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Abstract

Code documentation is essential to improve
software maintainability and comprehension.
The tedious nature of manual code documen-
tation has led to much research on automated
documentation generation. Existing automated
approaches primarily focused on code summa-
rization, leaving a gap in template-based doc-
umentation generation (e.g., Javadoc), particu-
larly with publicly available Large Language
Models (LLMs). Furthermore, progress in this
area has been hindered by the lack of a Javadoc-
specific dataset that incorporates modern lan-
guage features, provides broad framework/li-
brary coverage, and includes necessary contex-
tual information. This study aims to address
these gaps by developing a tailored dataset
and assessing the capabilities of publicly avail-
able LLMs for context-aware, template-based
Javadoc generation. In this work, we present a
novel, context-aware dataset for Javadoc gener-
ation that includes critical structural and seman-
tic information from modern Java codebases.
We evaluate five open-source LLMs (including
LLaMA-3.1, Gemma-2, Phi-3, Mistral, Qwen-
2.5) using zero-shot, few-shot, and fine-tuned
setups and provide a comparative analysis of
their performance. Our results demonstrate that
LLaMA 3.1 performs consistently well and is
a reliable candidate for practical, automated
Javadoc generation, offering a viable alterna-
tive to proprietary systems.

1 Introduction

Code documentation is a crucial part of software
development that bridges the gap between devel-
opers, end-users, and future maintainers of a soft-
ware system. While the fundamental purpose of
documentation is to guarantee that the code is com-
prehensible and accessible, it also acts as a crucial

Code and dataset are available at
https://github.com/ineffablekenobi/
Documentation-generation-using-LLM

tool for promoting collaboration, boosting produc-
tivity, and decreasing technical debt (Dvivedi et al.,
2024). Without heavily depending on the original
code writers, developers can understand the com-
plexities of a code-base, troubleshoot problems,
and make well-informed changes with the help of
well-structured documentation. A study involving
software maintainers highlighted the importance of
documentation, revealing that 94.03% agreed that
source code documentation is crucial for object-
oriented artifacts (de Souza et al., 2005).

However, creating and maintaining such docu-
mentation is expensive and time-consuming (Khan
and Uddin, 2022). Many developers fail to docu-
ment their code consistently or neglect it altogether,
leading to technical debt. This is often due to a
lack of time, unclear guidelines, or the assumption
that the code is self-explanatory (Uddin and Robil-
lard, 2015; Forward and Lethbridge, 2002). Also,
developers working in larger teams often lack a
standardized approach to documenting code, which
causes inconsistency in the style and quality of doc-
umentation, which confuses collaborators (Dragan
et al., 2006; Parnas and Clements, 1986). In order
to tackle these issues, developers over the years
have often turned to template-based documentation
solutions like Javadoc, TSDoc, and OpenAPI spec-
ifications, etc., which helped to bring consistency
in the style of documentation (Uddin and Robillard,
2015; Stylos and Clarke, 2007; Horning, 2001).
But the inconsistency persists when it comes to
the details of the documentation. Some documen-
tation is overly detailed and some is brief, which
impacts the readability of the documentation (Buse
and Weimer, 2010; Treude et al., 2011). Moreover,
large projects make it particularly challenging to
manually mark and document code snippets. Fur-
thermore, the documentation often becomes out-
dated as the development continues maybe because
of new features being developed or requirement
changes (Fluri et al., 2007; Rastkar et al., 2010).

486

https://github.com/ineffablekenobi/Documentation-generation-using-LLM
https://github.com/ineffablekenobi/Documentation-generation-using-LLM


Since one of the main areas where programmers
value automation is documentation, an automated
solution is therefore quite desirable (McBurney
et al., 2017).

