layer) is composed of multiple smaller
FFN sublayers that share the same architecture (typ-
ically SwiGLU (Shazeer, 2020)) and are referred
to as experts. These experts operate in parallel. To
avoid activating all the parameters in the layer, a
specialized component called the Router is intro-
duced. The Router selectively activates and assigns
weights to only a subset of experts, leaving the
remaining ones unused.
Since the early works in this area (Fedus et al.,
2022; Lepikhin et al., 2020; Du et al., 2022), the
conventional design of the Router consists of a
linear sub-layer, followed by a Top-k selection
function that activates only the k experts with the
highest logit values. A softmax activation is then
applied to ensure that the final weights follow a
smooth probability distribution. This approach
reduces the total computational load and, conse-
quently, the energy and financial costs of running
the network (Lepikhin et al., 2020; Du et al., 2022;
Dai et al., 2024), at the expense of a minor (and
often negligible) drop in performance.
This setup naturally gives rise to a trade-off be-
tween efficiency and performance: scaling laws
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indicate that activating more parameters typically
leads to improved outcomes, which means that
Mixture of Experts (MoE) models aim to find a bal-
ance point where further gains in performance do
not justify the associated increase in cost (Krajew-
ski et al., 2024; Abnar et al., 2025). This balance
is precisely the responsibility of the Router: given
a pool of experts, it decides which ones to activate
and which to skip, seeking the optimal compromise
between performance and efficiency.
Nevertheless, the standard Router architecture still
relies on a relatively basic formulation. While it
has proven effective, it is far from definitive. As a
result, a significant portion of current MoE research
focuses on designing better Routers, as this compo-
nent is not only central to the architecture but also
the only element that represents a true innovation
relative to standard transformers.

Literature gap. In this context, the problem known
as Myopic Routing is identified. This issue arises
when tokens are routed without considering the
routing decisions of other tokens. To address this
limitation, the LogitAttention mechanism is intro-
duced, along with the LogitRouter architecture—a
novel type of Router that mitigates this problem by
learning to update routing decisions a priori using
contextual information derived from the routing of
other tokens. This architecture is evaluated through
fine-tuning on the SFT models of OLMoE (Muen-
nighoff et al., 2024), and the resulting models are
subsequently compared against the original ones
across various benchmarks.

Contributions. The contributions of this work can
be summarised as follows:

1. The identification of the Myopic Routing prob-
lem in MoE routers.

2. The introduction of LogitAttention, a novel
variant of the standard attention mechanism.

3. The proposal of LogitRouter, a new router
architecture that leverages contextual infor-
mation from the a priori routing decisions of
other tokens to update its own.

4. An extensive discussion of the results, archi-
tectural variants, scope, limitations, and direc-
tions for future research, aimed at encouraging
continued work in this area.

The structure of this work is as follows: Section 2
discusses the limitations of current MoE architec-

tures, the solutions proposed in the literature, and
the motivation behind the present proposal. Next,
Section 3 introduces LogitAttention, LogitRouter,
and their respective variants. Section 4 presents
the experimental setup, while the results and their
analysis are detailed in Section 5. Following this,
Section 6 outlines potential directions and methods
for extending and completing the research. Finally,
Section 7 provides a concise summary of the over-
all contributions of the work.

2 Related work

Since GShard (Lepikhin et al., 2020) first applied
Mixture of Experts (MoE) to Transformers, nu-
merous routing architectures have been proposed
(Cai et al., 2024; Mu and Lin, 2025; Dimitri et al.,
2025), most of which have been evaluated primarily
through empirical means. However, it was GLaM
(Du et al., 2022) that first demonstrated MoE’s abil-
ity to outperform traditional Transformers on more
complex tasks. Still, this promising architecture
soon revealed several training instabilities.

Load Balancing Loss. One challenge inherited
from early LSTMs (Hochreiter and Schmidhuber,
1997) is the Load Balancing Loss (Shazeer et al.,
2017), where some experts are over-utilized while
others are underused, leading to suboptimal perfor-
mance for the latter and ultimately for the model
as a whole. GShard (Lepikhin et al., 2020) ad-
dressed this issue by introducing an auxiliary loss
function—Auxiliary Load Balancing Loss—which
remains widely used today.
Another effective approach was introduced in
Switch Transformers (Fedus et al., 2022), which
challenged the then-common assumption that at
least two experts must be activated to enable mean-
ingful performance comparison. Instead, they
adopted a Top-1 gating function while significantly
increasing the number of experts, achieving bet-
ter load distribution. Another notable proposal is
Expert Choice Routing (Zhou et al., 2022), which
assigns a fixed number of tokens to each expert,
rather than assigning a fixed number of experts to
each token.

