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Abstract

Prior work on Knowledge Graph-to-Text genera-
tion has mostly evaluated models on in-domain
test sets and/or with English as the target lan-
guage. In contrast, we focus on Russian and
we assess how various generation methods per-
form on out-of-domain, unseen data. Previ-
ous studies have shown that enriching the input
with target-language verbalisations of entities
and properties substantially improves the per-
formance of fine-tuned models for Russian. We
compare multiple variants of two contemporary
paradigms — LLM prompting and Retrieval-
Augmented Generation (RAG) — and investi-
gate alternative ways to integrate such external
knowledge into the generation process. Using
automatic metrics and human evaluation, we
find that on unseen data the fine-tuned model
consistently underperforms, revealing limited
generalisation capacity; that while it outper-
forms RAG by a small margin on most datasets,
prompting generates less fluent text; and con-
versely, that RAG generates text that is less faith-
ful to the input. Overall, both LLM prompting
and RAG outperform Fine-Tuning across all
unseen testsets. The code for this paper is avail-
able at https://github.com/Javanochka/
KG-to-text-fine-tuning-prompting-rag

1 Introduction

Generating from structured data has a variety of
applications such as verbalising tabular data (Le-
bret et al., 2016; Sha et al., 2018), question answer-
ing from databases (Fan et al., 2019) and generat-
ing from meaning representations (Flanigan et al.,
2016; Marcheggiani and Perez-Beltrachini, 2018;
Ribeiro et al., 2019; Zhu et al., 2019; Fan and Gar-
dent, 2020) or from knowledge graphs (Marcheg-
giani and Perez-Beltrachini, 2018).

We consider Knowledge Graph-to-Text (KG-to-
Text) generation where the task consists of verbalis-
ing the content of a KG, and a KG is a set of triples
of the form (subject, property, object) where sub-
ject are entities and objects are values or entities.

While KG-to-Text generation has been extensively
explored in the context of the WebNLG shared tasks
(Gardent et al., 2017; Castro Ferreira et al., 2020a;
Cripwell et al., 2023) , in this work, we investigate
the generalisation capacity of three main genera-
tion methods (fine-tuning, LLM prompting and Re-
trieval Augmented Generation) taking Russian as a
target language and evaluating on Out-Of-Domain
(OOD) datasets.

Compared to generation into English, generat-
ing from knowledge graphs into Russian faces the
challenge of decoding into a language with a differ-
ent script, a rich verb morphology and a complex
nominal declension system. Prior work shows that
lexicalising entities into Russian is a difficult task
(Chuklin et al., 2022) and that pre-trained models
fine-tuned on the Russian WebNLG dataset show
a strong performance decrease on non i.i.d data
(Nikiforovskaya and Gardent, 2024).

Starting with the state-of-the-art KG-to-Russian
models presented in (Kazakov et al., 2023), we be-
gin by showing that a pre-trained model fine-tuned
on the WebNLG data under-performs on both seen
and unseen data but that the same model achieves
much better results when the input graph is enriched
with Russian lexicalisations of the entities and prop-
erties present in the input graph.

Next we explore various LLM-based, Few-Shot
Prompting approaches (Brown et al., 2020). Gen-
erating with an LL.M benefits from the parametric
knowledge acquired from their training on large
amounts of data. Compared to (Kazakov et al.,
2023)’s model which is a fine-tuned version of TS
(Raffel et al., 2023), and therefore trained on much
smaller quantities of data than LLMs, the knowl-
edge encapsulated in an LLM might help generalise
to unseen test data. As in the fine-tuning approach
described above, we enrich the input prompt with
Russian lexicalisations (Wikidata labels) of the en-
tities and properties present in the input graph, and
we experiment with various ways of selecting few-
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shots. Intuitively, the selected few shots should help
provide two types of information: (i) how the prop-
erties and entities present in the input graph are
verbalised into Russian and (ii) how a knowledge
graph is verbalised into a text. Accessing these two
sources of knowledge can be viewed as learning
both entity/property verbalisation and a generation
template. Sample templates can be identified from
the associated text and property verbalisation by
jointly accessing graph properties and their textual
mention. We introduce a few-shot selection method
which systematically improves generation results
by selecting few shots whose graph size and prop-
erties resemble the size and properties present in
the input graph.

Retrieval Augmented Generation (Gao et al.,
2024), a method which extends the generation input
with retrieved information, is another common way
to integrate external knowledge into the generation
process. Different from the other two generation
approaches we explored, we use retrieval, not to
extract Wikidata labels, but to retrieve textual data
from Wikipedia. This removes the need for a knowl-
edge base that provides multilingual labels for enti-
ties and properties and enables an approach that can
more easily adapt to other knowledge bases. We
explore a variety of strategies for querying, chunk-
ing and few-shots selection and we show that the
best performing RAG variant performs almost on
par with the LLM-prompting approach while being
less restrictive in terms of resources.

In summary, we compare three ways of enriching
the generation input to help the model generalise to
unseen input:

* Fine-Tuning: we enrich the input of a small
(1.7B parameters) pre-trained model with Rus-
sian lexicalisation of entities/properties which
are extracted from Wikidata. We hypothesize
that while the additional information should
improve generation results on seen data, the
limited capacity of the small pre-trained model
restricts its ability to generalize to out-of-
domain test sets.

* LLM Prompting: we include Russian names
for KG entities and properties in the prompt
of an LLM. We seek to examine (i) how the
incorporation of additional information affects
the generative performance of large language
models and (ii) whether the parametric knowl-
edge encapsulated by LLLMs better supports
generalization to out-of-domain (OOD) data.

* Retrieval Augmented Generation: we aim to
guide text generation using passages retrieved
from the Russian Wikipedia that are semanti-
cally aligned with the information conveyed
by the input graph. This approach eliminates
dependence on knowledge base labels, provid-
ing a flexible framework that can readily adapt
to other knowledge bases. We investigate its
performance relative to LLM prompting and
fine-tuning on both seen and unseen datasets.

2 Related Work

Various approaches have been proposed to convert
KGs into text including grammar- and template-
based approaches, custom encoder-decoders, fine-
tuned pre-trained models and pipelines (Gardent
et al., 2017; Castro Ferreira et al., 2020b; Crip-
well et al., 2023). More recently, LLM prompt-
ing has also been explored. Yuan and Faerber
(2023) evaluate ChatGPT on the AGENDA and
WebNLG test sets - they find that both models per-
form relatively poorly on most measures. Axels-
son and Skantze (2023) evaluate GPT-3.5-turbo on
both the WebNLG and on some non i.i.d. test sets
they created, showing good results on English in-
domain data but low performance on Russian and
poor semantic adequacy on OOD data. Compar-
ing zero- and few-shot variants of GPT3.5-Turbo,
LLaMA-7B, Vicuna-7B and L1aMA-7B fine tuned
on WebNLG data, Schneider et al. (2024) finds that
fine-tuning yields the best results on WebNLG test
data. Finally, He et al. (2025) show that selecting
few-shots based on complexity and diversity en-
hance results for KG-to-English generation. Other
work has also explored Retrieval Augmented Gen-
eration. In particular, Jobanputra and Demberg
(2024) propose a few-shot RAG system for English
where few shots are selected to match the properties
contained in the input graph.

Leveraging the WebNLG training and test data,
some work has explored generation into Russian.
Agarwal et al. (2020) pre-train and fine-tune TS on
several parallel corpora in a multi-task (NLG/Se-
mantic parsing) setting, obtaining best results in
the 2020 Shared Task. Mille et al. (2024) use a
rule-based approach to convert triples into English,
a language model to paraphrase the resulting texts
and a Machine Translation model to translate En-
glish into Russian. On the WebNLG testsets, the
best results for generation into Russian are obtained
by fine-tuned models, with Kumar et al. (2023) pre-
senting a fine-tuned mT5 model (Xue et al., 2021)

420



and Kazakov et al. (2023) achieving the state of
the art by fine-tuning the FRED-TS5 model (Zmitro-
vich et al., 2024) on the WebNLG training data for
Russian.

Other work has explored the behaviour of KG-to-
Text models on OOD data. In particular, Xu et al.
(2023) assess generalisation by constraining the
training data and evaluating on the full WebNLG
testsets. They show that the SOTA pre-trained lan-
guage models (Raffel et al., 2020; Kale and Rastogi,
2020) fail to generalize and that a compositional
approach based on clustering helps improve gener-
ation. Mille et al. (2021) derive challenge testsets
from the existing WebNLG data to identify per-
formance decrease that would associate with spe-
cific linguistic phenomena (e.g., large number of
co-referring entities) or graph characteristics (e.g.,
high number of triples). Kasner and Dusek (2024)
show that, on unseen data which they created by col-
lecting data records from public APIs, more than
80% of the output contain at least one semantic
error.