The introduction of Large Language Models
(LLM) has revolutionized the field of software de-
velopment (Khan and Uddin, 2022; Dvivedi et al.,
2024; Kneidinger et al., 2024). Although these
models are trained on huge corpus of data from
diverse sources, they can be used effectively for
tasks like code completion (Husein et al., 2025),
code generation (Paik and Wang, 2021; Destefanis
et al., 2023), project planning (Barcaui and Monat,
2023) and documentation generation (Khan and
Uddin, 2022; Dvivedi et al., 2024; Kneidinger et al.,
2024). Recently, automated code documentation
generation has been in the center of attention in
language research, and quite a few advancements
have been made in this field. Summarization tech-
niques have already been implemented and eval-
uated (Khan and Uddin, 2022) in many different
languages with the help of popular datasets like
CodeSearchNet (Husain et al., 2020), CoDesc (Hui
et al., 2024). Both text-to-text and LLMs have been
used in implementing these solutions. Other stud-
ies also focused on comprehensive comparisons
between multiple LLMs and evaluated their per-
formance in documentation generation over multi-
ple programming languages (Dvivedi et al., 2024).
Also, Pandey et al. have explored agent-based ap-
proaches (i.e. github copilot) for documentation
generation (Pandey et al., 2024). Moreover, models
like GPT-4 (OpenAI, 2023) have been evaluated
in template-based documentation such as Javadoc
generation (Kneidinger et al., 2024). However,
many of these high-performing solutions rely on
proprietary, closed-source models or APIs, present-
ing significant challenges for organizations. Data
privacy remains one of the major concerns. Addi-
tionally, limitations in customization for specific
documentation standards, potential latency issues,
restrictive rate limits, ongoing costs, and reliance
on external providers hinder their adoption where
control and security are crucial. Consequently,
while potential is clear, there remains a gap in
understanding the capabilities of these models in
template-based documentation generation task. To
date, no studies have focused on evaluating these
open source models for task like Javadoc genera-
tion, which require adherence to specific formats
and contextual understanding.

Evaluating and fine-tuning publicly available

LLMs for Javadoc generation requires a suitable
dataset. While large code datasets like CodeSearch-
Net (Husain et al., 2020) and CoDesc (Hui et al.,
2024) exist, containing millions of code snippets,
they are primarily designed for code summariza-
tion, making them ill-suited for generating struc-
tured, template-based documentation. Furthermore,
these datasets lack contextual information (such
as class or package context needed for accurate
Javadoc tags) and have limited coverage of modern
Java features like lambdas and reactive program-
ming constructs such as Mono and Flux, which are
extensively used in Java projects. Finally, there are
currently no datasets available for template-based
documentation generation tasks like Javadoc. This
gap highlights the need for a new dataset specifi-
cally for training and evaluating models in Javadoc
generation that includes contextual information and
modern Java features.

This paper makes the following contributions to
address these gaps:

• Introduction of a new, context-aware dataset
for Javadoc generation, covering methods,
lambdas, and modern Java features, curated
from multiple public codebases.

• Application of automated and manual filtering
techniques to ensure the quality and relevance
of the dataset.

• Systematic evaluation and fine-tuning of
five publicly available LLMs (LLaMA-3.1,
Gemma-2, Phi-3, Mistral, Qwen-2.5) on the
proposed Javadoc generation task.

• A comparative analysis of model performance
across zero-shot, few-shot, and fine-tuned set-
tings, providing insights into their capabilities
for automated documentation.

2 Related Works

Numerous studies have been conducted on code
documentation, starting with conventional rule-
based techniques and advancing to pre-LLM AI
models like LSTM and early Transformer-based
methods. Ahmad et al. (Ahmad et al., 2020) eval-
uated the Transformer model, which learns code
representation for summarization through a self-
attention mechanism. To summarize C# code snip-
pets, CODE-NN, an LSTM-based model with an
attention mechanism, was proposed by Iyer et al.
(Iyer et al., 2016). An early neural attention model
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for code summarization was presented by Allama-
nis et al. (Allamanis et al., 2016). It incorporates
a dual attention mechanism and convolutional fea-
tures into a recurrent encoder-decoder architecture.
However, they were constrained by low flexibility,
poor generalization, limited memory, and an insuf-
ficient understanding of the content of the code.