Representation Collapse. One of the earliest em-
pirically observed problems was the well-known
Representation Collapse (Chi et al., 2022), where
experts fail to utilise their full representational ca-
pacity. To mitigate this, the Router Z-Loss auxiliary
loss function was introduced (Zoph et al., 2022),
and it remains in use across various models.
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Dynamic Routing. Beyond empirical observations,
several theoretical issues have also been identified.
A key concern is that all tokens typically activate
the same number of experts, and thus the same
number of parameters, contradicting the intuition
that different tokens may require different levels of
computational effort to reach optimal predictions.
Several strategies have been proposed to dynami-
cally allocate the number of experts per token:

– AdaMoE (Zeng et al., 2024) introduces null
experts that consume no computational re-
sources. By increasing the value of k, the
router can choose varying numbers of null ex-
perts, resulting in a token-dependent compute
load.

– ReMoE (Wang et al., 2024) replaces the stan-
dard Top-k selection with a ReLU activation
function (Nair and Hinton, 2010), allowing
for a variable number of experts per token
and enabling more precise backpropagation
(Rumelhart et al., 1985, 1986) due to its dif-
ferentiability.

– Dynamic MoE (Huang et al., 2024) proposes
a Top-p gating mechanism, which selects ex-
perts whose combined activation probabilities
exceed a threshold p.

– TC-MoE (Yan et al.) adopts ternary weight-
ing per expert, allowing each expert to be
weighted by −1, 0, or 1. This enables the
participation of experts that may not have con-
tributed positively in prior steps.

Routing Fluctuation. Dynamic routing, while
promising, introduces new challenges (Shi et al.,
2024). One such issue is routing fluctuation (Su
et al., 2024), where tokens repeatedly select differ-
ent experts throughout training. As a result, many
experts are updated at each step, but only a subset
is used during inference, leading to poor optimiza-
tion (Dai et al., 2022; Nguyen et al., 2024). To
address this, (S)MoE (Nguyen et al., 2025) lever-
ages token relationships captured through attention
mechanisms to inform expert selection more effec-
tively.
However, unlike the aforementioned approaches
that mainly focus on the gating mechanism or ex-
pert configurations, some recent proposals explore
alternative sublayer architectures:

– Yuan 2.0 M-32 (Wu et al., 2024) introduces
an Attention Router, which uses the classical
attention mechanism to route each token to its
corresponding expert.

– Mixture of Routers (Zhang et al., 2025)
presents a router-of-routers approach, in
which multiple parallel routers propose expert
assignments, and a main router selects which
routers to activate based on their outputs.

– Another method (Pedicir et al., 2024) employs
a Recurrent Neural Network (RNN) (Elman,
1990) as a router, updating token routes based
on prior routing information.

Myopic Routing. There is, however, another im-
portant problem that has yet to be explicitly identi-
fied in the literature: tokens make routing decisions
independently, without considering the routing de-
cisions of other tokens. A related idea appears in
PMoE (Jung and Kim, 2024), where additional in-
formation is incrementally added to routers across
layers, although in a different context. Yet none
of the aforementioned studies directly addresses
this specific issue. Even in cases where cross-token
information is considered, it never includes routing
paths—only token content itself. Still, it’s reason-
able to expect situations where the model behaves
inconsistently because different tokens activate dif-
ferent experts that interpret them divergently. For
instance, two tokens that should activate the same
expert might activate different ones (or vice versa),
impairing coherence. A potential solution could
involve enabling routers to access the prior routing
decisions of other tokens and using that information
to update each token’s routing path. Intuitively, this
challenge might best be addressed by rethinking
the traditional linear sublayer architecture, where
incorporating cross-token routing information feels
more natural.

3 LogitRouter

3.1 LogitAttention
LogitAttention is an architecture that implements a
generalisation of the attention mechanism, causally
designed to incorporate into each token contextual
information derived from the prior logits of the
other tokens within the context window.
Mathematical Formulation. LogitAttention con-
sists of four main tensors (or matrices, for sim-
plicity), which operate—either directly or indi-
rectly—on each token x:
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Figure 1: LogitAttention mechanism: Queries Q and
Keys K operate in the same way as in standard attention.
The differences are: (i) the Values V are derived from R,
and (ii) the residual connection is applied to R instead
of x.

