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Preface

The Generation Challenges (GenChal) aim at bringing together a variety of shared-task efforts that
involve the generation and evaluation of systems that produce natural language. This year again, the
Generation Challenges will be held during a special session at the 18th International Conference on
Natural Language Generation (INLG, October 29th- November 2nd 2025). The session traditionally
comprises oral presentations of proposals for new shared tasks, and oral presentations of results by
the organisers of recently completed tasks, while completed task participants present their submissions
during a main conference poster session.

In 2025, the oral session will take place on Nov. 2nd at 14:00-15:30 Hanoi time; we have one new task
proposal (Live Commentary Planning and Generation) and one report on the human evaluation results
of a completed task (GEM English and Spanish Data-to-text), whose metrics results were presented in
2024. The 2025 oral session also includes one task update of a challenge proposed in 2024 (Long-Form
Analogy Evaluation Challenge) and an invited talk to showcase the results of a recent large-scale shared
task held outside of the GenChal umbrella (the ReproNLP shared task).

New challenge proposal (in proceedings):

* Live Commentary Planning and Generation
Chung-Chi Chen, Ming-Hung Wang, Ramon Ruiz-Dolz, Chris Reed, Ichiro Kobayashi, Yusuke
Miyao and Hiroya Takamura

The proposal was reviewed positively by the three program committee members, who also
provided valuable feedback to the task organisers.

Completed challenge overview (in proceedings):

* The 2024 GEM Shared Task on Multilingual Data-to-Text Generation: English and Spanish
Qualitative Evaluation Results
Joao Sedoc, Simon Mille, Miruna Adriana Clinciu, Yixin Liu, Kaustubh Dhole, Saad Mahamood

The report comes along with two updated GEM participating system descriptions which include
an analysis of the results of the released human evaluation (in proceedings), and will be presented
during INLG’s afternoon poster session of Nov. 1st.

Challenge update:

* Long-Form Analogy Evaluation Challenge
Bhavya Bhavya, Chris Palaguachi, Yang Zhou, Suma Bhat, ChengXiang Zhai

The challenge was proposed in 2024 and is still running at the time of the conference.
Invited talk:

* ReproNLP Shared Task Overview
Anya Belz, Craig Thomson, Javier Gonzdlez Corbelle, Malo Ruelle

I would like to express my gratitude to the reviewers, the task organisers, as well as the INLG Programme
Chairs, Publication Chair and Local Organisers for their precious help during the organisation process.

Simon Mille
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Abstract

We present in this paper the results of the 2024
GEM shared task of multilingual data-to-text
generation for both English and Spanish. In
particular, we focus on evaluating the submit-
ted systems across different datasets, metrics,
and compare the results generated using LLM
and human evaluators when given the same
evaluation instructions. The results presented
show that submitted systems that use more re-
sources perform better and that while LLMs
and humans are usually aligned in how they
rank systems, the LLMs tend to award higher
scores than humans. We describe the motiva-
tion for this shared task, describe the tasks and
submitted systems, the evaluation setup, and
the results obtained.

1 Introduction

The Generation, Evaluation, and Metrics (GEM)
initiative (Gehrmann et al., 2021) has focused
over the past four years on better comprehend-
ing and measuring the progress that the field of
Natural Language Generation (NLG) has made,
through the iterative creation of datasets (Mille
et al.,, 2021), tools (Dhole et al., 2023), and
the assessments of different text generation sys-
tems using human and/or automatic evaluation ap-
proaches (Gehrmann et al., 2022; Zhang et al.,
2023; Nawrath et al., 2024). The focus on eval-
uation and its practices within NLG has enabled a
better understanding of the current challenges that
are present when evaluating such systems.

Given the broad adoption of (very) large lan-
guage models (LLMs) within the field of NLG for
both the process of generation and evaluation, it is
important to better quantify and qualify the perfor-
mance of LLMs against human evaluators on differ-
ent tasks, so as to have a broader understanding of
their strengths and weaknesses when used as a tool
for either content creation or evaluation. This is es-
pecially important given the indications in research

1

literature that LLMs may favour their own output
(Panickssery et al., 2024), have issues with respect
to data contamination (Balloccu et al., 2024), suf-
fer from biases (Kotek et al., 2023), inconsisten-
cies (Dhole et al., 2025), hallucination, lack of
semantic faithfulness (Gehrmann et al., 2023), etc.
Nevertheless, there has been significant interest in
exploring the use of LLMs for the task of evaluation
in NLG (Gao et al., 2025), largely driven by the con-
siderable challenges met when conducting human
evaluations. Difficulties in recruiting high-quality
annotators (Zhang et al., 2023), lack of robust eval-
uation methodology (Thomson and Reiter, 2020)
and poor reporting practices (Howcroft et al., 2020)
for instance have made human evaluations diffi-
cult to run, interpret and compare with one another.
With this shared task report, we aim to analyse
the performance of LLMs both as content genera-
tors and as quality evaluators, by looking at mul-
tiple aspects such as datasets with different prop-
erties (e.g. in-domain, out-of-domain), different
languages (English and Spanish), different evalua-
tion criteria (e.g. Fluency and Grammaticality),
etc. across multiple submitted systems from task
participants.

In the future, we will follow up with a report pre-
senting results obtained for the Swahili language,
in both the data-tot-text and summarisation tasks,
since unfortunately the Swahili evaluations are still
running at the time this paper is being published.

In this paper we summarise the GEM 2024 data-
to-text generation tasks and the participating sys-
tems (Section 2), we describe the qualitative eval-
uation setup by detailing the data, LLM and hu-
man evaluation approaches (Section 3), and we
present the results for the data-to-text task with
multiple sets of analyses, including a discussion
of the instance-level and system-level correlations
(Section 4). In the final section (Section 5) we dis-
cuss our conclusions and the main findings from
this shared task.
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Team D2T-1 D2T-2 Implementation
DCU-ADAPT-modPB (Osuji et al., 2024) en, sw Flan-T5-0.7B (FT) + GPT-4 + MT
DCU-NLG-PBN (Lorandi and Belz, 2024) en, es, sw  en, es, SW Mistral-7B-Instruct (FT) + MT

DCU-NLG-Small (Mille et al., 2024a) en, es, SW  en, es, SW Rules + T5-0.2B (FT) + MT
DiplInfo-UniTo (Oliverio et al., 2024) en en Rules + Mistral-7B (FT) + Mistral-7B
OSU CompLing (Allen et al., 2024) en, es en, es One Llama2-7B (FT) per language
RDFpyrealb (Lapalme, 2024) en en Rules
SaarLST (Jobanputra and Demberg, 2024) en en Rules + Mixtral-8x7B (RAG)
Anonymous (withdrawn) en en N/A

Table 1: Overview of evaluated systems; en=English, es=Spanish, sw=Swahili. “+” means that the components on
each side are pipelined; “FI” = “fine-tuned”; “MT” = “machine translation” (when generating in other languages

than English); “RAG” = “Retrieval-Augmented Generation”. For more details see the respective papers.
snd : # Systems  # Input/output pairs
2 Summary of tasks and participating Dataset e e "
systems DIT-I-FA | 8+1 3 | 1,620 540
. . _ _ _ D2T-1-CFA | 8 3 | 1,440 540
In this section, we provide a brief overview of the D2T-1-FI 8 3 | 1,440 540
tasks and participants; for more details, see (Mille D2T-2-FA 73 11260 540
D2T-2-CFA 7 3 1,260 540
et al., 2024b) The GEM 2024 data-to-text task con- D2T-2-FI 7 3 1,260 540
sisted of generating texts starting from small knowl- TOTAL 8,280 3,240

edge graphs of between 2 and 7 triples. It had 2
subtasks, one that uses DBpedia triples (D2T-1), as
in the WebNLG shared task (Gardent et al., 2017),
the other one that uses newly collected Wikidata
triples (D2T-2). For each subtask, 3 versions of the
same inputs were provided, as described in (Ax-
elsson and Skantze, 2023): a factual (FA) version,
with factually correct data (e.g. Barack_Obama,
birthYear, 1961) a counterfactual (CFA) version,
in which entities were swapped with other entities
of the same category (e.g. Lady_Gaga, birthYear,
1961), and a fictional version (FI), in which enti-
ties and values were created using an LLM (e.g.
Wonyer_Lator, birthYear, 4397). Participants sub-
mitted outputs in up to 9 languages. The participat-
ing teams and details of their submissions used in
the qualitative evaluation are provided in Table 1.

3 Qualitative evaluation setup

The system outputs, code for running evaluations
and computing results, plots and correlations are
publicly available on GitHub https://github.com/
GEM-benchmark/human-eval-shared-task-2024.

3.1 Evaluated data

For the data-to-text task, we evaluated all outputs in
English, Spanish and Swahili as shown in Table 1.
Every time a language appears in column D2T-1 or
D2T-2, it means that 3 datasets (FA, CFA, FI, see
Section 2) of 180 input/output pairs were evaluated.

!One half of the human evaluation annotations will have a
delayed release so as to keep an undisclosed set of results.

Table 2: Number of evaluated data points for the data-
to-text task. Each dataset has 180 data points. +1 on the
D2T-1-FA row is the human-written WebNLG texts.

For the D2T-1-FA subset, we also evaluated 180
original WebNLG 2020 human-written texts, by se-
lecting a random text for each of the 180 sampled
data points. The total number of input/output pairs
evaluated is thus 8,280 in English, 3,240 in Span-
ish, and 2,700 in Swahili;> we show the breakdown
of the count for English and Spanish in Table 2.
Note that in Section 4, there is one less system than
the number of evaluated systems for English; this
is simply because one team withdrew their submis-
sion, so we do not report their evaluation results in
this paper. Also, since DCU-ADAPT-modPB did
not submit outputs for the D2T-2 subtask, there is a
different number of system outputs between D2T-1
and D2T-2 for English (but not for Spanish because
they did not submit outputs in this language).