Modern LLMs are increasingly applied to au-
tomated code documentation, yet existing stud-
ies reveal critical limitations. For instance, Khan
et al. (Khan and Uddin, 2022) used Codex for
multi-language documentation, achieving a modest
BLEU score of 20.6, while Diggs et al. (Diggs
et al., 2024) developed specific prompting strate-
gies and evaluation rubrics for generating com-
ments in legacy systems. Similarly, Geng et al.
(Geng et al., 2024) focused on satisfying developer
goals by pre-training models with code-comment
pairs. Despite these efforts, performance remains a
key issue, with Kneidinger et al. (Kneidinger et al.,
2024) demonstrating that even a powerful propri-
etary model like GPT-4 produces unsatisfactory
results for class-level documentation. Furthermore,
a major gap persists: existing research has almost
exclusively used proprietary models, overlooking
the application of open-source LLMs specifically
for Javadoc generation. This leaves developers
who require flexible and transparent solutions with-
out a viable alternative to paid, closed-source APIs.

Agent-based approaches have also shown
promise in this area. For instance, REPOAGENT
is an open-source system that excels at repository-
level documentation, though it is limited to Python
projects and lacks template support (Luo et al.,
2024). Similarly, commercial agents like GitHub
Copilot have demonstrated significant efficiency
gains, saving up to 50% of the time developers
spend on documentation tasks (Pandey et al., 2024).
Although LLM-powered agents have strong capa-
bilities, there are still significant obstacles to over-
come before they can be used in the real world.
Data security is still a top priority, particularly
when managing private or confidential data with-
out the right protections. Another challenge is
customization, since many LLMs find it difficult
to adjust to domain-specific requirements without
prompt engineering or fine-tuning. Furthermore,
delay can impact usability, especially in interac-
tive environments where users anticipate prompt re-
sponses. Deploying dependable and safe AI-driven
bots requires addressing these constraints.

Several existing datasets are relevant to code

documentation generation, but possess limitations
for our specific focus on template-based Javadoc.
For instance, Hasan et al. introduced CoDesc (Hui
et al., 2024), a large dataset containing over 4.2
million Java methods paired with natural language
descriptions. Despite its size, CoDesc suffers from
noise and inconsistencies, lacks necessary contex-
tual information for Javadoc generation, does not
provide template-based documentation, and offers
limited coverage of modern Java constructs. Simi-
larly, CodeXGLUE-CONCODE (Iyer et al., 2018)
provides Java code snippets and natural language
descriptions but shares identical drawbacks when
considering template-based documentation needs.
CodeSearchNet (Husain et al., 2020), introduced
by Husain et al., covers multiple programming lan-
guages but also exhibits issues like noise, potential
duplicate entries, a lack of modern Java features,
and a primary focus on function-level summaries
rather than structured documentation. While The
Stack (Kocetkov et al., 2022) represents a mas-
sive collection (over 6TB) of permissively licensed
source code across many languages, it is a general
code corpus and is not specifically curated or struc-
tured for the task of documentation generation.

3 EXPERIMENT

This section presents our experimental setup and
the corresponding model results.

3.1 DATASET

The data collection was guided by several princi-
ples to ensure a comprehensive and novel dataset.
We prioritized diversity by selecting repositories
with varied coding styles and documentation pat-
terns, focusing on projects with permissive open-
source licenses (e.g., MIT, Apache 2.0, GPL 3.0)
to allow for analysis and redistribution. Projects
were selected for their high Javadoc prevalence
and significant contribution activity, indicating
established documentation practices and wide com-
munity adoption. Furthermore, the dataset ensures
broad framework and library coverage, includ-
ing tools like Project Reactor and Spring Boot,
and incorporates codebases utilizing modern Java
features such as lambdas, generics, and stream
APIs to reflect current language usage. Our data
was sourced from the following repositories, which
were selected to meet the requirements mentioned
above.

Our data processing pipeline (Figure 1) be-

488



Table 1: Public repositories used in the dataset

Index Repository Name

1 CitiesAPI (Nurislom373, 2025)
2 Database-api (Heliumdioxid, 2025)
3 Discord4J (Discord4J, 2025)
4 htmldoclet4jdk8 (WinRoad-NET, 2025)
5 JDA (discord jda, 2025)
6 Jestures (thedevstone, 2025)
7 Milenage (brake, 2025)
8 project-tracking-system-backend-app (Se-

limHorri, 2025)
9 SavageFactions (SavageLabs, 2025)

10 termenu (AugustoRavazoli, 2025)

gins with scripts identifying .java files contain-
ing Javadoc comments (/** ... */) in the selected
repositories (Table 1). Files lacking Javadoc are
discarded. From the remaining files, we used a
series of regular expressions to parse and extract
Javadoc comments, method and class declarations,
and package information from the source files. This
automated process was followed by syntactic vali-
dation to ensure structural integrity. (The specific
regular expressions are detailed in Appendix B).
Essential contextual information, like package and
enclosing class names, is captured alongside each
code-Javadoc pair, yielding an initial set of roughly
5128 entries.

