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Abstract

We introduce a comprehensive benchmark to
assess the analogical reasoning capabilities of
large language models (LLMs) on complex
analogy tasks that go beyond conventional
formats with single correct answers. Unlike
standard benchmarks that assume a singular
ground truth, our framework presents a four-
way multiple-choice analogy task in which all
target options are semantically plausible. Lever-
aging concept pairs from Wikidata and Analo-
gyKB, we construct analogy instances enriched
with multiple overlapping relational structures,
where the relations are mined with RAG and
ranked in salience through a GPT-4-assisted
Max-Diff survey. To enable systematic eval-
uation, we propose three complementary se-
mantic measures i.e. ranked relational over-
lap, context embedding similarity, and proto-
typicality; each grounded in established litera-
ture on analogical reasoning. Our experiments
span a range of LLMs, evaluated under zero-
shot and knowledge-enhanced prompting con-
ditions. While models such as GPT-4 perform
well on embedding-based and prototypicality-
based measures, they consistently underper-
form when tasked with capturing fine-grained
relational mappings. These results reveal that,
despite their impressive surface-level semantic
fluency, current LLMs exhibit notable limita-
tions in structured relational reasoning.

1 Introduction

Analogical reasoning is the cognitive ability to rec-
ognize, map, and apply structural relationships be-
tween seemingly disparate concepts. It is widely
regarded as a cornerstone of human intelligence,
creativity, and abstraction (Gentner, 1983). By
enabling the transfer of knowledge from a famil-
iar domain (the source) to a novel one (the tar-
get), analogy not only facilitates comprehension
but also supports reasoning, explanation, and flex-
ible problem-solving across a wide range of con-
texts (Hofstadter, 2013). Beyond simple compar-

isons, analogical reasoning provides a powerful
mechanism for generating hypotheses, fostering
conceptual change, and driving scientific discov-
ery. For instance, the classical analogy comparing
an atom to a solar system—where electrons orbit
the nucleus as planets orbit the sun, illustrates how
analogical thinking scaffolds the understanding of
abstract or counterintuitive scientific ideas by relat-
ing them to more familiar and intuitive phenomena.
Such mappings, even if not scientifically precise,
often serve as conceptual entry points that guide
learners toward deeper theoretical insights. More
broadly, analogical reasoning is central to language,
metaphor, and creativity, underpinning the ability
to extend prior knowledge to novel situations and
to reframe problems in innovative ways.

Stem
Washington : United States of America

Targets

1. Seoul : South Korea

2. Moroni : Comoros

3. Kingstown : Saint Vincent
4. Ottawa : Canada

Answer

Relational Overlap
Seoul : South Korea

Prototypical
Ottawa : Canada

ChatGPT 4.1
Ottawa : Canada

Figure 1: Example of a complex analogy with multiple
plausible targets, illustrating the need for fine-grained
relational reasoning. LLMs does not lean towards rela-
tional structure based semantics

Humans can navigate complex systems through
familiar relational templates (Hofstadter, 2013).
Recent research in natural language processing
(NLP) has posited that analogical reasoning sim-
ilarly enables large language models (LLMs) to
generalize beyond explicit training examples (Ya-
sunaga et al., 2024). Accordingly, numerous
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Stem London: England Target1l Shanghai: China Target2 Bangkok: Thailand

Relations mox-diff score Relations  max diff score Relations mox-diff score

capital 1.00

largest city 0.43
financial center  -0.18

most populous 0.98 capital 1.00
financial center  0.13 most populous 0.73
industrial hub 0.04 largest city 0.25

Figure 2: Concept pair has multiple ranked relations

studies have explored the analogical capacities of
LLMs across tasks such as 4-way analogies (Ushio
et al., 2021b), narrative analogy, story analogy, and
relation-mining (Young et al., 2022; Zhou et al.,
2024; Yuan et al., 2024). These findings often
report that LLMs can solve analogy problems in
zero-shot settings, exhibiting behaviors loosely
aligned with human analogical inference (Webb
et al., 2023; Kojima et al., 2023).

However, these capabilities remain fragile and
inconsistent and are highly sensitive to prompt de-
sign, context, and task formulation. Crucially, prior
work has largely focused on traditional analogy
benchmarks like 4-term analogy or SAT-style tasks
(Turney et al., 2003), which feature a single correct
answer and relatively shallow relational mapping
(only one relation of stem matches with the correct
target). While recent studies have proposed new
analogical datasets and tasks (Yuan et al., 2024; Se-
hgal et al., 2024), they often fall short in providing a
sufficiently detailed semantic framework, which is
essential for systematically guiding and evaluating
task performance. This paper addresses a critical
gap in the literature by investigating how generative
large language models (LLMs) perform on analogy
tasks with multiple plausible solutions, framed in
an SAT-style format. We examine whether genera-
tive LLMs engage in relational reasoning, consis-
tent with established cognitive theories of analogy
(Christoph Lofi, 2013), or whether their responses
reflect a reliance on prototypical, surface-level fea-
tures. To this end, we make the following contri-

butions:

1. A Novel Benchmark for Complex Analog-
ical Reasoning: We construct a set of 1210
samples, four-way multiple-choice analogy
dataset in which all target choices are viable
analogical matches to the stem. A key feature
of this dataset is that each concept pair has
multiple relations that links the pair and these
relations are mined by Retrieval Augmented
Generation (Yu et al., 2025) and ranked by
salience through a GPT-4-driven Max-Diff
survey (Louviere et al., 2015). For exam-
ple, the pair “London” and “England” may

share multiple relations such as largest_city,
capital_of, and financial_center. These rela-
tions can be ranked by importance (see Fig. 2),
where capital_of holds higher salience than
largest_city, which in turn ranks above finan-
cial_center.

2. Ground Truth depends on specific Seman-
tics: Unlike prior benchmarks with rigid la-
bels, we determine the most appropriate target
using one of three proposed semantic mea-
sures—ranked relational overlap, context em-
bedding similarity, and prototypicality; each
grounded in prior cognitive and computational
research. This allows us to investigate which
measure best aligns with LLM predictions and
to disambiguate the types of reasoning LLMs
tend to rely on.