3.2 Human evaluation

In (Mille et al., 2024b), we provide details on the
evaluator recruitment and training processes, and
the evaluation criteria and task design. Table 3
is replicated here to detail the four dimensions
used for data-to-text. We refer to No-Omissions
and No-Additions as “semantic accuracy criteria”,
since they both assess to what extent the semantic
contents of the outputs match those of the inputs.

>The Swahili evaluation is still running.
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Criterion name  Definition

ALL the information in the table is

No-Omissions -
present in the text.

ONLY information from the table is

No-Additions present in the text.

The text is free of grammatical and

Grammaticality .

spelling errors.

The text flows well and is easy to read;
Fluency its parts are connected in a natural

way.

Table 3: Criteria used for data-to-text generation

On the other hand, Grammaticality and Fluency
assess qualities of the output texts in their own
right, regardless of the input; below, we refer to
these together as the “intrinsic quality criteria”.

All input/output pairs were assessed by at least
2 human evaluators, and a subset of the data was
annotated by several evaluators to carry out inter-
annotator agreement (IAA) analysis:

 For English, the IAA subset consists of 2 out-
puts per system and per dataset, for a total of
80 input/output pairs, all scored by the same
18 evaluators.

* For Spanish, the IAA subset consists of 4 out-
puts per system and per dataset, for a total of
72 input/output pairs, all scored by the same 7
evaluators.

For English, we collected a total of 62,756 indi-
vidual ratings (15,689 rating per quality criterion),
and for Spanish 27,936 individual ratings (6,984
ratings per quality criterion).

For the human evaluation results, we computed
the mean score across all individual scores re-
ceived by each system on each dataset. To indicate
whether the average scores between two systems is
significant, we computed the system ranking using
Tukey’s Honestly Significant Difference (Tukey’s
HSD; Tukey, 1949), which tests all pairwise differ-
ences between systems while correcting for multi-
ple comparisons. This measure has the advantage
of allowing partial ties between systems. We set
our threshold for statistical significance to 0.05.

We calculated the inter-annotator agreement be-
tween annotators both on the high overlap dataset
and the result of the dataset using Krippendorff’s
alpha (Krippendorff, 1970). This is a commonly
used annotation method when not all annotators an-
notate all items. Given our 7-point Likert scale, we

use interval metric penalization rather than nominal
or linear.

All annotators were recruited on Amazon Me-
chanical Turk. We follow the filters from Zhang
et al. (2023). For the English task location was
limited to US; however, for the Spanish task there
was no location limit and instead a language flu-
ency requirement of both English and Spanish. We
require our workers to have a minimum of 1,000
completed tasks and 97% completion rate. All
annotators were required to pass a training and fil-
tering task. Annotators were further filtered out
during on the inter-annotator agreement subset of
our dataset where workers with an average Cohen’s
Kappa under 0.5 were removed from further anno-
tations. Annotators were paid on a task basis with
an expected compensation of roughly $15 per hour.

3.3 LLM-as-Judge evaluation

We evaluated all English and Spanish outputs de-
tailed in Table 2 according to all four quality cri-
teria. We chose four LLMs for their complemen-
tary strengths: 03-mini** (OpenAlI, 2024) via the
OpenAl API, for its improved performance on rea-
soning benchmarks, DeepSeek-R1-Distill-Llama-
70B (DeepSeek-Al, 2025) to provide a locally
reproducible open-weight baseline, and Gemini-
1.5-Flash® (Gemini Team, 2024) via the aiXplain
API’ and GPT-40-mini® (OpenAl, 2024) for their
speed, cost-effectiveness, and broad accessibility.
4 Nvidia A6000 GPUs were used for hosting the
DeepSeek model.

The total cost on the aiXplain and OpenAl plat-
forms was below $60 (~$6 for Gemini-1.5-Flash,
~$2 for GPT-40-mini, and ~$50 for 03-mini).

The prompts sent to the LLMs contained the
same information as provided to the human anno-
tators; see a sample prompt in Appendix A. The
Notebooks used to run the aiXplain and OpenAl
evaluations can be found on GitHub.’

For 3 English input/output pairs, DeepSeek-R1-
Distill-Llama-70B did not return any score; As
a result, in English, three systems have 179 in-
stead of 180 sets of four scores (one score per crite-
rion) for the D2T-2-FI dataset (DCU-NLG-Small,

3https: //openai.com/index/openai-o03-mini
*Model ID 03-mini-2025-01-31.

5https: //openai.com/api/

*Model ID: 674b73f06eb563a748561d41
"https://platform.aixplain.com/dashboard/
$Model ID gpt-4o-mini-2024-07-18.
*https://github.com/mille-s/GEM24_EvallLLM
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DipInfo-UniTo and SaarL.ST). For the other five
datasets, all systems have all scores. In total, we
collected ratings (i) for 8,280 English and 3240
Spanish input/output pairs, (ii) with four differ-
ent LLMs and (iii) for four criteria, for a total of
(((8,280+3,240)*4)-3)*4 = 184,308 individual rat-
ings.

In the results section, we report averaged LLM
scores, obtained by computing the mean of the four
LLMS for each evaluated instance (and then the
mean over all considered instance, using Tukey’s
HSD for ranks, see Section 3.2); Appendix C shows
all individual LLM scores for each system on each
dataset.

3.4 Computation of correlations between
human and LLM-as-judge evaluations
and between evaluation dimensions

Scores for all systems on all datasets were aligned
in different CSV files. From each filename we ex-
tract a slice (system, subset, evaluator) and define
a shared row key v = (id, system, subset_eval),
ensuring that all models evaluated on the same
slice use identical u for the same item. Stack-
ing all files and pivoting yields a wide matrix
W € R™ P whose rows index aligned items u and
whose columns are features f = (d, m) formed by
a dimension d ( No-Omissions, No-Additions,
Grammaticality, Fluency) and a model m. The
entry W; ¢ is the score for item ¢ under feature f.

For each pair of feature columns a and b, cor-
relations are computed on the pairwise-complete
set Sgp = { i : W;, and W;, are both observed }
with size Ng, = |Sas|. Let R,(7) and Ry (7) denote
the midranks of W; , and W; , over i € Sgp.

To address multiple testing, we control the false
discovery rate across the unique pairs using the
Benjamini-Hochberg procedure. If p(q) < --- <
P(m) are the ordered p-values for the m tests, the
corresponding g-values are

m

q(k) = Min — Py,

k=1,...
Jizk J

9y m7
which are mapped back to their original pairs to
yield g,;. Cells are annotated with p,; and sig-
nificance stars for g, < 0.05,0.01,0.001 (shown
as *, %, % * %), Diagonal entries satisfy p,, = 1
with pgq = que = 0, and the displayed Ny, is the
pairwise-complete sample size used for each pgp.
The resulting heatmaps of Section 4.2 visualize pqp
on a fixed [—1, 1] diverging scale. More details are
provided in Appendix D.

4 Data-to-text qualitative evaluation
results

In this section, we present (i) a detailed analysis
of the human and LLM-as-judge results for all
datasets and all criteria for both languages (Sec-
tion 4.1), (i1) an analysis of the instance-level cor-
relations between human and LLM ratings (Sec-
tion 4.2), (iii) an analysis of system-level corre-
lations between human ratings, LLM ratings and
metrics (section 4.3), and (iv) an analysis of human
annotator behaviour (Section 4.4).

4.1 Evaluation results

Figures 1 to 7 show the system rankings for En-
glish outputs, and Figures 8 to 13 show the sys-
tem rankings for Spanish outputs. In all fig-
ures, the left-hand side tables report on human
evaluations, while the right-hand side tables re-
port on the LLM-as-judge evaluation. Each side
of the figures comprises four table, which cor-
respond to the four evaluated quality criteria (in
descending order: No-Omissions, No-Additions,
Grammaticality, Fluency). Each table row con-
tains a system along with its mean score for the
given criterion on the given dataset, and groupings
based on Tukey’s HSD post-hoc test, which denote
statistically significant differences between systems
(i.e. the scores of two systems who share a letter in
the same table do not have statistically significant
differences). The mean human evaluation scores
were computed with two or more scores on 180
data points per system, while the mean LLM evalu-
ation scores we computed with four different LLMs
on 180 data points per system (see Section 3).
For each language, we report the following:

* System rankings for each criterion on in-
domain data only (D2T-1-FA, D2T-1-CFA,
D2T-1-FI); Figures 1 and 8.

* System rankings for each criterion on out-of-
domain data only (D2T-2-FA, D2T-2-CFA,
D2T-2-FI); Figures 2 and 9.

* System rankings for each criterion on factual
data only (D2T-1-FA, D2T-2-FA); Figures 3
and 10.

* System rankings for each criterion on counter-
factual data only (D2T-1-CFA, D2T-2-CFA);
Figures 4 and 11.