These pairs then undergo automated filtering
using the same patterns to perform syntactic vali-
dation. This step verifies the structural integrity of
both the Javadoc comments (ensuring proper for-
mat) and the code snippets (checking conformance
to basic Java syntax). This efficient pattern-based
check filters out invalid or incomplete entries, sig-
nificantly improving dataset quality before manual
review.

After automated data filtering, we have con-
ducted a thorough review ensuring correctness and
quality of the data. To ensure dataset quality, we
instructed annotators to remove entries containing
documentation that was faulty, out-of-context, irrel-
evant or included personal information, and there-
fore did not accurately describe the corresponding
code. Four volunteers, two software engineers, and
two academic researchers, generously assisted with
the manual verification process. To determine the
trustworthiness threshold, we randomly selected 20
samples, distributing 10 of them among four par-
ticipants who had achieved a 90% trustworthiness
score (Price et al., 2020). The degree of agreement

Figure 1: Data Collection and Filtering Pipeline

among annotators was assessed using Fleiss’ kappa
score (Fleiss, 1971), resulting in a value of 0.66,
which indicates a substantial level of agreement
and helps ensure annotation quality.

Initially, we have collected 5128 rows of data,
which were later filtered based on correctness and
relevance. After automated and manual filter-
ing, the dataset contained 3,614 high-quality code-
documentation pairs along with their package infor-
mation. The distribution across training, validation,
and test splits is detailed in Table 2.

Table 2: Distribution of filtered dataset splits

Dataset Type Number of Samples

Train 2,778
Validation 140
Test 696

Total 3,614

Each entry in our final, filtered dataset consists of
three key components: the Java code snippet (e.g.,
a method), its complete Javadoc documentation,
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and the corresponding package context to aid in
understanding dependencies. A concrete example
is provided in Appendix A.

3.2 Models

To achieve optimal outcomes, we fine-tuned five
advanced Large Language Models (LLMs) on our
dataset: LLaMA-3.1, Gemma-2, Phi-3, Mistral,
and Qwen-2.5. Each model employs a decoder-
only Transformer architecture with distinct opti-
mizations: LLaMA-3.1-8B utilizes SwiGLU acti-
vation and Rotary Positional Embeddings (RoPE)
(Vavekanand and Sam, 2024); Gemma-2-9B
(Team et al., 2024) and Phi-3.5-Mini-Instruct
(3.8B) (Abdin et al., 2024) feature RMSNorm, logit
soft-capping, and alternating local/global attention;
Mistral-7B-v0.3 (Jiang et al., 2023) incorporates
sliding window attention and grouped-query atten-
tion; and Qwen-2.5-Coder-3B (Hui et al., 2024)
includes optimized attention mechanisms and en-
hanced fine-tuning for long-text generation and in-
struction following.

3.3 Prompt Engineering

Prompts are queries written in a compatible tem-
plate, so that a model can comprehend what our
request is and how it should address the task. Al-
though the specific structure may vary depending
on the model, the overall design principles of the
prompts are quite similar. Prompts have parts like
roles, context, input, etc. (Kıcıman et al., 2024).
In our study, we designed three distinct types of
prompt for different evaluation procedures. Our
base prompt format included clear instructions and
marked inputs. For zero-shot prompting, we used
this base prompt without additional examples. In
one-shot prompting, we added a single example to
the prompt template, while for few-shot prompt-
ing, we carefully handpicked three examples from
our dataset to guide the model toward more accu-
rate and desirable responses.

3.4 Evaluation Metrics

To assess the quality of the generated documen-
tation, we employed a set of standard, well-
established metrics. We used the BLEU score (Pa-
pineni et al., 2002) to measure the precision of
n-gram overlap between the generated and refer-
ence documentation. Additionally, we used several
variants of the ROUGE score (R-1, R-2, R-L, and
R-Lsum) (Lin, 2004) to evaluate content overlap
by assessing recall on unigrams, bigrams, and the

longest common subsequence. Detailed definitions
and formulas for these metrics can be found in
Appendix C.