1. First, the matrix WR maps the token x to its
a priori routing representation R. This matrix
corresponds to the standard linear sublayer
used in routers, meaning that R also repre-
sents the conventional logits.

2. Next, following the structure of the standard
attention mechanism, matrix WQ transforms
the tokens into Queries Q.

3. Similarly, matrix WK converts the tokens into
Keys K.

4. Finally, there is the matrix WV , which maps
the routings R into Values V . This represents
the main innovation of the architecture, as tra-
ditionally, Values are computed directly from
the tokens. However, this modification allows
the contextual information to be derived not
from the tokens themselves (which have just
been processed in the preceding causal atten-
tion mechanism), but from their a priori logits.

As illustrated in Figure 1, the Queries, Keys, and
Values computed through the matrices described
above are processed in the same way as in standard
attention, including the use of a residual connec-
tion (He et al., 2016). The design is driven by two
main motivations: first, it enables the information
exchange to update the logits rather than constitut-
ing them directly; and second, it ensures that the

updated information pertains to the logits instead of
the tokens themselves. Consequently, in this case,
the residual connection is computed with respect
to R rather than x.
Therefore, by incorporating the standard attention
normalization (Vaswani et al., 2017), LogitAtten-
tion can be mathematically expressed as:

LogitAttention(x):=

WR(x)+σ
(

1√
dk
WQ(x)·WK(x)⊤

)
·WV (WR(x))

where x has dimensionality [t× dmodel], WQ and
WK are matrices of size [dmodel × dk], WR is a
matrix of size [dmodel × n], WV is a matrix of size
[n × dk], and σ represents the softmax function.
Here, dmodel denotes the embedding dimensional-
ity of the tokens in the model, dk ≤ dmodel refers
to the internal embedding dimensionality used by
the mechanism, n is the total number of experts,
and t is the sequence length.

Properties. An important observation is that for
the residual connection to operate correctly in terms
of matrix dimensionality, it is necessary to define
dk := n. Moreover, if we also set n := dmodel

and choose WR := In×n, the design reduces to
the classical single-headed attention mechanism.
This implies that the key elements of the proposed
architecture are precisely the number of experts n
and the matrix WR. Therefore, the novelty of this
design lies in how it contextualises the behaviour
of the classical router. It is worth noting that this
same architecture is applicable to any layer that per-
forms routing and requires interaction across the
logits, such as the final unembedding layer (Press
and Wolf, 2016). This motivates the name LogitAt-
tention, and consequently, LogitRouter.

3.2 LogitRouter

The LogitAttention Router, or simply LogitRouter,
is a router architecture that employs LogitAttention
as its core mechanism.
Mathematical formulation. LogitRouter addition-
ally incorporates a fifth matrix, WL, of dimension
[n × n], which transforms the output of LogitAt-
tention into the final logits L. The theoretical
motivation for this sublayer arises from the ob-
servation that, within a transformer block, atten-
tion alone is not sufficient; it must be followed
by a feed-forward network (FFN). In this analogy,
LogitAttention—comprising WR, WQ, WK , and
WV —corresponds to the standard attention mecha-
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Figure 2: LogitRouter: The final logits L are produced
via the matrix WL, and the underlying architecture is
based on LogitAttention. The remaining components
are identical to those in standard routers.

nism, while WL plays a role analogous to that of
the FFN.
Then, LogitRouter follows the mathematical form
given below:

LogitRouter(x) :=

σ
(

top-k(WL(LogitAttention(x)))
)

Properties. This architecture possesses the im-
portant property of being a generalisation of the
classical routing mechanism. Specifically, the clas-
sical behaviour is recovered by setting WL := In
and WV := 0n×n. This characteristic is crucial
for enabling the experiments described in section
4, as it allows the model’s weights to be initialised
with those of a classical router, ensuring that its
behaviour matches the original one exactly. More-
over, LogitAttention can be seen as a generalisation
of the traditional Attention mechanism, and Log-
itRouter as a generalisation of the Router. This
architecture thus highlights the fact that Router and
Attention exhibit analogous properties and, as a

result, share underlying characteristics (Wu and
Wong).