(a) No-omissions human-en-D2T-1-*
Mean  Group
SaarL.ST 575 A
RDFpyrealb 572 A
Diplnfo-UniTo 5.48 B
DCU-NLG-PBN 5.44 B
DCU-ADAPT-modPB 5.33 B
OSU-CompLing 4.77 C
DCU-NLG-Small 4.59 D

(c) No-additions human-en-D2T-1-*
Mean  Group
DCU-ADAPT-modPB 562 A
SaarLST 550 AB
DipInfo-UniTo 548 AB
RDFpyrealb 547 AB
DCU-NLG-PBN 5.38 B
OSU-CompLing 4.64 C
DCU-NLG-Small 4.50 C

(e) Grammaticality human-en-D2T-1-*
Mean  Group
DCU-ADAPT-modPB 621 A
SaarLST 5.96 B
DCU-NLG-PBN 5.88 B
DipInfo-UniTo 5.83 B

DCU-NLG-Small ~ 5.30 C
OSU-CompLing 5.21 C
RDFpyrealb 4.69 D

(g) Fluency human-en-D2T-1-*
Mean  Group
DCU-ADAPT-modPB 6.12 A
SaarLST 5.89 B
DCU-NLG-PBN 5.82 BC

DiplInfo-UniTo 5.73 C
OSU-CompLing 5.29 D
DCU-NLG-Small 5.25 D
RDFpyrealb 4.81 E

(b) No-omissions llm-en-D2T-1-*
Mean  Group
RDFpyrealb 6.81 A
SaarLST 6.78 A
DiplInfo-UniTo 6.55 B
DCU-NLG-PBN 6.54 B

OSU-CompLing 6.18 C
DCU-ADAPT-modPB 6.16 C
DCU-NLG-Small 5.71 D

(d) No-additions llm-en-D2T-1-*
Mean  Group
DCU-ADAPT-modPB 691 A
DipInfo-UniTo 6.84 AB
RDFpyrealb 6.82 BC
DCU-NLG-PBN 6.79 BC

SaarL.ST 6.75 C
OSU-CompLing 6.62 D
DCU-NLG-Small 6.26 E

(f) Grammaticality llm-en-D2T-1-*

Mean  Group
DCU-ADAPT-modPB 698 A
DiplInfo-UniTo 696 A
SaarL.ST 696 A
DCU-NLG-PBN 694 A

DCU-NLG-Small 6.84 B
OSU-CompLing 6.74 C
RDFpyrealb 6.14 D

(h) Fluency llm-en-D2T-1-*
Mean  Group
DCU-ADAPT-modPB 697 A
SaarLST 693 AB
DCU-NLG-PBN 692 AB
DiplInfo-UniTo 6.91 B

OSU-CompLing 6.81 C
DCU-NLG-Small 6.73 D
RDFpyrealb 6.11 E

Figure 1: System rankings for English in-domain data (left: human ratings, right: llm ratings)

» System rankings for each criterion on fictional
data only (D2T-1-FI, D2T-2-FI); Figures 5 and
12.

* System rankings for each criterion on all
datasets (D2T-1-FA, D2T-1-CFA, D2T-1-FI,
D2T-2-FA, D2T-2-CFA, D2T-2-FI); Figures 7
and 13.

Additionally, for English, we report system rank-
ings on in-domain factual data only (D2T-1-FA,
Figure 6), since only for this dataset we were able
to evaluate human-written texts. Note that for each
table we only consider systems that have outputs
for all selected datasets.

All scores on individual datasets for English and
Spanish can be found in Appendix B.

4.1.1 Results for English in-domain and
out-of-domain data

Figures 1 and 2 show the rankings on the English
in-domain and out-of-domain data respectively.

In-domain: Semantic accuracy criteria. For hu-
mans, SaarLST and RDFpyrealb are above oth-
ers, while DCU-NLG-Small gets the lowest scores.
The lowest-ranking systems are the same in all
four tables (OSU-CompLing, followed by DCU-
NLG-Small). For No-Omissions, the system rank-
ings and groupings are very similar in the human
and the LLM tables; only DCU-ADAPT-modPB
is one group lower in the LLM rankings. For
No-Additions, rankings and groupings are again
similar in human and LLM tables, with the notable
exception of SaarLST which is rank quite lower by
LLM judges than by humans.




(a) No-omissions human-en-D2T-2-*
Mean  Group
SaarLST 6.03 A
DipInfo-UniTo 5.69 B

DCU-NLG-PBN 542 C
RDFpyrealb 5.42 C
OSU-CompLing 4.69 D
DCU-NLG-Small ~ 4.34 E

(c) No-additions human-en-D2T-2-*
Mean  Group
SaarLST 581 A
DiplInfo-UniTo 572 A
DCU-NLG-PBN 5.24 B
RDFpyrealb 5.00 C
OSU-CompLing 4.49 D
DCU-NLG-Small 4.12 E

(e) Grammaticality human-en-D2T-2-*

Mean  Group
SaarL.ST 6.12 A
DiplInfo-UniTo 5.87 B
DCU-NLG-PBN 5.71 C
OSU-CompLing 5.09 D
DCU-NLG-Small 4.89 E
RDFpyrealb 4.18 F

(g) Fluency human-en-D2T-2-*
Mean  Group
SaarLST 6.06 A
DiplInfo-UniTo 5.83 B

DCU-NLG-PBN 5.67 C
OSU-CompLing 5.16 D
DCU-NLG-Small 4.89 E
RDFpyrealb 4.39 F

(b) No-omissions llm-en-D2T-2-*
Mean  Group
SaarLST 692 A
RDFpyrealb 6.74 B
DiplInfo-UniTo 6.60 C
DCU-NLG-PBN 6.57 C
OSU-CompLing 6.20 D
DCU-NLG-Small 5.20 E

(d) No-additions llm-en-D2T-2-*
Mean  Group
SaarLST 6.86 A
DiplInfo-UniTo 6.83 A
DCU-NLG-PBN 6.68 B
RDFpyrealb 6.65 BC
OSU-CompLing 6.57 C
DCU-NLG-Small 5.58 D

(f) Grammaticality llm-en-D2T-2-*
Mean  Group
SaarLST 698 A
DCU-NLG-PBN 696 A
DipInfo-UniTo 6.88 B
OSU-CompLing 6.76 C
DCU-NLG-Small 6.67 D
RDFpyrealb 5.62 E

(h) Fluency llm-en-D2T-2-*
Mean  Group
SaarL.ST 697 A
DCU-NLG-PBN 694 A
DiplInfo-UniTo 6.84 B
OSU-CompLing 6.83 B
DCU-NLG-Small 6.49 C
RDFpyrealb 5.59 D

Figure 2: System rankings for English out-of-domain data (left: human ratings, right: 1lm ratings)

In-domain: Intrinsic quality criteria. Both hu-
man and LLM evaluations place DCU-ADAPT-
modPB first for both Grammaticality and
Fluency, and the same three systems last DCU-
NLG-Small/OSU-CompLing followed by RDF-
pyrealb for humans, and DCU-NLG-Small fol-
lowed by OSU-CompLing followed by RDFpyre-
alb for LLMs. DCU-ADAPT-modPB ranks first
alone in the human tables, while LLMs have more
difficulty distinguishing between the top four sys-
tems, which end up in one single or two groups.

Out-of-domain: Semantic accuracy criteria. In
the human evaluation results, SaarLST, who used
the second largest model after DCU-ADAPT-
modPB, is ranked first for both criteria, and
DiplInfo-UniTo is in the same group only for
No-Additions. DCU-NLG-PBN and RDFpyrealb
obtain similar scores, even though the former ranks
higher for No-Additions. As for the in-domain
data, OSU-CompLing and DCU-NLG-Small rank

at the bottom, but this time DCU-NLG-Small ranks
lower for both criteria. LLMs situate RDFpyrealb
one rank higher for both criteria.

Out-of-domain: Intrinsic quality criteria. ~ For
Grammaticality and Fluency, the picture is very
clear in the human evaluation results with the same
rankings and one system per group. The systems
are in the same order as for the semantic accu-
racy criteria except for RDFpyrealb, which ranks
last for both criteria, as it was the case on the in-
domain data. The main difference between human
and LLM-as-judge evaluations is that the rankings
between DCU-NLG-PBN and DiplInfo-UniTo, for
which humans prefer the latter while LLMs prefer
the former. Another difference is that LLMs pro-
duce several ties between teams, while humans did
not have any, which may reflect the higher level of
difficulty for LLMs in judging intrinsic text quali-
ties.




(a) No-omissions human-en-*-FA
Mean  Group
SaarLST 599 A
DipInfo-UniTo 5.63 B
RDFpyrealb 5.60 B
DCU-NLG-PBN 5.48 B
OSU-CompLing 4.99 C
DCU-NLG-Small 4.66 D

(c) No-additions human-en-*-FA
Mean  Group
SaarLST 588 A
DiplInfo-UniTo 582 A
DCU-NLG-PBN 5.52 B

RDFpyrealb 5.27 C
OSU-CompLing 4.91 D
DCU-NLG-Small ~ 4.63 E

(e) Grammaticality human-en-*-FA

Mean  Group
SaarLST 6.18 A
DipInfo-UniTo 6.07 A

DCU-NLG-PBN 6.06 A
OSU-CompLing 5.54 B
DCU-NLG-Small 5.26 C
RDFpyrealb 4.32 D

(g) Fluency human-en-*-FA
Mean  Group
SaarLST 6.11 A
DCU-NLG-PBN 598 A
DipInfo-UniTo 597 A
OSU-CompLing 5.58 B
DCU-NLG-Small 5.24 C
RDFpyrealb 4.52 D

(b) No-omissions llm-en-*-FA
Mean  Group
SaarLST 691 A
RDFpyrealb 6.80 A
DCU-NLG-PBN 6.58 B
Diplnfo-UniTo 6.58 B
OSU-CompLing 6.31 C
DCU-NLG-Small 5.58 D

(d) No-additions llm-en-*-FA
Mean  Group
DipInfo-UniTo 6.88 A
SaarLST 6.86 A
DCU-NLG-PBN 6.79 AB
RDFpyrealb 6.73 B
OSU-CompLing 6.69 B
DCU-NLG-Small 5.96 C

(f) Grammaticality llm-en-*-FA
Mean  Group
DCU-NLG-PBN 696 A
SaarL.ST 696 A
DipInfo-UniTo 693 A
OSU-CompLing 6.79 B
DCU-NLG-Small 6.73 B
RDFpyrealb 5.76 C

(h) Fluency llm-en-*-FA

Mean  Group
SaarLST 6.96 A
DCU-NLG-PBN 695 A

DiplInfo-UniTo 6.88 AB
OSU-CompLing 6.86 B
DCU-NLG-Small 6.61 C
RDFpyrealb 5.72 D

Figure 3: System rankings for English factual data (left: human ratings, right: llm ratings)

Comparison between in-domain and out-of-
domain data. For in-domain data, DCU-ADAPT-
modPB, the only submission that used a very
large language model (GPT-4), obtained the best
scores on three out of four criteria, with an appar-
ent issue with omitting parts of the input (lower
No-Omissions rankings). DCU-ADAPT-modPB
did not submit outputs for the out-of-domain data
but all other teams did. The two systems that use
a rule-based component as main generation en-
gine (RDFpyrealb and DCU-NLG-Small) see their
scores clearly drop on out-of-domain data, while
for the other systems the scores are rather similar.
DipInfo-UniTo and especially SaarLST even ob-
tain higher scores on the out-of-domain data. We
observe that there are considerably less ties on the
out-of-domain data, which possibly reflects the fact
that system outputs are less homogenous on this
dataset. Further statistical testing is necessary to
test if this is indeed significant.