3. Semantically Plausible Distractor Design:
We ensure that each target shares at least one
relation with the stem, thereby increasing task
difficulty and realism. Unlike conventional
datasets that rely on strictly incorrect distrac-
tors, our approach makes all options semanti-
cally defensible and shifts the focus to precise
semantic matching.

Taken together, our results highlight a critical limi-
tation in current LLM architectures: their analogi-
cal reasoning capabilities are primarily grounded
in shallow statistical or prototypical associations
rather than deep relational alignment. Although
prompting techniques like knowledge-enhanced
prompting offer improvements, they do not fully
address this limitation. Our findings suggest limita-
tions in current claims regarding emergent analog-
ical reasoning in LLMs (Webb et al., 2023; Ya-
sunaga et al., 2024) and highlight the potential
value of incorporating more explicit mechanisms
for relational abstraction in future models. All
data, annotations, and evaluation scripts are pub-
licly available'.

2 Related Work

The performance of language models on analogi-
cal reasoning has been a growing area of research,
showing significant advancements over time.
Model Performance on Analogy Task: This
work assesses model performance on analogy tasks

1https: //github.com/Mayukhga83/Analogy-Task
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using novel prompting, task descriptions, finetun-
ing, and other techniques. Earlier research em-
ploys the word analogy task to assess the analogical
reasoning abilities of language models (Mikolov
et al., 2013a; Levy and Goldberg, 2014; Fournier
et al., 2020; Ushio et al., 2021b). Recent stud-
ies (Yasunaga et al., 2024) have introduced ana-
logical prompting, where language models are
guided to generate relevant reasoning exemplars
before solving a problem. Yung et al. (2022) devel-
oped prompts based on structured mapping theory
and explored whether models can abduce structure
while concept mapping. Zhou et al. (2024) intro-
duced link-of-analogy prompting, which enables
LLMs to process new situations by drawing analo-
gies to known situations. Some studies posit that
highly scaled models, such as GPT3, may achieve
performance levels comparable to those of humans;
however, this performance is often task-specific
(Webb et al., 2023; Hu et al., 2023; Wijesiriwar-
dene et al., 2023; Jiayang et al., 2023).

Analogy curation: Early studies primarily ob-
tain analogy knowledge through the expertise of
linguists (Adrian Boteanu, 2015). Later studies
consider exploiting relations in common sense
Knowledge Graphs to curate analogies (Allen and
Hospedales, 2019; Ulcar et al., 2020; Speer et al.,
2008; Li et al., 2018; pen; Gladkova et al., 2016;
Zhang et al., 2019; Ilievski et al., 2022). These
studies are characterized by either suboptimal qual-
ity or high quality but with very limited sample
sizes. To tackle such problems Yuan et al. (2024)
curated a large-scale analogy knowledge base de-
rived from existing knowledge graphs. Jurgens et al.
(2012) tried to identify the degree of prototypicality
for word pairs within a given relation class. Un-
like previous studies, this research focuses solely
on analogy examples with multiple plausible solu-
tions. Furthermore, it is the first to systematically
examine the correlation between LLM predictions
on analogy tasks and semantic measures, providing
new insights into their reasoning processes.

3 SAT Multiple Choice Analogy Task

A multiple-choice four-way analogy task (Turney
et al., 2003; Ushio et al., 2021a,b) involves pre-
senting an analogy problem consisting of a pair of
related words or concepts as the stem, followed by
several word pair options as target choices (see
Figure 1). The goal is to find the target pair
that best aligns with the stem, as solving anal-

ogy tasks requires matching relational structures
across pairs. Turney et al. (2003) collected 374
multiple-choice questions from SAT exams where
each question has one stem and five targets. In
this section, we evaluate the complete dataset us-
ing decoder LLMs of varying scales, including the
open-source LLaMA 2 (13B and 70B model) (Tou-
vron et al., 2023) and GPT3.5, GPT4 (OpenAl,
2023) and compare it with previous benchmarks
done by Petersen and van der Plas (2024) on en-
coder LLMs. Petersen and van der Plas (2024)
in their benchmark used two variants of Bert, one
where cos(a; — ag, by — by) is minimized (Bert-aa)
and one where cos(a; — by, az — be) is minimized
(Bert-ab) for 4-way a : as :: by : by analogy task?.
We benchmarked the decoder models under both
zero-shot and one-shot settings to assess the extent
of performance improvement across these config-
urations. For the one-shot setting, we designed
prompts using techniques like Chain of Thought
(CoT) (Wei et al., 2022b) and Automatic Chain
of Thought (Auto-CoT) (Zhang et al., 2022). For
details on the prompts, see appendix 9.1. The re-
sults are summarized in Figure 3. Our findings
indicate that small-scale decoder LLLMs achieve
performance comparable to both human accuracy
and encoder models. In contrast, large-scale de-
coder models, such as GPT4, surpass human-level
performance by a substantial margin, highlighting
a significant scaling advantage. Furthermore, incor-
porating a single in-context example in a Chain-of-
Thought (CoT) framework yields only a marginal
performance improvement in GPT models. These
findings suggest that analogical reasoning in LLMs
likely emerges implicitly as a byproduct of in-
creased model scale and extensive data exposure,
rather than through explicit programming, task-
specific training, or the introduction of in-context
examples (Wei et al., 2022a; Webb et al., 2023).
Building on this insight, this study systematically
examines model performance on more challenging
analogy tasks, providing a deeper analysis of their
reasoning abilities and limitations.

4 Task Formalization

Christoph Lofi (2013) provided a foundational
framework for analogy tasks. Expanding on this,
we investigate a four-way multiple-choice analogy

Please note we have adapted the notation used by Pe-
tersen and van der Plas (2024) to align with the notation used
throughout this paper
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Figure 3: LLM accuracy on the SAT analogy test: Left
plot (our decoder benchmark) vs. right plot (Petersen
and van der Plas (2024)’s encoder). Baseline: FastText
(Bojanowski et al., 2017) (non-finetuned) and BERT
classifier (finetuned)

task. Each problem consists of a stem concept pair
and four target concept pairs, with the goal of se-
lecting the target pair that most closely aligns with
the stem pair. However, in our method multiple
target pairs may appear plausible, and the correct
choice is determined based on predefined criteria,
referred to as semantic measures.