3.5 Parameter Efficient Training
To fine-tune the large language models efficiently
under resource constraints, we employed Low-
Rank Adaptation (LoRA) (Hu et al., 2021), a
parameter-efficient training technique. LoRA sig-
nificantly reduces the number of trainable parame-
ters by freezing the pre-trained weights and inject-
ing smaller, trainable low-rank matrices into the
Transformer layers.

We configured LoRA with α = 16 to effec-
tively control the influence of low-rank updates
on the original weights, balancing responsiveness
with parameter stability. Additionally, gradient
checkpointing was enabled to reduce memory con-
sumption during back-propagation, allowing for
larger batch sizes and efficient GPU memory usage
(Daniel Han and team, 2023). Table 3 illustrates
the number of trainable parameters for each model.

Table 3: Model and number of trainable parameters

Model Trainable Parameters

LLaMA-3.1-8B 41,943,040
Mistral-7B-v0.3 41,943,040
Qwen-2.5-Coder-3B 29,933,568
Gemma-2-9B 54,018,048
Phi-3.5-Mini-Instruct 29,884,416

We tuned several key hyperparameters, such as
the learning rate and weight decay, to ensure stable
model convergence. The final training configura-
tion is provided in Appendix D. The use of linear
schedulers ensures improved convergence and the
weight decay was introduced to prevent possible
over-fitting of the models. We always saved the
best model (based on validation performance) to
ensure that even if overfitting occurs, the selected
evaluation model (the best checkpoint) is not af-
fected. All of these models except for Gemma-2-
9B were trained on a single P100 GPU in a Kaggle
environment. Gemma-2-9B was trained on a single
A100 GPU in Google Colab.

All models were trained for 5 epochs using a
’steps’ evaluation strategy. As shown in Fig. 2, the
Gemma-2-9B model showed clear signs of overfit-
ting, with its validation loss increasing after 180
steps and remaining significantly higher than other
models, possibly due to model complexity or in-
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sufficient data. This did not affect the final results,
as the best-performing checkpoint was saved. In
contrast, LLaMA-3.1-8B’s validation loss was the
most consistent, stabilizing after 200 steps and sug-
gesting it had reached a point of saturation where
further training offered minimal benefit.

Finally, Fig. ?? shows the growth of the BLEU
score as a function of the number of steps. It is
evident that LLaMA-3.1-8B and Mistral-7B-v0.3
performed the best on the validation set, demon-
strating consistent performance growth in paral-
lel with the number of steps. Our most efficient
model, Phi-3.5-Mini-Instruct, was on par with
these models and even outperformed larger models
like Gemma-2-9B, though the difference was not
substantial.

3.6 Evaluation
To assess the performance of the models, we have
relied on well-known evaluation metrics, includ-
ing BLEU and ROUGE scores. The same set of
evaluation metrics were consistently implemented
to evaluate all the models and then compared to
analyze the results and discuss their effectiveness
in the documentation generation task.

Firstly, we have focused on the zero-shot eval-
uation method. In this evaluation technique, we
assess the performance of pretrained models with-
out providing them with any examples. The model
is provided with simple contexts that tell them their
role and the expected output. As shown in Table 4,
Qwen-2.5-Coder-3B showed exceptional perfor-
mance, outperforming its more complex counter-
parts in this specific task. The Qwen-2.5 Coder
was trained on coding-related tasks like this, mak-
ing it more suitable for documentation generation.
LLaMA-3.1-8B has also shown similar perfor-
mance despite being a general-purpose model.

In one-shot and few-shot settings (Table 4),
Qwen-2.5-Coder-3B showed substantial perfor-
mance gains in the few-shot learning evaluation
process by establishing a significant lead over the
other models. This illustrates the effect of im-
proved prompts, as the models could use multiple
examples as a reference before generating outputs.
However, while prompt optimization plays a key
role, the training data used to train these models
have a significant impact on their understanding
of performing a specific task. Therefore, our eval-
uation results should not be viewed as definitive
indicators of a model’s overall capability from a
design perspective, but can be considered as reflec-

tions of how well a model adapts to this specific
task.