4.1.2 Results for English factual,
counterfactual and fictional data

Figures 3, 4 and 5 show the rankings on the En-
glish factual, counterfactual and fictional data re-
spectively.

Factual: Semantic accuracy criteria. In the hu-
man evaluation results, SaarL.ST ranks first for
both criteria, along with Diplnfo-UniTo for
No-Additions. DCU-NLG-PBN ranks in the
second group for both criteria, while RDFpyre-
alB ranks second and third on No-Omissions and
No-Additions respectively (as expected because
of the lower scores of this system on out-of-domain
data). OSU-CompLing and DCU-NLG-Small rank
at the bottom, in this order. As observed for the out-
of-domain data above, RDFpyrealB is positioned
one rank higher by LLMs, which otherwise provide
very similar rankings to humans, but once again
with more ties between systems.




(a) No-omissions human-en-*-CFA
Mean  Group
SaarLST 572 A
DipInfo-UniTo 558 A
RDFpyrealb 557 A
DCU-NLG-PBN 5.33 B
OSU-CompLing 4.74 C
DCU-NLG-Small 4.36 D

(c) No-additions human-en-*-CFA
Mean  Group
Diplnfo-UniTo 554 A
SaarLST 533 AB
RDFpyrealb 5.19 BC
DCU-NLG-PBN 5.09 C
OSU-CompLing 4.49 D
DCU-NLG-Small 4.06 E

(e) Grammaticality human-en-*-CFA
Mean  Group
SaarLST 595 A
Diplnfo-UniTo 581 AB
DCU-NLG-PBN 5.67 B

OSU-CompLing 4.97 C
DCU-NLG-Small 491 C
RDFpyrealb 4.38 D

(g) Fluency human-en-*-CFA

(b) No-omissions llm-en-*-CFA
Mean  Group
SaarLST 6.76 A
RDFpyrealb 6.71 A
DiplInfo-UniTo 6.51 B
DCU-NLG-PBN 6.40 B
OSU-CompLing 6.14 C
DCU-NLG-Small 5.28 D

(d) No-additions llm-en-*-CFA
Mean  Group

DipInfo-UniTo 6.80 A
RDFpyrealb 6.68 AB
SaarLST 6.66 B
DCU-NLG-PBN 6.60 B
OSU-CompLing 6.58 B

DCU-NLG-Small 5.79 C

(f) Grammaticality llm-en-*-CFA
Mean  Group
SaarL.ST 696 A
DCU-NLG-PBN 693 A
DipInfo-UniTo 692 A
DCU-NLG-Small 6.70 B
OSU-CompLing 6.66 B
RDFpyrealb 5.75 C

(h) Fluency llm-en-*-CFA

Mean  Group
SaarL.ST 588 A
DipInfo-UniTo 5.74 AB
DCU-NLG-PBN 5.62 B
OSU-CompLing 5.06 C
DCU-NLG-Small 4.87 D
RDFpyrealb 4.52 E

Mean  Group
SaarL.ST 693 A
DCU-NLG-PBN 690 A
DiplInfo-UniTo 6.87 A
OSU-CompLing 6.74 B
DCU-NLG-Small 6.53 C
RDFpyrealb 5.70 D

Figure 4: System rankings for English counterfactual data (left: human ratings, right: 1lm ratings)

Factual: Intrinsic quality criteria. Humans pre-
fer SaarLST, DipInfo-UniTo and DCU-NLG-
PBN, all in the first group for both criteria,
and place OSU-CompLing, DCU-NLG-Small
and RDFpyrealb in the second third and fourth
groups respectively. LLMs rank OSU-CompLing
and DCU-NLG-Small higher for Fluency and
Grammaticality respectively.

Counterfactual: Semantic accuracy criteria. For
counterfactual data, SaarLST and DipInfo-UniTo
are in the first group of the semantic accuracy ta-
bles, along with RDFpyrealb for No-Omissions.
DCU-NLG-PBN, OSU-CompLing and DCU-NLG-
Small then rank in this order. LLMs place Diplnfo-
UniTo one rank lower for No-Omissions, SaarLST
one rank lower for No-Additions, and RDFpyre-
alb one rank above (first group) for No-Additions.

Counterfactual: Intrinsic quality criteria. ~ For
Grammaticality and Fluency, SaarLST and
DipInfo-UniTo are again at the top, while DCU-

NLG-PBN is in the same group as DipInfo-UniTo
(but not SaarL.ST). OSU-CompLing, DCU-NLG-
Small and RDFpyrealb then rank in this order,
except for Grammaticality, for which OSU-
CompLing and DCU-NLG-Small are tied. DCU-
NLG-PBN is ranked in the first group by LLMs (i.e.
one rank higher for both criteria when compared to
human rankings).

Fictional: Semantic accuracy criteria. For both
criteria, SaarLLST is the only system in the first
group, DiplInfo-UniTo, RDFpyrealb and DCU-
NLG-PBN are in the second group and OSU-
CompLing and DCU-NLG-Small are in the third
group. The LLM groupings are different, with
RDFpyrealb in the first group for No-Omissions,
and DipInfo-UniTo, RDFpyrealb and DCU-NLG-
PBN in the first group for No-Additions, while
for both criteria OSU-CompLing and DCU-NLG-
Small are in consecutive groups, OSU-CompLing
ranking higher.




(a) No-omissions human-en-*-FI

(b) No-omissions llm-en-*-FI

Mean  Group
SaarLST 595 A
DipInfo-UniTo 5.55 B
RDFpyrealb 5.54 B
DCU-NLG-PBN 5.48 B
OSU-CompLing 4.47 C
DCU-NLG-Small 4.38 C

Mean  Group
SaarLST 6.88 A
RDFpyrealb 6.82 A
DCU-NLG-PBN 6.69 B
Diplnfo-UniTo 6.63 B
OSU-CompLing 6.11 C
DCU-NLG-Small 5.51 D

(c) No-additions human-en-*-FI

Mean  Group
SaarLST 576 A
DiplInfo-UniTo 543 B
DCU-NLG-PBN 532 B
RDFpyrealb 5.25 B
OSU-CompLing 4.28 C
DCU-NLG-Small 4.24 C

(e) Grammaticality human-en-*-FI

Mean  Group
SaarLST 599 A
DiplInfo-UniTo 5.68 B
DCU-NLG-PBN 5.65 B
DCU-NLG-Small 5.11 C
OSU-CompLing 4.94 D
RDFpyrealb 4.62 E

(g) Fluency human-en-*-FI

(d) No-additions llm-en-*-FI

Mean  Group
SaarL.ST 6.89 A
DCU-NLG-PBN 6.82 A
DipInfo-UniTo 682 A
RDFpyrealb 6.79 A
OSU-CompLing 6.53 B
DCU-NLG-Small 6.00 C

(f) Grammaticality llm-en-*-FI

Mean  Group
SaarLST 698 A
DCU-NLG-PBN 695 A
DipInfo-UniTo 691 A
DCU-NLG-Small 6.83 B
OSU-CompLing 6.80 B
RDFpyrealb 6.15 C

(h) Fluency llm-en-*-FI

Mean  Group
SaarLST 594 A
DCU-NLG-PBN 5.64 B
DipInfo-UniTo 5.62 B
DCU-NLG-Small 5.09 C
OSU-CompLing 5.03 C
RDFpyrealb 4.77 D

Mean  Group
SaarL.ST 697 A
DCU-NLG-PBN 695 A
DiplInfo-UniTo 6.87 B
OSU-CompLing 6.86 B
DCU-NLG-Small 6.68 C
RDFpyrealb 6.13 D

Figure 5: System rankings for English fictional data (left: human ratings, right: 1lm ratings)

Fictional: Intrinsic quality criteria. Here too,
for both criteria, SaarLST is the only system in
the first group, but only DipInfo-UniTo and DCU-
NLG-PBN are in the second group, followed by
OSU-CompLing and DCU-NLG-Small in this or-
der, and RDFpyrealb at the bottom. DCU-NLG-
PBN is positioned in the first group by LLMs
for both criteria; unlike human evaluators, LLMs
tie OSU-CompLing and DCU-NLG-Small for
Grammaticality but ranks the former higher in
terms of Fluency.

Comparison between factual, counterfactual
and fictional data. In the human evaluation, across
criteria, scores for all systems but RDFpyrealb are
lower on the counterfactual and fictional datasets
compared to the scores on the factual dataset. RDF-
pyrealb maintains almost all its scores on the coun-
terfactual and fictional datasets, with even higher
scores (although still under 5) for Grammaticality
and Fluency on the fictional dataset. According

to the LLM-as-judge evaluation, the score drop
between the factual and counterfactual datasets is
much less evident, in particular for the intrinsic
quality criteria. When comparing factual and fic-
tional dataset scores, LLMs essentially give the
same scores as the respective human scores to all
systems but RDFpyrealb, which gets higher scores
especially for the intrinsic quality criteria. Human
evaluations produce slightly more rank ties on the
counterfactual and fictional datasets than they do
on the factual dataset.