4.1 Analogy Concept Pairs

Christoph Lofi (2013) defined concept analogy con-
cept pairs as a subset of the power set of all con-
cepts Ag,y C© P(C) where C is the set of all
possible concepts. While they referred to these
as analogons, we adopt the term analogy concept
pairs for clarity and ease of interpretation. In case
of designing analogy task, only a restricted subset
of analogy concept pairs, which includes precisely
two concepts, is utilized

Arestricted - CxC - Afull

From this point, whenever we mention concept
pair we mean elements of A,¢gstricted- The concep-
tual operations necessary for our task definition,
involves four steps.

4.2 Relevant Relations of each Concept Pair

Retrieve the set of relevant relationships of a con-
cept pair. If a € a1, a9 be a concept pairs. Let
r°(a1,az) be the set of all possible relationships
between a1 and as, then the set of relevant relation-
ships between them is a space of restricted relation

ro = 1%(a1,a2) \ {k}

where k is a set of elements that is removed from
r°(a1, az) as per some filtering criteria.

4.3 Relevant Relation Score

This evaluates the strength of a relation with respect
to its parent concept pair, enabling the ranking of
relevant relations according to their significance
within the parent concept pair. If .S is some scoring
mechanism and r, has n relations then

S(ra) = {1, 51), (13, 53), (13, 83)--(r, 53,) }

where 7¢ is the ' relation between concept pairs
a1 and ag and s; is its score. The ranking aims
to measure the depth of the relational importance
between two concept pairs.

a__ b a __ b
Ty =Tp# S =8

Because if the i*" relation between a; and as is
similar to the jth relation between b; and by, that
does not imply their respective importance is same
for both the concept pair. The same relation may
be more relevant to its parent concept pair than to
another.

Stem Target choice 1
a’]. ﬁc b]. <
) T Qo
NRRRIRCY zlsls =
slelzlE = =l =
5 &
Target choice 2 Target choice 3
C1 |, dy ||
Q 1 Q
o) ~~
= e 2 E S
5 >
U
o

Figure 4: Stem and target pairs share many overlapping
relations, distinguished by color codes, but the ranks of
these relations vary between individual concept pairs.

4.4 Stem-Target Relation Overlap

Leta € ay,a2 and b € by, by be two concept pairs,
stem and target respectively. Then the set of over-
lapping relationships between the two pairs are

Tab =Ta T Tab,Ta, 7o S R

4.5 Semantic Measure

The purpose of the measure is to interpret the cor-
rect answer out of multiple plausible target analo-
gons.

M (rai, S(ra),S(ri)) = ciVi €T
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Where 7, is interpreted as relevant relations of the
stem concept pair, 1" is the set of all possible target
concept pairs and r; is the relevant relations of the
14, target concept pair. Thus, the measure calcu-
lates a confidence score ¢; € (0, 1) by evaluating
the overlap between stem and target relations along
with their scores, determining how strongly each
target aligns as an analogy of the stem. The spe-
cific properties of the chosen measure determine
how the relations are incorporated—for example,
whether through mathematical operations on rela-
tion scores or by matching relational contexts.

5 Dataset Curation

5.1 Identify Semantically Rich Relations

To curate analogy examples with rich relational
semantics, we begin by identifying concept pairs
connected through relations that are likely to co-
occur with additional meaningful links. We refer
to these as semantically rich relations. Drawing
from Wikidata (Vrandeci¢ and Kroétzsch, 2014),
we selected 18 such relations based on their em-
pirical tendency to overlap with diverse relational
types. In Wikidata, relations are encoded as struc-
tured property triples—for example, {Q90: Paris,
P36: capital of, Q142: France}, where capital of
is the relation linking Paris and France. Crucially,
this pair is also associated with other semantically
salient relations such as located in (P131), enrich-
ing the conceptual linkage. By contrast, pairs such
as {Q1048: Cleopatra, P106: occupation, Q82955:
politician} involve only a single, narrowly defined
relation and thus lack comparable semantic depth.

Wikidata Ve o P106: occupation

1 Q937 Q901
/'7 S\, P36: capital_of T N -
4 Q64\> Q@ Albert

e P131: located_in Einstein

Berlin Germany =
[ semantically Rich Retations ‘@&@@
I excluded retations

Albert Male
Einstein

Mathematician

Figure 5: Illustrating semantically rich relations

These become our root relations, using which we
gather concept pairs. Our selected relation types
include categories such as operating system, part of,
city-country, and shares border with, among others.
This yields a total of 20 base relations used in our
benchmark. Appendix 9.2 lists these relations.

5.2 Gather Concept Pairs

After identifying semantically rich relations, we
first collected multiple concept pairs for each of
these root relations. Then after we had all the con-
cept pairs, we mined all other possible relations for
each concept pair using RAG (section 5.3).

5.2.1 Capital and Location Relations

We extracted concept pairs associated with the cap-
ital and located in relations from the Mikolov et al.
(2013b) dataset, which contains a large collection
of such relational pairs.

5.2.2 Other Wikidata Relations

We extracted concept pairs for each of the remain-
ing 18 base relations from the Yuan et al. (2024)
dataset Analogy KB, which provides curated con-
cept pairs corresponding to a broad range of Wiki-
data relations.

5.2.3 Concept Pair Inclusion Criteria

For Sections 5.2.1 and 5.2.2, we established spe-
cific inclusion criteria. Since our ultimate goal is
to utilize Wikipedia context with the two concept
pairs in Section 5.3, we only included concept pairs
that appeared together in at least five Wikipedia sen-
tences and met a minimum threshold of relevance.
For each base relation, we sampled up to 50 con-
cept pairs; however, not all base relations had a
sufficient number of pairs that satisfied the crite-
ria. Consequently, the resulting dataset exhibits
an imbalanced representation across different base
relations. The total number of distinct concept pair
was 584.

