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Abstract

Data-to-text generation tasks often involve
processing numerical time-series as input
such as financial statistics or meteorologi-
cal data. Although large language models
(LLMs) are a powerful approach to data-to-
text, we still lack a comprehensive under-
standing of how well they actually understand
time-series data. We therefore introduce a
benchmark with 18 evaluation tasks to as-
sess LLMs’ abilities of interpreting numeri-
cal time-series, which are categorized into: 1)
event detection—identifying maxima and min-
ima; 2) computation—averaging and summa-
tion; 3) pairwise comparison—comparing val-
ues over time; and 4) inference—imputation
and forecasting. Our experiments reveal five
key findings: 1) even state-of-the-art LLMs
struggle with complex multi-step reasoning;
2) tasks that require extracting values or per-
forming computations within a specified range
of the time-series significantly reduce accu-
racy; 3) instruction tuning offers inconsis-
tent improvements for numerical interpretation;
4) reasoning-based models outperform stan-
dard LLMs in complex numerical tasks; and
5) LLMs perform interpolation better than fore-
casting. These results establish a clear baseline
and serve as a wake-up call for anyone aim-
ing to blend fluent language with trustworthy
numeric precision in time-series scenarios.

1 Introduction

The application of large language models(LLMs)
has expanded from tasks with natural language in-
puts, such as question answering and summariza-
tion, to tasks involving structured data inputs, re-
ferred to as data-to-text tasks. Within data-to-text,
numerical time series generation, such as various
sensor data or stock market prices, hold significant
potential for practical applications like financial
reporting (Murakami et al., 2017; Hamazono et al.,
2020; Kantharaj et al., 2022) and automated com-

Inflation is an important measure of any country ‘s economy , and the Retail Price
Index ( RPI ) is one of the most widely used indicators in the United Kingdom ,
with the rate expected to fall to 1.2 percent in 2020 . The forecasted inflation rate
for this index is estimated to increase in upcoming years , to 3.1 percent by 2022 .

Chat-to-Text

Benchmarks for Understanding Numerical Time Series

Figure 1: The figure above shows an example of a text
generation task using numerical time series data from
the chart-to-text dataset. The bottom part displays an
example from our constructed “Benchmarks for Under-
standing Numerical Time Series.” This benchmark is
designed to assess the numerical comprehension capa-
bilities required for downstream tasks.

mentary generation for games. Accurate text gen-
eration over time-series demands two key capabil-
ities: 1) numerical interpretation—understanding
numerical sequence; and 2) generation—producing
a fluent text based on the understood numerical
sequence.

However, most prior research focused on eval-
uating only the final generated text, indirectly as-
sessing numerical understanding without directly
verifying if LLMs accurately comprehend numeri-
cal sequences. Additionally, existing benchmarks
for assessing numerical understanding in LLMs
are primarily centered around numerical computa-
tions (Li et al., 2024a; Liu et al., 2024a), leaving
a gap in research specifically focused on evaluat-
ing the ability of LLMs to comprehend numerical
sequences for text generation tasks.
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To systematically evaluate these capabilities, we
introduce a benchmark with 18 evaluation tasks de-
signed to assess LLMs’ ability to interpret numer-
ical time-series data. These tasks are categorized
into: 1) event detection, such as detecting maxima
and minima; 2) computation, such as averaging and
summation; 3) pairwise comparison, such as eval-
uating numerical relationships across time; and 4)
inference, such as imputation and forecasting. Be-
cause each answer is a plain number, every slip is
instantly visible, offering a direct read on numeric
fidelity in generated text.

Through experiments, we reveal five key find-
ings: 1) even state-of-the-art LLMs struggle with
multi-step numerical reasoning; 2) performance
significantly declines even with simple range con-
straints, highlighting the inherent difficulty of
multi-step reasoning in time-series tasks; 3) in-
struction tuning does not consistently improve nu-
merical interpretation; 4) certain reasoning-based
models outperform standard LLMs in complex nu-
merical tasks; and 5) applying a common linear
methodology reveals a notable divergence in accu-
racy, particularly between imputation and forecast-
ing tasks, indicating that inherent task differences
significantly influence LLM performance despite
employing identical analytical approaches.

2 Related Work

Interpreting sequences of numbers is a basic step
for any model that needs to generate reliable text
about data. A recent survey highlights the growing
use of time-series inputs in large language models
(Zhang et al., 2024). Real applications already de-
pend on this skill, for example automated financial
reports (Murakami et al., 2017; Hamazono et al.,
2020), chart-to-text captioning (Kantharaj et al.,
2022), and systems that produce natural-language
forecasts (Jin et al., 2024).

The numerical understanding ability of LLMs
has attracted significant attention from researchers,
leading to the release of benchmark datasets for
mathematical problems (Liu et al., 2024b; Li et al.,
2024b; Ahn et al., 2024; Collins et al., 2023; Lu
et al., 2023), reasoning with tabular data (Akhtar
et al., 2023), and handling numerical information
in free text (Chen et al., 2024). However, these
datasets do not examine whether models can trans-
form raw numbers into coherent natural-language
prose, especially for time-series inputs—an ability
our benchmark is designed to measure.

While existing time-series forecasting tasks,
such as those introduced by Jin et al. (2024), could
be used as one of benchmarks for time-series under-
standing to some extent, they fundamentally differ
from our approach because of three reasons: 1) the
time-series forecasting tasks lack of a definitive
answer – forecasting tasks require predicting future
values, which inherently allows for multiple plausi-
ble outcomes, and even among humans, predictions
can vary, 2) dependence on inference – many exist-
ing tasks require extrapolation or assumptions be-
yond the given data, and 3) requirement for domain
expertise – some tasks, such as predicting market
prices in finance (Jin et al., 2024), rely heavily on
domain knowledge.

A very recent work by Fons et al. (2024) also
proposes a benchmark for evaluating LLMs on nu-
merical time-series understanding. They primarily
use synthetic data for tasks that often integrate nu-
merical series with textual information or analyze
multiple series, rather than focusing solely on the
interpretation of individual numerical sequences.
In contrast, our benchmark provides a more foun-
dational and comprehensive assessment focused on
single numerical sequences, quantitatively measur-
ing LLMs’ core numerical comprehension across
diverse task types.

3 Benchmark

3.1 Evaluation Tasks

Our benchmark aims to evaluate a model’s abil-
ity to understand numerical properties directly
from time-series data without complex inference or
domain-specific knowledge. We define this ability
as the capability to obtain well-defined numerical
properties—such as maximum values, means, and
the time points at which extrema occur—directly
from time-series data, without relying on domain-
specific knowledge or external inference.

Specifically, we propose a set of 18 evaluation
tasks, which are detailed along with their prompts
in Table 1. These tasks are categorized into four
categories: 1) event detection, 2) computation, 3)
pairwise comparison, and 4) inference. Numerical
values obtained by solving these tasks are often
mentioned in text of data-to-text generation. There-
fore, these tasks would measure LLMs’ ability to
interpret numerical time-series that is required for
data-to-text generation. Each instance of the tasks
has a uniquely determined correct answer, ensuring
that interpretation remains objective and aligned
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Category Task Task Instructions Exp. Answer

Event Max Which is the value that is the maximum? 8.9
Detection Min Which is the value that is the minimum? 0.014

Max w/ range Which is the value that is the maximum from 2008 to 2010? 213
Min w/ range Which is the value that is the minimum from 2008 to 2010 ? 208

Maxtime Which is the year corresponding to the maximum value? 2003
Mintime Which is the year corresponding to the minimum value? 1990

Peak point Which is the peak value in the following time series data? Multiple
peak values may exist. If there are no peaks, please respond with
None.