4.1.3 Results for English in-domain factual
data

Figure 6 shows the rankings on the English in-
domain factual data; this table is the only one
that contains all system outputs along with human-
written references from WebNLG 2020 (Castro Fer-
reira et al., 2020). Also note that the inputs and
human-written references for this test set have been



(a) No-omissions human-en-D2T-1-FA

Mean  Group
SaarL.ST 579 A
RDFpyrealb 5.74 AB
DCU-NLG-PBN 5.49 BC
DipInfo-UniTo 5.45 C
DCU-ADAPT-modPB 5.42 CD
WebNLG-Human 5.14 DE
OSU-CompLing 4.99 E
DCU-NLG-Small 4.88 E

(c) No-additions human-en-D2T-1-FA

Mean  Group
DCU-ADAPT-modPB 582 A
SaarLST 5.61 AB
DipInfo-UniTo 559 AB
DCU-NLG-PBN 556 AB
RDFpyrealb 5.41 B
WebNLG-Human 5.05 C
OSU-CompLing 4.85 C
DCU-NLG-Small 4.85 C

(e) Grammaticality human-en-D2T-1-FA

Mean  Group
DCU-ADAPT-modPB 639 A
DCU-NLG-PBN 6.11 B
SaarLST 6.07 B
DipInfo-UniTo 6.01 B
OSU-CompLing 5.59 C
DCU-NLG-Small 5.51 C
WebNLG-Human 5.43 C
RDFpyrealb 4.53 D

(g) Fluency human-en-D2T-1-FA

Mean  Group
DCU-ADAPT-modPB 629 A
DCU-NLG-PBN 6.04 B
SaarL.ST 5.98 B
DipInfo-UniTo 5.89 B
OSU-CompLing 5.61 C
DCU-NLG-Small 5.50 C
WebNLG-Human 541 C
RDFpyrealb 4.69 D

(b) No-omissions llm-en-D2T-1-FA

Mean  Group
RDFpyrealb 6.86 A
SaarL.ST 6.86 A
WebNLG-Human 6.67 AB
DCU-NLG-PBN 6.58 B
DipInfo-UniTo 6.51 BC
OSU-CompLing 6.32 CD
DCU-ADAPT-modPB 6.14 DE
DCU-NLG-Small 6.01 E

(d) No-additions llm-en-D2T-1-FA

Mean  Group
DCU-ADAPT-modPB 695 A
DCU-NLG-PBN 6.88 A
DiplInfo-UniTo 6.88 A
RDFpyrealb 6.86 A
SaarL.ST 6.83 A
OSU-CompLing 6.68 B
WebNLG-Human 6.67 B
DCU-NLG-Small 6.42 C

(f) Grammaticality llm-en-D2T-1-FA

Mean  Group
DCU-ADAPT-modPB 699 A
DCU-NLG-PBN 699 A
DiplInfo-UniTo 6.96 A
SaarLST 695 AB
DCU-NLG-Small 6.87 BC
OSU-CompLing 6.82 CD
WebNLG-Human 6.77 D
RDFpyrealb 6.13 E

(h) Fluency llm-en-D2T-1-FA

Mean  Group
DCU-ADAPT-modPB 699 A
DCU-NLG-PBN 696 A
SaarL.ST 6.94 AB
DiplInfo-UniTo 692 AB
OSU-CompLing 6.86 BC
DCU-NLG-Small 6.80 CD
WebNLG-Human 6.75 D
RDFpyrealb 6.10 E

Figure 6: System rankings for English in-domain factual data (left: human ratings, right: Ilm ratings)

publicly available for a few years and have been
“ingested” by the different language models.

In-domain factual: Semantic accuracy criteria.
In the human evaluation results, for No-Omissions
SaarLST is in the first group with RDFpyrealb,
while for No-Additions, most LLMs are in the
first group, closely followed by RDFpyrealb. In
both cases, OSU-CompLing, DCU-NLG-Small
and the human-written texts stand at the bottom in
the same group. In the LLM-as-judge evaluation,
human-written texts are ranked in the first group
for No-Omissions, and the middle one for
No-Additions. The difference between human
and LLM evaluation is rather important when
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it comes to evaluating the semantic accuracy of
human-written texts.

In-domain factual: Intrinsic quality criteria. In
the human evaluation, for both criteria, DCU-
ADAPT-modPB ranks alone in the first group, fol-
lowed by DCU-NLG-PBN, SaarLST and DipInfo-
UniTo in the second group, OSU-CompLing, DCU-
NLG-Small and human-written texts in the third
group, and RDFpyrealb in the fourth group. Re-
sults are less clear cut in the LLM-as-judge eval-
uation with the same absolute score rankings but
with some overlaps between the groups.

Comments on in-domain factual results. In
previous similar multi-system evaluations of




(a) No-omissions human-en-*-*

Mean  Group
SaarL.ST 589 A
DiplInfo-UniTo 5.58 B
RDFpyrealb 5.57 B
DCU-NLG-PBN 5.43 C
OSU-CompLing 4.73 D
DCU-NLG-Small 447 E

(c) No-additions human-en-*-*

Mean  Group
SaarLST 566 A
DipInfo-UniTo 5.60 A
DCU-NLG-PBN 5.31 B
RDFpyrealb 5.24 B
OSU-CompLing 4.56 C
DCU-NLG-Small 431 D

(e) Grammaticality human-en-*-*

Mean  Group
SaarLST 6.04 A
DipInfo-UniTo 5.85 B
DCU-NLG-PBN 5.79 B
OSU-CompLing 5.15 C
DCU-NLG-Small 5.09 C
RDFpyrealb 4.44 D

(g) Fluency human-en-*-*

Mean  Group
SaarL.ST 598 A
DipInfo-UniTo 5.78 B
DCU-NLG-PBN 5.75 B
OSU-CompLing 5.23 C
DCU-NLG-Small 5.07 D
RDFpyrealb 4.60 E

(b) No-omissions llm-en-*-*

Mean  Group
SaarLST 6.85 A
RDFpyrealb 6.78 A
DiplInfo-UniTo 6.57 B
DCU-NLG-PBN 6.56 B
OSU-CompLing 6.19 C
DCU-NLG-Small 5.46 D

(d) No-additions Ilm-en-*-*

Mean  Group
DipInfo-UniTo 6.83 A
SaarLST 6.80 AB
DCU-NLG-PBN 6.74 B
RDFpyrealb 6.73 B
OSU-CompLing 6.60 C
DCU-NLG-Small 5.92 D

(f) Grammaticality llm-en-*-*

Mean  Group
SaarLST 697 A
DCU-NLG-PBN 695 AB
DipInfo-UniTo 6.92 B
DCU-NLG-Small 6.75 C
OSU-CompLing 6.75 C
RDFpyrealb 5.88 D

(h) Fluency llm-en-*-*

Mean  Group
SaarL.ST 695 A
DCU-NLG-PBN 693 A
DipInfo-UniTo 6.87 B
OSU-CompLing 6.82 C
DCU-NLG-Small 6.61 D
RDFpyrealb 5.85 E

Figure 7: System rankings for English overall (left: human ratings, right: 1lm ratings)

data-to-text generation on factual in-domain
data, i.e WebNLG’17 (Gardent et al., 2017)
WebNLG’20 (Castro Ferreira et al., 2020) and
WebNLG’23 (Cripwell et al., 2023), the human-
written texts were in the first or occasionally sec-
ond group. In our evaluation, human-written texts
rank in the third or fourth group depending on the
criterion. Given that LLMs are now able to produce
very natural texts and that, to ensure semantic accu-
racy, original WebNLG texts were created under a
set of constraints possibly limiting the naturalness
of the texts, seeing human-written texts getting
behind LLMs on Grammaticality and Fluency
can be expected. What could be considered more
surprising is the fact that in terms of semantic accu-
racy, the 2020 human-written texts are now ranked
below RDFpyrealb, the rule-based system whose
outputs were also submitted in 2020. Although
it is possible that RDFpyrealb was improved be-
yond human quality in terms of semantic accuracy,
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this could also be an indicator that ranking-based
evaluation results such as the one presented here
are eventually relative to the current state of the
art, as noted recently in the speech synthesis do-
main (Le Maguer et al., 2024).

4.1.4 Results for English across all datasets

Figure 7 shows the overall rankings on the En-
glish data. The tables summarize what has been
described in the previous sections: SaarL.ST con-
sistently ranks first for all criteria, followed by
DiplInfo-UniTo and DCU-NLG-PBN (DipInfo-
UniTo being better on semantic accuracy criteria),
then OSU-CompLing and DCU-NLG-Small (OSU-
CompLing being better on Grammaticality).
RDFpyrealb ranks in the second cluster for seman-
tic accuracy criteria, and last for Grammaticality
and Fluency. DCU-NLG-PBN manages to reach a
level close to that of larger or multiple LLMs with
one single 7B-instruct model.



4.1.5 Takeaways from English results

Having six different test sets, a variety of system
implementations, four different quality criteria and
several evaluation methods allow us to get these
interesting insights on the results.

There is no degradation of scores on out-of-
domain data except for rule-based systems. One
possible explanation is that LLMs have all been ex-
posed to Wikipedia texts, from which the Wikidata
triples we collected for the out-of-domain datasets
generally come from. But the fully rule-based sys-
tem (RDFpyrealb) is the only one that does not
degrade on counterfactual and fictional data. The
overall score degradation of all systems is rather
moderate on counterfactual and fictional data.

LLMs give rankings that look consistent with
human rankings, with a couple of notable ex-
ceptions. First, LLMs tend to rank the fully rule-
based system (RDFpyrealb) higher than humans
do on semantic accuracy criteria. This could be
due to the fact that humans are more impacted by
the naturalness of the produced sentences when
evaluating semantic accuracy (RDFpyrealb system-
atically ranks at the bottom for intrinsic quality
criteria). Note that LLMs also rank higher human-
written texts, which are also of lower quality in
terms of Grammaticality and Fluency according
to both human and LLM-as-judge evaluations. A
second and more curious result, DCU-NLG-PBN
is also generally ranked higher by LLMs than by
humans on the intrinsic quality criteria. One plau-
sible explanation for this anomaly could be that
the output from DCU-NLG-PBN is structured in
way that has greater alignment with the evaluation
criteria and outputs that the model evaluators have
already seen. Results from LLM evaluators can
vary between across datasets and properties being
judged (Bavaresco et al., 2025). See Section 4.2
for a detailed analysis of correlations.

