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Abstract

Assessing the quality of LLM-generated text
remains a fundamental challenge in natural
language processing. Current evaluation ap-
proaches often rely on isolated metrics or sim-
plistic aggregations that fail to capture the nu-
anced trade-offs between coherence, diversity,
fluency, and other relevant indicators of text
quality. In this work, we adapt a recently
proposed framework for statistical inference
based on Generalized Stochastic Dominance
(GSD) that addresses three critical limitations
in existing benchmarking methodologies: the
inadequacy of single-metric evaluation, the in-
compatibility between cardinal automatic met-
rics and ordinal human judgments, and the
lack of inferential statistical guarantees. The
GSD-front approach enables simultaneous eval-
uation across multiple quality dimensions while
respecting their different measurement scales,
building upon partial orders of decoding strate-
gies, thus avoiding arbitrary weighting of the
involved metrics. By applying this framework
to evaluate common decoding strategies against
human-generated text, we demonstrate its abil-
ity to identify statistically significant perfor-
mance differences while accounting for poten-
tial deviations from the i.i.d. assumption of the
sampling design.

1 Introduction

Large language models (LLMs; Achiam et al., 2023;
Grattafiori et al., 2024; Guo et al., 2025) rely on
decoding strategies—algorithms that select subse-
quent tokens based on probability distributions over
the vocabulary. As these models advance, numer-
ous decoding methods have emerged, including
deterministic (Freitag and Al-Onaizan, 2017; Su
et al., 2022; Garces Arias et al., 2024) and stochas-
tic approaches (Fan et al., 2018; Holtzman et al.,
2019; Ding et al., 2025), necessitating robust bench-
marking protocols for systematic evaluation. In this
work, we present a methodological contribution:

we adapt the Generalized Stochastic Dominance
(GSD) framework (Jansen et al., 2024) to evalu-
ate LLM-generated text. Rather than exhaustively
comparing all decoding strategies, we demonstrate
how GSD enables rigorous multicriteria evaluation
while preserving distinct measurement scales. We
focus on open-ended text generation as an illustra-
tive example, though the framework generalizes to
other tasks.

Current benchmarking for open-ended text gener-
ation typically uses curated datasets like WikiText
(Merity et al., 2016) or WikiNews to assess de-
coding strategies through automatic metrics and
human evaluation. While valuable for practitioners
and researchers, these methodologies face three
fundamental challenges:

(I) Reliance on Single Metrics. Text quality is in-
herently multidimensional, yet conventional bench-
marking often reduces it to single metrics. Despite
established metrics like perplexity, diversity, and
coherence capturing different quality aspects (Holtz-
man et al., 2019; Su et al., 2022; Garces Arias et al.,
2025b), Figure 1(a) shows that while 88.0% of pa-
pers evaluate multiple metrics individually (2024),
only 7.6% employ true multicriteria approaches.

(II) Integrating Human Evaluation. Combining
automatic metrics (cardinal measurements) with
human assessments (ordinal data) poses method-
ological challenges. Figure 1(b) shows increasing
adoption of combined evaluation (39.5% to 45.2%,
2022-2024), yet integrating these distinct measure-
ment scales remains problematic.

(III) Lack of Statistical Rigor. Most evaluations
remain descriptive without statistical validation.
Figure 1(c) reveals declining use of statistical in-
ference (32.6% to 28.0%), limiting generalizability
beyond specific benchmark suites.

Contributions. We introduce a GSD-based
benchmarking framework that:
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Figure 1: Analysis of text generation research trends (arXiv, 2022-2024): (a) Evolution of multicriteria benchmarking
showing individual metric evaluation (orange) versus true multicriteria approaches (blue). (b) Distribution of
evaluation methodologies across automatic (blue), human (green), combined (orange), and no evaluation (red)
approaches. (c) Adoption of statistical inference methods (green) compared to evaluations without statistical
validation (blue). Remark: Note that arXiv trends, as opposed to the ACL Anthology, might include non-peer-
reviewed papers; however, we have decided to prioritize timeliness from a broader research community.

(I) Incorporates multiple quality metrics simulta-
neously

(II) Integrates human and automatic evaluations
while preserving measurement scales

(IIT) Provides statistical inference beyond descrip-
tive evaluation

(IV) Quantifies robustness when i.i.d. assumptions
are violated

We validate our approach using WikiText and
WikiNews prompts, comparing five decoding strate-
gies (beam search, contrastive search, temperature
sampling, top-k, and nucleus sampling) against
human completions. Our evaluation combines
Q*Text (Garces Arias et al., 2025b) with human
assessments, demonstrating that human-written text
maintains superior or equivalent quality. Code and
data are publicly available'.

