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Abstract

Data-to-text natural language generation (NLG)
models may produce outputs that closely mir-
ror the structure of their input. We introduce
formulaicness as a measure of the output-to-
input structural resemblance, proposing it as
an enhancement for reference-less naturalness
evaluation. Focusing on logic-to-text genera-
tion, we construct a dataset and train a regres-
sor to predict formulaicness scores. We collect
human judgments on naturalness and examine
how incorporating formulaicness into existing
metrics affects alignment with these judgments.

1 Introduction

When generative models are provided with struc-
tured input data (e.g., logical formulae, tables, RDF
triples, etc.) and are tasked with generating textual
descriptions of this input data, they sometimes pro-
duce outputs that mirror the structure of the input
very closely. This can be undesirable in domains
and applications that require fluent output, instead
of the stilted texts exemplified in Table 1. On the
other hand, such structure-preserving renderings of
inputs might be desirable, depending on the appli-
cation domain and/or target audience. For instance,
in contexts like teaching logic connectives, where
precise and formulaic mappings may be preferred,
one may want to favor formulaic output such as
that in the top row of Table 1.

These considerations have implications for eval-
uating the broader notion of naturalness in text
generation. One important but previously unex-
plored feature is what we term formulaicness: the
degree to which a data-to-text NLG system’s output
explicitly preserves the structural form of its input.
High formulaicness reflects a close, template-like
correspondence to the input, while low formulaic-
ness indicates greater abstraction or paraphrasing.
As shown in Table 1, excessive formulaicness can
lead to stilted outputs, even in texts generated by
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large language models (LLMs). For instance, a
less formulaic realization of the logic-to-text in-
put might be: There is exactly one large cube, and
there is no dodecahedron behind it.

In this paper, we propose a methodology for
measuring formulaicness and investigate whether
incorporating this measure into other reference-
less (Ito et al., 2025) evaluation metrics (including
LLM-based ones) can improve the automatic as-
sessment of naturalness. Such metrics typically
capture features like fluency, grammaticality, or
readability (e.g., Kann et al., 2018; Groves et al.,
2018; Cano and Bojar, 2020; Zhu and Bhat, 2020;
Liu et al., 2021; Nguyen et al., 2024), but are not al-
ways consistent with human judgments (Novikova
et al., 2017). Our main question is: Does incorpo-
rating formulaicness in evaluation metrics improve
the automatic assessment of naturalness?

We focus on logic-to-text generation, a task with
a long tradition in NLG (e.g., Wang, 1980) that
has drawn significant renewed interest more re-
cently (e.g., Haroutunian et al., 2023; Wu et al.,
2023), in part due to the growing attention to the
reasoning abilities of LLMs (Cheng et al., 2025),
with benchmarks and experimental work carried
out, also regarding first-order logic (e.g., Tian et al.,
2021; Han et al., 2024; Karia et al., 2024). Logic-to-
text generation can be particularly valuable when
logical formulae are difficult to interpret, for in-
stance for beginners (Rector et al., 2004), since
translating them into natural language can enhance
comprehension. For example, Mpagouli and Hatzi-
lygeroudis (2009) employed a logic-to-text system
to translate first-order logic formulae into English
in a classroom setting.

2 Methods

We constructed a dataset consisting of texts (a.)
derived from logical formulae paired with formu-
laicness scores in the [0, 1] range (b.). We used this
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Subtask Dataset Input Output Model
Logic-to-Text Grade Grinder JzVyvz ( There exists a cube x that is large, and for all y and z, if y | Qwen3-32B
Corpus (Barker- Cube(x) A Large(z) A isa cu.be and large and z is a dodecahedron, then x is y | (Yang et al.,
Plummer et al., ( and z is not behind y. 2025)
2011)
(Cube(y) A Large(y) A Dodec(z)) —
(z = y A ~BackOf(z,y))
Table-to-Text numericNLG _ _ The data provided shows the results of different genres of text, | Llama-3.3-70B-
(Suadaa et al., Genre  Sentences  Length  Yield Precision including News with and without a star, Wiki, and Web, in Instruct
o S 2 S
2021) i::w” :gg i;: :3; zﬁ; terms of the number of sentences, length, yield, and precision. | (Grattafiori
News 3 .
Wiki 100 214 178 61.8 The New?' M.Vllh a star ./um one hundred Aiﬂ!{"l(fl, an average et al., 2024)
Web 100 192 165 49.1 length of nineteen point three words, a yield of one hundred
Total 300 20.0 487 602 Sorty two, and a precision of seventy eight point nine percent.
RDF-to-Text WebNLG r San Sebastidn de los Reyes is part of the Community of Madrid. DeepSeek—V3
(Gardent et al., "San_Sebastisn_de_los_Reyes | isPartof | Community_of Madrid”, ENAIRE is located in the city of Madrid. (DeepSeek-Al
2017) VENATRE | city | Madrid", Adolfo Sudrez Madrid—Barajas Airport is located in San Se- | et al., 2025)
"Adolfo_Sudrez_Madrid-Barajas_Airport | location | San_Sebastiin_de_los_Reyes”, bastidn de los Reyes.
“San_Sebastisn_de_los_Reyes | country | Spain”, San Sebastidn de los Reyes is in the country of Spain.
"Adolfo_Sudrez Madrid-Barajas_Airport | operatingOrganisation | ENAIRE" Adolfo Sudrez Madrid—Barajas Airport is operated by ENAIRE.
]