2756.67

Dip point Which is the dip value in the following time series data? Multiple
peak values may exist. If there are no peaks, please respond with
None.

1005.42,
1002.25

Exceed thresh. Which year does the value becomes bigger than 0.9? 2003, 2006
Below thresh. Which year does the value becomes smaller than 0.9? 2010

Computation Average Calculate the average value of the following time series data. 2006.45
Average w/ range Calculate the average value of the range from 2001 to 2005. 205.45

Sum Calculate the sum of the following time series data. 20006.456
Sum w/ range Calculate the sum of the values in the range from 2004 to 2009. 10800.594

Pairwise
Comparison

Difference Calculate the absolute difference between the values for 2004 and
2009.

60.1

Magnitude Com-
parison

Compare the values of the years 2008 and 2010 in the given time
series. Provide the appropriate symbol to fill in the parentheses: ’>’
or ’<’ or ’=’.

>

Inference Imputation Linearly interpolate the ’NaN’ value using the data points immedi-
ately before and after it.

101

Forecasting Predict the value for the next chronological period using linear re-
gression based on the provided data.

12000

Table 1: The task instructions in prompts and examples of expected answers.

with human judgment.

3.1.1 Event Detection (10 tasks)

This category assesses LLMs’ ability to identify
significant numerical events. In downstream appli-
cations like language generation from numerical
time-series data (Kantharaj et al., 2022), such nu-
merical values in the time series need to be recog-
nized and mentioned in the textual output. This
category contains the following 10 tasks.
Maximum/minimum value: This is a task to find
the maximum or minimum values in the given time
series. This task would be essential for understand-
ing the scale of the data.
Maximum/minimum value within a specified
range: This is a task to find the maximum or min-
imum value within a given range of a given time
series.
Time with maximum/minimum value: This is a
task to identify the time points at which the max-
imum (or minimum) value occurs in a given time
series. This task measures the model’s ability to
track temporal variations and recognize when sig-
nificant events take place.

Peak and dip points: This is a task to detect peak
and dip points in numerical time series data. A
peak point refers to a local maximum compared to
surrounding values, while a dip point refers to a
local minimum.
Points exceeding or below a threshold: This task
is to identify points that exceed or fall below a
predefined threshold in a given time series.

3.1.2 Computation (4 tasks)

This category evaluates the ability to perform fun-
damental arithmetic operations on numerical time
series data. While the arithmetic ability of LLMs
for solving math word problems have been studied
in previous research, we specifically design basic
arithmetic tasks for understanding numerical time
series data.
Average: This is a task to compute the mean of a
given numerical time series.
Average within a specified range: This is a task
to compute the mean within a specific segment of
a given numerical time series. By calculating the
mean over a limited period, we assess the model’s
ability to capture local trends accurately.
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Sum: This is a task to compute the sum of all
values in a given numerical time series.
Sum within a specified range: This is a task to
compute the sum within a specific period in a given
numerical time series. This task assesses the ability
to correctly identify and process local values for
summation.

3.1.3 Pairwise Comparison (2 tasks)
This category examines the ability to compare val-
ues at different time points. In datasets used for lan-
guage generation from numerical time series (Kan-
tharaj et al., 2022), reference texts often contain
comparisons explicitly or implicitly, such as in
“The population of Europe as of 2020 was estimated
to be 743 million, an increase of three million when
compared with 2015”. To choose a word decrease,
LLMs need to have the ability to recognize the
larger of the two given values.
Difference: This is a task to compute the difference
between two values at different time points in a
given numerical time series.
Magnitude comparison: This is a task to com-
pare the magnitudes of values at two different time
points in a given numerical time series, i.e., to rec-
ognize the larger of the two values.

3.1.4 Inference tasks (2 tasks)
This category evaluates the model’s ability to in-
fer missing and future values from time-series
data. For clarity and simplicity, we adopt two
tasks—imputation to fill missing data by linear in-
terpolation, and forecasting to predict future values
by linear regression. By specifying a method for
imputation or forecasting as linear regression, we
make our metric immune to the choice of a method
and attempt to focus on the core ability of time-
series reasoning.
Imputation: This task assesses the ability to esti-
mate and fill in missing data points within a given
numerical time-series using linear interpolation.
Forecasting: This task requires the prediction of
subsequent values in a given numerical time-series
using linear regression on historical data.

3.2 Benchmark Dataset

We construct our benchmark dataset based on
Chart-to-Text dataset (Kantharaj et al., 2022). Al-
though each instance in Chart-to-Text is a pair of
a chart and a text, we use only charts, because we
are not going to work on a text generation task. We
obtain the preprocessed version of this data pro-

vided by Kawarada et al. (2024b), which contains
only line graphs. This dataset consists of 2,360
numerical time series on topics such as crime rates,
mortality rates, and national debt, enabling evalua-
tion across diverse real-world contexts.

For each instance in the dataset, we calculated
the gold-standard answers to the tasks described
in Section 3.1 using Python scripts.1 Although
those are basic Python scripts such as calculating
the average given a list of numbers, we sampled
180 instances (10 per task) and confirmed that their
answers are correct.

For tasks requiring specified ranges, such as
“maximum values within a specified range”, we
randomly select two time points (e.g., 2010 and
2017) and generate the gold answer accordingly.
A similar automatic annotation process is applied
to “points exceeding or below a threshold” tasks,
where a threshold value is randomly selected within
the given numerical range. For “difference” and
“magnitude comparison” tasks, two time points
for comparison are randomly selected. Similarly,
for imputation, missing values are introduced at
random positions for the model to predict. We
also manually validated randomly selected 100
instances and found no outliers, noise, or irreg-
ularities in the underlying series. This check was
performed independently of the 180-instance val-
idation used to confirm the accuracy of our gold-
answer scripts.

4 Experiments

4.1 Prompts

Prompts used to compare LLMs typically begin
with an instruction2 (e.g., “Which is the maximum
value?”). All task instructions are listed in Table 1.

Our preliminary experiments revealed significant
variations in the output format, making consistent
comparisons challenging. Specifically, some LLMs
provided lengthy explanatory responses, while oth-
ers output mathematical formulas instead of a di-
rect numerical answer. To address this issue, we
employed few-shot learning and additional instruc-
tions to enforce a standardized output format.

For few-shot learning, we used five-shot prompt-
ing, as performance gains plateaued beyond five

1The python script and the gold annotations will be
made publicly available at https://github.com/chiwacco/
numerical-time-series-understanding.git.