Both humans and LLMs assign higher scores
for intrinsic quality criteria (Grammaticality
and Fluency) than for semantic accuracy cri-
teria (No-Omissions and No-Additions). This
could be an indication that semantic accuracy is
more difficult to handle for systems across the
board; it is also possible that semantic accuracy
is more difficult to assess, since aligning precisely
the semantics of texts and input tables is a chal-
lenge that is still to be solved.

LLMs assign much higher scores and produce
more ties overall than humans to all outputs. By
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looking at the raw evaluation results (not show
here), it is striking that LLMs very often assign
maximal scores of 7, which is not the case with
human evaluators. The absolute text quality ratings
provided my LLMs need to be taken cautiously.
We also counted the ties across all English results
tables (Figures 1 to 7): reading the tables from
top to bottom, we counted the number of times
a system is placed in the same group as another
system, which happens 73 times in human tables,
and 89 times in the LLM-as-judge tables.

General comments on the systems. Overall,
systems using more resources usually rank higher,
and fine-tuned Mistral-7B seems to perform better
than fine-tuned LLama-7B on the task. A compari-
son between RDFpyrealb and DCU-NLG-Small is
also interesting. Both use handwritten grammars as
main generation component, but DCU-NLG-Small
adds a paraphrasing component to improve the in-
trinsic quality of the text, which has traditionally
been challenging for rule-based systems. DCU-
NLG-Small gets better results than RDFpyrealb
in terms of those criteria, occasionally ranking in
the same group as an LLM-based submission, but
this comes at the expense of semantic accuracy, for
which DCU-NLG-Small consistently ranks at the
bottom, while RDFpyrealb is often on par with or
close to the best systems.

System-level correlations on all results presented
in this section are provided in Section 4.3, while
instance-level correlations on individual datasets
and overall are presented in Section 4.2.

4.1.6 Takeways from Spanish results

The results of the human and LLM-as-judge eval-
uations are shown in Figures 8 to 13. For Spanish
data, there are only three systems and the picture is
quite clearer than for English, so we do not break
the analysis down into subsections.

It is preferable to directly fine-tune a Spanish
model than to fine-tune an English model and
machine translate its output. OSU-CompLing,
which is a fine-tuned Spanish LLama2-7B model,
is systematically in the first group according to both
human and LLM-as-judge scores (with only one ex-
ception, LLM’s No-Addition table for in-domain
data, in Figure 8). The DCU-NLG-PBN scores are
quite close to OSU-CompLing’s, and the rankings
place it most of the times in the first group as well,
and sometimes in the second group. Given that
(i) DCU-NLG-PBN used a heavier pipeline, which
consists of a fine-tuned Mistral-7B model that gen-



(a) No-omissions human-es-D2T-1-*
Mean  Group

(b) No-omissions llm-es-D2T-1-*

Mean  Group

OSU-CompLing 6.09 A
DCU-NLG-PBN 5.88 B
DCU-NLG-Small ~ 4.93 C

OSU-CompLing 6.74 A
DCU-NLG-PBN 6.50 B
DCU-NLG-Small 5.75 C

(c) No-additions human-es-D2T-1-*

(d) No-additions llm-es-D2T-1-*

Mean  Group

Mean  Group

OSU-CompLing 579 A
DCU-NLG-PBN 573 A
DCU-NLG-Small 4.75 B

DCU-NLG-PBN 6.83 A
OSU-CompLing 6.74 B
DCU-NLG-Small 6.31 C

(e) Grammaticality human-es-D2T-1-*

(f) Grammaticality llm-es-D2T-1-*

Mean  Group

Mean  Group

OSU-CompLing 6.66 A
DCU-NLG-PBN 6.56 B
DCU-NLG-Small 6.01 C

OSU-CompLing 697 A
DCU-NLG-PBN 696 A
DCU-NLG-Small 6.83 B

(g) Fluency human-es-D2T-1-*

(h) Fluency llm-es-D2T-1-*

Mean  Group

Mean  Group

OSU-CompLing 6.62 A
DCU-NLG-PBN 6.51 B
DCU-NLG-Small 5.95 C

OSU-CompLing 697 A
DCU-NLG-PBN 695 A
DCU-NLG-Small 6.75 B

Figure 8: System rankings for Spanish in-domain data (left: human ratings, right: Ilm ratings)

(a) No-omissions human-es-D2T-2-*

(b) No-omissions 1lm-es-D2T-2-*

Mean  Group

Mean  Group

OSU-CompLing 6.04 A
DCU-NLG-PBN 5.86 B
DCU-NLG-Small 4.49 C

OSU-CompLing 6.74 A
DCU-NLG-PBN 6.58 B
DCU-NLG-Small 5.26 C

(c) No-additions human-es-D2T-2-*

(d) No-additions llm-es-D2T-2-*

Mean  Group

Mean  Group

OSU-CompLing 562 A
DCU-NLG-PBN 556 A
DCU-NLG-Small ~ 4.12 B

OSU-CompLing 6.73 A
DCU-NLG-PBN  6.71 A
DCU-NLG-Small 5.71 B

(e) Grammaticality human-es-D2T-2-*

(f) Grammaticality llm-es-D2T-2-*

Mean  Group

Mean  Group

DCU-NLG-PBN 658 A
OSU-CompLing 6.57 A
DCU-NLG-Small 5.54 B

OSU-CompLing 698 A
DCU-NLG-PBN 697 A
DCU-NLG-Small 6.77 B

(g) Fluency human-es-D2T-2-*

(h) Fluency llm-es-D2T-2-*

Mean  Group

Mean  Group

OSU-CompLing 6.55 A
DCU-NLG-PBN 6.54 A
DCU-NLG-Small 5.50 B

DCU-NLG-PBN 697 A
OSU-CompLing 697 A
DCU-NLG-Small 6.61 B

Figure 9: System rankings for Spanish out-of-domain data (left: human ratings, right: 1lm ratings)



(a) No-omissions human-es-*-FA

Mean  Group

(b) No-omissions llm-es-*-FA

OSU-CompLing 6.10 A
DCU-NLG-PBN 595 A
DCU-NLG-Small ~ 4.84 B

Mean  Group

(c) No-additions human-es-*-FA

OSU-CompLing 6.79 A
DCU-NLG-PBN 6.58 B
DCU-NLG-Small 5.61 C

Mean  Group

(d) No-additions llm-es-*-FA

DCU-NLG-PBN 588 A
OSU-CompLing 578 A
DCU-NLG-Small ~ 4.68 B

Mean  Group

(e) Grammaticality human-es-*-FA

DCU-NLG-PBN 6.81 A
OSU-CompLing 6.76 A
DCU-NLG-Small 6.07 B

Mean  Group

(f) Grammaticality llm-es-*-FA

OSU-CompLing 6.70 A
DCU-NLG-PBN 6.69 A
DCU-NLG-Small 5.85 B

Mean  Group

(g) Fluency human-es-*-FA

DCU-NLG-PBN 697 A
OSU-CompLing 697 A
DCU-NLG-Small 6.76 B

Mean  Group

(h) Fluency llm-es-*-FA

OSU-CompLing 6.66 A
DCU-NLG-PBN 6.66 A
DCU-NLG-Small 5.80 B

Mean  Group

Figure 10: System rankings for Spanish factual data (left:

(a) No-omissions human-es-*-CFA

OSU-CompLing 697 A
DCU-NLG-PBN 697 A
DCU-NLG-Small 6.66 B

Mean  Group

human ratings, right: 1lm ratings)

(b) No-omissions llm-es-*-CFA

OSU-CompLing 599 A
DCU-NLG-PBN 5.79 B
DCU-NLG-Small 4.68 C

Mean  Group

(c) No-additions human-es-*-CFA

OSU-CompLing 6.64 A
DCU-NLG-PBN 6.40 B
DCU-NLG-Small 5.30 C

Mean  Group

(d) No-additions 1lm-es-*-CFA

OSU-CompLing 550 A
DCU-NLG-PBN 540 A
DCU-NLG-Small ~ 4.22 B

Mean  Group

(e) Grammaticality human-es-*-CFA

OSU-CompLing 6.67 A
DCU-NLG-PBN  6.64 A
DCU-NLG-Small 5.86 B

Mean  Group

(f) Grammaticality llm-es-*-CFA

OSU-CompLing 652 A
DCU-NLG-PBN 649 A
DCU-NLG-Small 5.64 B

Mean  Group

(g) Fluency human-es-*-CFA

OSU-CompLing 697 A
DCU-NLG-PBN 694 A
DCU-NLG-Small 6.74 B

Mean  Group

(h) Fluency llm-es-*-CFA

OSU-CompLing 647 A
DCU-NLG-PBN 642 A
DCU-NLG-Small 5.58 B

Mean  Group

OSU-CompLing 695 A
DCU-NLG-PBN 695 A
DCU-NLG-Small 6.61 B

Figure 11: System rankings for Spanish counterfactual data (left: human ratings, right: 1lm ratings)



(a) No-omissions human-es-*-FI

Mean  Group

(b) No-omissions 1lm-es-*-FI

OSU-CompLing 6.11 A
DCU-NLG-PBN 5.87 B
DCU-NLG-Small  4.61 C

Mean  Group

(c) No-additions human-es-*-FI

OSU-CompLing 6.79 A
DCU-NLG-PBN 6.65 B
DCU-NLG-Small 5.60 C

Mean  Group

(d) No-additions Ilm-es-*-FI

OSU-CompLing 5.84 A
DCU-NLG-PBN 566 A
DCU-NLG-Small 4.41 B

Mean  Group

(e) Grammaticality human-es-*-FI

DCU-NLG-PBN 6.85 A
OSU-CompLing 6.79 A
DCU-NLG-Small 6.10 B

Mean  Group

(f) Grammaticality 1lm-es-*-FI

OSU-CompLing 6.63 A
DCU-NLG-PBN 653 A
DCU-NLG-Small 5.82 B

Mean  Group

(g) Fluency human-es-*-FI

OSU-CompLing 698 A
DCU-NLG-PBN 697 A
DCU-NLG-Small 6.89 B

Mean  Group

(h) Fluency llm-es-*-FI

OSU-CompLing 6.61 A
DCU-NLG-PBN 650 A
DCU-NLG-Small 5.79 B

Mean  Group

OSU-CompLing 698 A
DCU-NLG-PBN 698 A
DCU-NLG-Small 6.78 B

Figure 12: System rankings for Spanish fictional data (left: human ratings, right: 1lm ratings)