2 Generalized Stochastic Dominance and
the GSD-Front

To address the challenges outlined in Section 1, we
propose a framework based on generalized stochas-

Thttps: //github.com/hannahblo/Statistical_
Multicriteria_Evaluation_of_LLM-Generated_Text

tic dominance (GSD). Rather than imposing a com-
plete ranking—which would require potentially un-
justified assumptions about the relative importance
of quality dimensions—our framework identifies
a minimal set of non-dominated strategies. This
set, which we term the "GSD-front," represents po-
tentially optimal choices under varying preference
structures. In this section, we present the theoretical
foundation of our approach.

2.1 Generalized Stochastic Dominance

GSD has received quite some interest recently (e.g.
Jansen et al., 2023b,a, 2024; Jansen, 2025). We pro-
pose adapting the GSD-front, introduced in Jansen
et al. (2024), for classifier selection, as a method to
compare decoding strategies across multiple qual-
ity metrics simultaneously. The basic idea is quite
natural: We first utilize the multidimensional or-
der structure spanned by the quality metrics for
defining a partial expectation ranking among the
decoding strategies under consideration. In our
application, these are Q*Text and the two human
evaluations. Afterwards, we select the non-strictly
dominated strategies under this order to be included
in the GSD-front. In our application, we consider
all decoding strategies together with the human
completion and select those that are not strictly

339


https://github.com/hannahblo/Statistical_Multicriteria_Evaluation_of_LLM-Generated_Text
https://github.com/hannahblo/Statistical_Multicriteria_Evaluation_of_LLM-Generated_Text

dominated (i.e., systematically worse) than any of
the others. Hence, if the human completion lies
in the GSD-front, it is not dominated by any of
the other five automatic decoding strategies and
therefore can potentially produce higher quality
text than those in certain situations. Note that the
decoding strategies in the GSD-front are incompa-
rable to each other (GSD is a partial order) and, in
general, no unique best decoding strategy will be
obtained in this way. However, it can be argued
that the GSD-front represents the smallest set of in-
comparable strategies that can be obtained without
(potentially hard-to-justify) additional assumptions
about the weighting of the quality metrics since it
incorporates the entire information encoded in both
the (empirical) distribution of the prompts and the
order structure induced by the metrics.

2.2 Technical Setup

To ensure clarity throughout our technical exposi-
tion, we first establish our notation:

Symbol Description

D Set of decoding strategies

S, 8, L,L" € D Individual decoding strategies

P Universe of prompts

P,P',G,G’ € P  Individual prompts

oi Quality metric i

O =(p1,...,¢n) Multidimensional metric vector
Ry Ordinal relation on quality vectors
Ry Cardinal relation on pairs in R

bis Probability measure over prompts
u Utility function

Up Set of utility representations

Table 1: Notation overview for the technical setup.

Assume we are given a finite set 9 of decoding
strategies, a universe ¥ of prompts, and n quality
metrics @1,...,¢, : DX P — [0, 1]. For every
i €{l,....,n}, S € D, and P € P, the value
@i (S, P) describes quality of the completion ob-
tained by applying strategy S to prompt P with
respect to the metric ¢; (where higher values indi-
cate better quality). To clearly distinguish between
ordinal and cardinal evaluations, we assume that,
for 0 < z < n, the metrics ¢y, ..., ¢, are of cardi-
nal scale (differences may be interpreted), while the
remaining ones are purely ordinal (differences are
meaningless apart from the sign). Given this setup,
we then consider the multidimensional metric

(ORES (¢1,..

We define two binary relations associated with the
range ® (D X P) of D, i.e., the set of quality vectors

) DXP — [0,1]".

spanned by the considered quality metrics. The
first of these relations captures the ordinal infor-
mation encoded in the multidimensional quality
evaluations, while the second relation captures the
cardinal part of the information:
Ordinal Information: For any pair of quality vec-
tors x := ®(S, P),y := ®(S’, P’), where S, 5" € D
are decoding strategies and P, P’ € $ are prompts,
we define:
(x,y) €R; & Vi:¢;(S,P)>¢;(S,P).
Under this specification, R defines a binary relation
— precisely a preorder — on the set ®(D x P) of
quality vectors. In words, if the two quality vectors
x and y are in relation with respect to Ry, i.e.,
(x,y) € Ry, this means that the completion of P by
S is judged at least as good as the completion of P’
by S’ by any of the considered metrics.
Cardinal Information: For any quadruple of
quality vectors t := ®(S, P),u := ©(S’, P’),v :=
O(L,G),w :=d(L',G’), where §,S’,L,L" € D
are decoding strategies and P, P’',G,G’ € P are
prompts, that satisfies (¢, u), (v,w) € Ry, we set

((t,u), v,w)) €Ry & Vi<zVj>z

¢i(S7 P) - ¢i(S,7P,) > ¢1(L>G) - ¢i(L,’G,)/\
¢;(S,P) 2 ¢;(L,G) 2 ¢;(L",G") > ¢;(S', P’)

Under this specification, R, defines a binary rela-
tion — precisely a preorder — on the relation Ry, i.e.,
on the set of all pairs of quality vectors that are
comparable under R;. In words, if two Rj-ordered
pairs of quality vectors (¢, u) and (v, w) are in rela-
tion with respect to R;, this means that whenever
the ordinal components of the latter quality vec-
tors are bounded (from above and below) by the
ordinal components of the further quality vectors,
we can compare intensity of preference between
quality vectors by comparing their differences in
the cardinal components.