Table 1: Examples of formulaic outputs from structured inputs of various kinds. The models were prompted
“Convert this input data into English: {Input} ONLY RETURN THE TEXT.” via Hugging Face Playground (Wolf

et al., 2020) with temperature set to 0.

data to train a regressor to predict formulaicness
F(t) for a given text ¢ (c.). We collected human
judgments of naturalness (d.) and explored the
impact of incorporating formulaicness into other
metrics (M (t)) (e.) using a weighted average:

a-M(t)+ 8- (1-F(t)
a+

Combined(t) = (1)
We used the complement 1 — F'(¢), so as to mini-
mize formulaicness, e.g., in contexts where greater
abstraction from the input is desirable. The weights
« and 3 control the relative influence of M and F.

a. Texts We used a subset of the dataset from
Calo et al. (2022), consisting of first-order logic
formulae from the Grade Grinder Corpus (GGC;
Barker-Plummer et al. 2011), paired with English
translations generated using three systems, which
generate texts of different degrees of formulaicness
by design: (i) a system that generates literal trans-
lations of the formulae; (ii) Ranta (Ranta, 2011b),
which performs syntactic optimizations to improve
fluency; and (iii) LoLa, an extension of Ranta that
applies logical optimizations to the input formula
before verbalizing it (Appendix A for details). To
complement the set, we included (iv) the human-
written translations of the formulae; henceforth, we
speak of Literal, Ranta, LoLa, and Human.

b. Scores In Calo et al. (2022), the three systems
were ranked LoLa > Ranta > Literal in terms of flu-
ency, based on human judgments, using TrueSkill
(Herbrich et al., 2006; Sakaguchi et al., 2014), an al-
gorithm for estimating relative performance scores,

which returns a mean (1) and a standard deviation
(0) for each system reflecting the final ranking (the
higher the p, the better the system). We heuristi-
cally interpret this fluency ranking as a proxy for
formulaicness, with human-written texts consid-
ered the least formulaic overall.

To assign appropriate formulaicness scores to
texts (i.e., ensuring Literal > Ranta > LoLa > Hu-
man on average formulaicness), we defined score
bins for each system by leveraging the p and 6
values returned by TrueSkill.! The center of each
bin was set to the corresponding TrueSkill p (with
higher p indicating lower formulaicness; values
were normalized to the [0, 1] range), and the bin
width was set to £6 (clipped to be within [0, 1]).
Within each bin, we randomly sampled floating-
point values and took their complements (1—x) to
synthesize a formulaicness score for each text.

The final dataset consists of 570 texts and corre-
sponding formulaicness scores. We split the data
into training, validation, and test sets using a 70-15-
15 ratio, stratifying by formulaicness score and text
length by token to ensure consistent distributions
across splits. Table 2 presents a sample from the
test set. See Appendix B for more details.