2We also evaluate Japanese translations. In our experi-
ments, accuracy is higher when the prompt language matches
each model’s pretraining (Fig. 11, Appendix F).
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examples, consistent with findings from Kawarada
et al. (2024a). Despite this, some models still failed
to adhere to the required format, particularly in
computation tasks, where they either generated for-
mulas or long descriptive sentences instead of di-
rectly outputting numerical values. To mitigate this,
we explicitly instructed models to provide only nu-
merical answers, preventing the generation of in-
termediate steps or explanations. In practice, we
experimented with several different prompt formu-
lations and selected the one that yielded the highest
accuracy and the most stable performance across
all tasks and models (Appendix B). The propor-
tion of outputs with format errors is reported in
Appendix C.

Numerical time-series are represented as a
JSON (Kawarada et al., 2024b) format and writ-
ten in the prompt. In this structure, the keys in
the JSON format represent time, i.e., year in our
dataset, and values are the corresponding data. Ap-
pendix A provides details, including JSON struc-
ture examples, specific instruction phrasing for
numerical-only outputs, and the integration of few-
shot examples.

4.2 Evaluation Metrics

Our primary evaluation metrics are Accuracy and
F1 score, chosen to suit the characteristics of each
task. Accuracy is used for tasks where a single nu-
merical value is expected. These tasks include: 1)
maximum value, minimum value, maximum value
within a specified range, minimum value within a
specified range, 2) time with the maximum or mini-
mum value3, 3) average, average within a specified
range, sum, sum within a specified range, 4) mag-
nitude comparison, difference, and 5) imputation
value and forecasting value. F1 score is used for
the tasks involving the detection of multiple values,
such as peak and dip points, points exceeding or
below a threshold. This metric assesses the abil-
ity to accurately identify events while minimizing
false positives and false negatives.

For the computation tasks evaluated with Ac-
curacy (i.e., mean, mean within a specified range,
sum, sum within a specified range, difference, im-
putation value, and forecasting value), we imple-
ment a tolerance-based scoring because LLMs may

3Strictly speaking, multiple timestamps may exist for max-
imum and minimum values, but such cases were rare in our
dataset. Thus, we treated these tasks as single-value predic-
tions, accepting only the first timestamp output as correct if it
matched any valid timestamp.

produce outputs that slightly deviate from the pre-
cise result due to numerical rounding and trunca-
tion, making exact matching challenging. In fact,
our preliminary experiments show that all meth-
ods exhibited very low performance under an exact
match evaluation. Therefore, we consider an output
to be correct if it falls within ±5% of the ground
truth value. A more detailed justification for this
approach, including accuracy results across vari-
ous tolerance levels (0% to 5%) and an assessment
of error magnitudes using Median Absolute Error
(MedAE), can be found in Appendix D.

4.3 Large Language Models

We evaluate four categories of LLMs: 1) API-based
GPT models, 2) open-source models with approxi-
mately 7 billion parameters, 3) open-source models
with approximately 70 billion parameters, and 4)
reasoning-based models.

In the GPT category, we use GPT-3.5-turbo,
GPT-4-turbo, GPT-4o, and GPT-4o-mini (Brown
et al., 2020; OpenAI, 2024a,b). For open-source
models with approximately 7 billion parameters
LLMs: Llama-2-7B, Llama-2-7B-Instruct, Llama-
3.1-8B, Llama-3.1-8B-Instruct (Meta, 2023, 2024),
Llama-3.1-Swallow-8B and Llama-3.1-Swallow-
8B-Instruct (Fujii et al., 2024), and Gemma-
2 (Gemma Team, 2024).

For open-source models with approximately
70 billion parameters, we evaluate Llama-
3.1-70B (Meta, 2024), Llama-3.1-Swallow-70B-
v0.1 (Fujii et al., 2024), and Llama-3.1-Swallow-
70B-Instruct (Fujii et al., 2024). Finally, for
the reasoning-based category, we include Ope-
nAI o1 (OpenAI, 2024c) and DeepSeek-R1-Distill-
Llama-8B (Distill-Llama) (DeepSeek-AI, 2025).

4.4 Implementation Details

In all experiments, we set the temperature to 0.2
and limited the generation to 128 tokens. For exper-
iments with local models, we used Hugging Face’s
transformers library4 without applying 4-bit or
8-bit quantization, and inference was performed
using a batch size of 1. We conducted inference on
A100 80GB GPUs: models with approximately 7
billion parameters ran on a single GPU, whereas
models with approximately 70 billion parameters
were distributed across four GPUs. During evalua-
tion, any output that did not adhere to the specified
format was deemed incorrect. To account for vari-

4https://huggingface.co/docs/transformers
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Full Range Time Extrema Thresh Full Range Pair Inf

Ins. Rea. max min max min max min peak dip exc bel avg sum avg sum diff comp imp fcst

GPT-3.5-turbo ✓ .98 .95 .35 .32 .39 .38 .34 .28 .82 .74 .49 .13 .25 .26 .26 .57 .50 .27
GPT-4-turbo ✓ 1. .99 .77 .76 .86 .87 .54 .46 .95 .84 .83 .56 .25 .53 .92 .77 .91 .27
GPT-4o ✓ 1. .99 .76 .70 .94 .91 .64 .52 .98 .98 .74 .50 .30 .48 .79 .83 .90 .26
GPT-4o-mini ✓ .98 .95 .35 .49 .56 .68 .35 .39 .90 .93 .60 .17 .26 .25 .40 .81 .61 .29

Llama2-7B .47 .41 .20 .15 .08 .07 .14 .09 .35 .29 .41 .05 .30 .03 .07 .32 .25 .18
✓ .72 .68 .20 .17 .10 .10 .24 .17 .35 .27 .40 .03 .26 .03 .13 .52 .01 .15

Llama3.1-8B .89 .85 .27 .30 .30 .24 .24 .24 .52 .48 .52 .17 .27 .13 .56 .48 .32 .09
✓ .80 .82 .34 .33 .23 .33 .20 .13 .71 .66 .32 .04 .21 .24 .08 .56 .30 .05

Swallow-8B .89 .84 .29 .25 .32 .27 .25 .24 .52 .50 .46 .08 .25 .12 .47 .46 .28 .10
✓ .79 .81 .38 .36 .37 .31 .35 .26 .65 .63 .34 .03 .27 .23 .12 .47 .01 .01

Gemma2-9B .95 .94 .34 .31 .29 .32 .24 .22 .43 .39 .47 .23 .23 .20 .45 .57 .51 .02
✓ .98 .97 .46 .36 .47 .43 .19 .23 .59 .56 .56 .20 .27 .21 .55 .63 .66 .14

Llama3.1 70B .97 .95 .43 .55 .63 .55 .19 .23 .59 .56 .61 .47 .31 .32 .87 .79 .68 .27
✓ .98 .97 .60 .56 .80 .74 .14 .44 .89 .84 .25 .14 .11 .21 .84 .83 .77 .27

Swallow-70B .97 .97 .45 .48 .64 .58 .27 .31 .59 .56 .62 .45 .27 .26 .86 .82 .60 .18
✓ .98 .95 .54 .63 .71 .61 .29 .42 .79 .78 .56 .21 .27 .27 .86 .81 .72 .17

OpenAI o1 ✓ ✓ 1. 1. .97 .96 1. .98 .82 .79 1. 1. 1. 1. .23 .90 .97 .99 1. .56
Distill-Llama ✓ ✓ .74 .76 .73 .69 .70 .68 .36 .40 .48 .31 .20 .48 .15 .48 .10 .35 .74 .23

Table 2: Evaluation results for event detection and computation tasks. A ✓in the ’Ins.’ column indicates instruction-
turned models. A ✓in the ’Rea.’ column indicates reasoning models. Thresh: Threshold-based detection (exc:
exceed, bel: below). Pair: Pairwise comparison tasks (diff: difference, comp: magnitude comparison). Inf: Inference
tasks (imp: imputation, fcst: forecasting). The numbers in bold indicate the highest values within each model
category, and the numbers highlighted in blue represent the highest values among all models.

ability in generation, we ran each experiment five
times using the same prompt and reported the aver-
age score across the runs.