These considerations leave us with a partially-
cardinal scaled order structure

P=(®(D xP),Ri,Ry)

on the basis of which we intend to analyze the
performance of the decoding strategies under con-
sideration. Note that this structure encodes exactly
that quality information that can be obtained from
the data without additional assumptions about the
weighting of the involved quality metrics. To ease
working with P, we replace it by the set of utility
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representations respecting its structure. Intuitively,
each of those utility functions can then be inter-
preted as a candidate measurement scale (or, in
other words, a potential cardinal completion) that
is compatible with the information encoded in P,
i.e., the information arising from the mixed-scaled
multidimensional quality evaluations across the
considered combination of decoding strategies and
prompts in the set D X P.

Utility Representation: We call a function

u:d(DOxP)->R

compatible with, or utility representation of P,
whenever for all (x, y) € Ry it holds that

u(x) z u(y)

and for all ((r,1), (v,w)) € R, it holds that

u(r) —u(t) > u(v) —u(w)

Every function u satisfying those two properties
respects both the order information encoded in R
and the intensity information encoded in R,. We de-
note by Up the set of all (bounded and measurable)
functions that are compatible with P. This set then
captures all the relevant information encoded in the
structure P, however, is much more accessible for a
meaningful analysis.

The set Up of utility representations obtained from
P now forms the basis for the generalized stochastic
dominance (GSD) relation among the decoding
strategies under consideration. Moreover, note that
defining the GSD-relation on the set O requires
assuming that the prompts in # are generated ran-
domly according to some probability measure &
(note that for our actual analysis, this will be re-
placed by its empirical analog).

Generalized Stochastic Dominance: We say that
decoding strategy S GSD-dominates decoding strat-
egy S/, denoted by S = §’, if it holds:

YueUp: Er(uo®(S, ) = E(uod(S,"))

In words, S GSD-dominates S’, if the expected
decoding quality of S is higher than that of S’ for
no matter what compatible utility measure u € Up
is used to summarize quality in a one-dimensional
manner. Note that the GSD-relation = is not com-
plete, i.e., in general, there will exist decoding
strategies that are incomparable w.r.t. GSD.

The last step is adapting the GSD-front to the
comparison of decoding strategies. Again, this can
be done straightforwardly: We simply collect the
non-strictly dominated strategies with respect to
the GSD-relation x that we adapted to this context
in the previous step.

GSD-Front: The GSD-front is thus given by

gsd(D)={SeD: AS € Ds.t. § = S},

where > denotes the strict part of .

Reflecting that gsd(D) will, in general, be inacces-
sible since the true law 7 is unknown, in practice
we will often have to make do with its empirical
version, i.e., the set gsd,,, (D) that is obtained
by replacing all population-based expressions in
gsd(D) by their empirical analogs. Note, how-
ever, that gsd,,,,(2) makes a mere descriptive
statement on the relation of the decoding strategies.

Empirical GSD-Front and Statistical Testing:
To move to inferential guarantees, a statistical test
for the pair

Hy:S¢gsd(D) vs. H : Segsd(D) (1)

is desirable: If Hy can be rejected at a level @ using
an appropriate test, there is significant evidence
that the decoding strategy S is competitive with the
strategies in D \ {S} in certain situations across
the population of prompts and, accordingly, should
be further considered. But how can an appropriate
statistical test be constructed? Jansen et al. (2024)
demonstrate that (under mild assumptions that are
met in our situation) a valid and consistent test is
indeed reachable (by using an adapted permuta-
tion testing scheme). Furthermore, they show that
this statistical test can be robustified to samples
(slightly) deviating from the usual i.i.d. assump-
tion by relying on techniques originating in robust
statistics. In particular, their techniques allow us to
analyze the p-value of a test decision for the pair
(Ho, H1) as a function of the contamination size of
the underlying sample of prompts, i.e., the share of
prompts stemming from some arbitrary distribution.
In our context, such robustification seems partic-
ularly relevant: Especially when a large number
of completions are evaluated by humans in a short
period, certain implicit dependency structures are
often difficult to avoid.