¢. Predicting Formulaicness To model formu-
laicness, we fine-tuned a BERT-based (Devlin et al.,
2019) regressor on the dataset described above, by
adding a linear regression head on top of a pre-

'No TrueSkill values are available for human-written texts
from Calo et al. (2022), since they were not evaluated in the
original study. Following the earlier assumption that human
texts are the least formulaic overall, we arbitrarily assigned
Human a higher p than LoLa with a low 6.
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Text

Formulaicness

For all x, if x is a cube, then there is an element y such that y is a tetrahedron and x is in the same row as 'y and y is to the right of x. 0.85
A large cube is in front of a small cube. 0.10
a is a tetrahedron and e is a tetrahedron or a is a tetrahedron and f'is a tetrahedron. 0.72
For all x, for all y, if'y is large and y is a cube, then x is not to the right of y or x is small. 0.54

Table 2: Sample of texts from the test set with their associated formulaicness scores.

trained BERT model to predict a continuous score
in the [0, 1] range. See Appendix C for details. We
evaluated the final model on the held-out test set,
obtaining a mean squared error (MSE) of 0.017 (R?
=(.813). See Appendix D for additional analyses.

d. Human Judgments To assess our metrics, we
recruited 100 native English speakers via Prolific
(median age = 38.5; 50% female), who were asked
to rate the naturalness of each text in the held-out
test set (N = 86; see above) on a 7-point Likert
scale (Likert, 1932). Naturalness was defined fol-
lowing Howcroft et al. (2020) (see Appendix G for
the full instructions). We used Qualtrics to set up
the experiment. The 86 test texts were divided into
four mutually exclusive batches (each containing
~20 texts). Each participant was assigned to one
batch, so each text received ~25 annotations. The
median completion time for the task was ~8 min-
utes. We included two attention checks to ensure
data quality,” and randomized the order of texts to
avoid order effects.

Inter-annotator agreement (IAA) was computed
using Krippendorff’s a: (Krippendorff, 1980) and
ranged from low to moderate across the four
batches (0.19, 0.22, 0.43, 0.13), with an average
of 0.25. Variation across batches can result from
differences in item difficulty and annotator behav-
ior, including variation in Likert-scale leniency.
These IAA scores are consistent with prior find-
ings that human judgment tasks in NLG often yield
low agreement (van der Lee et al., 2021). Impor-
tantly, low IAA is not inherently problematic. It
may reflect the subjective and challenging nature of
the task, which is itself informative. For instance,
Plank (2022) argues that human label variation is
ubiquitous and that high IAA is typically achieved
only under artificial conditions.

e. Baseline Metrics We used five reference-less
metrics as approximations of the standardized no-
tion of naturalness adopted in this study (details
in Appendix E): GRUEN (Zhu and Bhat, 2020);
Flesch Reading Ease score (FRE, Flesch, 1948);

2All participants passed at least one of the attention checks.

Perplexity (PPL, Jelinek et al., 1977); the Syntactic
Log-Odds Ratio (SLOR, Pauls and Klein, 2012;
Kann et al., 2018); Llama 3.1 8B Instruct as LLM-
as-judge (LLAMA, Grattafiori et al., 2024). To
make all metrics interpretable in a consistent way,
where higher is better (= more natural), we inverted
PPL and SLOR (henceforth, iPPL and iSLOR).

3 Results

For each text in the test set, we computed formu-
laicness, GRUEN, FRE, iPPL, iSLOR, LLAMA,
and mean naturalness scores provided by partici-
pants. All baseline scores were normalized to the
[0, 1] interval. For each baseline metric, we also
computed combined score (Equation 1). Additional
information is provided in Appendix F.

The Pearson correlation between predicted for-
mulaicness scores and average human ratings is r =
—0.594 (p < 0.005), indicating a highly significant
negative correlation: more formulaic texts tend to
be rated as less natural. Next, we evaluated the five
baseline metrics, both in isolation and combined
(Table 4). In isolation, GRUEN and FRE show sta-
tistically non-significant correlations; iPPL shows
a moderate, statistically significant negative corre-
lation; and iSLOR and LLAMA show a moderate,
statistically significant positive correlation. When
combined, all metrics yield moderate to strong,
statistically significant positive correlations, with
increases ranging from modest iISLOR, LLAMA)
to substantial (GRUEN, FRE, iPPL).

To assess the contribution of formulaicness when
combined with baseline metrics, we conducted
goodness-of-fit tests by fitting linear regression
models to predict human naturalness ratings us-
ing: (i) each baseline metric alone, (ii) formulaic-
ness alone, and (iii) their combinations (Table 5).
The model using formulaicness alone explains a
substantial portion of the variance in naturalness
ratings (R? = 0.352), consistently outperforming
models based solely on baseline metrics. Com-
bining formulaicness with baseline metrics always
improves model fit (R? Combined), yielding statis-
tically significant gains across all metrics except
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Text Naturalness

Formulaicness  Analysis

If it is not the case that c is a tetrahedron, then it is not the case that b is a tetrahedron. 5.08
There is an element x such that there is an element y such that there is an element z 2.16
such that x is a cube, x is small, y is a cube, y is medium, z is a cube and z is large.