(a) No-omissions human-es-*-*

Mean  Group

(b) No-omissions llm-es-*-*

OSU-CompLing 6.07 A
DCU-NLG-PBN 5.87 B
DCU-NLG-Small 4.71 C

Mean  Group

(¢) No-additions human-es-*-*

OSU-CompLing 6.74 A
DCU-NLG-PBN 6.54 B
DCU-NLG-Small 5.50 C

Mean  Group

(d) No-additions llm-es-*-*

OSU-CompLing 571 A
DCU-NLG-PBN 565 A
DCU-NLG-Small ~ 4.44 B

Mean  Group

(e) Grammaticality human-es-*-*

DCU-NLG-PBN 677 A
OSU-CompLing 6.74 A
DCU-NLG-Small 6.01 B

Mean  Group

(f) Grammaticality llm-es-*-*

OSU-CompLing 6.61 A
DCU-NLG-PBN 6.57 A
DCU-NLG-Small 5.77 B

Mean  Group

(g) Fluency human-es-*-*

OSU-CompLing 697 A
DCU-NLG-PBN 696 A
DCU-NLG-Small 6.80 B

Mean  Group

(h) Fluency llm-es-*-*

OSU-CompLing 6.58 A
DCU-NLG-PBN 6.53 A
DCU-NLG-Small 5.72 B

Mean  Group

OSU-CompLing 697 A
DCU-NLG-PBN 696 A
DCU-NLG-Small 6.68 B

Figure 13: System rankings for Spanish overall (left: human ratings, right: 1lm ratings)



erates English outputs and the Google Translate
API'? to produce Spanish outputs, and (ii) DCU-
NLG-PBN consistently ranked higher than OSU-
CompLing in English with the same models, it
seems preferable to fine-tune language-specific
models rather than to use machine translation.
DCU-NLG-Small, which also uses machine trans-
lation (NLLB (Team et al., 2022)) on the English
outputs, is in the last group for all criteria and on
all datasets (second group when OSU-CompLing
and DCU-NLG-PBN are tied, third group when
they are not).

LLMs are robust on out-of-domain and fic-
tional data, but possibly not as much on coun-
terfactual data. OSU-CompLing and DCU-
NLG-PBN are generally robust on out-of do-
main data (with maybe a small score drop for
the No-Additions criterion), while DCU-NLG-
Small suffers a more important score decrease for
all criteria. On counterfactual data, all systems
see their respective scores decrease for all four
criteria, with only the LLM-as-judge ratings of
Grammaticality and Fluency being at the same
level. As it was the case for English, the systems
look more robust on the fictional dataset, but here
too only the system with a rule-based component
(DCU-NLG-Small) does not see its scores drop for
Grammaticality and Fluency. For DCU-NLG-
Small, although humans give it lower scores on the
counterfactual data for the semantic accuracy crite-
ria compared to the factual dataset, LLMs assign
very similar scores on both datasets.

In the overall results in Figure 13, both hu-
mans and LLMs rank jointly OSU-CompLing and
DCU-NLG-PBN in the first group for all criteria
but No-Omissions, for which DCU-NLG-PBN is
ranked second; DCU-NLG-Small is always alone
in the last group. The lower scores of DCU-NLG-
PBN for No-Omissions could be due to a lack of
robustness on the counterfactual and fictional sub-
sets (see Figures 11 and 12).

LLMs and humans score different but rank
the same. As it was the case for English, LLMs
tend to score all systems higher than humans, but
the system rankings are largely aligned with the hu-
man system rankings. Sections 4.2 and 4.3 provide
more in-depth analysis of the correlations between
the different evaluation methods.

10https ://cloud.google.com/translate
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4.2 Instance-level correlations between
human and LLM-as-judge evaluations

English and Spanish bird’s eye view system re-
sults. For the data-to-text system results, there
are several general patterns that are apparent across
the different quality criteria in both the English
and Spanish results. Firstly, there is a general di-
vergence between the average human and LLM
scores across all of the evaluation criteria. Across
the different systems, the average LLM score most
of the time is higher than the equivalent average
human score as observed in section 4.1.5, with
the LLMs giving higher ratings. For the English re-
sults the divergence is more acute for some systems
than others e.g. RDFpyrealb, OSU-CompLing, and
DCU-NLG-Small. However, this is not too sur-
prising given that these systems find themselves
at the bottom of the various system rankings for
either some or most of the different quality criteria
across the different datasets. For Spanish only the
DCU-NLG-Small system has an acute divergence
between the average human and LLM scores.

We plotted the LLM scores against the human
scores for each criterion (see Appendix E). These
plots show clearly that whilst the LLMs consis-
tently rate higher than the human annotators, they
seem agree much more with one another in terms
of the intrinsic quality criteria (systems are grouped
more compactly on the horizontal axis than for the
semantic accuracy criteria). The English results
(Figures 22 and 23) differ from the Spanish results
(Figures 26 and 27) in that there is a greater uni-
formity between the LLM scores over the different
systems (except DCU-NLG-Small) compared to
the English ratings. It is possible the reason for the
greater uniformity of results for the Spanish system
outputs could be the small amount of systems eval-
uated (three), but it could also be due to a higher
quality of the annotators employed (e.g. bi-lingual
skills), or it could be that the Spanish annotators
have used LLMs in assessing the outputs.

English human-LLM correlations. We anal-
ysed the consistency of ratings between LLMs
and humans across the different evaluation crite-
ria. Figure 14 shows a comprehensive correla-
tion matrix of aggregated scores across all sys-
tems, models, and evaluation dimensions for En-
glish (see Section 3.4 for details about the com-
putation of the correlations). At first sight, two
darker square are clearly visible, on the one hand
the correlation scores between all evaluators on


https://cloud.google.com/translate

Comprehensive Correlation Matrix of Aggregated Scores
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Figure 14: Instance-level correlations over all English scores (all datasets, all systems).

No-Omissions and No-Additions, and on the
other hand the correlations between all evaluators
on Grammaticality and Fluency. This suggests
that (i) the semantic accuracy criteria group and the
intrinsic quality criteria group are complementary
aspects of quality, and (ii) evaluators may have dif-
ficulties in distinguishing between criteria within
one group, or that the systems that are good accord-
ing to one criterion of one group are also good at
the other criterion within the same group.!!

With intrinsic quality criteria like Fluency and
Grammaticality, scores across GPT-4, GPT-3.5,
LLaMA, and human evaluations are indeed posi-
tively correlated (0.4 > p > 0.5 in most cases),
meaning that while Al evaluators generally agree
with humans, they are not perfect substitutes. The

"'The latter would be supported by the results seen in Sec-
tion 4.1, in which we saw a system like DCU-NLG small
(or DCU-ADAPT-modPB) which has different scores be-
tween No-Omissions and No-Additions, but similar scores
for Grammaticality and Fluency: in Figure 14 the colour
of the Grammaticality/Fluency is slightly darker that the
colour of the No-Omissions/No-Additions square.

results suggest promising alignment, while under-
scoring that human assessments still identify nu-
ances often overlooked by models.

For the No-Additions and No-Omissions di-
mensions, LLMs and humans are also positively
correlated (0.4 > p > 0.5 in most cases). Their
correlations with Fluency and Grammaticality
are weaker (p < 0.4) and sometimes even negative.
These dimensions capture complementary aspects
of quality that are not fully reflected in Fluency
or Grammaticality scores. Note however that hu-
man Grammaticality and human Fluency have
high correlations with human No-Omissions and
human No-Additions (darker cells in the lower
left and upper right squares), which is consis-
tent with our above observation about the scores,
and could indicate that the human assessment
of one group of criteria (e.g. No-Omissions or
No-Additions) is impacted by the output quality
in terms of the other group of criteria (e.g. Fluency
or Grammaticality).

Finally, as shown in the matrices computed sepa-

17



Comprehensive Correlation Matrix of Aggregated Scores
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Figure

rately for the size different datasets (see Figure 20
in Appendix D), which are visually very similar to
Figure 14, there does not seem to be major differ-
ences in terms of instance-level correlations across
the datasets.

Spanish human-LLM correlations. In compar-
ison to the English correlation results, the Span-
ish matrix looks at first sight more homogenous
(Figure 15), with the squares being less visible
and fewer correlations below 0.2. No-Omissions
and No-Additions correlations between LLMs
and humans are higher than in English (0.5 >
p > 0.7 in most cases), while Fluency and
Grammaticality show weaker correlations be-
tween LLMs and humans overall (0.3 > p > 0.4 1in
most cases). Unlike in English, all No-Omissions
and No-Additions scores have rather high correla-
tions with human Fluency and Grammaticality
scores (0.4 > p > 0.7 in most cases). This is diffi-
cult to interpret given that only three systems were
evaluated in Spanish.

Note that as in English, correlations between
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15: Instance-level correlations over all Spanish scores (all datasets, all systems).

human No-Omissions/No-Additions and human
Fluency/Grammaticality are strong, at around
0.7, and the correlation between No-Omissions
and No-Additions is even stronger at 0.89, in the
same fashion as the correlation between Fluency
and Grammaticality at 0.97. Also as it was the
case for English, each dataset-specific matrix (see
Figure 21 in Appendix D) is very similar to the
overall matrix in Figure 15.