For interpreting the test results in Figure 2, it is im-
portant to note that the test proposed in Jansen et al.
(2024) for the hypothesis pair (Hy, H;) consists of
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a series of pairwise comparison tests of strategies
regarding their GSD relation. To be precise, the
strategy S is tested against all strategies in D \ {S}
and H is rejected if all these sub-tests reject their
respective null hypotheses. The test statistic used
for each of those pairwise comparisons (S versus
S’) tests is based on the empirical version of

D(S,S) := inf {E,(u o ®(S,"))
uE‘ZJP{ (2)
~Ex(uo&(S',)}

i.e., the expression arising from D(S,S’) by ex-
changing all population concepts by empirical
analogs.

2.3 Intuitive Explanation for NLP
Practitioners

To make the GSD framework more accessible, let
us provide an intuitive understanding using familiar
NLP concepts. Imagine you are comparing de-
coding strategies (e.g., beam search vs. nucleus
sampling) across multiple metrics like coherence,
diversity, and human ratings.

The Challenge: Traditional approaches either pick
one "best" metric or combine metrics with arbitrary
weights (e.g., 0.5xcoherence+0.3xdiversity+0.2x
human_rating). But who decides these weights?
Different applications might value these metrics
differently.

The GSD Solution: Instead of forcing a complete
ranking, GSD identifies strategies that are "not
clearly worse" than others across all metrics. A
strategy enters the GSD-front if there’s no other
strategy that beats it on all metrics simultaneously.
For example:

* Strategy A: coherence=0.8, diversity=0.6, hu-
man=4.0

* Strategy B: coherence=0.7, diversity=0.9, hu-
man=3.5

Neither dominates the other—A wins on coherence
and human rating, B wins on diversity. Both belong
to the GSD-front.

Statistical Rigor: Beyond identifying the front, we
provide statistical tests to determine whether these
differences are significant or just sampling noise,
accounting for the fact that we only evaluated a
finite set of prompts.

2.4 Computational Complexity

Jansen et al. (2023c) demonstrated that comput-
ing Equation (2) can be reformulated as a mixed-
integer programming (MIP) problem. While con-
structing the associated constraint matrix exhibits
a worst-case time complexity of O(n*), practical
implementations often achieve substantially lower
complexity through problem-specific optimizations.
For a detailed analysis of these computational im-
provements and their applicability conditions, we
refer the reader to Jansen et al. (2023c).

3 Application: Automatic and Human
Quality Evaluation

In this section, we present an application where
we investigate whether human text generation po-
tentially still offers superior quality compared to
alternative automatic decoding strategies. Please
note that our method can be applied to any set of
competing decoding methods. This investigation
addresses the three key benchmarking challenges
outlined in Section 1: analyzing multiple quality
metrics with different measurement scales simulta-
neously (Challenges I and II), and quantifying the
robustness of inferential statements under poten-
tial deviations from the i.i.d. sampling assumption
(Challenges Il and IV). The latter arises specifically
from potential dependencies in human evaluations
and the use of prompts from two distinct datasets.

3.1 Experimental setup

Task Description. We demonstrate our method’s
application through an open-ended text genera-
tion task, more specifically, storytelling, where the
model generates continuations for given prompts
from Wikipedia and news articles. This task ex-
emplifies the challenges in evaluating text quality
across multiple dimensions, as generated contin-
uations must balance coherence with the prompt,
lexical diversity, and overall fluency.

In this demonstration, we employed a well-
performing, medium-sized, open-source model:
Qwen 2.5 - 7B (Yang et al., 2024), along with
prompts from Wikitext (Merity et al., 2016) and
Wikinews?, incorporating diverse and factually-
grounded contexts. Our sample encompassed 300
text generations—>50 prompts (25 from WikiText,
25 from WikiNews) with six continuations each:
one human-written (H) and five generated using

2Wikinews from http: //www.wikinews.org
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different decoding strategies. All generated texts
and human-written texts were set to a constant
length of 256 tokens (truncating human-written
text when necessary). These strategies included
both deterministic methods: beam search (BS) with
beam width = 5 and contrastive search (CS) with
k =10, = 0.6, as well as stochastic approaches:
temperature sampling (TS) with temperature = 0.9,
top-k sampling (T} ) with £ = 50, and nucleus top-p
sampling (7)) with p = 0.95. These hyperparam-
eter choices follow the best-performing configu-
rations reported by Garces Arias et al. (2025a).
Detailed descriptions of these strategies appear in
Table 3 in Appendix A.1.

Our evaluation framework integrated both human
assessments and automated metrics. Human eval-
uators rated text quality on a 5-point Likert scale
ranging from 1 (low quality) to 5 (high quality), see
Table 4, following instructions detailed in Appendix
A.4. Though the evaluators were authors of this
paper, we implemented a blind evaluation protocol
where they scored texts without knowledge of their
source or the decoding strategy used, minimizing
potential biases (Belz et al., 2020). We comple-
mented these subjective judgments with cardinal
Q*Text scores that synthesize generation perplexity,
diversity, and coherence metrics as established by
Garces Arias et al. (2025b). Specifically, Q*Text

is computed as a weighted combination: Q*Text

33wy M; P;(M;) .. .
%, where M is inverse-normalized
i=1 Wi

perplexity, M, is coherence, M3 is diversity, and
P; are Gaussian penalties that discourage extreme
values. For a complete technical overview of this
metric and its components, we refer to Section A.2.