We depart from previous work in that we fo-
cus on Russian, evaluate on unseen testsets and
compare the behaviour of fine-tuned models, LLM-
prompting and RAG on this unseen data.

3 Data and Metrics
3.1 Test Data

We evaluate our models on three datasets of (KG,
Russian Text) pairs.

Seen (in-domain) data. This data is available on
the web and is might therefore have been included
in the LLM training data. The dataset consists of
the 1,102 instances used for the evaluation of the
WebNLG 2020 and 2023 campaigns. In this dataset,
the KGs contain seen entities and predicates i.e., en-
tities and predicates that are present in the Russian
WebNLG training data.

Unseen (Out-of-Domain) Data. This data set is
not available on the web. It was created by (Niki-
forovskaya and Gardent, 2024) and derived from
the WebNLG and KELM (Agarwal et al., 2021)
datasets.

From the WebNLG dataset, two datasets are de-
rived. The Unseen Category (WebNLG-C, 1,251
instances) contains WebNLG graphs from the En-
glish training data whose root DBPedia category
does not belong to the set of categories present in
the Russian WebNLG training data. In contrast, the

Unseen Entity testset (WebNLG-E, 192 instances)
contains graph instances that are from seen cat-
egories (i.e., graphs whose root category belong
to one of the 16 categories present in the Russian
WebNLG train or dev set) but whose entities are
unseen.

KELM is a silver dataset of (Wikidata graph,
English text) pairs created using distant supervi-
sion. Similar to the WebNLG unseen testsets, Niki-
forovskaya and Gardent (2024) derives two gold test
sets from KELM: a dataset where all graph proper-
ties are present in the WebNLG training/dev data for
Russian but some entities are not (KELM-E, 2126
instances) and a dataset whose graphs contain both
unseen entities and unseen properties (KELM-E+P,
1311 instances).

Unseen (Out-of-Domain) New Graphs Data.
For both KELM and WebNLG, the graphs are avail-
able on the web and might have been included in the
LLM training data. We create a dataset of 472 (Un-
seen New Graphs, Russian Text) pairs by extract-
ing subgraphs from Wikidata and manually editing
the Russian texts that were automatically generated
from these graphs by our best LLM prompting ap-
proach (Cf. Section 5, prompting configuration
PRU/+L/D.). The graphs were constructed by first
identifying non-existing or rare properties in KELM
and WebNLG; manually deciding on relevant Wiki-
data categories (i.e., categories where subsets of
these properties often co-occur); defining a set of
possible graph schemas for each category; and us-
ing these schemas to extract matching subgraphs
from Wikidata. This new dataset consists of 472
(Wikidata graphs, Russian text) pairs with graphs
containing from 1 to 10 triples. The categories
are Airlines, Chemicals, Conferences, Statistics,
Dancers, Diseases, and Tournaments. Each of these
categories contains graphs of 1 to 7 triples. We also
combined some of the graphs from Statistics and
Airlines categories to get a Mixed category contain-
ing only graphs of size 10. This testset is further
called NGsgg. As a result of its construction, out
of 50 properties existing in NGsgg only 3 exist also
in WebNLG training data; ‘occupation’, ‘inception’
and ‘country‘. While ‘inception is a rare property,
‘occupation‘ and ‘country‘ are used in new con-
texts compared to WebNLG, so we allowed their
presence in NGsqo graphs.

In table 1 we provide statistical information for
each testset we further use.
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Dataset \ #graphs #lexs #ents # props
WebNLG Seen 1102 2779 1158 192
WebNLG E 192 552 56 41
WebNLG C 1251 3632 531 151
KELM-E 2126 2126 4038 53
KELM-E+P 1311 1311 4073 296
NGso0 472 472 1611 50

Table 1: Statistical information on each of the used test-
sets, number of graphs, lexicalisations, unique entities
and unique properties.

3.2 Fine-Tuning and Few-Shot Data

For fine-tuning, we use the WebNLG training data
for Russian, an aligned corpus of 6,339 (KG, Rus-
sian text) pairs. This dataset, together with the En-
glish WebNLG training data, also serves as the
retrieval basis for few-shot selection.

3.3 Maetrics

For automatic evaluation, we use the following met-
rics: BLEU score (Papineni et al., 2002), chrF++
(Popovié, 2017), TER score (Snover et al., 2006)
and BERT score (Zhang et al.).

We also carry out a human evaluation (cf. Sec-
tion 7.2) to compare the best setting of each of the
three methods.

4 Fine-tuning on Labeled data

The first method we explore builds on the state-
of-the-art Interno KG-to-text model for Russian
(Kazakov et al., 2023), which fine-tunes FRED-T5
model on the WebNLG training data 2.

To facilitate entity verbalisation, the authors mod-
ify the input in the training and test sets to include,
in addition to the knowledge graph, the Russian
entity and property labels which are provided by
the WebNLG data. As our unseen test sets do not
contain such labels, we extract Russian entity and
property labels from the Wikidata Knowledge Base
using the SparQL queries shown in Appendix B.
Retrieved labels are added to the generation input
under the key "additional links" using the format
"English_name=Russian_name".

We then run the Interno model on both seen and
unseen data, comparing results when the input is

'Re-running the authors code on this data set using the
DBPedia labels as they did, produced scores similar but not
identical to the scores presented in the author’s paper.

2FRED-T5 (1.7B parameters) is based on the T5 architec-
ture (Raffel et al., 2023) and trained on a large corpus of Rus-
sian texts using a mixture of denoising objectives (Zmitrovich
et al., 2024).

Model ‘ BLEU chrF++ Bpi
WebNLG Seen

Interno 2459 (B) 0.44 0.82
Interno+labels ' | 53.67 (A)  0.69  0.92
WebNLG E

Interno 2243  (A) 0.48 0.85
Interno+labels 23.58 (A) 0.50 0.86
WebNLG C

Interno 23.02 (B) 0.42 0.83
Interno+labels 24.62 (A) 0.46 0.84
KELM-E

Interno 17.57 (A) 0.36 0.80
Interno+labels 17.74  (A) 0.44 0.84
KELM-E+P

Interno 1239 (B) 0.36 0.78
Interno+labels 16.10 (A) 0.45 0.81
NGs00

Interno 1493 (A) 0.34 0.77
Interno+labels 1475 (A) 0.36 0.79
All Unseen

Interno 17.52 (B) 0.37 0.80
Interno+labels 18.89 (A) 0.44 0.83
All

Interno 18.72 (B) 0.39 0.81
Interno+labels 24.83 (A) 0.49 0.84

Table 2: Results of (Kazakov et al., 2023)’s Pretrained
Model fine-tuned on WebNLG 2020 training data,
tested with and without input enrichment. We provide
BLEU score, chrF++ and BERT F1 score. The letters
A/B indicate whether the difference between two scores
occurring in the same cell is or not statistically signif-
icant. We assess statistical significance using Paired
Bootstrap Resampling as described in (Koehn, 2004)
and consider a difference as significant if confidence is
at least 90%.

and is not enriched with Russian labels.

Results. Table 2 shows the results and Table 7
in the Appendix indicates the ratio of entities and
properties present in the input graphs for which
a Wikidata label could be retrieved. The results
clearly show that, when a sufficient ratio of labels
can be retrieved, enriching the input with Russian
labels improves performance. Thus, for the three
datasets where the ratio of retrieved labels is the
lowest (NGso0: 12%, Kg: 27%, WEg: 41%), the
improvement at generation time is not statistically
significant while for the other three datasets where
this ratio is higher (W¢: 43%, Wg: 46%, Kg p:
56%), it is.