5 Main Results

Which Tasks Are Difficult for LLMs?: Ta-
ble 2 presents the results of the event detection
tasks, computation tasks, and pairwise comparison
tasks. Among non-reasoning-based models (i.e.,
excluding OpenAI o1 and Distill-Llama), GPT-4-
turbo and GPT-4o generally achieve the best perfor-
mance. In relatively simple tasks, such as detecting
the maximum and minimum values in a time se-
ries, both models perform almost perfectly (1.0 for
maximum detection and 0.99 for minimum detec-
tion). They also show high accuracy in detecting
points exceeding (0.98 for GPT-4o, 0.95 for GPT-
4-turbo) or falling below (0.98 for GPT-4o, 0.84
for GPT-4-turbo) a given threshold.

However, certain tasks remain challenging. In
event detection, detecting peak and dip points
proves particularly difficult, with GPT-4o achiev-
ing only 0.64 for peak detection and 0.52 for dip
detection. Additionally, computation tasks also
pose challenges—for example, GPT-4o scores only
0.50 on the summation task. These results indicate
that while LLMs perform well on simpler numeri-
cal time-series interpretation tasks, more complex

computations remain difficult.
Does Model Size Improve Performance?: In-
creasing the model size in both Llama and Swal-
low leads to significant performance improvements
across all tasks. For example, we observe a sub-
stantial accuracy increase from 0.34 (Llama3.1-8B)
to 0.60 (Llama3.1-70B). This size-driven gain was
statistically significant (Appendix G).

This trend is consistent across different task cat-
egories, including computation and pairwise com-
parison tasks, as shown in Table 2. These results
suggest that larger models generally achieve better
performance, reinforcing the importance of model
scaling in numerical reasoning tasks.
Does Instruction Tuning Improve Numerical
Reasoning?: Instruction-tuning is known to im-
prove performances of various language processing
tasks (Zhou and Zhao, 2024). However, it does not
necessarily improve numerical reasoning abilities
for most cases. In fact, for both the Llama series
(Llama2-7B and Llama3.1-8B) and Swallow-8B,
we observed performance degradation. For exam-
ple, in Table 2, Llama3.1-8B without instruction
tuning achieved 0.52 on the average calculation for
the whole time series, whereas adding instruction
tuning decreased performance to 0.32. This sug-
gests that instruction tuning, while beneficial for
general NLP tasks, does not consistently enhance
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numerical comprehension.
The Impact of “Range” Conditions on Perfor-
mance: When event detection or computation is
restricted to a specific range, accuracy drops signif-
icantly. For example, in maximum and minimum
value detection, GPT-4o’s performance drops from
1.0 (whole time-series) to 0.76 and 0.70, respec-
tively, when range conditions are introduced. This
suggests that tasks requiring multi-step reasoning
are particularly challenging. In the maximum value
detection task within a specific range, the model
needs to first extract the values within the speci-
fied range and then identify the maximum value
from that subset. This additional step introduces
complexity, potentially leading to lower accuracy.
Reasoning-based models, such as OpenAI o1 and
Distill-Llama, appear to have an advantage in such
multi-step reasoning tasks. Their performance un-
der range conditions will be discussed next.
Performance of Recent Reasoning-Based Mod-
els: OpenAI o1 and Distill-Llama: OpenAI o1
demonstrates the highest scores across all tasks,
except for average computation within a specific
range. For example, in the maximum value de-
tection task within a range, GPT-4o achieved only
0.76, whereas OpenAI o1 attained 0.97, showing
its superiority to multi-step reasoning, i.e., extract-
ing values within the specified range and finding
the maximum. Additionally, OpenAI o1 exhibits
low variance across different tasks, suggesting
greater robustness in numerical time-series inter-
pretation. The differences between OpenAI o1’s
performance and others were statistically signifi-
cant (Appendix G).

However, OpenAI o1 does not always show a
clear advantage. In the computation task of averag-
ing within a specific range, it achieved only 0.23,
a score comparable to other GPT models. While
reasoning-based models excel in many NLP tasks,
they fail to outperform others in certain numerical
reasoning tasks such as constrained averaging.

Distill-Llama is an open-source reasoning-based
model built on Llama3.1-8B. Due to its smaller
model size, its performance is consistently lower
than OpenAI o1. Distill-Llama demonstrates sig-
nificant performance improvements over its base
model, Llama3.1-8B. For example, we observed
the performance gains in: 1) the event detection
tasks with a specific range and 2) simple compu-
tation tasks, such as summation. In the maximum
value detection task within a range, Distill-Llama
achieved 0.73, a substantial improvement over

Llama3.1-8B’s 0.34. Similarly, in the summation
task, Distill-Llama often outperformed Llama3.1-
8B, improving from 0.24 to 0.48. For event de-
tection tasks without a range, Llama3.1-8B al-
ready achieved high accuracy (0.80), while Distill-
Llama obtained a comparable score (0.74), offering
no clear advantage. Distill-Llama also underper-
formed the base model on the averaging task with a
specific range, where the base model achieved 0.20
while Distill-Llama achieved only 0.15.
Divergent Performance on Linear Imputation
and Forecasting Tasks: Beyond event detection
and direct computation, we investigated models’
abilities on time-series imputation and forecasting,
detailed in Table 2.

Although both tasks involve linear prediction,
their performances differed greatly. Most mod-
els, particularly high-performing ones like Ope-
nAI o1 (1.00), GPT-4o (0.90), and GPT-4-turbo
(0.91), showed strong proficiency in linear impu-
tation. This suggests LLMs can generally execute
linear interpolation, filling missing values using the
linear relationship between immediately adjacent
known points. Conversely, all models performed
significantly worse on linear forecasting. Even
OpenAI o1, excelling at imputation, scored only
0.56 on forecasting. GPT-4o (0.26) and GPT-4-
turbo (0.27) scores were markedly lower.

6 Analysis

6.1 Examples of Generated Reasoning Tokens

One key advantage of reasoning-based models
is their explainability.5 Unlike standard LLMs,
Distill-Llama generates reasoning tokens, allow-
ing us to examine its thought process when solving
numerical tasks. To understand how the model rea-
sons through numerical time-series problems, we
manually analyzed its reasoning tokens.

Table 3 presents two representative examples
from the maximum value detection task within a
specified range, a task where Distill-Llama out-
performs its base model, Llama3.1-8B. In the first
example, the model successfully identifies the val-
ues within the specified range (2010–2008) and
correctly determines the maximum value. Such
successful instances demonstrate that Distill-Llama
can effectively extract relevant numerical informa-
tion and apply the correct reasoning process.