3.2 Representation within the GSD
framework

As previously stated, we compare human-generated
text completion (H) to five decoding strategies: BS,
CS, TS, Tk, and T, based on prompts from the
WikiText/WikiNews benchmark suites (see Sec-
tion 3.1). The set of decoding strategies is defined
as:

D ={H, BS, CS, TS, T, T, }, 3)

whereas the set # represents the underlying popula-
tion from which the prompts in WikiText/WikiNews
are sampled. We evaluate text quality using three
metrics: Q*Text (denoted as ¢;), which provides
cardinal quality assessments, while metrics ¢, and
¢3 are ordinal and based on evaluations from two of

the paper’s authors (hence, the number of cardinal
dimensions is z = 1).

Following Section 2, we define two ranking re-
lations on the set of quality vectors spanned by
our (mixed-scaled) three-dimensional performance
metric ® = (¢1, P2, ¢3): Ry is a (partial) order that
ranks the quality vectors associated with our metric
® based on the ordinal evaluations (¢;, ¢3) of the
completions for the prompts from # as well as
the cardinal evaluation from the automated metric
Q*Text (¢1). R, is defined as a relation capturing
the difference in intensity between pairs of qual-
ity vectors associated with the multidimensional
metric @. As described in detail in Section 2, we
can use these two relations R; and R, to obtain a
ranking of the decoding strategies in D by applying
(empirical) generalized stochastic dominance.

We use empirical GSD to represent these rank-
ings and assess each decoding strategy’s perfor-
mance. The empirical GSD-front consists of all de-
coding strategies that are not strictly outperformed,
i.e. dominated across all three metrics by others.
This allows us to investigate whether human text
completion enhances the quality of generated text
compared to the five decoding strategies. For a com-
prehensive description of the quality assessment
criteria, we refer to Table 4 in Appendix A.4.

3.3 Results

To examine whether human text generations can
potentially improve on completion quality com-
pared to the aforementioned automatic strategies
(see Section 3.1), we conduct the statistical test
for the GSD-front as described in the paragraph
following Equation (1) in Section 2.2 based on the
following specification of the null hypothesis:

Hy : H ¢ gsd({H, BS, CS, TS, Tt, T, })

at a significance level of @ = 0.05. As described
in Section 2, to test the hypotheses pair (Hy, Hy),
we perform statistical tests for five auxiliary null
hypotheses, each corresponding to a pairwise GSD-
dominance comparison between human text com-
pletion (H) and one of the automatic text completion
strategies BS, CS, TS, Ty, and T, (the detailed test-
ing schemes for those auxiliary tests can be found
in Jansen et al. (2024, A.2.2)). The distribution
of the resampled pairwise test statistics, i.e., the
empirical versions of D(H, S), where S € D\ {H}
(see Equation (2)), is illustrated in Figure 2 (left).
It demonstrates that the pairwise tests are signif-
icant across all five comparisons. Consequently,
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Figure 2: Left: Empirical densities of resampled test statistics for pairwise GSD-comparisons between human and
five decoding strategies, using prompts from Wikinews and Wikitext. Vertical markers indicate the observed test
statistic values, with the rejection threshold (@ = 0.05) marked in red. Right: Assessment of i.i.d. assumption
violations for the same pairwise GSD-comparisons between human and five decoding strategies. The plot shows
computed p-values with the significance threshold (@ = 0.05) indicated by the red horizontal line.

we conclude that human completion is not sig-
nificantly outperformed by any of the automatic
decoding strategies in the set 9 and, therefore, can
be assumed to lie in the GSD-front gsd(D) of the
considered set of decoding strategies D at level
a = 0.05. In other words, we find no evidence to
suggest that human completion is redundant—the
considered decoding strategies have not yet reached
a quality level where human completion offers no
additional value. By incorporating statistical in-
ference, we have moved beyond mere descriptive
analysis to an inductive analysis that extends beyond
the benchmark suites.

Important clarification: Being in the GSD-front
means that human text is not dominated by any
automatic method—there is no statistical evidence
that any decoding strategy outperforms human text
across all metrics. This does not imply that human
text is superior in an absolute sense, only that it
remains competitive and potentially preferable in
certain contexts.