5 LLM Prompting

While the previous section demonstrated that en-
riching the input with entity and property labels
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| Seen | Unseen

WebNLG WebNLG Kelm NGs00
FS/I/NLG Ws Wg We Kg Ke+p
Interno+labels \ 53.67 \ 23.58 24.62 17.74 16.10 14.75
Baseline
R/G/D 16.86 24.38 25.08 20.50 16.16 8.80
Input variants
R/+P/D 16.79 26.58 24.88 20.52 14.31 8.17
R/+L/D 20.53 25.47 25.88 21.88 16.45 8.01
R/+All/ D 14.85 22.69 22.12 17.94 14.18 5.60
FS variants
S/G/D 16.91 24.75 23.53 19.18 16.40 8.90
P/G/D 19.76 25.48 23.64 18.17 16.88 8.47
NLG variant
R/G/ Cum 15.62 21.94 22.55 19.88 13.84 18.16
Combined
P/+L/D 23.16 23.75 25.04 19.80 18.33 8.34
P/+P+L/D 22.77 24.11 24.76 20.52 16.32 6.75
Russian Few Shots
PRU/+L/D 32.15(A) | 30.09(A) 25.76 (A) 21.36(A) 16.19(A) 20.54 (B)
PRU/G/D 30.81 (B) | 29.76 (A) 2476 (B) 21.54(A) 16.51(A) 21.51(A)

Table 3: BLEU Scores for the various LLM-Prompting configurations (FS/I/NLG). FS specifies the few shot
selection strategy (R:Random, S:Size, P:Property overlap on fewshots selected from the English WebNLG data,
PRU: Property overlap on fewshots selected from the Russian WebNLG data); I, the input (G:Graph, +P:Input
augmented with properties descriptions, +All:Input augmented with properties and entities descriptions, +L:Input
augmented with Russian labels) and NLG, the generation strategy (D:Direct, Cum:Cumulative). Underlined scores
are best score within a block, boldface indicates best score for column.

improves performance, we find that the gains are
most pronounced on seen data. We hypothesize that
the parametric knowledge encoded in larger gener-
ative models could enhance generalization, and we
therefore explore LLM prompting.

For LLM-Based generation, we use Llama-3.1-
8B-Instruct (Grattafiori et al., 2024) and experi-
mented with a few-shots prompting strategy that
varies across three dimensions: the input, the
prompting strategy and how few-shots are selected.
Details about each of these dimensions and example
prompts, illustrating the various options for each
dimension are given in Appendix A and subsec-
tion A.4.

Briefly, the input is either the knowledge graph
(G) or the KG enriched with Wikidata property
descriptions (+P), Wikidata Russian entity labels
(+L), Wikidata Russian property descriptions and
entity labels (+P+L) or Wikidata property and en-
tity descriptions (+All). The prompting strategy is
to either prompt the LLM for a direct verbalisation
of the entire graph (D) or to first verbalise each fact
in the input graph and then aggregate the cumula-
tive verbalisations into a fluent text (Cum). For few

shot selection, we select 4 few shots® and explore
three strategies: random (R); size-based, where we
select few shots containing graphs whose size is the
same as the size of the input graph (S)*; and prop-
erty based, which consists in selecting few shots
whose graphs contain properties similar to the set
of properties present in the input graph (P when the
selected few-shots are from the English retrieval
base; PRU, when they are in Russian). Algorithm
1 in the Appendix shows the algorithm used for P
and PRU few-shot selection.

Results. In Table 3 (Input Variants), we see that
including Wikidata labels in the prompt (R/+L/D)
helps improve generation, confirming the results
of the previous section. Table 3 (NLG Variants)
shows that, except on NGgqg, the cumulative ap-
proach generally underperforms direct generation.
A look at the data reveals that, different from the
other testsets, the NGsgg graphs do not require com-
plex linguistic aggregation and that therefore for

3We experimented with 0, 2 and 4 few shots and found that
4 gave best results.

*Since the WebNLG data from which we retrieve the few
shots has a maximum graph size of 7, when the input graph is
larger we select few shots of size 7
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this dataset, a simple modifications of the clauses
verbalising the input triples often suffice to generate
a text that matches the reference. We provide an
example of such a graph in Appendix E.

The FS Variants block indicates that none of the
few shot selection methods systematically improve
results. However, Table 3 (Combined) shows that
combining property-based few shot selection with
an input enriched with labels yields good results
overall. Finally, the Russian Few Shots variants
indicate that augmenting the input with Wikidata
labels and selecting Russian rather than English few-
shots yields best results for all test sets except for
NGs09, which, as observed in the previous section
is the test set for which the ratio of retrieved labels
is the lowest which in turn decreases the impact of
adding labels to the input.

In sum, we find that the best prompting config-
uration (PRU/+L/D) is a configuration where the
input graph is enriched with Wikidata entity and
property labels and the selected few-shots are exam-
ple graph/text pairs whose texts are in Russian and
whose graphs have maximum similarity in terms
of size and properties with the input graph.

6 Retrieval Augmented Generation for
LLM

Unlike the previous two approaches we explore, the
RAG method does not rely on Russian labels from
a knowledge base. Instead, it retrieves semantically
aligned Wikipedia text to enrich the input KG, pro-
viding a flexible framework that can readily adapt
to other knowledge bases.

RAG provides a natural way to enrich the input
by retrieving additional data from a vector base
containing task-relevant knowledge and adding the
retrieved data to the generator input. We combine
RAG with few-shots prompting by including (i) four
few-shots and (ii) the retrieved content in the prompt
as context for decoding.

Typically, RAG retrieves data based on a given
query (here the generation input) and the vector
base from which data is retrieved contains data
chunks. We explore various options for the query,
the vector base chunks and few-shots selection.

We used Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) as the base LLM model. Additionally, we
ran experiments with Qwen2.5-7B-Instruct (Team,
2024; Yang et al., 2024) and Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023).

Paragraph Retrieval. We first experiment with
a simple approach where the additional data is the
first paragraph of the Wikipedia article associated
with the graph root entity. As previously observed
(Lebret et al., 2016), this paragraph contains much
of the information contained in Wikidata graphs.
Hence, we explore a simple approach where, instead
of retrieving labels from the Wikidata knowledge
base or searching a vector base for relevant content,
we include in the prompt the first paragraph of the
Wikipedia page corresponding to the root entity of
the input graph. As shown in Table 4 (BL - Graph +
WKP Paragraph), this approach does not improve
results, probably because the provided information
is too coarse grained introducing a semantic mis-
match between the input graph and the retrieved
paragraph®. We also experiment with another LLM
(Mistral) and with combining paragraph selection
with random few-shots but again the results were
worse than when including Wikidata labels in the
prompt and selecting few shots based on their prop-
erty overlap with the input graph.

Chunks. We derive text chunks from Russian
Wikipedia dump. We consider two types of chunks
for the retrieval data base: sentence and graph size
level.

In the sentence level version, each chunk in the
retrieval base consists of a single Wikipedia sen-
tence. The sentences are pre-extracted by pro-
cessing Wikipedia dump ¢ and removing all the
Wikipedia-specific pages. The parsing was done
using mwparserfromhell 7. Then, the resulting arti-
cles are cleaned and split into sentences using the
NLTK sentence segmenter (Bird et al., 2009), re-
sulting in more than 60 million sentences. For each
triple in the input graph, we retrieve 3 sentences®.

In the graph-based version, we create chunks
to match the size of the input graphs (graph-size-
chunks) and for each graph of size k, we retrieve n
chunks of size k with n € {3, 7}. Details on how
these graph-size chunks are created are provided
in Appendix C. In essence, we use the character
length distribution of the texts for each graph size in
the WebNLG training data and then we create text

>We use the WikipediaRetriever tool from the langchain
library to retrieve the first paragraph of the Wikipedia article
matching the root entity and add it to the prompt.

https://dumps.wikimedia.org/ruwiki/ accessed in
March 2022

7ht’cps: //github.com/earwig/mwparserfromhell

8We experimented with retrieving 1, 3 and 7 sentences per
triple, 3 yields the best results.
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| Seen | Unseen

WebNLG WebNLG Kelm NGs00
Model Ws WE WC KE KE+P
[BL] - Graph + WKP paragraph | 2.38 | 3.71 3.35 1.42 1.92 6.64
0-Shot RAG
[1] - Entity based retrieval (ents) 2.53 3.75 3.54 1.49 2.24 5.85
+ Few Shots
2]-[1]+R 18.84 (B) | 28.82(B) 24.63(A) 21.41(A) 16.60(B) 19.55(B)
3]-[1]+P 31.03(A) | 31.95(A) 24.57(A) 1950(B) 17.22(A) 20.54 (A)
Other LLMs
2| using Mistral 16.92 24.45 22.81 16.64 16.34 16.46
2| using Qwen 16.00 22.47 21.79 15.63 13.59 20.08
Other Queries
5] - R + entsep 18.06 28.01 24.00 20.64 16.70 19.71
6] - R + trps 17.56 26.49 21.78 18.79 15.85 17.43
7] - R + trpsep 17.71 28.89 21.92 18.75 15.65 17.62
Graph-based Chunks
5] + 1tblocks (3) 17.64 28.86 23.36 20.44 16.64 19.34
5] + graph-size-chunks (3) 18.42 26.54 23.82 20.19 15.96 20.04
5] + graph-size-chunks (7) 18.33 27.35 23.67 20.99 16.32 19.41

Table 4: BLEU scores for RAG. The baseline (BL) is a LLama3.1-based 0-shot retrieval model which retrieves a
Wikipedia paragraph based on the root entity of the input graph. For all models, except those with graph-based
chunks, the vector base chunks are Wikipedia sentences. For the graph-based chunks the number in brackets indicate
the number of retrieved chunks per graph (graph-size-chunks) or per triple in the graph (1tblocks).

chunks that simulate that distribution. This way of
simulating the block size distribution allows us to
have the average length of the chunks in the vector
base close to the average character length of the
lexicalisations for graphs of each size while also
having some variability in the block lengths.