5Since OpenAI’s API does not provide access to reasoning
tokens, we use Distill-Llama for our analysis.
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Evaluation Reasoning Process

Correct
(GT: 8.3)

First, I observe that the time series provided starts in 2008 and ends in 2010, so I need to extract the relevant
data points that fall within the specified range of 2010 to 2008. Looking at each data point: [2010, 7.37],
[2009, 8.3], [2008, 6.21]. These are the data points within the range from 2010 to 2008. Then, I identify the
maximum value among these data points. The values are: 7.37 (from 2010), 8.3 (from 2009), 6.21 (from
2008). Among these, the highest value is 8.3. Finally, I conclude that the maximum value within the specified
range is 8.3.

Incorrect
(GT: 1.70)

First, I need to identify the time series provided in the question. The series starts with the year 2020 and goes
down to the year 1999.Next, I’ll locate the range specified in the problem, which is from the year 2008 to the
year 1999. This means I should consider only the data points from 2008 backward to 1999.I’ll extract the
corresponding values for these years:- 2008: 1.70- 2007: 0.40- 2006: 0.58- 2005: 0.67- 2004: 0.72- 2003:
0.75- 2002: 0.75- 2001: 0.72- 1999: 0.76. Now, I’ll compare all these values to determine the maximum.
Among the listed values, the highest number is 0.76.Therefore, the maximum value within the specified range
is 0.76.**Final Answer:**0.76

Table 3: Reasoning process for the range-based tasks. GT stands for ground truth.
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Figure 2: The performances of Distill-Llama and the base model, Llama3.1-8B, depending on the lengths of range.

However, the second example illustrates a failure
case: while the model correctly extracts the values
within the specified range (1999–2020), it fails to
identify the maximum value accurately. This sug-
gests that although the model is capable of range-
based numerical selection, it does not always exe-
cute the final reasoning step correctly. Understand-
ing such failure cases provides insights into how
reasoning-based models can be further improved
for numerical time-series tasks.

6.2 Why Distill-Llama Fails on Averaging?
Our analysis reveals that Distill-Llama struggles
primarily with extracting values within a specified
range when performing average computation. In all
20 incorrect cases we examined, the model failed
to correctly extract the subset of values required
for averaging, leading to cascading errors in the
subsequent summation and division steps. Notably,
while Distill-Llama successfully extracts values in
the summation task, it fails to do so in the aver-
age computation task. This discrepancy suggests
that the additional step of counting values before
division increases the likelihood of errors.

Solving an average computation task within a
specified range involves at least six steps: 1) un-
derstanding the task (recognizing that the goal is to
compute an average), 2) identifying the specified
range in the prompt, 3) extracting the correct val-

ues that fall within the specified range, 4) summing
the extracted values, 5) counting the number of ex-
tracted values, finally 6) dividing the sum by the
count to compute the final average.

Interestingly, Distill-Llama successfully extracts
values in the summation task for most cases but
fails to do so in the average computation task. Since
value extraction accuracy varies depending on the
task, an effective improvement could be to handle
this step as a preprocessing stage rather than relying
on the LLM, from the viewpoint of application.
By extracting relevant values before passing them
to the model, we could reduce errors introduced
during multi-step reasoning and improve overall
numerical computation performance.

6.3 Effect of range length

Figure 2 presents a comparison of accuracy based
on the length of the specified range in the max-
imum value detection within a specified range.
Distill-Llama outperforms Llama3.1 across all
range lengths, indicating that incorporating a rea-
soning process leads to enhanced performance.
While Llama3.1 tends to exhibit decreased accu-
racy as the range length increases, Distill-Llama
maintains its performance even with longer ranges.
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7 Conclusion

This paper introduced a set of 18 evaluation tasks
for assessing the interpretation abilities of LLMs on
numerical time-series. Our benchmark focuses on
four aspects: 1) Event Detection—identifying spe-
cific values such as maxima and minima; 2) Com-
putation—averaging and summation; 3) Pairwise
Comparison—comparing values across time; and
4) Inference—imputation and forecasting. Each
task expects a numeric answer, making evaluation
fully automatic and comparable across models and
prompts. Our experiments show that even state-of-
the-art LLMs still struggle with multi-step reason-
ing, lose accuracy when the calculation must stay
within a specific range, gain inconsistent benefits
from instruction turning, and interpolation is more
easily than forecasting; models with explicit rea-
soning steps handle the hardest tasks best. These
findings establish a clear baseline and highlighting
the remaining gap between fluent text generation
and dependable numeric precision.

Limitations

While our benchmark provides a comprehensive
evaluation of LLMs’ ability to interpret numeri-
cal time-series data, several limitations remain as
follows.

Task Scope

Our evaluation focuses on fundamental numerical
interpretation tasks, such as event detection, basic
arithmetic computations, and numerical compar-
isons. However, real-world applications often re-
quire more complex reasoning, such as trend analy-
sis, anomaly detection, and forecasting. Moreover,
many practical applications involve downstream
tasks such as data-to-text generation (e.g., gener-
ating textual summaries from financial or climate
data). While our benchmark assesses isolated nu-
merical reasoning abilities, it does not directly eval-
uate how these abilities translate into improvements
in downstream tasks. Future work should integrate
evaluations on data-to-text generation and other
practical applications to better understand the real-
world impact of numerical reasoning capabilities.

Challenges in Zero-shot Evaluation

Ideally, LLMs should be evaluated in a zero-shot
setting, as this better reflects their generalization
capabilities. However, our experiments revealed

that models often fail to follow output format con-
straints when using zero-shot prompts, making di-
rect performance comparison difficult. To ensure
fair comparisons, we had to introduce few-shot
learning and additional formatting instructions. Fu-
ture work should explore better strategies for en-
forcing output constraints while maintaining zero-
shot evaluation.

Dataset
Our benchmark is constructed using a single dataset
derived from the public and re-distributable Chart-
to-Text dataset (Kantharaj et al., 2022). While this
dataset covers various numerical time-series do-
mains (e.g., finance, crime statistics, and mortality
rates), it would remain limited in scope. If licens-
ing issues allow, expanding our benchmark with
additional datasets from diverse domains—such
as medical time-series data, financial reports, or
sensor-based data—would provide a more compre-
hensive assessment of LLMs’ numerical reasoning
abilities.

Modality
Our evaluation relies exclusively on text-based nu-
merical representations, whereas real-world numer-
ical data is often stored and processed in tabular,
spreadsheet, or graphical formats (e.g., line charts).
This discrepancy may limit the benchmark’s appli-
cability to multimodal LLMs designed to process
structured data directly. Future research should
explore evaluation frameworks that assess models’
ability to interpret structured numerical data from
diverse modalities (e.g., tables and visual charts).