As emphasized in Section 1, robust inference
analysis should also account for potential devi-
ations from the i.i.d. assumption (see the last
paragraph of Section 2 for further details). While
recommendable in general, this is especially true
for applications like the one at hand, where the as-
sumption of identical distributions is questionable
because of the sampling scheme of the prompts (two
different suites), and the independence assumption
is questionable because of the way the text evalua-
tions of the human evaluators are obtained (poten-
tial learning effects during the evaluation process).

Therefore, in Figure 2 (right), we examine the ro-
bustness of our test decision under contamination
of the benchmark suite, specifically considering
deviations from the i.i.d. assumption. The figure
displays the p-values of all five (significant) auxil-
iary tests as functions of the contamination size of
the benchmark suite, i.e., the degree of deviation
from the i.i.d. sampling assumption of the prompts.
We see that the pairwise comparison results remain
significant as long as at most 1 (for the pink, the
green, the blue, and the purple line) or 3 (for the
yellow line) prompt(s) deviate(s) from this assump-
tion. Since all five pairwise comparisons must be
significant to reject the null hypothesis above, we
conclude that, at most, one prompt can deviate
(and stem from some arbitrary distribution) while
maintaining the statistical significance of our test
decision.

Beyond the specific results for the concrete ap-
plication, this casts an interesting light on reliable
statistical statements in benchmark studies in gen-
eral: Since such statements (especially those of
inferential nature) depend heavily on idealizing as-
sumptions about the analyzed benchmark suites, it
is all the more important that benchmark suites are
curated according to appropriate standards.

4 How Can the Field Benefit from the
GSD Framework?

Current text generation research overwhelmingly
optimizes individual metrics in isolation, leading
to systems that excel along one dimension while
potentially degrading others. For instance, recent
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Method Q*Text Human1l Human 2
Human 47.95 3.08 3.44
Top-p (p=0.95) 32.33 2.70 2.68
Top-k (k=50) 35.06 2.46 2.62
Temperature (7=0.9) 38.66 2.24 2.60
Contrastive (¢=0.6, k=10)  23.60 2.18 242
Beam (B=5) 7.02 1.64 2.36
Average 30.77 2.38 2.69

Table 2: Mean performance of each method across Q*Text scores and two human evaluations (5-point Likert
scale). Human text shows the highest scores, with sampling-based decoding strategies (top-p, top-k, temperature)
outperforming deterministic methods (contrastive, beam search).

advances in decoding strategies—including locally
typical sampling (Meister et al., 2023)—rely primar-
ily on MAUVE scores for hyperparameter tuning
and benchmarking. While MAUVE captures distri-
butional similarity, optimizing solely for this metric
may inadvertently compromise other dimensions
of quality, such as coherence or diversity.

Our GSD framework addresses this limitation by
enabling system design guided by a holistic view of
non-dominated methods, rather than single-metric
optimization. Instead of declaring one decoding
strategy "best" based on isolated metrics, practition-
ers can identify the set of competitive approaches
across multiple quality dimensions simultaneously.
This shift—from descriptive metric reporting to sta-
tistical assessment of method dominance—provides
actionable guidance for both research and deploy-
ment decisions.

Research Applications. When developing novel
decoding algorithms, researchers can use GSD to
determine whether their method belongs to the
statistical front of non-dominated strategies. This
provides a rigorous criterion for publication-worthy
contributions: a new method merits investigation
if it cannot be shown to be dominated by existing
approaches across all relevant quality dimensions.

Broader Impact. As LLLM performance evolves,
the GSD framework provides a principled approach
to assess whether emerging systems significantly
outperform established baselines—whether human
text or state-of-the-art algorithms. Although we fo-
cused on open-ended text generation here, the same
approach extends to other tasks (summarization,
translation, reasoning) by selecting appropriate,
task-specific metrics.

5 Related Work

Benchmarks serve as critical platforms for method-
ological validation in machine learning (Ye et al.,
2024; Hu et al., 2020; Kirk et al., 2024). However,
recent studies have exposed significant challenges:
(Berrar, 2024) show that performance improve-
ments often fail to replicate, while (Madaan et al.,
2024) demonstrate that minor variations in ini-
tialization or sampling can alter rankings (White
et al., 2024; Zhou et al., 2023). These findings
underscore the need for more statistically rigorous
evaluation methodologies. In response, researchers
have developed frameworks that explicitly acknowl-
edge benchmark datasets as finite samples from
larger populations (DemSar, 2006; Benavoli et al.,
2017). This has led to multi-criteria benchmarking
paradigms across diverse domains (Jansen et al.,
2024; Rodemann and Blocher, 2024), from pre-
dictive ML balancing accuracy against efficiency
(Koch et al., 2015) to optimization tasks requiring
simultaneous performance and speed considera-
tions (Schneider et al., 2018). For neural text
generation, multiple metrics assess different quality
dimensions: diversity measures lexical richness,
MAUVE evaluates distributional similarity, coher-
ence calculates prompt-continuation likelihood, and
perplexity assesses predictability (Hashimoto et al.,
2019; Pillutla et al., 2021; Su et al., 2022; Celiky-
ilmaz et al., 2021). Single-metric optimization
proves inadequate—coherence optimization yields
repetitive outputs (degeneration), while diversity
maximization compromises semantic integrity (Lee
et al., 2022; Holtzman et al., 2019). Despite this,
multicriteria benchmarking has declined since 2022
(Figure 1). Moreover, the discrepancy between
automatic metrics (cardinal) and human evalua-
tions (ordinal) presents additional challenges (Su
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and Xu, 2022; Garces Arias et al., 2024; Ding
et al., 2025). Integrated frameworks like HUSE
(Hashimoto et al., 2019) combine human judgments
with model probabilities. Recently, (Garces Arias
et al., 2025b) proposed a multicriteria framework
using the Bradley-Terry model for pairwise com-
parisons and introduced Q*Text—a weighted mean
of coherence, diversity, and perplexity. Our work
builds on these advances, proposing a framework
that supports rigorous statistical inference while
seamlessly integrating both automatic and human
evaluations.