5.3 Retrieve all Relations for Concept Pairs

Having compiled 584 concept pairs, now our ob-
jective is to retrieve all other plausible relations
between each pair, in alignment with our task for-
mulation (see 4.1). For this, we follow a RAG (Yu
et al., 2025) like approach. Given two concepts a;
and aq, first, we queried their respective Wikipedia
pages (wik, 2025) and retrieved sequences men-
tioning both concepts. This retrieved sequence was
then provided to GPT4.1 as context, prompting it
to generate a list of potential relationships between
a1 and as. To ensure relevance, we manually fil-
tered the results to remove duplicates (e.g. locate-
dIn, isIN), ambiguous relations (e.g. represents),
opinion-based (e.g. isTheBest), transient relations
(e.g. currentlyHappeningln). The dataset contained
a total of 573 distinct relations, with a mean of 5.53,
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a median of 4, and a mode of 4. These statistics
suggest that the distribution of relations per con-
cept pair is approximately symmetric, with each
concept pair associated with around five relations
on average. Refer to Appendix 9.5 for the RAG
prompts and 9.4 for the filtering process.

5.4 Ranking Relations

Now that we have all the relations r, € R be-
tween two concept pairs a; and ag, We ranked
each relation as per the degree of it’s importance
to the concept pair. To achieve this, we employed
a GPT4o supported Max-Diff Survey (Maximum
Difference Scaling) (Louviere et al., 2015), a ro-
bust research technique for measuring preferences,
priorities, and the relative significance of items. We
divided the relation set r,, into n subsets, each of
length k : £ < R such that each relation is equally
present in the subsets. We selected & = 4 when
R > 4 (total relations of a concept pair is more)
and k = 2 when R € (4,3). For R € (2,1) we
did not had multiple sets but a single query. These
sets were given to GPT4.1 to label the most rele-
vant and least relavant relations for each concept
pairs. The Max-Diff survey therefore generates
two probability distributions, one that depicts the
probability that a particular relation r between a;
and ay is the most relevant Py, (r). The other
depicts the probability that a particular relation is
likely to be least important P!, (r). This helps
us score each relation for a concept pair and rank
them accordingly. Therefore for a concept pair a;
and a9 the importance score of a particular relation
becomes

st =P"  (r)—

1 TiE€Ta

Pl (r)+¢:6>1

A positive offset ¢ is added to ensure non-negative
scores, particularly for relations where the proba-
bility of the least important relation outweighs that
of the most important one.

We used GPT-4.1 to rank relations using a Max-
Diff survey framework because for its efficiency,
reliability, and substantially lower cost than tradi-
tional crowd-sourcing. To validate this method,
we compared LLM-generated rankings with those
from human experts and crowd workers (Table 1).
We evaluated Max-Diff responses for 12 concept
pairs from the Country—Capital relation. Expert an-
notations were provided by seven domain experts
familiar with the research. In parallel, we gathered
responses from Amazon Mechanical Turk workers,

filtered by a 95% HIT approval rate, at least 100
completed HITs, U.S. residency, English fluency,
and passed attention checks. Results show that
LLM rankings correlate more strongly with expert
judgments than those from crowd workers, support-
ing the use of LLMs as a reliable and cost-effective
solution for relational ranking in analogy tasks.

Method Agreement with expert group

GPT-4.1 0.79

GPT-40 0.71
GPT-40-mini 0.62

GPT-3.5 0.53

M-Turk 0.56

Table 1: Agreement with expert group judgments in
the MaxDiff survey: comparison between LLMs and
MTurk workers.

5.5 Semantic Measures for Ground Truth

We incorporated three distinct measures to evaluate
and compare the performance of LLMs.

5.5.1 Ranked Relation Overlap

This measure based on Christoph Lofi (2013)’s
idea leverages the ranked relation set mined in Sec-
tion 5.4. For each stem-target pair, we identify
intersecting relations and use their ranked scores
from the Max-Diff survey (see 5.4) as a proxy mea-
sure. The final score is obtained by summing the
aggregate scores of all intersecting relations, with
the highest-scoring pair selected as the best match.
Formaly, from the notations in Section 4.3 and 4.4,
let rop = 74 N 1 be the overlapped relation be-
tween steam (a1, az) and target (by, b2). Let S} ab
and S;* be the scores corresponding to elements
in 745, meaning:

Stab = (S,[i]|i € 4p)
Sgab = (Sb[z]\z € T'ab)

Then compute the dot product of the restricted
score vectors which represents the sum of element-
wise products of scores for the elements that appear
in both (al, ag) and (bl, bg).

> Salil - Syli]

ST

5.5.2 Context Embedding Similarity

Based on Turney et al. (2003)’s concept of phrase
vectors, defined as a vector representation that
captures the relational meaning between two con-
cepts in a latent space. In our approach, we con-
struct phrase vectors using sentences retrieved from
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Wikipedia that contain the given concept pairs. As
described in Section 5.3, we extract sentences from
Wikipedia that mention both concepts for each
stem and target concept pair. We then generate
embeddings for these sentences using the openai’s
text-embedding-3-large model. The resulting sen-
tence embeddings serve as the phrase vector rep-
resenting the relational meaning between the con-
cept pairs. Then we calculated the cosine simi-
larity of the embeddings of the stem with each of
the targets. Therefore, if {em{, em§, em$..} and
{em?, em$, em$..} be the phrase vector of stem
and a target. Then compute

Z Cosine(emy, emé’-)>o_5
7]

Since there are multiple sentences per pair, we re-
tain only those with a similarity score greater than
0.5 and normalize the score by the number of sen-
tences meeting this threshold. The correct answer
is the target with the minimum distance from the
stem. The threshold selection was guided by the cu-
mulative distribution of similarity measures across
all phrase vectors. For further discussed in Ap-
pendix 9.3.

5.5.3 Prototypical Similarity

This idea was first introduced as a sub-task of Se-
mEval 2012 (Jurgens et al., 2012). Prototypicality
refers to the extent to which a target concept is rep-
resentative of the relation instantiated by the stem
pair. Translating this notion into a computable mea-
sure is non-trivial; in this work, we approximate it
by comparing the concatenated word embedding of
the stem pair and its base relation with the word em-
bedding of the candidate target pairs. For example,
London:England representing capital is more proto-
typical of Paris: France than of Ngerulmud:Palau.