Computational Costs and Reproducibility
Large-scale open-source models, such as Llama-
3.1-70B, require substantial computational re-
sources for inference. While GPT models (e.g.,
GPT-4o) offer higher performance, they introduce
reproducibility concerns due to potential model up-
dates over time. Future work should explore tech-
niques to efficiently fine-tune smaller models for
numerical reasoning while maintaining accuracy.
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and Hiroya Takamura. 2024b. Demonstration selec-
tion strategies for numerical time series data-to-text.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 7378–7392, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng
Kong, and Wei Bi. 2024a. Gsm-plus: A compre-
hensive benchmark for evaluating the robustness of
llms as mathematical problem solvers. Preprint,
arXiv:2402.19255.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng
Kong, and Wei Bi. 2024b. GSM-plus: A compre-
hensive benchmark for evaluating the robustness of
LLMs as mathematical problem solvers. In Proceed-
ings of the 62nd Annual Meeting of the Association

241

https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://doi.org/10.18653/v1/2023.findings-emnlp.1028
https://doi.org/10.18653/v1/2023.findings-emnlp.1028
https://doi.org/10.18653/v1/2023.findings-emnlp.1028
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2024.naacl-short.53
https://doi.org/10.18653/v1/2024.naacl-short.53
https://doi.org/10.18653/v1/2024.naacl-short.53
https://api.semanticscholar.org/CorpusID:259063728
https://api.semanticscholar.org/CorpusID:259063728
https://api.semanticscholar.org/CorpusID:259063728
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/2024.emnlp-main.1204
https://doi.org/10.18653/v1/2024.emnlp-main.1204
https://doi.org/10.18653/v1/2024.emnlp-main.1204
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://doi.org/10.18653/v1/2020.inlg-1.21
https://doi.org/10.18653/v1/2020.inlg-1.21
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.18653/v1/2022.acl-long.277
https://aclanthology.org/2024.lrec-main.1155
https://aclanthology.org/2024.lrec-main.1155
https://aclanthology.org/2024.findings-emnlp.435
https://aclanthology.org/2024.findings-emnlp.435
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://doi.org/10.18653/v1/2024.acl-long.163
https://doi.org/10.18653/v1/2024.acl-long.163
https://doi.org/10.18653/v1/2024.acl-long.163


for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2961–2984, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong
Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei Zhang,
Songyang Zhang, Dahua Lin, and Kai Chen. 2024a.
Mathbench: Evaluating the theory and application
proficiency of llms with a hierarchical mathematics
benchmark. Preprint, arXiv:2405.12209.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong
Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei Zhang,
Songyang Zhang, Dahua Lin, and Kai Chen. 2024b.
MathBench: Evaluating the theory and application
proficiency of LLMs with a hierarchical mathematics
benchmark. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 6884–6915,
Bangkok, Thailand. Association for Computational
Linguistics.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and
Kai-Wei Chang. 2023. A survey of deep learning for
mathematical reasoning. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 14605–
14631, Toronto, Canada. Association for Computa-
tional Linguistics.

Meta. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Meta. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Soichiro Murakami, Akihiko Watanabe, Akira
Miyazawa, Keiichi Goshima, Toshihiko Yanase, Hi-
roya Takamura, and Yusuke Miyao. 2017. Learning
to generate market comments from stock prices.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1374–1384, Vancouver,
Canada. Association for Computational Linguistics.

OpenAI. 2024a. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAI. 2024b. Gpt-4o system card. Preprint,
arXiv:2410.21276.

OpenAI. 2024c. Openai o1 system card. Preprint,
arXiv:2412.16720.

Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K.
Gupta, and Jingbo Shang. 2024. Large language
models for time series: A survey. Preprint,
arXiv:2402.01801.

Yongwei Zhou and Tiejun Zhao. 2024. Dual instruction
tuning with large language models for mathematical
reasoning. Preprint, arXiv:2403.18295.

A Prompt Format

Figure 3 shows the 5-shot prompt structure used
to guide the Large Language Model in accurately
identifying the maximum value within a time se-
ries; the model is explicitly instructed to respond
with only a number, continuing directly after the
Maximum value: cue.

Which is the value that is the maximum?
Please respond with the maximum value only as a
number.

###
Examples (5-shot):
Time series:
{"2000":12, "2001":45, "2002":23, "2003":67,
"2004":34}
Maximum value: 67
###

Time series: [INPUT].
Maximum value:

Figure 3: 5-shot prompt used to identify the maximum
value in a time series.

B Prompt Ablation

We compared five paraphrased prompts (p1–p5) per
task on the development set; Figure 12 shows ac-
curacy relative to p1, and Table 4 lists the variants.
We use p1 for all main results.

C Error Rate for Output Format

Figure 13 shows the heatmap of format error rates.
A format error is defined as any output contain-
ing non-numeric text. The values were computed
automatically by a script that checked all model
outputs. This visualization highlights failure cases
caused not by incorrect reasoning but by outputs in
an invalid format.

D Accuracy for Computation Category
with Tolerance

Tables 5, 6, 7, and 8 show the values for the average,
average within a specified range, sum, and sum
within a specified range, where answers are now
considered correct if they fall within a ±5% error
margin of the true value. This revised evaluation
criterion was adopted because initial evaluations
using strict exact match—under which the non-
reasoning model, for example, scored nearly 0.0 on
almost all tasks—indicated that exact match was
too stringent. The results presented in these tables
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are further visualized in Figures 4, 5, 6, 7, 8, 9, and
10. These figures depict the trend of accuracy for
each task as a function of varying error tolerance
levels, illustrating how performance changes as the
tolerance for numerical discrepancies is adjusted.
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Figure 4: Trend in Accuracy of Computation Average
task with Varying Tolerance from 0% to 5%

0% 1% 2% 3% 4% 5%
Tolerance (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 
Model (Status)

GPT-3.5-turbo (Ins)
GPT-4-turbo (Ins)
GPT-4o (Ins)
GPT-4o-mini (Ins)
Llama2-7B (No Ins)
Llama2-7B (Ins)
Llama3.1-8B (No Ins)
Llama3.1-8B (Ins)
Swallow-8B (No Ins)
Swallow-8B (Ins)
Gemma2-9B (No Ins)
Gemma2-9B (Ins)
Llama3.1 70B (No Ins)
Llama3.1 70B (Ins)
Swallow-70B (No Ins)
Swallow-70B (Ins)
OpenAI o1 (Ins) & Rea
Distill-Llama (Ins) & Rea

Figure 5: Trend in Accuracy of Computation Average
w/range task with Varying Tolerance from 0% to 5%
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Figure 6: Trend in Accuracy of Computation Sum task
with Varying Tolerance from 0% to 5%

E Computation Task Performance:
Median Absolute Error (MedAE)

Table 9 shows the median absolute errors for differ-
ent LLMs.

F Comparisons on Languages of Prompt

We use Japanese LLMs, i.e., Llama-3.1-Swallow-
8B and Llama-3.1-Swallow-8B-Instruct (Fujii
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Figure 7: Trend in Accuracy of Computation Sum
w/range task with Varying Tolerance from 0% to 5%
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Figure 8: Trend in Accuracy of Computation Difference
task with Varying Tolerance from 0% to 5%
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Figure 9: Trend in Accuracy of imputation task with
Varying Tolerance from 0% to 5%
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Figure 10: Trend in Accuracy of forecasting task with
Varying Tolerance from 0% to 5%

et al., 2024) for analyzing the effects of prompts’
languages. Figure 11 presents the performance
differences observed when using Japanese and En-
glish prompts. We find that the multilingual GPTs
i.e., GPT-4 and Llama, achieve higher accuracy
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Figure 11: Comparison by Prompt Language.