We also experiment with chunks whose text size
matches the average length of the WebNLG texts
associated with single fact graphs (1tblocks). For a
graph of size k, we then retrieve n X k triple-sized
chunks.

In both cases (sentence- and graph-based
chunks), chunks are embedded using the LaBSE
multilingual encoder (Feng et al., 2022) and apply-
ing binary quantization to reduce the size of the
embeddings®. These are then indexed using a “flat”
binary index from the Faiss library (Douze et al.,
2024).

Queries. We experiment with the content and the
format of the query using either the entities or the
facts contained in the input graph. Specifically, the
query consists of the entity pairs present in the in-
put graph triples (ents), the same entity pairs but
with underscores removed (entsep), the set of triples

The total size of the original vector base was in total more
than 200 gb resulting in high retrieval latency. Binary quan-

tization showed similar results on a small batch with a huge
advantage in terms of processing time.

present in the input graph where triple subject, pred-
icate and object are separated by a space (trps) and
the set of triples with underscores removed (trpsep).
Appendix D summarises and illustrates the different
query types we experimented with.

Few-shots. By default, we use 4 shots but to as-
sess the impact of these few shots, we also consider
a 0-shot variant. Based on the results obtained with
prompting (see section 5), we select few shots from
the Russian WebNLG train and dev data and com-
pare two selection methods: random (R) and based
on the property and size similarity with the input

graph (P).

Results. Table 4 shows the results highlighting
the impact of the various dimensions we explored.
The low results for O-shot RAG underscore the im-
portance of augmenting the prompt with some few-
shots. The results also demonstrate that the most
impacting factor is the few-shot selection method.
As with prompting, selecting few-shot examples
based on their property and size similarity with
the input graph yields the best results. From the
various query types investigated, simply using the
entity pairs present in the graph triples yields the
best results. Similarly, sentence size chunks (the
default setting) yield better results than graph size
ones. Finally, a comparison with Mistral and Qwen
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shows an advantage for Llama.

7 Comparing the Three Approaches

We compare the three approaches (fine-tuning,
prompting, RAG) using the best model we identified
for each approach i.e., augmenting the input with
Wikidata labels for the Interno model fine-tuned
on the Russian WebNLG data (Interno+Labels in
Table 2); Prompting with, in addition to the input
graph, (i) Russian few-shots selected based on their
similarity in terms of size and properties with the
input graph and (ii) entity and property labels re-
trieved from Wikidata (PRU/+L/D in Table 3); and
RAG with the same few-shots, entity based queries
and sentence level chunks ([3] in Table 4).

7.1 Automatic Evaluation

Figure 1 shows the BLEU scores (scores for other
metrics are shown in Appendix G).

60

BN Fine-Tuning
Prompting

B RAG

50 4

40

w
o
!

BLEU score

204

10 4

NG-500

Seen WebNLG-E  WebNLG-C

KELM-E KELM-E+P

Figure 1: BLEU Scores for the Best Fine-Tuning,
Prompting and RAG models. Fine-tuning underper-
forms on unseen data.

Differences between approaches. On seen data,
the fine-tuning approach outperforms LLM prompt-
ing and RAG by a large margin highlighting the
effectiveness of domain adaptation on carefully cu-
rated data. However, it systematically underper-
forms on unseen testsets demonstrating limited gen-
eralisation capacity.

Compared to RAG where the added information
comes from Wikipedia text, the LLM prompting
approach, which extends the input with Russian
entity and property labels, has a slight advantage
outperforming it or performing on par with it on
four out of the five unseen test sets. However, it re-
quires that labels be available in the target language
which is a limitation. In contrast, the RAG approach

is less constrained simply requiring relevant target
language text.

Differences between test sets. Roughly, the
scores of the RAG and the prompting models follow
a similar trend on the 5 unseen datasets. Notably,
scores are highest on Wg and W, which is consis-
tent with the fact that the two datasets are available
on the web and are likely to have been included
in Llama training data. The middle scores on Kg
and NGj5(o match the low ratio of labels available
for these two datasets (27% and 12% respectively)
which in turn often correlates with a low availability
of Wikipedia texts in Russian for the corresponding
graphs (we observed that entities which have no
Russian labels in Wikidata are also often entities
for which there is no Wikipedia page in Russian '°).
Finally, the lowest score on Kg p reflects the diffi-
culty of correctly verbalising graphs which contain
both unseen entities and unseen properties.

7.2 Human Evaluation

Seen Unseen

W+K 500 All-U
Faithfulness
Fine-Tuning 048 | 037 022 030
Prompting 042 | 047 061 0.54
RAG 043 | 049 050 049
Fluency
Fine-Tuning 045 | 036 029 033
Prompting 0.41 044 054 049
RAG 0.41 0.53 050 0.52

Table 5: Human Evaluation Results. Table 13 in

the Appendix shows Fleiss’ kappa to estimate inter-
annotator agreement.

We also conduct a human evaluation on the three
best performing models.

We randomly extract 50 instances from seen
WebNLG data, 50 from WebNLG and KELM un-
seen data, and 50 instances from NGsqg, totaling
150 samples.

Using the Prolific platform '! we select 3 annota-
tors who met the following criteria: Russian as their
native language, fluency in English, and successful
completion of a qualification test assessing their
ability to identify additions, omissions, and repe-
titions in text generated from knowledge graphs.

1

%We looked at all the entities having no Russian labels in
the unseen test sets and found that less than 5% of them had a
related Wikipedia article in Russian.

"https://prolific.com/
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To pass the test, annotators were required to pro-
vide fully correct responses on at least 10 out of 15
instances.

We show the annotators the original graph in
table format as well as 3 texts verbalising it, one
for each of the three selected models. Appendix F
shows a screenshot of the annotation interface. The
order of the models, shown to the annotators, is
random and does not contain any information about
the models themselves. The annotators are then
asked to answer the following four questions about
the three texts:

¢ Please, select the text which is the closest to
the data shown. Consider both additions and
omissions.

¢ Please, select the text which is the farthest
from the data shown. Consider both additions
and omissions.

¢ Please, select the text which is the most fluent.
¢ Please, select the text which is the least fluent.

Then we treat the answers as a ranking of the
models. The closest and the farthest information
gives us the ranking for faithfulness, while the most
fluent and the least fluent give us the ranking for
fluency. We transform each ranking into scores by
assigning 3 points to the best model, 1 point to the
second, and O points to the last. We then accumulate
the points by getting their sum and dividing it by
the maximum possible score (3 times the number
of rankings). Appendix I shows some input/output
illustrating the various types of errors made by the
three generation methods.

The results of human evaluation are shown in
table 5. For fine-tuning, the results confirm the
automatic evaluation with the fine-tuned model per-
forming best on seen, and worse on unseen data. On
unseen data, prompting is generally judged more
faithful but RAG more fluent. We conjecture that
the better fluency of RAG stems from the fact that
the human written, Wikipedia texts making up the
retrieved chunks provide a better context for gener-
ation than the stilted WebNLG crowdsourced texts
contained in the prompting few-shots. Conversely,
the better faithfulness of the prompting approach is
likely due to the fact that the labels included in the
prompts help improve the verbalisation of unseen
entities and properties — this is consistent with the
results in Table 3, where augmenting the prompt
with Wikidata labels is shown to improve genera-
tion performance.