6 Conclusion

We introduced a framework based on Generalized
Stochastic Dominance (GSD) that addresses three
critical limitations in current methodologies for
evaluating LLM-generated text: (1) the inadequacy
of single-metric assessment, (2) the incompatibility
between cardinal automatic metrics and ordinal
human judgments, and (3) the absence of robust
statistical guarantees. The GSD-front approach inte-
grates multiple quality dimensions while preserving
their distinct measurement scales and enables quan-
tifying the robustness of inference under potential
deviations from i.i.d. assumptions. To validate this
framework, we conducted a comparative analysis
of five common decoding strategies against human-
written text, though the method generalizes to any
set of generation approaches.

The GSD-front enables statistically sound multi-
criteria evaluation without requiring arbitrary met-
ric weighting or compromising measurement scale
integrity. By incorporating techniques from ro-
bust statistics, our approach extends beyond de-
scriptive benchmark analysis to provide inferential
guarantees that account for potential dependencies
in human evaluations. This advancement provides
researchers and practitioners with a more rigorous
methodology for evaluating text generation systems.
Future work could extend the GSD approach to
other generation tasks such as summarization and
translation, investigate additional quality dimen-
sions, and further enhance statistical robustness for
complex evaluation dependencies.

Limitations

Despite the strengths of our proposed framework,
several limitations should be acknowledged. First,
our experimental validation focused primarily on
benchmarking human text continuations with LLM-

generated text in an open-ended text generation
task. While this provided a suitable context for
demonstrating our framework, different neural text
generation tasks—such as summarization and ma-
chine translation—may present unique evaluation
challenges and yield different conclusions. Second,
the human evaluation component in our work was
conducted by the authors themselves, potentially
introducing expertise bias. Evaluators familiar
with the field may interpret quality dimensions
differently than end-users would. Finally, while
our statistical methodology quantifies robustness
against certain deviations from i.i.d. assumptions,
real-world evaluation scenarios often involve more
complex dependencies that require further method-
ological developments. Despite these limitations,
we believe our work makes a substantial contribu-
tion to the field of text generation evaluation and
provides a solid foundation for more statistically
sound multi-criteria benchmarking approaches.
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A Appendix
A.1 Decoding strategies

Strategy Parameters Description Authors

Beam search beam width =5 Deterministic search (Freitag and
algorithm that main- Al-Onaizan,
tains multiple hypothe- 2017)
ses (beams).

Contrastive k=10,a =0.6 Balances token prob- (Su et al.,

search ability and diversity 2022)
through a contrastive
objective.

Sampling with temperature = 0.9 Adjusts the sharpness (Ackleyetal.,

temperature of the probability dis- 1985)
tribution before sam-
pling.

Top-k sampling &k =50 Samples from the k (Fan et al.,
most probable tokens.  2018)

Top-p sampling p =0.95 Samples from the (Holtzman
smallest set of tokens et al., 2019)
whose cumulative
probability exceeds p.

Table 3: Overview of evaluated decoding strategies and hyperparameter choices, following best performance
reported by (Garces Arias et al., 2025a).

A.2 Automatic metrics

Diversity. This metric aggregates n-gram repetition rates:

4 .
_ 1—[ | unique n-grams (Xcon( ) |
B | total n-grams (Xcont) |

A low diversity score suggests the model suffers from repetition, and a high diversity score means the
model-generated text is lexically diverse.

Coherence. Proposed by Su et al. (2022), the coherence metric is defined as the averaged log-likelihood
of the generated text conditioned on the prompt as

x

ZlogpM (& | [x:%2<])
=1

coh(%,x) =
where x and X are the prompt and the generated text, respectively; [:] is the concatenation operation and
M is the OPT model (2.7B) (Zhang et al., 2022).