In practice, cities that occur more frequently
across diverse corpora (e.g., news articles, ency-
clopedias) tend to be more prototypical. A city
with high degree centrality—indicating stronger
connectivity within relational networks can thus be
considered more representative. Accordingly, raw
word embeddings act as a proxy to encode such
representativeness. For instance, London and Paris
co-occur more often in text corpora than London
and Ngerulmud. Since embedding models capture
such co-occurrence patterns, we employ them as
a proxy to approximate this semantic measure of
prototypicality.

To quantify prototypicality, we have stem con-
cept pair a = (a1, a2) and its base relation 7pgse
target concept pair b; = (b;1, bi2). We compute the
cosine similarity between

max;(Cos(E(a, rpgse), E(b;)))

Where E() is the embedding function. A higher
similarity implies a stronger prototypical alignment
between the stem its base relation and the target,
while more orthogonal vectors suggest lower pro-
totypicality.

5.5.4 Curation

Each of the 584 concept pairs was employed as a
stem in a four-option multiple-choice analogy ques-
tion. Target options were randomly selected from
concept pairs within the same base relation group
as the stem. For groups with a large number of
concept pairs (e.g., capital-country), multiple in-
stances were generated using the same stem, as the
likelihood of duplicate targets was comparatively
low due to the size of the group. In total, 1,210
test examples were constructed. For each instance,
three ground-truth labels were defined, correspond-
ing to three distinct semantic measures. Model
performance was then evaluated against these three
ground truths.

6 Evaluation

In this study, we have benchmarked several
prominent generative Large Language Models
(LLMs), including GPT-3.5, GPT-4 (OpenAl,
2023), LLaMA-2 (7B and 13B) (Touvron et al.,
2023), LLaMA-3 (Grattafiori et al., 2024), Mistral-
7B, Falcon-40B (Almazrouei et al., 2023), and
Mixtral-13B (Jiang et al., 2023), etc. The eval-
uation of these models was conducted under three
distinct prompting scenarios: zero-shot, automatic
CoT Zhang et al. (2022), and knowledge-enhanced
(Wijesiriwardene et al., 2024) prompting. In the
context of zero-shot prompting, models were pre-
sented with analogy questions devoid of any prior
context and asked to guess the correct answer.
In the automatic chain-of-thought setting, anal-
ogy prompts were augmented by appending the
directive “think step by step”, thereby eliciting
explicit, stepwise reasoning from the model. In
the knowledge-enhanced prompting setting, we ex-
plicitly guided models with reasoning directives
tailored to each semantic measure. For the pro-
totypicality measure, the prompt first introduced
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the concept of prototypicality, emphasizing how
certain targets are more representative exemplars
of a relation than others, and instructed the model
to select its response accordingly. For the ranked
relational overlap measure, the prompt provided
the set of salient relations associated with the stem
pair. The model was asked to first infer the cor-
responding relations of each candidate target pair,
then evaluate their relative rankings, identify the
degree of relational overlap with the stem, and fi-
nally assign scores to the targets in order to select
the most aligned candidate. For the context embed-
ding similarity measure, the model was instructed
to construct contextual text for both the stem and
the candidate target pairs. It was then directed to
compare these text and score the targets based on
their semantic closeness to the stem. Please note
that steering the model by prompts to compare
embedding directly is non-trivial. This structured
prompting framework ensured that the evaluation
of each semantic measure was accompanied by a
clear reasoning directive, allowing us to systemati-
cally probe whether LLMs can adapt their reason-
ing strategies in accordance with explicit semantic
guidance. For each model prediction we also asked
models to generate rationale to explain their answer
choices.

7 Results and Discussion

7.1 Model Scale and Architecture

The results demonstrate a clear scaling advantage
in analogy tasks. Smaller models such as Phi-2.7B,
Gemma-2B, and RWKV-1.5B show consistently
low accuracy across all semantic measures, rarely
exceeding 20% in the Relational Overlap metric.
In contrast, large-scale models such as LLaMA-
3 70B, GPT-40, and GPT-4.1 achieve accuracies
well above 40% on embedding- and prototypicality-
based measures. However, GPT-40-mini surpasses
52% on prototypicality knowledge prompts, rep-
resenting the highest overall performance in the
benchmark. Which indicates model architecture
might be a confounding factor for this anomaly. Ar-
chitectural differences play a crucial role. RWKV
models, despite competitive scale, consistently lag
behind transformer-based families (LLaMA, Mis-
tral, GPT). For example, RWKV-13B achieves only
22.7% relational overlap compared to 36% for
LLaMA-3 8B. Similarly, Mistral-13B and LLaMA-
2 13B exhibit comparable capacities, but both fall
behind GPT-4 family models in embedding and

prototypical measures. This underscores that archi-
tecture and pretraining corpus, not just parameter
count, critically shape analogical reasoning perfor-
mance.

7.2 Semantic Measures and Reasoning
Strategies

Performance varied significantly across the three
semantic measures:

* Relational Overlap: Even the strongest
models underperformed, with GPT-4.1 and
LLaMA-3 8B achieving only ~30-36% accu-
racy. This suggests that capturing fine-grained
structural relations remains a persistent weak-
ness across architectures.

* Context Embedding Similarity: Models gen-
erally excelled on this measure, with LLaMA-
3 70B (44.2%) and GPT-40-mini (48.1%)
leading. This indicates that LLMs rely heav-
ily on distributional similarity in embedding
space rather than systematic relation mapping.

* Prototypicality: Performance was highest
overall, with GPT-40-mini exceeding 52% and
LLaMA-3 70B reaching nearly 49%. This re-
veals a strong tendency for LLMs to gravitate
toward prototypical associations—choosing
options that are frequent, salient, or canonical
exemplars of a relation.

Taken together, the results show that while mod-
els are adept at leveraging surface-level semantic
similarity and prototypical cues, they fail to ro-
bustly reason over deeper relational structures.