8 Conclusion

Focusing on Russian as a target language, we exam-
ine how well different models can convert English-
centric knowledge graphs into Russian text on
datasets where the input graphs contain unseen
entities and/or properties.We compare three com-
mon methods for generating text: fine-tuning a pre-
trained model on task-specific data, prompting a
large language model and Retrieval Augmented
Generation. For each method, we design and eval-
uate multiple variants, selecting the one that per-
forms best.

Across datasets we find that the fine-tuning ap-
proach excels on in-domain data but systematically
underperforms on unseen data, exposing limited
generalisation capacity; that LLM-prompting has a
slight advantage over RAG in terms of automatic
metrics; and that, based on a human evaluation,
RAG produces more fluent, but less faithful text
than LLM-prompting. In future work, we plan to ex-
amine how these results extend to other languages.
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ation method perform on unseen data. However, we
limit our exploration to graphs stemming from a sin-
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we plan to extend this work to other languages, con-
sidering both High and Low Resource Languages;
and to other knowledge or databases with more com-
plex structures such as Rotowire (Wiseman et al.,
2017) or MLB (Puduppully et al., 2019).
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A Prompting Strategies

We vary the prompt across three dimensions: the
input, the generation strategy, and how few shots
are selected'?. We gradually tested and combined
the three dimensions, eventually exploring 11 con-
figurations (cf. Table 3).

A.1 Input

We consider different types of input depending on
whether the input consists solely of a linearised
graph or of the graph augmented with Wikidata
extracted information. When enriching the input
with Wikidata information, we consider 3 vari-
ants: adding property descriptions for all properties
present in the graph; adding entity and property
descriptions for all entities and properties present
in the graph ; and adding target language labels for
all properties and entities present in the graph.

Property and entity descriptions are extracted
from Wikidata (when available) using the Wikidata
Descriptions property. To only keep the most infor-
mative part of the description, we remove all text
within parentheses and any text that appears after
the first end-of-clause punctuation (full stop, colon,
or semicolon). Similarly, labels are extracted us-
ing the Wikidata Label property and the resulting
dictionary of entity/label pairs is inserted into the
input under the key labels.

As shown in Table 7, not all Wikidata entities and
properties have labels and descriptions and avail-
ability varies depending on the target language.

A.2 Generation strategies

We compare two generation strategies: direct and
cumulative.

The direct generation strategy (Direct) simply
instructs the model to verbalise the input. The cu-
mulative generation strategy (Cumulative) proceeds
in multiple steps as follows. First, each individual
triple in the input graph is lexicalized separately
using the direct approach. The result of each infer-
ence call is then collected and passed as input to
the LLM with the instruction to combine the triple
lexicalisations into a coherent output text 3.

2We do not explore 0-Shot as preliminary experiments
showed a clear degradation in performance compared to few
shots.

BWhen the input graph is of size one, there is no need to
continue to the cumulative generation step since there will be
only one sentence and the combination step is omitted.

A.3 Few-shot selection strategies

Few shots are retrieved from the Russian dataset
(20K graph/text instances). To select the few-shots,
we explore 3 strategies: random, size-based and
property-based.

Random. We randomly select KG/Text examples
making sure that the selected few-shots contain
graphs of different size. This approach provides
the model with examples of how triples are lex-
icalised for graphs of different sizes — this helps
illustrate the impact of context on the lexicalisation
of triples.

Size based. We randomly select KG/Text exam-
ples whose KG size is the same as that of the input
KG.

Property based. The property-based approach
seeks to maximise the property overlap between the
input graph and the selected few shots. To this end,
all available KG/Text instances are sorted according
to their property overlap with the input graph. Top
examples are then used as few shots. If there are
properties from the input graph that do not appear in
the set of selected examples, their (LABSE) encod-
ing is used to search for the most similar properties
in WebNLG and the corresponding properties are
used to find relevant few shots. The whole process
is repeated until the target number of few-shots is
reached. Algorithm 1 specifies this selection pro-
cess in more detail.
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Dimensions Options Explanation

Input Graph The input is the RDF graph

Prop. RDF Graph and Wikidata Property Descriptions

All RDF Graph, Wikidata Property Descriptions and Entity Descriptions

P+L RDF Graph, Wikidata Property Descriptions and Entity Labels
Prompting Direct Generate a text verbalising this graph

Cumulative  Generate a text for each fact in turn then combine the resulting texts into one (two consecutive prompts).
Few-Shot Selection Random random examples

Size-Based ~ Examples whose graph size is the same as that of the input graph

Overlap Examples whose graph maximise property overlap, size and semantic similarity

Table 6: Short Description of the Prompting Options

Algorithm 1 Property-Based Few-Shot Selection

Require: G > Input graph
Require: Pg > Set of properties from G
Require: D > WebNLG dataset
Require: % > Number of few-shots
Require: [ > FAISS index of encoded properties
Ensure: F'S > Set of few-shot examples
1: Initialize F'S < ()
2: Initialize P < Pg
3: while |S| < k do
4: if |P| = 0 then 5 5 —
> P« Pq WiLaI\SIfG Testset 3?‘/25 :6‘;0S
6: end if KELM-E 19%  27%
7: Sort D according to: KELM-E+P 2% 9%
. WebNLG-E 34% 41%
1. Number of overlapping properties with P WebNLG-C 349% 43%
(descending order) Test-500 11% 12%

2. Size similarity t? G (descending order Table 7: Availability of properties and descriptions in
from graphs of size |G| to largest graph  Ryggian across datasets.

size in D)
8: if graphs in D overlap with P then
9: Select the top example e from D
10: S+ SuU{e}
11 P <+ P\P(e)
12: else
13: Encode P using LaBSE
14: Query FAISS for similar properties P’
15: P+ P
16: end if
17: end while
18: return S
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A.4 Example Prompts

An example prompt for direct generation is provided in the listing 1. Example prompts for teo steps of
cumulative generation are provided on the listings 2 and 3. Finally, an example prompt with context
information (RAG) is provided in listing 4.

<Ibegin_of_textl><l|start_header_id|>user <lend_header_id|>

{
"labels ": {
"country ": "rocymapcTtBo",
"United States": " dIA",
"foundingDate ": "maTa OCHOBaHMA, CO3/JaHUSA, BO3HUKHOBEHHUSA"
15
"data": [
{
"id": 0,
"subject": "AmeriGas",
"property ": "country",
"object": "United States"
s
{
"id": 1,
"subject": "AmeriGas",
"property ": "foundingDate",
"object": "1959-01-01"
}
]
}

Generate a lexicalisation of all the 2 triples in Russian.

When necessary , generate text from other languages in their original script.
Include all the information from the triples regardless of their type or relevance.
<leot_idl><l|start_header_idl>assistant <lend_header_id|>

{

"full —text": "AmeriGas Obuia ocHoBana B Coeguuennsix Illratrax B 1959-01-01."

<leot_idl><lstart_header_id|>user <lend_header_id|>

{
"labels ": {
"formationDate": "gara OCHOBaHMS, CO3JaHHSA, BO3HUKHOBEHHS",
"country ": "rocymapctBo",
"United States": " dIA"
3",
"data": [
{
"id": 0,
"subject": "Western Goals Foundation",
"property ": "formationDate",
"object": "0l January 1979"
}s
{
"id": 1,
"subject": "Western Goals Foundation",
"property": "country",
"object": "United States"
}
]
}

Generate a lexicalisation of all the 2 triples in Russian.

When necessary , generate text from other languages in their original script.
Include all the information from the triples regardless of their type or relevance.
<leot_idl><Istart_header_idI>assistant <lend_header_id|>

Listing 1: Example of Direct generation using Overlap One-Shot with labels information in Russian
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<Ibegin_of_textI><lIstart_header_id|>user <lend_header_idI|>

{
"data": [
{
"id": 0,
"subject": "AmeriGas",
"property": "foundingDate",
"object": "1959-01-01"
}
1
}

Generate a lexicalisation of all the 1 triples in Russian.

When necessary , generate text from other languages in their original script.
Include all the information from the triples regardless of their type or relevance.
<leot_idl><l|start_header_idl>assistant <lend_header_id|>

{

"full —text": "AmeriGas Obuia ocHoBaHa B 1959-01-01."

<leot_idl><lstart_header_id|l>user <lend_header_id|>

{
"data": [
{
"id": 0,
"subject": "Western Goals Foundation",
"property ": "formationDate",
"object": "0l January 1979"
}
]
}

Generate a lexicalisation of all the 1 triples in Russian.

When necessary , generate text from other languages in their original script.