Figure 12: Prompt sensitivity on the development set.
Each cell shows ∆ = Acc(pk) − Acc(p1) (model-
averaged accuracy) for paraphrased prompt pk relative
to the reference prompt p1 (blue = lower, red = higher).
Task labels are abbreviated; see Table 4 for full prompts.
Most differences are small (|∆| ≤ 0.03), supporting our
use of p1 in the main experiments.

with English prompts. In contrast, Swallow, an
LLM adapted to Japanese through continual train-
ing, performs better with Japanese prompts. It is
reasonable to conclude that prompts should be writ-
ten in a language that was more extensively used
during pretraining.

G Statistical Significance Analysis

We assessed statistical significance on per-task ac-
curacies across T=18 tasks using paired Wilcoxon
signed-rank test. First, OpenAI o1 versus each
other model: all pairwise comparisons yielded
p < 0.001, confirming that o1’s superiority is con-
sistent across tasks and unlikely due to chance. Sec-
ond, model size (within Llama3.1): the larger vari-
ant (70B) significantly outperformed smaller one
(8B) across the same tasks (p < 0.001), indicating

that scaling improves accuracy.
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Family Prompt text (p1–p5 variants)

Value (Max/Min; Full/Range) p1: Which is the value that is the <OP> [SCOPE]?
p2: What is the <OP> value [SCOPE]?
p3: Within [SCOPE], which number is <OP>?
p4: Find the <OP> value [SCOPE].
p5: Among values [SCOPE], which is <OP>?

Time (Max/Min) p1: Which time point corresponds to the <OP> value?
p2: Return the time index of the <OP> value.
p3: At what time does the <OP> occur?
p4: Find the time step with the <OP> value.
p5: Which time has the <OP> value?

Extrema (Peak/Dip) p1: Which is the <OP> value in the following time series data?
p2: Return the highest/lowest local <OP> in the following time series data.
p3: Which value is a local <OP> in the following time series data?
p4: Find the <OP> value. in the following time series data
p5: What is the biggest/smallest spike?

Threshold (Exceed/Below) p1: Which year does the value become [REL] [THR]?
p2: When does the series first cross [REL] [THR]?
p3: List all years where value [REL] [THR].
p4: Give the indices where the threshold [THR] is crossed [DIR].
p5: Report the years that the value is [REL] [THR].

Computation (Avg/Sum; Full/Range) p1: Calculate the <AGG> value of the range [SCOPE].
p2: What is the <AGG> value of the range [SCOPE]?
p3: Compute the <AGG> in the specified range [SCOPE].
p4: Find the <AGG> for the given data [SCOPE].
p5: Return the <AGG> value restricted to [SCOPE].

Pairwise Diff p1: Calculate the absolute difference between the values for [T1] and [T2].
p2: What is |value([T1]) – value([T2])|?
p3: Compute the absolute gap between [T1] and [T2].
p4: Find the absolute difference between [T1] and [T2].
p5: Return the absolute difference between the values for [T1] and [T2].

Pairwise Compare p1: Compare the values of [T1] and [T2].
p2: Which is larger: [T1] or [T2]?
p3: Check if [T1] and [T2] are the same.
p4: Compare [T1] and [T2].
p5: Return the relation (>, <, =) between [T1] and [T2].

Imputation p1: Linearly interpolate the NaN value using the data points immediately before and after
it.
p2: Fill the NaN by performing a linear interpolation between the points immediately
preceding and succeeding it.
p3: Replace the missing value (NaN) by drawing a straight line between its two adjacent
data points.
p4: Use the values directly before and after the NaN to estimate its value via linear
interpolation.
p5: Calculate a replacement for the NaN by linearly interpolating from its nearest neigh-
boring data points.

Forecast p1: Predict the value for the next chronological period using linear regression based on
the provided series.
p2: Using the provided time series, create a linear regression model to forecast the value
for the upcoming period.
p3: Fit a straight-line trend to the given data series and use it to predict the value for the
subsequent period.
p4: Apply a linear regression to the existing data to determine the expected value for the
next time step.
p5: Extrapolate the next value in the series by fitting the historical data with a linear
regression model.

Table 4: Prompt templates used in the prompt ablation study (Appendix B). Templates are grouped by prompt
family. Task-specific prompts are instantiated by substituting the bracketed placeholders: [OP] (operation; e.g.,
maximum, minimum, peak, dip), [AGG] (aggregate; average or sum), [REL] (relational phrase used for threshold
crossing; “bigger than” / “smaller than”), [SCOPE] (specified range; “from 2001 to 2005"), [THR] (threshold), [T1]
and [T2] (specific years).
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Figure 13: Heatmap of format error rates (% of outputs containing non-numeric text).

Full Range

Model Ins. Rea. 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

GPT-3.5-turbo ✓ .00 .19 .30 .39 .44 .49 .00 .06 .12 .18 .22 .25
GPT-4-turbo ✓ .01 .41 .60 .71 .78 .83 .00 .06 .12 .16 .21 .25
GPT-4o ✓ .00 .30 .50 .61 .69 .74 .00 .07 .14 .17 .22 .30
GPT-4o-mini ✓ .00 .19 .34 .44 .52 .60 .00 .08 .13 .18 .22 .26

Llama2-7B .00 .11 .19 .28 .35 .40 .01 .07 .14 .19 .25 .30
✓ .00 .10 .21 .29 .36 .41 .00 .07 .13 .16 .22 .26

Llama3.1-8B .00 .09 .17 .23 .28 .32 .00 .08 .15 .21 .24 .27
✓ .00 .17 .25 .33 .39 .46 .00 .05 .12 .15 .20 .21

Swallow-8B .00 .13 .25 .32 .39 .46 .00 .08 .13 .18 .23 .25
✓ .00 .07 .16 .23 .28 .34 .00 .08 .15 .21 .24 .27

Gemma2-9B .00 .19 .40 .43 .47 .47 .00 .04 .07 .10 .14 .23
✓ .00 .19 .32 .41 .48 .56 .00 .09 .15 .20 .25 .27

Llama3.1 70B .00 .25 .41 .50 .55 .61 .00 .07 .13 .18 .25 .31
✓ .02 .16 .20 .22 .24 .25 .00 .03 .06 .08 .10 .11

Swallow-70B .00 .24 .40 .50 .57 .62 .00 .07 .13 .17 .22 .27
✓ .00 .19 .32 .42 .51 .56 .08 .13 .19 .20 .23 .27

OpenAI o1 ✓ ✓ .12 .99 1. 1. 1. 1. .02 .12 .18 .18 .20 .23
Distill-Llama ✓ ✓ .01 .07 .11 .15 .17 .20 .01 .04 .05 .08 .11 .15

Table 5: Accuracy of Computation Average tasks (Average, Average w/range) with Varying Tolerance Levels.
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Full Range