Some dodecahedron is not small. 4.40

0.918 High formulaicness (expected) due to repeated use of it is not the case;

yet rated highly natural by humans, likely for its symmetrical structure.

0.350 Low formulaicness (unexpected) despite low human-rated naturalness.

0.040 Medium human naturalness (somewhat awkward phrasing); very low

formulaicness, likely due to lack of literals or formulaic patterns.

Table 3: Examples illustrating divergences between human naturalness scores and formulaicness regressor scores.

Metric r Baseline r Combined A

GRUEN -0.156 0.547* +0.703
FRE 0.108 0.542" +0.434
iPPL -0.580* 0.395* +0.975
iSLOR 0.526" 0.624" +0.098
LLAMA 0.391* 0.589* +0.198

Table 4: Pearson correlations () with human natural-
ness ratings, for each metric alone (Baseline) and in
combination with formulaicness (Combined). A indi-
cates the gain from combining formulaicness with the
baseline metric. Asterisks (*) indicate statistically sig-
nificant (p < 0.005) values. Boldfaced is the higher
value per column.

iPPL. The largest A is observed with FRE, while
the highest overall R? is achieved when formulaic-
ness is combined with iSLOR.

Metric R’ Baseline R? Combined A

Formulaicness 0.352 — —

GRUEN 0.024 0.300" +0.275
FRE 0.012 0.294* +0.282
iPPL 0.336 0.156 —0.180
iSLOR 0.277 0.390" +0.113
LLAMA 0.153 0.346 +0.193

Table 5: Performance of each metric in predicting hu-
man naturalness ratings. We report R? values for each
metric alone (Baseline) and in combination with formu-
laicness (Combined). A indicates the gain from com-
bining formulaicness with the baseline metric. Values
with an asterisk (*) indicate statistically significant gains
over the baseline metric alone (p < 0.05, t-test). Values
underlined indicate the higher score between Baseline
and Combined per metric. Boldfaced is the higher value
per column.

To investigate discrepancies between human
judgments of naturalness and formulaicness scores
assigned by the BERT regressor, we performed a
linguistic analysis on samples where human nat-
uralness ratings diverged significantly from the
BERT regressor predictions (see Table 3).

To examine how adding formulaicness affects
baseline metrics, we selected examples with the

largest deltas between baseline scores and scores
combined with formulaicness (Table 6). GRUEN
often overrates unnatural texts; combining it with
formulaicness lowers the scores, improving align-
ment with human judgments. FRE is inconsistent,
underestimating a natural text in one case and over-
estimating unnatural ones in others, with these er-
rors reduced in the combined scores. iPPL shows
the largest deltas, assigning extreme values that are
moderated by the combination. iSLOR shows the
lowest deltas, suggesting that it already correlates
well with human ratings. LLAMA tends to give
repetitive ratings, assigning high scores to both low
and medium natural texts indiscriminately, miti-
gated by the combination.

4 Discussion and Conclusion

Formulaicness improves the evaluation of natu-
ralness. Returning to our research question, the
results in §3 suggest that formulaicness offers an
effective enhancement to the automatic evaluation
of naturalness in logic-to-text generation. It aligns
well with human judgments and consistently im-
proves the performance of baseline metrics in terms
of correlation with human ratings (Table 4) and ex-
planatory power in regression models (Table 5).
Formulaicness improves baseline metrics. The
generally low values of the baseline metrics (Ta-
ble 4 and Table 5) warrant further comment. Each
metric captures different facets of naturalness (e.g.,
GRUEN targets grammaticality, FRE readability).
The consistent improvements when adding formu-
laicness suggest that formulaicness captures an or-
thogonal dimension of naturalness, one not fully ac-
counted for by grammaticality or readability alone.
The one exception is SLOR, likely due to its theo-
retical properties: SLOR normalizes for unigram
probabilities and sentence length (Appendix E),
making it particularly effective in our task of logic-
to-text generation, in which sentence length varies
considerably, and logical variables and constants
(e.g., =, y, which a language model treats as uni-
grams) appear regularly (e.g., Table 7).
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Metric Text Baseline Combined A Naturalness
For all x, if it is not the case that x is a cube, then x is a tetrahedron and if it is not the 0.825 0.558 —0.266 3.54
case that x is a tetrahedron, then x is a cube.