Intuition Behind the Architecture. Intuitively,
LogitRouter enables each token to access prior in-
formation about the routing of other tokens and
attend to them, thereby updating its own routing de-
cisions in an attempt to achieve internal consistency
with the group. The queries and keys encode the
identity of each token, such that their dot product
highlights connections between tokens considered
mutually significant. In contrast, the values are
computed based on routing information, ensuring
that the actual content being exchanged reflects
the routing paths rather than the tokens’ intrinsic
representations.
This design allows each expert to learn how to route
coherent groups of tokens together, or alternatively,
to prevent semantically similar or complementary
tokens from being processed by experts that inter-
pret them differently.
This leads to a fundamental distinction between the
contextualisation of the token itself—accomplished
in the preceding attention layer—and the contex-
tualisation of its routing, which takes place within
the router of the MoE layer. The former refines
the identity of each token, while the latter deter-
mines how and for what purpose the token should
be utilised.
Therefore, it is hypothesised that this architecture
will have a greater impact on the context and dis-
cussion (Shojaee et al., 2025) surrounding reason-
ing models (Wei et al., 2022; Kojima et al., 2022)
within the Test-Time Compute paradigm (Sun et al.,
2020; Ji et al., 2025), as it may allow more efficient
use of the context window of each prompt to gen-
erate next-token predictions. Its impact could be
even more significant in the case of DLMs (Li et al.,
2022; Nie et al., 2025), since tokens are not gener-
ated sequentially nor fixed once produced. Instead,
they are updated iteratively, which makes it pos-
sible to leverage these updates along the routing
paths.

3.3 Variants

The LogitRouter architecture involves several de-
sign choices that, while seemingly arbitrary, were
based on a low-level experiment. This experi-
ment consisted of training a small transformer from
scratch on the Tiny Shakespeare dataset (Karpathy,
2015), using model loss as the evaluation metric.
However, these design decisions may not scale con-
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sistently to larger models and datasets. For this
reason, it may be worthwhile to reconsider and
modify them:

• The final linear sublayer WL could be re-
moved or placed before the LogitAttention
mechanism. The idea of mirroring the struc-
ture of a standard transformer block arose
from theoretical considerations and was em-
pirically tested in the low-level experiment,
although it did not yield significantly better
results compared to other alternatives. Fur-
thermore, one can observe that LogitAtten-
tion follows directly after the attention block,
while the experts follow immediately after the
WL sublayer. This results in two consecutive
attention blocks and then two consecutive lin-
ear layers. Placing WL before the attention
mechanism could resolve both issues.

• The operation combining the a priori routing
R with the output of LogitAttention need not
necessarily be addition. An alternative tested
in the low-level experiment was the Hadamard
product, which yielded comparable, though
slightly inferior, results.

• It is possible to use a value of dk ̸= n in or-
der to enforce that the representations from
R act as true a priori logits. However, this
would require defining a new matrix to ensure
dimensional compatibility for residual compu-
tations.

• Although LayerNorm (Ba et al., 2016) is typi-
cally considered a distinct layer within a trans-
former, this architecture could be extended to
incorporate it. The LayerNorm sublayer could
be placed either before or after the mechanism
(Xiong et al., 2020).

• This design can also be combined with other
previously discussed architectures. For in-
stance, one could use a Mixture of Routers
where the main router is of the LogitRouter
type, or replace the top-k function with a top-p
or ReLU-based function.

4 Experimental setup

To ensure a degree of robustness in the re-
sults, two models were selected as the basis
of the experiments: https://huggingface.
co/allenai/OLMoE-1B-7B-0924-SFT

and https://huggingface.co/allenai/
OLMoE-1B-7B-0125-SFT (Muennighoff et al.,
2024). These are, to date, the only competitive
Mixture of Experts (MoE) models small enough
(around 7B parameters) to allow for low-budget
training, while providing full access to their
weights, training data, and evaluation details. For
simplicity, we refer to them as OLMoE-0924 and
OLMoE-0125.
The reason for choosing their Supervised Fine-
Tuning (SFT (Ouyang et al., 2022)) versions is
that the SFT datasets used in both models (https:
//huggingface.co/datasets/allenai/
tulu-v3.1-mix-preview-4096-OLMoE and
https://huggingface.co/datasets/allenai/
tulu-3-sft-olmo-2-mixture, respectively)
are significantly smaller than their pretraining
datasets. As a result, fine-tuning is faster and more
cost-efficient.
Based on this, the following experiments were con-
ducted:

LogitRouter Models. First, starting from the
OLMoE-0924 and OLMoE-0125 checkpoints, we
replaced their routers with LogitRouter modules.
We then performed fine-tuning on both models us-
ing their original SFT datasets, training only the
router parameters while keeping all other param-
eters frozen. The fine-tuning procedure followed
the hyperparameters described in the original pa-
per (Muennighoff et al., 2024), with the following
exceptions:

• The batch size was set to 6, the largest power
of two that fit on the machine used (a single-
node H200 GPU). No gradient accumulation
steps were employed.