Model Ins. Rea. 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

GPT-3.5-turbo ✓ .00 .02 .04 .07 .10 .13 .07 .14 .17 .21 .23 .26
GPT-4-turbo ✓ .01 .16 .30 .40 .48 .56 .21 .37 .42 .45 .49 .53
GPT-4o ✓ .03 .15 .25 .35 .42 .50 .26 .38 .42 .44 .46 .48
GPT-4o-mini ✓ .01 .05 .08 .11 .14 .17 .12 .16 .18 .20 .23 .25

Llama2-7B .00 .01 .01 .03 .03 .05 .00 .01 .01 .01 .03 .03
✓ .00 .01 .02 .02 .03 .03 .00 .01 .01 .02 .02 .03

Llama3.1-8B .00 .04 .06 .10 .13 .17 .04 .08 .09 .11 .11 .13
✓ .00 .01 .01 .02 .03 .04 .13 .20 .21 .23 .23 .24

Swallow-8B .00 .02 .03 .05 .06 .08 .02 .06 .08 .10 .12 .12
✓ .00 .00 .01 .02 .03 .03 .02 .05 .10 .18 .21 .23

Gemma2-9B .00 .05 .10 .14 .19 .23 .00 .04 .11 .15 .16 .20
✓ .02 .08 .11 .18 .19 .20 .13 .18 .19 .20 .20 21

Llama3.1 70B .01 .08 .14 .20 .31 .47 .17 .26 .28 .30 .32 .32
✓ .00 .04 .08 .10 .12 .14 .12 .17 .19 .20 .21 .21

Swallow-70B .01 .11 .20 .30 .37 .45 .14 .20 .22 .23 .25 .26
✓ .00 .05 .11 .17 .20 .21 .13 .19 .22 .25 .27 .27

OpenAI o1 ✓ ✓ .60 1. 1. 1. 1. 1. .64 .90 .90 .90 .90 .90
Distill-Llama ✓ ✓ .14 .33 .35 .40 .41 .48 .23 .40 .45 .45 .47 .48

Table 6: Accuracy of Computaion Sum tasks (Sum, Sum w/range) with Varying Tolerance Levels.

imp fcst

Model Ins. Rea. 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

GPT-3.5-turbo ✓ .06 .24 .34 .40 .45 .50 .00 .07 .14 .18 .23 .27
GPT-4-turbo ✓ .48 .79 .84 .88 .89 .91 .00 .08 .13 .18 .24 .27
GPT-4o ✓ .50 .80 .85 .88 .90 .90 .00 .08 .14 .18 .22 .26
GPT-4o-mini ✓ .06 .34 .45 .53 .58 .61 .00 .07 .12 .17 .23 .29

Llama2-7B .00 .05 .13 .16 .20 .25 .00 .03 .06 .09 .13 .18
✓ .00 .01 .01 .01 .01 .01 .00 .04 .07 .10 .12 .15

Llama3.1-8B .01 .11 .17 .23 .28 .32 .00 .02 .03 .05 .07 .09
✓ .01 .10 .16 .21 .26 .30 .00 .01 .02 .03 .04 .05

Swallow-8B .02 .10 .15 .21 .25 .28 .00 .03 .04 .06 .08 .10
✓ .00 .00 .00 .00 .01 .01 .00 .01 .01 .01 .01 .01

Gemma2-9B .07 .27 .36 .42 .47 .51 .00 .01 .01 .01 .01 .02
✓ .13 .41 .50 .55 .62 .66 .00 .03 .05 .08 .10 .14

Llama3.1 70B .26 .55 .60 .64 .65 .68 .00 .04 .19 .22 .24 .27
✓ .24 .51 .63 .69 .73 .77 .00 .09 .14 .20 .23 .27

Swallow-70B .36 .57 .57 .59 .60 .60 .00 .04 .10 .15 .17 .18
✓ .18 .49 .60 .65 .67 .72 .00 .06 .09 .12 .14 .17

OpenAI o1 ✓ ✓ .75 .98 .99 .99 1. 1. .00 .00 .38 .46 .50 .56
Distill-Llama ✓ ✓ . 36 .64 .68 .69 .72 .74 .00 .09 .11 .16 .19 .23

Table 7: Accuracy of Inference tasks (imputation, forecasting) with Varying Tolerance Levels.
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diff

Model Ins. Rea. 0% 1% 2% 3% 4% 5%

GPT-3.5-turbo ✓ .07 .21 .24 .24 .25 .26
GPT-4-turbo ✓ .34 .92 .92 .92 .92 .92
GPT-4o ✓ .27 .78 .79 .79 .80 .80
GPT-4o-mini ✓ .13 .38 .38 .39 .40 .41

Llama2-7B .00 .03 .04 .05 .06 .06
✓ .02 .10 .11 .12 .13 .13

Llama3.1-8B .15 .51 .53 .54 .55 .56
✓ .02 .08 .08 .08 .08 .08

Swallow-8B .13 .43 .44 .46 .46 .47
✓ .03 .10 .10 .10 .11 .11

Gemma2-9B .11 .40 .42 .42 .43 .43
✓ .21 .53 .54 .54 .54 .55

Llama3.1 70B .32 .85 .87 .87 .87 .87
✓ .28 .83 .83 .83 .84 .84

Swallow-70B .34 .85 .86 .86 .86 .86
✓ .28 .84 .84 .85 .85 .86

OpenAI o1 ✓ ✓ .37 .97 .97 .97 .97 .97
Distill-Llama ✓ ✓ .36 .89 .89 .89 .89 .90

Table 8: Accuracy of Computation Difference task with Varying Tolerance Levels.

Full Range Pair Inf

Ins. Rea. avg sum avg sum diff imp fcst

GPT-3.5-turbo ✓ 1.10 120.00 3.50 36.00 1.30 1.30 3.10
GPT-4-turbo ✓ 0.28 22.00 13.00 5.70 0.00 0.00 3.10
GPT-4o ✓ 0.38 25.00 3.40 7.20 0.00 0.00 3.70
GPT-4o-mini ✓ 0.74 78.00 4.80 25.00 0.87 0.78 3.10

Llama2-7B 1.70 350.00 3.50 240.00 13.00 16.00 5.60
✓ 1.80 400.00 4.00 420.00 5.70 3.40 7.60

Llama3.1-8B 0.81 73.00 2.80 52.00 0.10 2.40 5.60
✓ 1.50 730.00 3.00 56.00 8.00 2.40 38.00

Swallow-8B 1.10 130.00 2.70 40.00 0.50 17.00 5.00
✓ 2.10 140.00 2.30 42.00 5.80 2.90 3.40

Gemma2-9B 1.00 86.00 4.70 210.00 0.70 1.50 6.30
✓ 39.00 102.00 3.60 28.00 0.00 0.50 5.10

Llama3.1 70B 0.84 200.00 20.00 3.50 0.00 13.0 4.10
✓ 46.00 2.10 42.00 16.00 0.00 3.10 3.40

Swallow-70B 0.58 60.00 30.00 33.00 0.00 17.00 4.12
✓ 0.96 100.00 48.00 22.00 0.00 0.47 3.80

OpenAI o1 ✓ ✓ 0.00 0.00 4.00 0.00 0.00 0.00 1.10
Distill-Llama ✓ ✓ 9.10 59.00 15.00 8.80 0.00 8.00 12.00

Table 9: MedAE for Computation Tasks.
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