If b is a dodecahedron, then if it is not the case that b is in front of d, then it is not the 0.811 0.551 —0.260 2.81

GRUEN  cqse that b is in back of d.

If it is not the case that b is to the left of d and it is not the case that b is to the right of d, 0.799 0.541 —0.258 3.76
then b is a tetrahedron or d is a tetrahedron.
Only dodecahedra are larger than everything else. 0.000 0.392 +0.392 4.69

FRE D is a cube, c is a cube and it is not the case that d or ¢ is small. 0.837 0.559 —0.278 3.96
For all x, if x is even, then it is not the case that x is a prime. 0.810 0.537 —0.273 4.32
No cube is large. 0.000 0.487 +0.487 6.20
For all x, if it is not the case that x is a cube, then x is a tetrahedron and if it is not the 1.000 0.523 —0.477 3.54

iPPL case that x is a tetrahedron, then x is a cube.

If it is not the case that b is to the left of d and it is not the case that b is to the right of d, 0.958 0.501 —0.457 3.76
then b is a tetrahedron or d is a tetrahedron.
No tetrahedron is the same size as any cube. 0.282 0.482 +0.200 4.65

. There is an element x such that there is an element y such that there is an element 7 such 0.019 0.209 +0.190 2.16

iSLOR that x is a cube, x is small, y is a cube, y is medium, z is a cube and z is large.

Only dodecahedra are larger than everything else. 0.352 0.536 +0.185 4.69
There is an element y such that y is a dodecahedron and it is not the case that y is large. 0.950 0.664 —0.286 3.96
It is not the case that there is an element x such that there is an element y such that x is 0.950 0.669 —0.281 2.65

LLAMA in back of y and it is not the case that x is larger than y.

It is not the case that some dodecahedron is large. 0.950 0.687 —0.263 4.88

Table 6: Samples with the top-3 largest As in score per metric between before (Baseline) and after (Combined)
being combined with formulaicness vs. human judgments (Naturalness).

Generalizability beyond logic-to-text. As noted
in §1, other NLG tasks such as table-to-text and
RDF-to-text generation exhibit similar issues with
formulaicness as logic-to-text. We hypothesize
that our method could generalize to these tasks by
helping identify formulaic outputs. For example, a
less formulaic version of the RDF-to-text input in
Table 1 might be: San Sebastidn de los Reyes is lo-
cated in Spain, within the Community of Madrid. It
is home to Adolfo Sudrez Madrid—Barajas Airport,
which is operated by ENAIRE, a company based
in the city of Madrid. The main challenge would
be obtaining formulaicness scores comparable to
those derived from Literal, Ranta, LoLa, and Hu-
man in §2. Evaluations of existing systems in these
tasks (e.g., Nikiforovskaya and Gardent, 2024, for
RDF-to-text) could serve as a starting point.

Conclusion. We introduced formulaicness as an
enhancement for reference-less naturalness eval-
uation, focusing on logic-to-text generation. Our
results show that incorporating formulaicness into
existing metrics improves alignment with human
judgments of naturalness.

Limitations

This study focused exclusively on logic-to-text gen-
eration into English as a case study. It remains to
be seen whether our approach to modeling formu-
laicness generalizes effectively to other NLG tasks,

such as table-to-text or RDF-to-text generation, and
to other languages.

In our implementation, we intentionally avoided
using LLMs for modeling formulaicness, and in-
stead relied on BERT (which turned out to be still
competitive, even against the LLM-based base-
lines), to keep the approach lightweight (Gao et al.,
2025) and to avoid the self-preference bias, where
LLM:s tend to score their own outputs higher than
others (Panickssery et al., 2024).

Ethical Considerations

Ethical approval for the human experiments con-
ducted in this study was obtained from the Ethics
Board at Utrecht University. The 100 crowdwork-
ers recruited on Prolific were paid £1 for an esti-
mated workload of 10 minutes, which corresponds
to £6 per hour, matching the minimum pay accord-
ing to Prolific. They gave informed consent before
participating in the experiment.