• Training was limited to a single epoch instead
of two. Given that the models are already pre-
trained, it was deemed reasonable to assume
that one epoch would suffice.

• We used HuggingFace’s ‘SFTTrainer‘ (Wolf
et al., 2019; von Werra et al., 2020) with
AdamW (Loshchilov and Hutter, 2017;
Kingma, 2014) as the optimizer, instead of
Open Instruct (Ivison et al., 2023; Wang et al.,
2023).

• Parameter precision was set to BF16
(Kalamkar et al., 2019). While the OLMoE
paper indicates that BF16 was used for SFT,
it does not specify the precision used for
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the routers. In practice, routers are typically
trained with FP32 precision (Fedus et al.,
2022).

Since LogitRouter is a generalisation of the rout-
ing architecture used in OLMoE (see 3.2), we ini-
tialized it as follows: WL := In, WV := 0n×n,
and WR was initialized using the original router
weights of the base models, ensuring that the initial
behaviour remained identical. The matrices WQ

and WK were initialized using a standard truncated
normal distribution (Devlin et al., 2019). The result-
ing models are referred to as OLMoE-0924-logit
and OLMoE-0125-logit, respectively.
However, this experimental setup introduces two
distinct sources of variation: (i) the new router
architecture, and (ii) the new post-training strategy
involving fine-tuning on the original SFT datasets
while freezing all non-router parameters.

Base Router Models. To isolate these factors, we
conducted a second set of experiments applying
only the post-training strategy, without modify-
ing the routing architecture. In other words, us-
ing again OLMoE-0924 and OLMoE-0125 as base
models, we repeated the fine-tuning process exactly
as described above, but without replacing the orig-
inal routers. To ensure a fair comparison under
identical conditions, all hyperparameters were kept
the same. These models are denoted as OLMoE-
0924-base and OLMoE-0125-base.

5 Results

The models were evaluated across three different
benchmarks: ARC (including ARC-Challenge and
ARC-Easy), MMLU (Hendrycks et al., 2020), and
BoolQ (Clark et al., 2019), following the MCF
strategy outlined in the OLMES protocol (Gu et al.,
2024). Evaluations were conducted using varying
numbers of few-shot examples (0, 1, 2, and 5),
and the final performance metric for each model
was defined as the maximum score achieved across
these few-shot settings for OLMoE-0125-base.
Two separate analyses were conducted: one to com-
pare the performance of the original models with
that of the base models, and another to compare the
base models with the logit models. The first anal-
ysis aims to evaluate the impact of the previously
defined post-training strategy on the final model,
while the second assesses how changes in architec-
ture affect performance. A summary of the results
is presented in Table 1.

Post-training strategy. The rows corresponding
to the base models show how their performance
differs from that of the original models. Overall, it
is evident that performance tends to degrade when
these models undergo post-training using this strat-
egy. In 5 out of 8 experiments, the post-trained
models performed worse, and in 3 of those cases,
the performance drop represented the largest abso-
lute differences observed between the two versions.
This suggests that there is no consistent improve-
ment trend resulting from the post-training process.
This outcome is expected, as the router becomes
decoupled from the rest of the network under this
setup—a configuration that is not commonly used
in practice. Several studies have shown that this
decoupling may lead to network instability (Jiang
et al., 2025; Panda et al., 2025). Moreover, it is
important to emphasise that this particular experi-
ment, although useful in this work for comparison
purposes with the final models, does not constitute
a genuine model optimisation procedure. Rather, it
corresponds to an arbitrary post-training step. The
only potential "improvement" could be attributed
to training the model for an additional epoch. How-
ever, if the original models did not undergo this
extra epoch, it is likely because, after careful hy-
perparameter tuning and analysis, two epochs were
deemed optimal.
In fact, one can think of a well-trained and opti-
mised LLM as having reached a local optimum
in the search space (Elsken et al., 2019; He et al.,
2021), meaning that any arbitrary modification is
likely to degrade performance. Therefore, the fact
that performance actually improved over the origi-
nal model in 3 out of 8 benchmarks suggests that
there are still better optima to be found. This also
ensures that the subsequent comparison with Log-
itRouter is fair and cannot be solely attributed to a
drop in performance caused by this variable.