After the fine-tuning process, we re-evaluated
the models. All models demonstrated substan-
tial performance improvements compared to their
pre-fine-tuning results. However, LLaMA-3.1-8B
emerged as the top performer, followed by Mistral-
7B-v0.3.

We can see the ROUGE score progression across
different evaluation stages illustrated in Fig. 4
(showing ROUGE-Lsum). One interesting obser-
vation is Mistral-7B-v0.3’s lower ROUGE scores
after fine-tuning compared to some other models,
despite its strong BLEU score. This suggests that
Mistral-7B-v0.3 prioritizes exact replication of pat-
terns learned from fine-tuning data (high BLEU),
rather than effectively capturing broader contextual
meaning (relatively lower ROUGE). This might
imply overfitting to the fine-tuning data structure or
a lesser degree of generalization in paraphrasing.

While observing the performance over differ-
ent stages of evaluation (Fig. 3 and Fig. 4), it is
evident that Qwen-2.5-Coder-3B consistently out-
performed every model during the zero-shot, one-
shot, and few-shot evaluation stages. However,
after fine-tuning, its performance relative to oth-
ers (especially LLaMA-3.1-8B) was no longer the
best. This demonstrates how the pre-training data
helped Qwen-2.5-Coder-3B excel initially. After
fine-tuning, its performance may have plateaued
or the fine-tuning dataset might not have aligned
perfectly with its pre-training distributions, causing
it to shift away and not maintain its lead.

Meanwhile, Phi-3.5-Mini-Instruct, which pre-
viously performed the worst across all earlier evalu-
ations, showed exceptional improvement after fine-
tuning. Recall that we mentioned earlier that per-
formance in the initial stages doesn’t necessarily
represent a model’s ability to capture information;
this observation serves as evidence of that claim.
Phi-3.5-Mini-Instruct’s pre-training data might
not have provided enough exposure to the docu-
mentation generation task, which could explain its
weaker performance in the earlier evaluation stages,
but it adapted well during fine-tuning.

Additionally, Gemma-2-9B had the lowest
BLEU score after fine-tuning compared to LLaMA
and Mistral. However, its ROUGE scores were
quite high, particularly R1 and R2, indicating
strong content overlap even if exact phrasing
(BLEU) differed. This suggests that the model
focused on capturing the broader context and se-
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Figure 2: Training and validation loss plot

Figure 3: BLEU score progression over evaluation
stages (Zero-shot, One-shot, Few-shot, Fine-tuned)

mantics rather than simply replicating the reference
text structure, which is a positive sign for generat-
ing diverse but relevant documentation.

4 Conclusion

We introduced a new dataset consisting of refer-
ence documentation for methods, lambdas, pack-
ages, and class references, designed to provide
richer context for fine-tuning publicly available
models for Javadoc-style generation. Addition-
ally, we trained models such as LLaMA-3.1-8B,
Gemma-2-9B, Phi-3.5-Mini-Instruct, Mistral-7B-
v0.3, and Qwen-2.5-Coder-3B on our dataset. Fur-
thermore, we assessed the performance of each
model across four different evaluation stages (zero-
shot, one-shot, few-shot, and fine-tuned) and mea-
sured their effectiveness using BLEU and ROUGE

Figure 4: ROUGE-Lsum score progression over evalua-
tion stages (Zero-shot, One-shot, Few-shot, Fine-tuned)

evaluation metrics. Finally, we provided a compre-
hensive analysis of their performance, highlight-
ing how pre-training influences initial capabilities
and how fine-tuning on a targeted documentation
generation dataset affects their performance, with
LLaMA-3.1-8B showing consistently strong results
after fine-tuning.