Supplementary Materials Availability State-
ment: The code to reproduce the results in
this paper and the formulaicness dataset are
available on GitHub at: https://github.com/
Eduardo-Calo/formulaicness. The BERT-
based regressor is available on Hugging Face
at: https://huggingface.co/Eduardo-Calo/
formulaicness.
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A Details on the Generators

Ranta (Ranta, 2011b) proposes several syntactic
transformations to improve fluency in logic-to-text
generation in his Grammatical Framework (Ranta,
2011a) implementation. Flattening turns nested
conjunctions into lists (e.g., P and Q and R := P,
0, and R). Aggregation merges clauses with shared
elements (e.g., x is even or x is odd ‘= x is even
or odd). In-situ quantification replaces bound vari-
ables with quantified phrases (e.g., for all x: x is
even or odd := every x is even or odd). Verb nega-
tion internalizes negation (e.g., it is not the case
that x is even = x is not even). Reflexivization
simplifies repeated arguments (e.g., x equals T :=
x equals itself). Finally, modification combines
types and predicates (e.g., x is a number and x is
even := x is an even number).

LoLa (Calo et al., 2022) applies logical equiv-
alence transformations to the input formula be-
fore verbalization. These transformations include a
range of equivalence laws (Partee et al., 1990) from
propositional and first-order logic, such as associa-
tivity, commutativity, distributivity, De Morgan’s
laws, double negation, and vacuous quantification.
To apply these optimizations, LoLa constructs a
search tree, where each node represents a logically
equivalent reformulation of the input. Once the
tree is built, all formulas are passed through syn-
tactic optimization and linearized, and the shortest
resulting verbalization is returned.

B Details on the Dataset

To build our dataset, we considered only the tex-
tual portion of Calo et al. (2022), selecting a bal-
anced subset in which the texts produced by the
Literal, Ranta, and LoLa, alongside the original
human-written sentences, are equally represented,
to account for varying degrees of distance with re-
spect to the input formula. We filtered out texts
in which the character-level Levenshtein distance
(Levenshtein, 1966) between any two texts derived
from the same formula was less than 10, to avoid
overly similar texts. We also removed duplicate
entries. Table 7 gives some summary statistics on
formulaicness bin, and Table 8 some dataset-level
statistics. The dataset we ended up with exhibits a
total number of 71 unique content words. Refer to
Figure 1 for the 20 most frequent ones.

Source Bin  Avg. Length (Tokens) Avg. Literals/Text
Literal [0.0, 0.295) 29.80 6.08
Ranta [0.103, 0.458) 25.15 5.51
LoLa [0.424, 0.815) 18.32 4.19
Human [0.8, 1.0) 11.61 1.58

Table 7: Statistics by original source and bin. Bins were
derived from the original TrueSkill’s x4 and 6 values
per system (apart from those of Human, which were
arbitrarily assigned). Avg. Literals/Text: the average
of single-letter characters (i.e., constants and variables)
per text.

Split Size  Avg. Length (Tokens) Avg. Formulaicness
Train 399 22.19 0.508
Validation 85 21.36 0.513
Test 86 21.92 0.512
Total 570 22.03 0.510

Table 8: Dataset-level statistics.

C Details on Model Training

To fine-tune the BERT-based regressor, we started
from the bert-base-uncased checkpoint avail-
able on Hugging Face. We used the training set
to fit the model parameters, the validation set to
tune hyperparameters and prevent overfitting (via
early stopping), and kept the test set aside for final
evaluation. Table 9 shows the set of hyperparam-
eters. All experiments were run on a Tesla T4
GPU (16GB VRAM) with CUDA 12.4 and driver
version 550.54.15. See Figure 2 for the training
curves.

Hyperparameter Value

Loss function Mean Squared Error (MSE)
AdamW

Learning rate 5% 107°

Batch size 8

Epochs
Dropout 0.1

Optimizer

10 (with early stopping)

Table 9: Hyperparameters used for fine-tuning the BERT
regressor.

D Details on Model Testing

Since formulaicness is coincidentally correlated
with sentence length, i.e., longer sentences tend to
be more formulaic (as shown in Table 7), we tested
whether the BERT regressor might be relying spu-
riously on length alone. To do this, we compared
the model’s predictions against two baselines: a
length-based predictor and the ideal identity line
(see Figure 3). While the length-based baseline per-
forms reasonably well, the BERT regressor yields
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Figure 1: Top 20 most frequent content words in the
dataset.
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Figure 2: Training and validation loss from BERT re-
gressor fine-tuning.

predictions that more closely follow the ideal iden-
tity line, suggesting that the regressor captures ad-
ditional linguistic nuances beyond sentence length.