Include all the information from the triples regardless of their type or relevance.
<leot_idl><lIstart_header_idl|>assistant <lend_header_id|>

Listing 2: Example of a Cumulative generation (Step 1, getting a verbalisation for a single triple) for Russian, using

Overlap One-Shot

<Ibegin_of_textl><l|start_header_id|>user <lend_header_id|>

{
"sentences ": [
"AmeriGas Oba ocHoBana B 1959-01-01.",
"AmeriGas "axoaurca B (IA."
1
}

Generate a combined paragraph of all the 2 sentences in Russian.
Include all the information from the sentences regardless of their type or relevance.
<leot_idl><Istart_header_idI>assistant <lend_header_id|>

{
"full —text": "AmeriGas Obia ocHoBaHa B CoeguHeHssix IlIratax B 1959-01-01."
}
<leot_idI><Istart_header_id|>user <lend_header_id|>
{
"sentences ": [
"Western Goals Foundation 6suta ocHoBaHa 1 sauBaps 1979.",
"Western Goals Foundation nHaxomutcsa B (IA."
]
}

Generate a combined paragraph of all the 2 sentences in Russian.
Include all the information from the sentences regardless of their type or relevance.
<leot_idl><Istart_header_idI>assistant <lend_header_id|>

Listing 3: Example of a Cumulative generation (Step 2, each fact verbalisation aggregation) using Overlap One-Shot
Russian
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<Ibegin_of_textI><lIstart_header_id|>user <lend_header_idI|>

{
"context": "Ilmnor: Anau lllemapxa. Ineep, Anv6epr. 18 HosA6ps 1923 — poamncs aMepUKaHCKMHA acTpPOHAaBT AnaH
Baprner Wenapna.",
"data": [
{
"id": 0,
"subject": "Alan Shepard",
"property ": "occupation",
"object": "Test pilot"
I
{
"id": 1,
"subject": "Alan Shepard",
"property ": "birthPlace",
"object": "New Hampshire"
s
{
"id": 2,
"subject": "Alan Shepard",
"property": "birthDate",
"object": "1923-11-18"
}
I,
}

Generate a lexicalisation of all the 3 triples in Russian.

When necessary , generate text from other languages in their original script.
Include all the information from the triples regardless of their type or relevance.
<leot_idl><Istart_header_idI>assistant <lend_header_id|>

{

"full —text": "Anau Ilemapa Obul JIe TYMKOM—HCIIBITATENeM, KOTOpHil poausncs B Hewo-I'smmumpe 18 Hos6ps 1923 roga."

<leot_idl><lstart_header_idl>user <lend_header_id|>

{
"context": "He Xaimmu () (13 oxkrtsa6ps 1964) — kuraiickuil KocMOHaBT (TaiikoHaBT). BoeHHBII JNeTynk.",
"data": [
{
"id": 0,
"subject": "Nie Haisheng",
"property": "birthDate",
"object": "1964-10-13"
Do
{
"id": 1,
"subject": "Nie Haisheng",
"property ": "occupation",
"object": "Fighter pilot"
}
1,
}

Generate a lexicalisation of all the 2 triples in Russian.

When necessary , generate text from other languages in their original script.
Include all the information from the triples regardless of their type or relevance.
<leot_idl><lstart_header_idl>assistant <lend_header_id|>

Listing 4: Example of using context information (specifically, entities based RAG with retrieval of one sentence per
triple) using Overlap One-Shot in Russian
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B Wikidata SparQL Queries

Figures 2 and 3 show example SparQL queries for retrieving Wikidata Russian labels of entities and
properties.

SELECT ?item ?itemLabel WHERE {

1
2 {

3 ?item skos:altlLabel "Vasilis Pliatsikas”@en
4 } UNION {

5 ?item skos:preflLabel "Vasilis Pliatsikas"”@en
6 }

7 SERVICE wikibase:label {

8 bd:serviceParam

9 wikibase:language "ru"”

10 }

1}

Figure 2: SparQL query to get labels of entities

SELECT ?prop ?propLabel WHERE {

1
2 ?prop rdfs:label "area"@en

3 ?prop wikibase:directClaim ?p

4

5 SERVICE wikibase:label { bd:serviceParam wikibase:language "ru". }
6}

Figure 3: SparQL query to get labels of properties
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C Creating Graph-Size Chunks

To create graph-size chunks, we first compute the character length distribution (see Figure 4) of the texts for
each graph size (1 to 10 triples) in the graph/text WebNLG data. Then we create text chunks that simulate
that distribution using the following algorithm. As we merge the sentences extracted from Wikipedia into
larger blocks in terms of size based on character number (as shown in the graphs it has a more pronounced
single peak), we try to simulate the character number distribution for a specific graph size, assuming it to
be a normal distribution with a mean being the same as a centre of a peak. More precisely, to divide a
Wikipedia text into blocks for graph size n we use the following algorithm. Let’s say we have started a
block b and we decide whether we add the next sentence s to it or not. We then draw two random variables:

Zy ~ U(Ov fN(m,U)(’bD)

and

I2 ~ U(Oa fN(m,cr)(|b + S|))

where m is the average character length of the lexicalisations for graphs of the required size, o refers to
a variance we want to have, f is a probability density function and U is a uniform distribution, while A\ is
a normal one. Then, if 1 < x2 we add the sentence s to our current block. Otherwise, we start a new

block with the sentence s.
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D Query variants for the RAG experiments

In table 8 we summarise the options for queries we experimented on in RAG.

Query Name

Description

Example

Entities (ents)
Processed entities (entsep)

Triples (trps)

Processed triples (trpsep)

Graph entities (unionentsep)

Entity pair from a triple
Entities pairs from a triple with
extra symbols (like underscores)
removed

Triple subject, predicate and ob-
ject separated by spaces

Triple subject, predicate and ob-
ject separated by spaces with un-
derscores removed.

Linearised graph with repeated
entities deduplicated

"William_Anders Fighter_pilot".
"William Anders Fighter pilot"

"William_Anders occupation Fighter_pilot"

"William Anders occupation Fighter pilot"

"William Anders occupation Fighter pilot coun-
try_of_citizenship United_States "

Table 8: Query variants
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E Graph example

In this section we provide an example of a graph which may give advantage to the cumulative generation
approach in our prompting variants. The graph is taken directly from the NG test set and is shown in
fig. 5.

{
"subject": "Lufthansa",
"property": "airline accounting code",
"object": "220"
}
{
"subject": "Lufthansa",
"property ": "country",
"object": "Germany"
}s
{
"subject": "Lufthansa",
"property ": "callsign of airline",
"object": "LUFTHANSA"
’
{
"subject": "Lufthansa",
"property ": "official website",
"object": "https ://www.lufthansa.com/de/de/"

Figure 5: A graph example from NGs test set, with a graph which provides an advantage to cumulative generation
approach.
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F Human Evaluation GUI
We built an annotation website using potato annotation tool (Pei et al., 2022). An example of GUI can be

seen in fig. 6.

Evaluating the alignment between text and data Home Anncia:

Subject Predicate Object

Adare Manor | architect Philip Charles Hardwick

Adare Manor | completion Date | 1862

Adare Manor | owner J. P.McManus

TextA
An3p MaHop 6bin cnpoekTUpoBaH Gununom Yapnb3oM XapABrKoM U 3aBeplueH B 1862 rogy. BnajenbLiem aToro 3aanus aensercsa [x. M.

MakmaHye.
TextB
3panve Anap MaHop, npuHaanexaulee [pkoHy Matpnky MakmaHycy, 66110 CnpoeKTUpoBaHO GUAMNoM Xap/iBUKOM M Gbino 3aBeplueHo B 1862 rofy.

TextC
®nunun Yapnbs XapABKK Gbin apxMTeKTOpPOM AfSp MaHop, KOTOpbI# Gbin 3aBeplueH B 1862 rofly M NpUHaanexuT [LKoHy MaTpuky MakmaHycy.

Please, select the text which is the Please, select the text Please, select the text

farthest from the data described above. Look at both which is the which is the
additions and omissions. most fluent. least fluent.

Please, select the text which is the
closest to the data described above. Look at both
additions and omissions.

Figure 6: Human annotation GUI example
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G Automatic Evaluation Results

We provide complete automatic evaluation results for prompting models, all RAG variations present in the
main paper, and some additional experiments that we ran but did not include in the main part of the paper.
The results are shown in tables 9,10,11 and 12.