5 Limitations and Risks

This study has several limitations and risks. Re-
source constraints limited our dataset size, pre-
vented the fine-tuning of larger model variants, and
restricted hyperparameter exploration. The dataset
diversity was also insufficient, particularly regard-
ing template-based formats such as TSDoc and
JSDoc. Furthermore, our methodology introduced
fine-tuning risks, including potential model bias
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Table 4: Evaluation results across different settings (Zero-shot, One-shot, Few-shot, and Fine-tuned)

Setting Model BLEU R1 R2 RL RLsum

Zero-shot

Gemma-2-9B 0.3098 0.5522 0.2552 0.4491 0.5429
LLaMA-3.1-8B 0.3118 0.5734 0.2667 0.4696 0.5490
Phi-3.5-Mini-Instruct 0.2953 0.5230 0.2261 0.4381 0.5029
Qwen-2.5-Coder-3B 0.3362 0.5620 0.2770 0.4627 0.5431
Mistral-7B-v0.3 0.3118 0.5104 0.2221 0.4342 0.5037

One-shot

Gemma-2-9B 0.4018 0.6270 0.2905 0.5055 0.6140
LLaMA-3.1-8B 0.4156 0.6428 0.2966 0.5211 0.6222
Phi-3.5-Mini-Instruct 0.3682 0.6016 0.2745 0.4961 0.5830
Qwen-2.5-Coder-3B 0.4101 0.6457 0.3243 0.5263 0.6294
Mistral-7B-v0.3 0.4135 0.6200 0.2815 0.5147 0.6141

Few-shot

Gemma-2-9B 0.4422 0.6780 0.3522 0.5524 0.6715
LLaMA-3.1-8B 0.4478 0.6677 0.3422 0.5440 0.6579
Phi-3.5-Mini-Instruct 0.4010 0.6279 0.2942 0.4968 0.6217
Qwen-2.5-Coder-3B 0.4743 0.6852 0.3774 0.5708 0.6783
Mistral-7B-v0.3 0.4404 0.6514 0.3294 0.5424 0.6444

Fine-tuned

Gemma-2-9B 0.5318 0.8023 0.6734 0.7782 0.7997
LLaMA-3.1-8B 0.6606 0.9301 0.7213 0.8125 0.8279
Phi-3.5-Mini-Instruct 0.5987 0.8156 0.6947 0.7986 0.8136
Qwen-2.5-Coder-3B 0.5763 0.7936 0.6737 0.7676 0.7908
Mistral-7B-v0.3 0.6260 0.7288 0.6372 0.7164 0.7275

from the training data and a degradation of the
model’s general-purpose performance. A critical
operational risk is the potential for the models to
generate factually incorrect or misleading doc-
umentation (hallucinations), which could intro-
duce bugs if trusted by developers without verifica-
tion.
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mentation and evaluation.

7 Data availability

To facilitate reproducibility and further research,
the curated dataset and the code used for model
fine-tuning and evaluation are made publicly
available. During the anonymous review period,
they can be accessed at the following repository:
https://anonymous.4open.science/r/automated-
documentation-generation-using-llm. Upon
acceptance, the material will be made available via
a persistent public repository under a MIT License,
CC-BY 4.0 License. As this work utilizes publicly
available codebases as its source, our curated and
filtered dataset is provided in accordance with
open data sharing requirements.

8 Ethics Statement

This research follows the principles of the ACM
Code of Ethics. Our main goal is to support the
software development community by creating and
testing open-source tools for automated documen-
tation. We aim to help developers work more effi-
ciently and make software easier to maintain (ACM
Code 1.1).

We understand that our work could have nega-
tive effects, and we have taken steps to reduce these
risks (ACM Code 1.2, 2.5). The biggest risk is that
our models could generate documentation that is
wrong or confusing (a phenomenon known as "hal-
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lucination"). If developers trust this documentation
without checking it, it could lead to software bugs,
security issues, or a poor understanding of the code.
For this reason, we believe these models should be
used to assist developers, not to replace them. It
is essential that a human developer always reviews
the final output.

To be fair and protect privacy (ACM Code 1.4,
1.7), we built our dataset using only public repos-
itories with permissive open-source licenses. We
carefully checked the data by hand to find and re-
move any personal or sensitive information. We
also know that the original training data may con-
tain biases, which our models could learn and re-
peat. While our filtering helps, we acknowledge
that the risk of spreading these biases is a limitation
of our work.

By making our dataset and code publicly avail-
able, we aim to be honest and trustworthy (ACM
Code 1.3). This allows the community to be trans-
parent and enables others to reproduce, critique,
and build upon our research.
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Appendix

A Dataset Example

Below is an example entry from our curated dataset,
illustrating the structure which includes the source
code snippet, its corresponding Javadoc documen-
tation, and the package context.