To examine which tokens most strongly influ-
ence the prediction of the formulaicness regressor,
we performed a SHAP values analysis (Lundberg
and Lee, 2017). Figure 4 displays the top 20 tokens
with the highest average SHAP values. Notably,
tokens such as case, f, x, and e contribute substan-
tially to the model’s predictions of formulaicness.
This aligns with expectations: case frequently ap-
pears in the phrase it is not the case that, while
letters like f, x, and e are commonly used as logi-
cal variables and constants. Given this, we further
tested whether the token case is blindly assigned
high formulaicness (Table 10): when the model
is fed texts where case appears in non-formulaic
contexts,’ the predicted formulaicness scores are
indeed low, suggesting that the model does not rely
solely on token presence but also considers con-

3Examples from https://en.wiktionary.org/wiki/
case.

1 — Fitted line
- = Perfect prediction
Length-based prediction baseline

0.8

0.6

0.4

0.2

BERT Regressor Score (Predicted)

0.2

0.4 0.6 0.8

Formulaicness Dataset Score (True)

Figure 3: BERT regressor performance against a length-
based baseline and the ideal identity line.
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both
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0.02
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0.04

Figure 4: Top 20 tokens with the highest average SHAP
values.

text. Moreover, these examples hint that the model
can generalize beyond the domain of geometrical
shapes (the most prevalent domain in our dataset;
Figure 1) likely thanks to the BERT backbone.

E Details on Baseline Metrics

GRUEN GRUEN (Zhu and Bhat, 2020) is a
reference-less metric that evaluates text along four
dimensions, including grammaticality. Grammat-
icality is assessed by combining sentence likeli-
hood and grammatical acceptability, two proper-
ties that are likely to influence perceptions of nat-
uralness. Sentence likelihood is computed with a
BERT-base model, while grammatical acceptability
is computed with a fine-tuned BERT model on the
Corpus of Linguistic Acceptability dataset (CoLA;
Warstadt et al. 2019).

Flesch Reading Ease (FRE) The Flesch Read-
ing Ease score (Flesch, 1948) is a traditional read-
ability metric designed to assess the ease of reading
of a text, with higher scores indicating easier-to-
read texts. It is based on sentence length and sylla-
ble count per word. Low scores may reflect unnat-
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Text

Meaning of case Formulaicness

In case of fire, break glass.

The doctor told us of an interesting case he had treated that morning.

The teaching consists of theory lessons and case studies.
The accusative case most commonly indicates a direct object.

An actual situation. 0.17
An instance in a profession. 0.29
An instance as a topic of study. 0.28
Grammatical category. 0.30

Table 10: Sentences containing the word case used in non-formulaic contexts, along with the model’s predicted

formulaicness scores.

ural constructions, such as overly long or clause-
heavy sentences, whereas high scores may corre-
spond to more natural language.

Perplexity (PPL) Perplexity (Jelinek et al., 1977)
is a standard metric used to evaluate language mod-
els, defined as the exponentiated average negative
log-likelihood of a sequence under a given lan-
guage model. Lower perplexity indicates that the
model assigns higher probability to the observed
text, suggesting greater predictability, an attribute
plausibly associated with naturalness.

SLOR SLOR (Syntactic Log-Odds Ratio; Pauls
and Klein 2012; Kann et al. 2018) is a metric based
on the negative log-likelihood of a sentence. As
with PPL, lower SLOR values suggest greater pre-
dictability, plausibly associated with naturalness.
Specifically, the SLOR score for a sentence is com-
puted as the log probability of the sentence under a
given language model, normalized by the unigram
log probability and the sentence length. The in-
tuition behind these normalizations is to prevent
rare tokens from disproportionately lowering the
sentence score and to ensure that shorter sentences
are not unfairly favored over equally fluent longer
ones.

Llama 3 (LLAMA) LLMs have increasingly
been used as automated judges for evaluation
tasks (e.g., Zheng et al., 2023; Tan et al., 2024;
Bavaresco et al., 2025), including for assessing
text quality aspects such as naturalness. We fol-
lowed this growing trend by adopting an LLM-
as-a-judge approach using Llama 3.1 8B In-
struct (Grattafiori et al., 2024). We used the
quantized version available on Hugging Face:
Meta-Llama-3.1-8B-Instruct-Q8_0.gguf. We
asked the model to rate the naturalness of each text
in the held-out test set on a scale from O to 100,
similarly to the human study (§2). The prompt we
used is shown in Figure 5.

F Details on the Results

For computing PPL and SLOR, we used
TinyLlama-1.1B-Chat-v1.0 from Hugging Face.
For computing unigram probabilities for SLOR, we
used the wikitext corpus from Hugging Face.