7.3 Impact of Knowledge Prompts

Knowledge-enhanced prompting improved results,
but the gains were marginal and inconsistent. For
Relational Overlap, improvements were modest
(e.g., LLaMA-2 70B rose from 22.1% to 31.1%).
By contrast, prototypicality saw larger boosts:
Gemma-2B improved from 24.8% to 36.9%, and
RWKV-1.5B rose from 30.0% to 35.2%. Context
Embedding Similarity also benefited, with LLaMA-
2 13B jumping from 28.3% to 33.8%. These find-
ings suggest that explicit reasoning instructions
help models align better with semantic criteria,
though they cannot fully overcome structural rea-
soning deficiencies. It further invites evaluation
of the dataset with more sophisticated knowledge-
enhanced prompting strategies to examine whether
such approaches yield performance improvements.

472



Models Rel — Overlapace Context — Embeddingacc Prototypicalityace
zero-shot auto-cot knowledge | zero-shot auto-cot knowledge | zero-shot auto-cot knowledge

Phi 2.7B 7.11 11.27 1531 21.68 25.37 29.24 3321 27.36 30.10
Gemma 2B 0.84 17.47 20.23 14.11 15.29 18.28 24.80 3234 36.98
RWKYV 1.5B 5.54 14.76 16.83 10.27 13.74 11.03 30.00 29.00 35.23
Gemma 7B 16.29 15.63 22.48 27.87 25.16 26.30 27.23 3524 39.16
RWKV 7B 13.43 16.32 15.60 19.29 26.80 30.48 29.12 26.19 29.26
Mistral 7B 17.83 17.80 26.93 14.96 18.35 17.36 38.28 30.17 38.16
RWKYV 13B 18.26 14.78 2271 33.58 37.32 31.36 35.98 37.16 38.36
Mistral 13B 20.56 25.62 25.10 25.76 27.53 26.06 34.65 3524 38.29
Llama2 13B 18.22 20.31 21.15 28.33 27.10 33.85 35.07 37.08 41.28
Llama2 70B 22.13 28.36 31.15 34.81 31.43 37.16 39.18 40.11 39.82
Llama3 8B 29.44 27.62 36.06 41.77 40.86 41.19 4433 42.92 41.93
Llama3 70B 29.03 28.12 25.55 43.92 45.32 44.19 47.72 4797 49.13
GPT 4o-mini | 24.16 21.33 25.55 48.38 48.13 48.13 52.85 51.69 52.87
GPT 4o 27.95 28.68 30.02 41.77 42.10 43.83 46.48 45.65 4425
GPT 4.1 29.61 29.19 30.93 39.78 40.69 38.46 41.60 4250 39.86

Table 2: Accuracy of LLMs w.r.t semantic measures in our multiple-choice Analogy Task.

7.4 Summary of Insights

Overall, scaling and prompting enhance analogy
task performance, but primarily by amplifying re-
liance on embedding similarity and prototypical as-
sociations rather than fostering genuine relational
reasoning. GPT-4o0-mini’s strong results highlight
that model efficiency combined with architectural
design may outperform even larger models in cer-
tain contexts. However, the consistently low scores
on relational overlap across all systems indicate
a fundamental limitation of current LLMs: ana-
logical reasoning remains shallow, biased toward
salience and co-occurrence rather than structured

mapping.

7.5 Rationale Analysis

In addition to accuracy, we examined the rationales
generated by models when explaining their analogy
choices. A recurring pattern was that model expla-
nations often failed to reference the key relations
that should have determined the correct answer. For
example, when presented with a stem pair linked
by a salient relation such as capital of, models
frequently justified their choice by appealing to
surface-level associations like geographic proxim-
ity or cultural similarity, rather than identifying
all the other underlying structural relation as in-
structed by the knowledge prompts. This mismatch
indicates that while models can produce fluent and
plausible explanations, these rationales are not re-
liably grounded in the relational semantics of the
task. Consequently, the generated rationales appear
more as post-hoc justifications than evidence of
genuine analogical reasoning, further underscoring
the models’ reliance on shallow heuristics instead
of systematic relation-based inference.

8 Conclusion

This work introduced a novel benchmark designed
to probe the analogical reasoning abilities of large
language models in settings where multiple target
solutions are semantically plausible. By moving
beyond traditional single-answer analogy tasks, we
demonstrated how LLMs respond when confronted
with relational complexity and overlapping seman-
tic structures. Our experiments revealed that while
scaling and prompting strategies improve perfor-
mance, LLMs overwhelmingly rely on prototypi-
cality and distributional similarity rather than fine-
grained relational reasoning. Even the strongest
models consistently underperformed on relational
overlap measures, underscoring a fundamental limi-
tation in their ability to capture structured relational
mappings.

These findings highlight an important gap be-
tween surface-level semantic fluency and genuine
analogical reasoning. Although prompting tech-
niques, such as knowledge-enhanced instructions,
provide measurable gains, they fail to address the
deeper structural deficiencies observed across mod-
els. This suggests that analogical reasoning in cur-
rent LLMs is largely an emergent byproduct of
scale and training data rather than the result of ex-
plicit relational abstraction.

Limitations

A limitation of this study lies in the complexity of
mining all possible relations for any given concept
pair, which is further compounded by the challenge
of ranking these relations. Consequently, the study
relies on an LLM-based Max-Diff survey. We ad-
dressed this by comparing the LLM Max-Diff sur-
vey with expert human and crowd-worker surveys
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to justify our design choice. Another limitation of
the study is the prompt sensitivity of decoder-based
LLMs.

Beyond these, several additional limitations
must be noted. First, although our dataset con-
struction attempts to ensure semantic richness, the
coverage of relations is still uneven across do-
mains. Some relation categories, such as capital—
country, are heavily represented, whereas others
remain under-sampled. Second, the evaluation re-
lies on three semantic measures-ranked relational
overlap, context embedding similarity, and proto-
typicality which, while complementary, do not ex-
haustively capture the full spectrum of analogical
reasoning strategies. Third, model performance
differences are often marginal, making it difficult
to draw strong conclusions about the superiority of
one architecture or prompting strategy over another.
Fourth, rationale analysis revealed that models fre-
quently produce fluent but ungrounded explana-
tions, suggesting that performance metrics alone
may overestimate true reasoning ability. Finally,
our study is limited to text-only LLMs; extending
the framework to multimodal analogies involving
images or diagrams could reveal different patterns
of strengths and weaknesses.