Component

Package:
discord4j.core.object

Code:

1 public Optional <Snowflake > getBotId
() {

2 return data.botId().toOptional ()
3 .map(Snowflake ::of);
4 }

Documentation:

1 /**
2 * Gets the id of the bot this role
3 * belongs to, if present.
4 *
5 * @return The id of the bot this

role
6 * belongs to, if present.
7 */

Table 5: A sample data entry from the curated dataset.

B Regular Expressions for Data
Extraction

The regular expressions used to parse Java source
files for Javadoc comments, package declarations,
class/interface/enum declarations, and method/con-
structor signatures are detailed in Figure 5.

C Evaluation Metrics

This section provides detailed definitions of the
evaluation metrics used in our study.

C.1 BLEU Score
BLEU (Bilingual Evaluation Understudy) is an au-
tomated metric for evaluating machine translation
by measuring n-gram overlap between a generated
text g and a reference text r. It incorporates a

Figure 5: Regular Expressions for Extracting Javadoc
Comments, Classes, Methods, and Packages from Java
Source Code.

brevity penalty to discourage overly short outputs.
Higher BLEU scores indicate a closer alignment
with human-quality translations (Papineni et al.,
2002).

C.2 ROUGE Score

ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) is a set of metrics used for evaluating
text summarization and machine translation. It
compares a generated summary g with one or more
reference summaries r by measuring overlap in
units such as unigrams, bigrams, and the longest
common subsequence (LCS) (Lin, 2004).

Notation

• Countmatch(u): Number of times a unigram
u from reference r appears in the generated
summary g.

• Count(u′, r): Total occurrences of unigram u′

in the reference summary r.

• Countmatch(b): Number of bigrams b from ref-
erence r that match in g.

• Count(b′, r): Total occurrences of bigram b′

in the reference summary r.
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• LCS(g, r): Length of the Longest Common
Subsequence between generated summary g
and reference r.

• Lr: Total number of words in the reference
summary r.

• CLCS: Cumulative LCS over all sentence pairs
between g and r.

• Wr: Total word count across all sentences in
the reference summary r.

ROUGE-1 (R1) Evaluates unigram overlap:

R1 =

∑
u∈Unigrams(r)

Countmatch(u)

∑
u′∈Unigrams(r)

Count(u′, r)
(1)

ROUGE-2 (R2) Evaluates bigram overlap:

R2 =

∑
b∈Bigrams(r)

Countmatch(b)

∑
b′∈Bigrams(r)

Count(b′, r)
(2)

ROUGE-L (RL) Calculates LCS normalized by
reference length:

RL =
LCS(g, r)

Lr
(3)

ROUGE-Lsum (RLsum) Evaluates summary-
level LCS similarity:

RLsum =
CLCS

Wr
(4)

D Fine-Tuning Hyperparameters

D.1 LoRA Configuration
We employed Low-Rank Adaptation (LoRA) for
parameter-efficient fine-tuning. LoRA freezes the
pre-trained model weights and injects trainable
rank decomposition matrices into the Transformer
architecture. The weight update is defined as:

W = W0 +∆W = W0 +BA (5)

where W0 ∈ Rd×k is the original weight matrix,
and B ∈ Rd×r and A ∈ Rr×k are the trainable
low-rank matrices, with rank r ≪ min(d, k).

For our experiments, we set the rank to r = 16.
The LoRA adaptation was applied to the following
projection layers:

T = {qproj, kproj, vproj, oproj,

gateproj, upproj, downproj}
(6)

A scaling factor α = 16 was used to moderate the
magnitude of the weight updates.

D.2 Training Configuration
Table 6 provides an example of the training configu-
ration used for the LLaMA-3.1-8B model. Similar
hyperparameter settings were used for the other
models, with minor adjustments where necessary.

Table 6: Example training configuration (LLaMA-3.1-
8B)

Configuration Value

Batch Size (Training) 8
Batch Size (Validation) 2
Gradient Accumulation Steps 4
Optimizer AdamW
Learning Rate 2× 10−4

Evaluation Strategy steps
Evaluation Steps 5
Linear Scheduler Yes
Weight Decay 0.01
Epochs 5
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