LogitRouter architecture. The rows correspond-
ing to the logit models display their performance
differences relative to the base models. This com-
parison is particularly relevant because it isolates
the architectural effect of the router on perfor-
mance.
The results indicate a general trend toward im-
proved performance, as only 2 out of the 8 exper-
iments showed a performance drop—and in both
cases, the decrease was minor. Thus, we can rea-
sonably conclude that switching the router archi-
tecture to a LogitRouter produces a positive effect.
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Table 1: Evaluations from the classic fine-tuning experiment on each benchmark. Percentage differences are
computed as follows: (i) for base models, relative to the original versions; and (ii) for logit models, relative to their
respective base versions. The Total Difference row compares logit models directly against the original ones.

Model Name MMLU ARC-C ARC-E BoolQ
OLMoE-0125 0.550 0.684 0.859 0.744
OLMoE-0125-base 0.551 (↑ 0.1%) 0.674 (↓ 1.0%) 0.849 (↓ 1.0%) 0.746 (↑ 0.2%)
OLMoE-0125-logit 0.552 (↑ 0.1%) 0.690 (↑ 1.6%) 0.849 (↑ 0.0%) 0.752 (↑ 0.6%)
Total Difference ↑ 0.2% ↑ 0.6% ↓ 1.0% ↑ 0.8%

OLMoE-0924 0.539 0.654 0.835 0.781
OLMoE-0924-base 0.537 (↓ 0.2%) 0.653 (↓ 0.1%) 0.841 (↑ 0.6%) 0.748 (↓ 3.3%)
OLMoE-0924-logit 0.533 (↓ 0.4%) 0.660 (↑ 0.7%) 0.839 (↓ 0.2%) 0.754 (↑ 0.6%)
Total Difference ↓ 0.6% ↑ 0.6% ↑ 0.4% ↓ 2.7%

In fact, in more than half of the evaluations (5 out
of 8), the logit models even outperformed the origi-
nal models. For instance, in ARC-C, performance
increased in both comparisons despite the initial
performance drop observed in the base models.

6 Next steps

Given the constraints of a limited budget, most
of the work remains to be completed. Therefore,
all the steps that need to be followed are outlined
below, in order to assess the actual impact of Log-
itRouter and the other ideas previously introduced.

• The model should either be trained from
scratch using LogitRouter or undergo full-
model fine-tuning. This is important to pre-
vent the router from becoming decoupled
from the rest of the model. This will allow us
to assess the true potential of the architecture
and determine whether it can achieve state-of-
the-art performance on its own. As discussed
in section 3.2, it is particularly promising to
explore this architecture within the context of
a reasoning MoE or a DLM.

• Another promising direction would be to dis-
till LogitRouter into a conventional router, as
suggested in several prior studies (Fedus et al.,
2022; Kudugunta et al., 2021; Zuo et al., 2021;
Kim et al., 2021), in order to reduce the pa-
rameter count of the routing layer.

• Finally, as discussed in section 3.1, a variant
of this architecture could be tested in the final
unembedding layer of an LLM or SLM (Gu-
nasekar et al., 2023; Lu et al., 2024), given
the large number of parameters typically asso-
ciated with such a layer. In this context, WR

would serve as the standard unembedding ma-
trix.

7 Conclusion

This work introduced LogitRouter, a novel routing
architecture for Mixture of Experts, designed to
incorporate contextual information into the token
routing process. This approach addresses the newly
identified Myopic Routing problem by enriching
the routing decisions with broader contextual cues.
Despite limitations in budget the results indicate a
promising trend. In particular, there were notable
improvements on benchmarks such as ARC-C com-
pared to the baseline model, suggesting strong po-
tential for this architecture in future developments.
Additionally, the paper provides a thorough discus-
sion of each stage of the research process—ranging
from the proposal and design of variants to the ex-
periments and results—and outlines several promis-
ing directions for future work.
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