The naming system of the prompting models is the same as the one in the main body of the paper. As
for RAG models, we first mention the base LLM, then we precise parameters of the RAG itself. The word
‘para‘ stands for retrieval of the first paragraph based on the root entity. Types of query are the same as in
the main body of the paper. Numbers after the type of query are how many blocks are being retrieved with
each query. The word ‘multi‘ stands for graph-size chunks. The last part of the name of the model signifies
type of few-shots used (‘Oshots‘ means no few-shots being used, ‘P* stands for few-shots retrieved based
on property, ‘R* stands for random few-shots, ‘S* stands for the few-shots retrieved by similar graph size).

Model [ BLEUT chrF++T TER] BERTPT BERTRT BERTFI}
WebNLG Seen

PRU/+L/D 32.154 0.572 0.58 0.871 0.868 0.869
PRU/G/D 30.813 0.568 0.594 0.866 0.866 0.865
Llama-+para+0Oshots 2.383 0.202 1.009 0.587 0.706 0.639
Llama+para+P 29.672 0.551 0.619 0.855 0.863 0.858
Mistral+para+P 23.877 0.458 0.715 0.812 0.843 0.825
Llama+para+R 18.092 0.441 0.756 0.809 0.821 0.814
Llama+rag-ents-1+P 30.424 0.566 0.598 0.863 0.865 0.863
Llama+rag-ents-3+R 18.84 0.452 0.732 0.825 0.825 0.824
Qwen+rag-ents-3+R 16.004 0.422 0.795 0.8 0.807 0.802
Mistral+rag-ents-3+R 16.924 0.439 0.764 0.813 0.817 0.814
Llama+rag-ents-3+P 31.033 0.568 0.598 0.864 0.866 0.864
Llama+rag-trps-3+R 17.559 0.442 0.756 0.817 0.818 0.817
Llama+rag-entsep-3+R 18.547 0.452 0.73 0.826 0.824 0.824
Llama+rag-trpsep-3+R 17.712 0.438 0.749 0.817 0.817 0.816
Llama-+rag-1tblocks-entsep-3+R 17.635 0.45 0.75 0.82 0.823 0.821
Llama+rag-multi-entsep-3+R 18.421 0.446 0.741 0.821 0.822 0.82
Llama+rag-multi-entsep-7+R 18.328 0.44 0.741 0.819 0.822 0.819
Llama+rag-multi-unionentsep-7+R 18.6 0.448 0.732 0.824 0.824 0.823
Llama+rag-ents-3+0shots 2.534 0.217 1.03 0.59 0.701 0.639
Llama-rag-ents-3+S 19.35 0.459 0.722 0.828 0.828 0.827

Table 9: Results of LLMs with different prompting methods and RAG on the seen WebNLG test set
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Model [BLEUT chrF++1 TER] BERTP7 BERTRT BERTFIT

WebNLG E
PRU/+L/D 30.088 0.579 0.582 0.882 0.882 0.881
PRU/G/D 29.764 0.584 0.573 0.88 0.883 0.88
Llama+para+0Oshots 3.712 0.246 5.414 0.604 0.722 0.656
Llama+para+P 29.671 0.578 0.578 0.882 0.882 0.881
Mistral+para+P 21.614 0.509 1.077 0.838 0.859 0.847
Llama+para+R 25.953 0.549 0.612 0.875 0.872 0.872
Llama+rag-ents-1+P 27.54 0.574 0.6 0.875 0.878 0.875
Llama+rag-ents-3+R 28.819 0.567 0.593 0.876 0.873 0.873
Qwen+rag-ents-3+R 22.47 0.482 0.71 0.841 0.843 0.84
Mistral+rag-ents-3+R 24.447 0.518 0.647 0.858 0.857 0.857
Llama+rag-ents-3+P 31.947 0.579 0.557 0.883 0.886 0.884
Llama+rag-trps-3+R 26.488 0.54 0.615 0.875 0.869 0.87
Llama+rag-entsep-3+R 28.014 0.562 0.626 0.873 0.871 0.871
Llama+rag-trpsep-3+R 28.894 0.556 0.605 0.874 0.867 0.869
Llama+rag-1tblocks-entsep-3+R 28.859 0.571 0.603 0.878 0.874 0.875
Llama+rag-multi-entsep-3+R 26.543 0.559 0.636 0.871 0.873 0.871
Llama+rag-multi-entsep-7+R 27.346 0.553 0.607 0.874 0.872 0.872
Llama+rag-multi-unionentsep-7+R | 28.914 0.567 0.579 0.877 0.873 0.874
Llama+rag-ents-3+0shots 3.754 0.292 4.674 0.617 0.729 0.666
Llama+rag-ents-3+S 28.44 0.557 0.592 0.874 0.872 0.872
WebNLG C

PRU/+L/D 25.757 0.491 0.638 0.85 0.847 0.847
PRU/G/D 24.764 0.476 0.653 0.844 0.842 0.842
Llama+para+0Oshots 3.354 0.224 1.011 0.585 0.714 0.641
Llama+para+P 24.29 0.475 0.674 0.836 0.844 0.838
Mistral+para+P 20913 0.429 0.746 0.807 0.83 0.816
Llama+para+R 22.849 0.469 0.693 0.831 0.841 0.834
Llama+rag-ents-1+P 24.577 0.477 0.651 0.844 0.842 0.842
Llama+rag-ents-3+R 24.631 0.478 0.657 0.844 0.841 0.841
Qwen+rag-ents-3+R 21.793 0.453 0.711 0.825 0.826 0.824
Mistral+rag-ents-3+R 22.811 0.464 0.678 0.834 0.833 0.832
Llama+rag-ents-3+P 24.568 0.479 0.655 0.844 0.842 0.841
Llama+rag-trps-3+R 21.778 0.453 0.698 0.83 0.832 0.83
Llama+rag-entsep-3+R 24.004 0.468 0.667 0.839 0.838 0.837
Llama+rag-trpsep-3+R 21918 0.453 0.707 0.828 0.831 0.828
Llama+rag-1tblocks-entsep-3+R 23.356 0.465 0.675 0.837 0.839 0.837
Llama+rag-multi-entsep-3+R 23.823 0.47 0.67 0.84 0.841 0.839
Llama+rag-multi-entsep-7+R 23.668 0.472 0.67 0.84 0.841 0.839
Llama+rag-multi-unionentsep-7+R | 23.292 0.463 0.67 0.837 0.836 0.836
Llama+rag-ents-3+0shots 3.535 0.239 1.012 0.59 0.701 0.638
Llama+rag-ents-3+S 23.41 0.47 0.665 0.841 0.839 0.839

Table 10: Results of LLLMs with different prompting methods and RAG on WebNLG-based unseen test sets

443



Model [BLEUT chrF++1 TER] BERTP7 BERTRT BERTFIT

KELM-E

PRU/+L/D 21.359 0.512 0.609 0.865 0.866 0.865
PRU/G/D 21.54 0.504 0.608 0.864 0.864 0.864

Llama+para+0Oshots 1.422 0.129 16.022 0.543 0.697 0.61
Llama+para+P 20.678 0.491 0.757 0.855 0.858 0.856
Mistral+para+P 15.053 0.391 1.925 0.804 0.836 0.818
Llama+para+R 19.943 0.491 0.81 0.85 0.858 0.853
Llama+rag-ents-1+P 19.634 0.485 0.67 0.855 0.857 0.856
Llama+rag-ents-3+R 21.408 0.505 0.632 0.859 0.86 0.859
Qwen+rag-ents-3+R 15.634 0.414 0.875 0.818 0.825 0.821
Mistral+rag-ents-3+R 16.64 0.456 0.78 0.833 0.841 0.837
Llama+rag-ents-3+P 19.502 0.482 0.648 0.858 0.858 0.857
Llama+rag-trps-3+R 18.788 0.481 0.865 0.843 0.851 0.846
Llama+rag-entsep-3+R 20.642 0.483 0.769 0.851 0.853 0.852
Llama+rag-trpsep-3+R 18.754 0.474 0.883 0.84 0.847 0.843
Llama+rag-1tblocks-entsep-3+R 20.441 0.484 0.74 0.848 0.852 0.85
Llama+rag-multi-entsep-3+R 20.186 0.491 0.725 0.85 0.853 0.851
Llama+rag-multi-entsep-7+R 20.987 0.49 0.739 0.853 0.854 0.853
Llama+rag-multi-unionentsep-7+R 20.3 0.489 0.709 0.854 0.854 0.854
Llama-+rag-ents-3+0shots 1.488 0.135 14.628 0.544 0.682 0.604
Llama-rag-ents-3+S 20.442 0.496 0.632 0.858 0.857 0.857