Generation Perplexity. The perplexity ppl(W) of a sequence of words (or tokens) W = wy, wa, ..., wn
is computed as (Jelinek et al., 2005; Holtzman et al., 2019):

N
1
PPL(W) = exp |~ ;logmwi | Wi o Wis1)

Here, p(w; | wi, ..., w;—1) is the probability of word w; given its preceding context.
Perplexity measures how well a probabilistic model predicts a sequence of words. Lower perplexity
indicates better predictive performance, as the model assigns a higher probability to the actual sequence.
It is commonly used to evaluate the quality of language models.
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A3 Q*Text

Q*Text (Garces Arias et al., 2025b) is calculated based on normalized and penalized coherence, diversity,
and generation perplexity (see Section A.2).

Metric Formulation Q*Text is defined as:

3 wiM;P;(M;
Z,_1W3 (M;) @

Zizl Wi

Q*Text =

where M; are normalized metrics, w; are weights, and P;(x) = exp(—c; (x — u;)?) are Gaussian penalties
that discourage extreme values. Parameters u; represent optimal targets while @; controls penalty strength.

Normalization Inverse normalization is applied to perplexity (lower is better): M; = %, and
max min
M j —Mpin

standard min-max normalization to coherence and diversity (higher is better): M; = for

j€{2,3}.

Parameter Optimization The nine parameters 6 = {w;, u;, ai}?zl are optimized via:

Mmax —Mmin

0" = argmax ps(Q*Text(6), H) 5)
where p; is Spearman correlation and H are publicly available human ratings (Garces Arias et al., 2025a).

A.4 Human evaluation

A.4.1 Instructions for human evaluators

Please disregard formatting characters and special characters such as <|endoftext|> or characters that have
remained unrecognized and received unusual encoding. The evaluation should focus primarily on the
quality of the content.

* Quality should be measured by how human-like, fluent, and coherent the text is perceived by you.

* Coherence: The text feels consistent throughout, not a collection of jumbled topics. It maintains
focus with a consistent thread and does not read as a series of disconnected sentences.

* Fluency: The text is written in grammatical English. There are no obvious grammar mistakes that a
person would not typically make.

An incomplete final word or incomplete sentence should not be counted as a mistake and should not affect
the fluency assessment. The English should be considered natural as long as it is grammatically correct.
Do not penalize for spaces between parts of words (e.g., “don ’t”) or simpler sentences. Simple English is
to be considered equally valid as complex English. Please utilize the following Likert scale.

A.4.2 Inter-rater agreements

The analysis focused on weighted agreement measures appropriate for ordinal data. The weighted Cohen’s
Kappa coefficient was 0.324 (p-value ~ 1.2 x 107°), indicating fair agreement between evaluators when
accounting for the magnitude of disagreements. This measure applies linear weights to disagreements
based on their distance on the Likert scale, recognizing that a disagreement between ratings of 1 and 3
represents a larger discrepancy than between 1 and 2.

Spearman’s rank correlation coefficient was 0.518 (p-value ~ 5.38 x 1072%), demonstrating a moderate
positive correlation between the evaluators’ ratings. This indicates that while absolute scores sometimes
differed, the relative ranking of text quality showed reasonable consistency between evaluators. Additional
analysis revealed that 82.7% of all ratings were within one point of each other, with an average absolute
difference of 0.82 points. The statistical significance of both measures confirms that the agreement between
evaluators is not due to chance, despite being only fair to moderate—a common finding in subjective text
quality assessment that further motivates the inclusion of complementary automatic metrics.
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Score | Quality Level | Description

5.0 | Excellent Text is exceptionally clear, coherent, and well-structured. Con-
tent is comprehensive, accurate, and presented in a highly
engaging manner. No improvements needed.

4.0 | Very Good Text is clear, well-organized, and contains few errors. Ideas flow
logically with appropriate transitions. Content is accurate and
thorough.

3.0 | Good Text communicates the intended message effectively. Organiza-

tion is adequate with some minor clarity or coherence issues.
Content is mostly accurate.

2.0 | Fair Text has significant issues with clarity, organization, or accuracy
that impact comprehension. Ideas may be underdeveloped or
poorly connected.

1.0 | Very Poor Text is difficult to understand with major structural problems,
significant errors, and/or incomplete information. Communica-
tion largely fails.

Table 4: Text quality assessment scale for human evaluators.

* Low Q*Text
Medium Q*Text
* High Q*Text

Human A

5 4 3 P 1

Text Quality Evaluations

&0

60
O Text

40

20

HumanB 4

Figure 3: Evaluation results for 300 text continuations generated from 50 prompts derived from Wikitext and
Wikinews datasets. The assessment combines cardinal automatic metrics (Q*Text) with ordinal evaluations from
two independent human raters using a 5-point Likert scale.
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