We used empirical values of « and (3, obtained
by fitting linear regression models to predict hu-
man naturalness from the baseline metric and
formulaicness scores. For comparability across
metrics, all regression models were trained with
intercept=False. See Table 11 for the regres-
sion coefficients we used as the values of tuned o
and 3 for each metric.

See Figure 6 for the scatterplots with the correla-
tions between metric scores and human naturalness
ratings, before and after being combined with for-
mulaicness.

Metric e B

GRUEN 0.644  0.356
FRE 0.594  0.406
iPPL 0.484  0.516
iSLOR 0.700  0.300
LLAMA 0656 0.344

Table 11: Weights v and 3 learned via linear regression
for each baseline metric.
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You are participating in an experiment that evaluates the naturalness of English sentences.

Definition of Naturalness:
Naturalness tells us the degree to which a sentence is likely to be produced by a native speaker in the given context or situation.

Instructions:

— Rate each sentence on a scale from 0 (very unnatural) to 100 (very natural).
— Focus only on the sentence structure.

— Do not consider the truth or meaning of the sentence.

— Ask yourself: “Could this sentence have been written by a native speaker?”

Examples:
Sentence: For all x, for all y, if x is a dodecahedron and y is a cube and it is not the case that x is larger than y, then x is of the same size as y.
Rating: 10

Sentence: D is a cube, ¢ is a cube, d is not small and ¢ is not small.
Rating: 55

Sentence: Some dodecahedron is neither large nor small.
Rating: 95

Sentence: {sentence}
Rating:

Figure 5: Prompt shown to the LLAMA baseline used as LLM-as-a-judge.

GRUEN

iPPL iSLOR LLAMA

b
| 1

Metric Scores

0.5
0
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
Human Judgments (Naturalness)
* Metric w/o Formulaicness * Metric with Formulaicness —— Metric w/o Formulaicness (Regression) —— Metric with Formulaicness (Regression)

Figure 6: Scatterplots with the correlations between metric scores and human naturalness ratings, before and after
being combined with formulaicness.

363



G Instructions to Participants

Dear participant,

Thank you so much for taking part in this experiment! It will take you approximately 10 minutes to fill in
this survey.

If you do wish to participate, your response will be handled anonymously. Collected data will only be
used in ways that will not reveal who you are. You will not be identified in any publication from this study
or in any data files shared with other researchers. Your participation in this study is confidential. If at any
point you would like to stop, you can close this form and your response will be deleted.

I have read the above information and understand the purpose of the research and that data will be
collected from me. I agree that data gathered for the study may be published or made available, provided
my name or other identifying information is not used.

(O Iconfirm this.
(O Ido not confirm this and I want to withdraw from participation.

The purpose of this experiment is to assess the quality of some English sentences. We evaluate sentences
on the criterion of naturalness.

Naturalness tells us the degree to which a sentence is likely to be produced by a native speaker in
the given context/situation.

Please, note down the definition of naturalness, in case you want to refer to it later.

We will present to you around 20 sentences. You will be asked to rate each sentence on a scale from 1 to
7, with 1 being very unnatural, and 7 being very natural.

When rating, you should ask yourself: "Could this sentence have been written by a native speaker?"

While answering the questions, it is important to keep in mind that we are NOT interested in the meaning
of the sentences. You should base your opinions on the structure of the sentence only.

The sentences make claims about a world containing some elements (e.g., a, b, ¢), as well as about their
properties (e.g., cube, small) and relationships (e.g., is in front of).

In the following pages, you will see a couple of guided examples.
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Sentence:
For all x, for all y, if x is a dodecahedron and y is a cube and it is not the case that x is larger than y, then x
is of the same size as y.

How would you rate the naturalness of the above sentence?

Tip: You might decide that sentences like the one above rate towards the lower end of the sliding bar,
because their structure is cumbersome and redundant.

1 2 3 4 5 6 7
Naturalness —

Sentence:
D is a cube, c is a cube, d is not small and c is not small.

How would you rate the naturalness of the above sentence?

Tip: You might decide that sentences like the one above rate toward the middle of the sliding bar, because
their structure is neither overly cumbersome nor particularly straightforward.

1 2 3 4 5 6 7
Naturalness —

Sentence:
Some dodecahedron is neither large nor small.

How would you rate the naturalness of the above sentence?

Tip: You might decide that sentences like the one above rate towards the higher end of the sliding bar,
because their structure is clear and straightforward.

1 2 3 4 5 6 7
Naturalness —

Now it is your turn, good luck!
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