Ethics Statement

The study focuses on testing existing publicly avail-
able LLMs without creating new models or enhanc-
ing potentially harmful capabilities. All experi-
ments were designed to evaluate reasoning abilities
in a controlled environment, avoiding deployment
scenarios that could lead to unintended misuse or
societal harm. To promote transparency and re-
producibility, we have documented all methods,
datasets, and evaluation metrics in detail. This
study does not assume that LLMs truly "under-
stand" analogies as humans do. Instead, their per-
formance reflects patterns learned from data. We
caution against over-interpreting results or deploy-
ing these models in sensitive areas requiring high
reliability and accountability.
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9 Appendix
9.1 Prompts for Section 3, SAT Benchmark

These are the prompts used to make the decoder model generate the correct answer to SAT(Turney et al.,
2003) dataset.

9.1.1 Prompts for Oneshot Classification on SAT Analogy task with Chain of Thought Example

ﬁ:hoose the correct answer \
Stem: mason : stone
Choices:
(a)teacher : chalk
(b)carpenter : wood
(c)soldier : gun
(d)photograph : camera
(e)book : word

e]dwexa IX23U02-ul

Let’s think in the following steps

Identification of Analogies: see similarities in structure between the two stem

Mapping relationship: identify elements in the first stem and finding equivalent elements in the second stem
Transfer of knowledge: based on mappings, insights from the stem are transferred to target choices

Conclusion: find the most suitable pair with all the information

Identification of Analogies: The relationship between a mason and stone involves a professional or artisan -
who uses a specific material as the primary medium for their craft

Mapping relationship: Mason uses stone

Mason: A skilled worker who shapes or constructs with a specific material.

Stone: The primary material used by the mason in construction.

Transfer of knowledge: we look for a pair where a professional or artisan primarily uses the mentioned

material or tool as part of their craft

Conclusion:(a) teacher:chalk — A teacher may use chalk, but chalk is not the primary material of their craft.
Education or knowledge would be more central. >
(b) carpenter:wood — A carpenter primarily uses wood to construct or create objects, fitting the
professional/material relationship closely.

(c) soldier:gun — While a soldier uses a gun, the relationship is less about crafting and more about the tool for

a specific purpose (defense or combat).

(d) photograph:camera — A photograph is a product, not a professional or artisan. The camera is a tool to

create photographs but does not fit the artisan/material relationship.

(e) book:word — Words are the primary material for writing a book, but the relationship here is more abstract,
focusing on content rather than a professional crafting with a material. /
Choice:(b)

10D 213BWOINY

(L0D) Buluoseay 3ygnoy] Jo ureyd

Choose the correct answer
Stem: shove : nudge
Choices:

(a)vex : mutter

(b)calm : quell

(c)teach : lecture

(d)push : fight

(e)stare : glance

Let’s think in the following steps

Identification of Analogies: see similarities in structure between the two stem

Mapping relationship: identify elements in the first stem and finding equivalent elements in the second stem

Transfer of knowledge: based on mappings, insights from the stem are transferred to target choices

\gonclusion:find the most suitable pair with all the information

9.1.2 Prompts for Zeroshot Classification on SAT Analogy task

Choose the correct answer

Stem: shove : nudge
Choices:

(a)vex : mutter
(b)calm : quell
(c)teach : lecture
(d)push : fight
(e)stare : glance

Let’s think in the following steps

Identification of Analogies: see similarities in structure between the two stem

Mapping relationship: identify elements in the first stem and finding equivalent elements in the second stem
Transfer of knowledge: based on mappings, insights from the stem are transferred to target choices
Conclusion: find the most suitable pair with all the information

479



9.2 Example of base relations

e capital

* chairperson

* country of citizenship
* different from

e diplomatic relations

¢ filming location

* has contributing factor
* movement

* Jocated in

* notable work

* operating system

* part of

* participant

* place of burial

* place of death

* separated from

* shares border with

* twin administered body
» work location

» worshipped by

9.3 Choice of Threshold in Wiki Embedding Measure Section 5.5

This section provides a detailed analysis of the rationale behind the chosen threshold. Specifically, we
analyze the distribution of similarity scores across all phrasal vectors derived from our dataset.

Histogram Cumulative Distribution
1.01

50000 -

0.8 1
40000 A

0.6 1

30000 -

0.4 1
20000 -

Frequency of similarity score
Fraction of total data

0.2 1
10000 -

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Similarity score Similarity score

Figure 6: Histogram of similarity scores reveals a  Figure 7: CDF reveals that around 0.4 to 0.6 we have
skewed distribution towards low scores high end of the distribution
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The results presented in Figure 6, Figure 7, and Table 3 indicate that the distribution of similarity scores is
highly left-skewed. Consequently, a large proportion of the data exhibits low similarity around 0.3, while
only a small fraction exceeds a similarity score of 0.6. This supports the choice of a 0.5 threshold, which
retains a balance of both highly similar and moderately similar sentences.

Similarity Score (Sim) 0 | 0.1 02 | 03 04 | 05]06 |07 08|09
Percentage of Data > Sim || 100 | 94.23 | 76.10 | 44.17 | 15.71 | 3.01 | 0.40 | 0.11 | 0.06 | 0.04

Table 3: The proportion of data samples exceeding a given discrete similarity score. E.g., for similarity score > 0.3
we will have 44.17% of the data

9.4 Filtering Relevant Relations

After extracting relevant relationships from Wikipedia and LLMs, we conducted a manual filtering process
to refine the quality of the relations, categorizing them retracted relations into four distinct groups.

¢ Ambiguous Relation: An ambiguous relation refers to a connection between two entities whose
nature is open to multiple interpretations, often leading to potential disagreement regarding its precise
meaning. E.g., London represents_the United Kingdom, Money is Power, Tokyo leads Japan.