KELM-E+P

PRU/+L/D 16.193 0.46 0.867 0.816 0.835 0.825
PRU/G/D 16.509 0.455 0.823 0.823 0.833 0.828
Llama+para+0Oshots 1.916 0.184 10.076 0.557 0.679 0.611
Llama+para+P 16.038 0.438 1.062 0.812 0.83 0.82
Mistral+para+P 14.541 0.423 1.377 0.795 0.826 0.809
Llama+para+R 15.726 0.448 0.935 0.813 0.83 0.821
Llama+rag-ents-1+P 16.917 0.456 0.807 0.824 0.834 0.829
Llama+rag-ents-3+R 16.599 0.449 0.866 0.823 0.831 0.826
Qwen+rag-ents-3+R 13.587 0.424 0.981 0.797 0.814 0.805
Mistral+rag-ents-3+R 16.342 0.452 0.843 0.821 0.83 0.825
Llama+rag-ents-3+P 17.218 0.458 0.828 0.825 0.834 0.829
Llama+rag-trps-3+R 15.847 0.441 0.918 0.817 0.827 0.821
Llama+rag-entsep-34+R 16.702 0.455 0.843 0.822 0.831 0.826
Llama+rag-trpsep-3+R 15.653 0.446 0.882 0.817 0.828 0.822
Llama+rag-1tblocks-entsep-3+R 16.64 0.452 0.837 0.822 0.83 0.826
Llama+rag-multi-entsep-3+R 15.959 0.446 0.926 0.819 0.83 0.824
Llama+rag-multi-entsep-7+R 16.322 0.45 0.895 0.821 0.832 0.826
Llama+rag-multi-unionentsep-7+R 16.296 0.45 0.867 0.822 0.832 0.826
Llama+rag-ents-3+0shots 2242 0.212 7.385 0.574 0.689 0.626
Llama+rag-ents-3+S 16.143 0.454 0.839 0.822 0.832 0.826

Table 11: Results of LLLMs with different prompting methods and RAG on KELM-based test sets

Model [ BLEUT chrF++T TER] BERTPT BERTRT BERTFI{
NG00

PRU/+L/D 20.543 0.437 0.723 0.825 0.82 0.822

PRU/G/D 21.51 0.441 0.711 0.824 0.822 0.822
Llama+para+0Oshots 6.635 0.275 4.865 0.603 0.72 0.655
Llama+para+P 19.641 0.426 1.012 0.802 0.814 0.807
Llama+para+R 18.508 0.414 0.865 0.806 0.81 0.807
Llama+rag-ents-3+R 19.554 0.425 0.746 0.819 0.813 0.815
Qwen+rag-ents-3+R 20.081 0.438 0.84 0.805 0.815 0.81
Mistral+rag-ents-3+R 16.46 0.407 0.806 0.807 0.805 0.805
Llama+rag-ents-3+P 20.543 0.433 0.753 0.817 0.817 0.816
Llama+rag-ents-3+S 19.928 0.421 0.747 0.818 0.813 0.815
Llama+rag-trps-3+R 17.434 0.398 0.792 0.81 0.803 0.806
Llama+rag-entsep-3+R 19.707 0.424 0.736 0.822 0.814 0.817
Llama+rag-trpsep-3+R 17.617 0.394 0.873 0.813 0.803 0.807
Llama-+rag-1tblocks-entsep-3+R 19.336 0.421 0.766 0.819 0.811 0.814
Llama+rag-multi-entsep-3+R 20.035 0.428 0.782 0.819 0.815 0.817
Llama+rag-multi-entsep-7+R 19.409 0.418 0.782 0.818 0.814 0.815
Llama+rag-multi-unionentsep-7+R | 18.716 0.409 0.813 0.815 0.81 0.812
Llama+rag-ents-3+0shots 5.848 0.264 4.778 0.598 0.709 0.648

Table 12: Results of LLLMs with different prompting methods and RAG on NG5 test set
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H Human Evaluation: agreement

In table 13, we present Fleiss’ kappa to estimate inter-annotator agreement between our three annotators.

All By source
Seen W+K 500
closest 022 | 025 0.17 0.19
farthest 023 | 028 0.13 0.18

most fluent | 0.17 | 0.15 0.18 0.16
least fluent | 0.16 | 0.08 0.24  0.19

Table 13: Fleiss’ kappa. Estimating inter-annotator agreement on each question on all of data, as well as on each
part of it by source.
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I Comparing the Three Approaches: case study

In table 14 we provide an example, where our annotators have deemed the RAG model as the most fluent,
Prompting model as the closest to the data and our Fine-Tuning model (Interno+Labels) as both the farthest
produced text from the data and the least fluent. The example is taken from a NGsgp dataset. To make
the analysis of the models easier, we provide translations of the texts to English, trying to keep the same
mistakes when possible. We also use a system of different underline styles to show which parts of the texts
refer to which fact (triple of the graph).

The simple underlined text signifies that the lexicalisation of the fact is correct. The emphasized orange
underlined text signifies that the lexicalisation partly describes the fact. The
shows unnecessary repetition in the text, and the bold blue text shows information not present in the data.

to be verbalisations of the corresponding triples.

In the example, we can see that the Prompting method stays closest to the described data, however, it
mostly states the facts without connecting them properly. This results in a loss of perceived fluency. RAG
model verbalises all the facts correctly, however, it additionally states a fact that can be derived from the
chemical formula. It is correct, but it can be considered a slight difference from the data. Finally, we can
see that the Fine-Tuning model did not verbalize all of the facts, and overall produced a poor text with
repetitions and information not present in the data.
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Graph [["guanethidine", "has use", "medication"], ["guanethidine",

"ATC__code’,  "SOIEXOI']  ['guanethidine’, _ “canonical _SMILES’,
"CICCCN(CCC1)CCN=C(N)N"], ['guanethidine”,  "InChI",

"guanethidine", "chemical formula", "C1oH2oN4"]]

RAG IyaneTiH  mipefcTaBlisseT  coOoil  mpemapar,  KOTODBIi  MCHOJB3YeTCsI
B xavectee sexapcrea. Ero  ATCxkox - SOIEXOl  Xmwuseckas
opMmyna __ryaHeruaumHa - CI10H22N4. B eeo  cmpyxmype

NPUCYMCmMeyion__amombvl __y2nepood, 6000poda, _azoma. BelmecTBo _umeeT
kanonnueckuii ~ SMILES-kon ~ CICCCN(CCCI1)CCN=C(N)N u InChl-kox

Translation | Guanethidine is a product that is used as a medicine. Its ATC code is

SO1EXO1. The chemical formula of guanethidine is C10H22N4. Its

structure contains carbon, hydrogen, and nitrogen atoms. The substance has

Prompting | I'yanetunun SIBJISICTCSI JIEKAPCTBEHHBIM CPEICTBOM, uMeeT

ATC KO[I, SO01EXO01, XMMHUECKYIO OpMyJI Ci1oH2oN a

TaK)Xe SMILES-kon CICCCN(CCCI)CCN=C(N)N u InChl-kon

Translation | Guanethidine is a medication, has ATC code SOIEXO01, chemical formula

Fine-Tuning 1S/C10H22N4 - JIEKapCTBEHHOE CPEICTBO, KOTOpOE ___HMeeT
u canonical smiles CICCCN(CCC1)CCN=C(N)N.

TaK 1 IJId HAPYKHOI'o INIPpUMEHEHUA.

Translation | 1S/C10H22N4 is a medication that has and canonical
smiles CICCCN(CCCHCCN=C(N)N. It has ATC code SO1EXO01 and can be used
for both internal and external use.

Table 14: An example of a graph and three systems’ outputs, where our annotators have marked Prompting as
the closest model to the data, Fine-Tuning as the farthest text from the data, RAG as the most fluent text and
Fine-Tuning as the least fluent text. The simple underlined text signifies that the lexicalisation of the fact is correct.
The emphasized orange underlined text signifies that the lexicalisation partly describes the fact. The emphasized
orange text shows unnecessary repetition in the text, and the bold blue text shows information not present in the data.
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J Hyperparameters

For all LLMs we set max_new_tokens to 1200, temperature to 0.7 and top_p value equal to 0.7. We
run all our experiments on a single GPU Nvidia A40 with 45GB of memory.
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