* Opinion Based Relation: An opinion-based relation is a relationship between two entities that is
based on subjective judgment, personal preference, or cultural perception rather than objective facts.
E.g., Paris is_ the_most_romantic_city_in France, Tokyo is_ the_most_exciting_city_in Japan

* Transient Relation: A transient relation is a temporary, non-permanent association between two
entities, where the connection is subject to change due to external factors such as time. We fil-
terd only those transient relations which have already changed and no longer valid, E.g., Pluto
was_classified_as planet, The Sun was_thought_to orbit earth.

* Duplicate Relation: The relations that could be merged to keep a single relation and discard the
others. E.g., when we have Tokyo is_in Japan and Tokyo is_located_in Japan, we can discard is_in.

9.5 Prompts for Relation Generation

The prompt used for Relation generation is as follows
system: "You are an assistant that can extract relationships between two words from a paragraph provided
as context"

user: extract the relationships between {concept} and {concept} from the context below {wikipedia-
context }return the relations in {style} format

style can be predicate, rdf, knowledge graph. This paper used rdf as the style

9.6 Prompts for zero-shot generations for Solving the New Analogy task

This figure displays the prompts used to generate GPT model predictions for the analogy tasks.

481



/

system prompt: You are an assistant that can solve 4-way multiple-choice SAT analogy task
user prompt: Which one among the following targets best matches the stem ? only one option is correct.

~

Stem: New York : United States

Targets:

(a)Baghdad : Iraq
(b)Kabul : Afganisthan
(c)Shanghai : Chaina
(d)Beijing : China

r\eturn the target pair only and no other text /

Figure 8: This is the prompt used to generate GPT guess for the correct target. system prompt and user prompts are
not a part of the prompt but a field in openai chat completion
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9.7 Knowledge Enhanced Prompts for Solving our Analogy task

These reasoning hints were used to generate GPT model predictions for the analogy tasks pertaining to
Knowledge enhanced performance.

9.7.1 Prototypicality

Hint: Identify the relationship between the given stem pairs. Then, choose the option that best represents
this same relationship. Select the option that is the most prototypical example of the relation. Context

9.7.2 Context Embedding

Hint: First, generate context between the stem pairs and all the options Score each option 0-1 for how
well its context matches the stem context. Break ties by preferring the option whose directionality (X8Y")
matches the stem.

9.7.3 Relational Overlap

Hint: The relations between the stem pairs are given relations the numbers (0-1) represents the importance
of the relations for the stem Find yourself all relations of the option pair. Score the relations as per their
degree of importance to the parent option Find for each option how well its relations overlaps with the
stem context. Score each option by multiplying the overlapped relation score with the stems relation score
and adding all the overlapps together Write this down in latex format,
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9.8 Max-Diff Survey

A dummy link to a sample Max-Diff survey used in this paper is provided in this link. A dummy response
can be completed https://www.surveyking.com/survey/ons79. Also snapshots are provided in this section

9.8.1 Max-Diff Survey Template

To assess the relative importance of different relational features, we conducted a Max-Diff (Maximum
Difference Scaling) survey (see Section 5.4). Participants were presented with sets of relational pairs and
asked to select the most and least representative relation in each set.

In this= task, you will evaluaie the guality of relationships between two given entilies. A el of three to four
patential relalionships connecting twao entities will be provided for each guestion as options. ¥our job is o
label:

1. The: mast impartand relafionship batwesn the wo antities amang the given opfions.
2. The: lea=t important relalionship between the o entilies among the given oplions.

Wour choices will help identify the strongest and weakest connecions for these enlilies. Please rely an
your inluitian in picking whal is the masl and least important. Also o every gueslion, please think which is
the moest and least rekevant amang the given options only.

Ploaee Nots: Al questions have mulipke s=ts. Completing one satwill aulomatically pop the nesxt set.

pleaze answer all the sels.

The relafionzhips are in Bold and wilhin braces <>

Example: Germany = has Ita most populous city a8 = Berlin

Here Germany and Berfn ane ertities and has It moat populeus city is the relationship between the
enlilies.

Whit is the least and mast imporant relafonship between England and London according o you?

Sl 113

Lesast Important Most Imporant

England < has a major franaport hub in
> Landon

England = has He capital in = London

Enpland < aarne 22% of its GDP from =
Londan

England < has major educational
Inatitutions n > London

What is the least and mast impartant relafonship betwesn France and Pare according o you?

Sl 113

Lesast Important Most Imporant
France < had arfistic movements
cantared In = Paris

Franoe = has an economic hub In =
Pearis

France = hag a culfural center In = Pari=

France < N8 World-class MUssUMSE
located In = Pars
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9.8.2 Max-Diff Survey Sample Results

This figure presents the aggregated responses from a single batch of Max-Diff survey, where participants
rated the most and least representative relational pairs in each set. The collected responses allow for a
quantitative assessment of the perceived importance of different relations with probability scores and
votes per relation. The distribution of responses provides insight into consensus patterns and variability in
human judgment, informing our evaluation of relational similarity measures. In the paper responses from
LLM was used and not human. This is just for demonstration

Answer . Share of Probability* Distribution . Least Most
Preference N Important N Important
; P - |
France < has its capital in = 57.70% 04.51% 0 25
Paris
France < has its mast 7.55% £9.63% T— 1 12
populous city as = Paris
France < has its most visited 5.41% 86.06% R— 1 10
city as = Paris
France < has its largest city 5.48% B2.40% E— 3 10
as * Pans
France < has world-class 5.48% B2.40% E— 3 10
museums located in = Paris
France < has its fazhion 4.30% 57.14% E— 3 7
capital in = Paris
France < has majer 3.54% 51.78% E—— g 7
landmarks located in = Paris
France < has 3 cultural 2.85% 45.43% E—— 7 5
centerin = Paris
France < had artistic 1.83% 35.72% — o 1
movements centered in =
Paris
France < has an economic 1.56% 32.16% E— 12 2
hub in = Paris
France < hosts the Tour de 1.32% 28.50% I— 13 1
France that finishes in = Paris
; |
Framce < earns 22% of its 1% 23.23% 18 1
GDP from = Paris
; ; |
France < has a city > Paris 0.81% 10.66% 17 0
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