4.3 System-level correlations between human,
metric and LLM-as-judge evaluations

We computed Spearman’s rank correlations on all
system rankings'? according to all metrics, LLMs
and human ratings. Figures 16 to 18 show the
results. Cells are annotated with p,; and signifi-
cance stars for g, < 0.05,0.01,0.001 (shown as
*, %%, % * %), The heatmap visualizes p,; on a fixed
[—1, 1] diverging scale. See Section 3.4 for details.

2For better comparability across matrices, we only used
the same 6 systems that submitted outputs for all datasets; in
other words, we did not include DCU-ADAPT-modPB for
computing the rank correlations.
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Figure 16: English overall data-to-text Spearman’s system-level correlations

Comparing LLMs and humans. When looking
at the overall Spearman correlations (Figure 16)
we can that the LLMs evaluations correlate sta-
tistically positively with their human equivalent
quality criterion for all of four criteria: 0.89
for Grammaticality, and 0.94 for No-Omissions,
No-Additions and Fluency (all at ¢, < 0.01);
this holds across nearly all of the datasets.

Comparing different human quality assess-
ments. In the analysis across all of the English
datasets (Figure 16) we see that humans, unlike
LLMs, show a statistically positive correlation
between their No-Omissions and No-Additions
system rankings (0.94, ¢, < 0.01); humans
also exhibit perfect correlations between their
Grammaticality and Fluency rankings.

Unlike LLMs, humans also show statistically
positive g, < 0.05 correlations for Fluency and
Grammaticality with the human No-Additions
criterion. Whilst there is a positive correlation
for these intrinsic quality criteria with the human
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No-Omissions, this is not seen as statistically sig-
nificant. However, on each of the dataset-specific
analyses (Figures 17a to 18c) there are variances
with some datasets not showing any statistically
significant correlations (Figures 17a, 18b and 18c¢),
partial statistical correlations (Figures 18a, to com-
plete statistical correlation of all evaluation dimen-
sions (Figure 17b).

Comparing human and LLM against automatic
metrics. Finally, we also explored the correlation
between the human and LLM evaluation scores
against those from established automatic metrics.
In particular, we use for our comparison a com-
bination of text overlap metrics, such as BLEU
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), and chrF++ (Popovié, 2017). Ad-
ditionally, we included BERTScore (Zhang et al.,
2019) as a semantic similarity metric. With the
exception of chrF++, these are some of the popular
automatic metrics within natural language genera-
tion (Schmidtova et al., 2024).
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Figure 17: System-level correlations: In-domain (D2T-1) and out-of-domain (D2T-2) data)

We find that indeed LLMs are more statisti-
cally significantly correlated to human judgements
than automatic metrics. However, both METEOR
and chrF++ have statistically significant system-
level ranking correlations to human judgements of
Fluency and Grammaticality. What is surprising
is that LLM and automatic metrics are much lower
in correlation than either with humans. We see this
pattern across all datasets.

Looking at the per-dataset analyses variations
in the degree of correlation between the automatic
metrics and both the human and LLM average met-
ric results. For some datasets there are no statis-
tical correlations (Figures 17a) or partial human
metric correlations (Figures 18a, 18b, and 18c).
Only the English D2T-2 dataset (Figure 17b) shows
complete positive statistical correlation for human
scores and most of the LLM scores against the
overlap metrics. Interestingly enough, for the same
dataset the semantic based BERTScore does not
show any statistically positive correlations for all
of the human and most of the LLM scores.

Traditionally, lexical automatic metrics were
only used at the system-level (Papineni et al., 2002),
but these have been used at an instance-level (Liu
et al., 2016). BLEU has been shown not to reli-
ably predict human judgments, but is possibly use-
ful at a system-level. Note that BLEU has clearly
higher correlations with human Grammaticality
and human Fluency than with the semantic ac-
curacy criteria, which is expected since it is
an n-gram-based metric, which is by definition
more surface-oriented. However, more surpris-
ingly, we do not observe a positive correlation be-
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tween the embedding-based (thus content-oriented)
BERTScore and these semantic accuracy criteria,
while BERTScore does correlate positively with
both intrinsic quality criteria. In our experiment
BLEU and BERTScore even have a system-level
correlation of 1.0 on the English outputs.

The curious case of the D2T-2-CFA scores. In
(Mille et al., 2024b), we pointed out the unex-
pectedly high metrics scores (BLEU, METEOR,
chrF++, BERTScore) obtained by almost all sys-
tems on the out-of-domain counterfactual data
(D2T-2-CFA). When looking at Table 4 in Ap-
pendix B, we observe that almost all human scores
(and most LLLM scores) for all systems are lower on
D2T-2-CFA than on D2T-2-FA, which may indicate
that there is a quality problem with the D2T-2-FA
and/or D2T-2-CFA reference texts we collected for
computing the metrics scores. Unlike the human
scores, the LLM scores for Grammaticality and
Fluency tend to be at the same level as the cor-
responding D2T-2-FA scores; it could be the case
that either or both the writing and the evaluation
of D2T-2-CFA texts by humans are somewhat chal-
lenging. More research is needed on the topic to
find out what is exactly happening.

4.4 Comments on human annotators

By using annotator training and filtering anno-
tators based on agreement levels, we were able
to find annotators with high levels of agree-
ment. On the English data, we found Krip-
pendorff’s alpha internal based agreement lev-
els of 0.64, 0.67, 0.47, 0.43 for No-Omissions,
No-Additions, Grammaticality, and Fluency
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Figure 18: System-level correlations: Factual (FA), Counterfactual (CFA) and Fictional (FI) data)

respectively. Although we had a smaller number of
annotators for Spanish, the level of agreement was
higher at 0.84, 0.85, 0.72, 0.72 for No-Omissions,
No-Additions, Grammaticality, and Fluency
respectively. There were no significant differences
in annotator agreement levels across data subsets.
However, as shown in (Zhang et al., 2023) and
other works, high agreement does not necessarily
mean that the annotations agree correctly.

Bias Considerations. This analysis is rank-
based, which reduces sensitivity to scale differ-
ences across models. Evaluator separation ensures
that judgments are not accidentally double-counted.
However, because stacking was used, evaluators
with more items contribute more weight, which
may bias correlations toward heavily represented
annotators. Pairwise deletion further implies that
n varies by cell; if missingness is not random, this
may distort estimates. Moreover, p-values are not
corrected for multiple comparisons, and constant-
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score models can yield unstable or undefined corre-
lations. Despite these caveats, the matrices provide
an informative overview of system-level agreement
patterns across criteria.

5 Conclusions

From the evaluation results in section 4 it seems
that there is an abundantly clear pattern that can
be seen for the English results. Those systems
that use more resources in the form of larger or
multiple models tend to outperform the smaller
system implementations whether they be purely
rule-based (RDFpyrealb), hybrid neural-symbolic
(DCU-NLG-Small), or just use a smaller fine-tuned
LLM model end-to-end (OSU-CompLing). It is
worth noting the singular exception; the DCU-
NLG-PBN system with its 7B fine-tuned model
can match or exceed heavier implementations such
as DCU-ADAPT-modPB which uses GPT-4.
When looking at the Spanish results the same



does not hold as true as for the English results.
The OSU-CompLing system usually matches or ex-
ceeds the multiple model implementation of DCU-
NLG-PBN system (Mistral 7B + Machine Transla-
tion). One factor for this difference could be due
to the fact that it leverages a fine-tuned model for
Spanish as opposed to generating in English first
and then translating.

We also compared and contrasted the same eval-
uations conducted by humans and LLMs. We saw
that both humans and LLMs are usually aligned in
their rankings of the systems across the different
quality criteria evaluated and also for both English
and Spanish. This is encouraging and seems to in-
dicate the possibility of using LLMs as a means to
rank the output from different systems that would
be similar to human preferences.

The very high mean scores assigned by LLMs,
which often reach 6.9/7 and above, need to be put in
perspective of the human evaluation results, which
are typically lower and more conservative. This
holds across both languages, different datasets, and
the various evaluation criterion. There is certainty
room from improvement in getting LLMs to score
more like humans on Likert scales for semantic and
intrinsic evaluation criterion.

Another observation that we have seen is that
LLMs tend to produce more ties in its scoring than
human evaluators. It remains to be investigated if it
is because LLMs have more problems distinguish-
ing between different outputs of similar quality,
or because human scoring is too fine-grained that
models are unable to replicate.

When looking at the correlations between the
semantic and intrinsic quality criterion, we can see
several interesting patterns. There is a strong posi-
tive correlation for humans between the semantic
and intrinsic quality criteria. It is likely that for
human evaluators the semantic accuracy scores are
impacted by the intrinsic quality of the texts in both
English and Spanish. This inter-dependency was
not observed with LLM evaluators. There is one
aspect that remains elusive to us. In Spanish, we
are not sure why humans see a decrease of qual-
ity in terms of Grammaticality and Fluency on
counterfactual data that is also not noticeable in the
LLM scores. This will require further investigation
to better understand this result.

We looked at system generalisability and robust-
ness through the use of out-of-domain data. The
only fully rule-based system submitted (RDFpyre-
alb) is the most impacted by out-of-domain data,
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and the least impacted by counterfactual and fic-
tional data. Even though there is little degrada-
tion of the LLM-generated texts quality on out-of-
domain data, fictional and counterfactual data, it
seems like improvements are still achievable on
counterfactual and fictional datasets.

The overall interpretation of evaluation results
based on mean opinion scores such as the one pre-
sented here may be limited, as it is possible that
the output quality of the state-of-the-art systems
impacts the individual judgments, as noted recently
in the speech synthesis domain (Le Maguer et al.,
2024). There is an open question for future human
evaluations of data-to-text systems on whether a
change needs to be made to obtain greater relia-
bility for assessments of intrinsic quality aspects.
More generally, the restricted number of systems
considered in the analyses, notably for Spanish
(three systems), imposes limitations that warrant
careful interpretation of the conclusions.

By publicly releasing half of the underlying data
(including system outputs, LLM ratings, and hu-
man ratings) used to compute the GEM task results,
we facilitate further analysis and verification by
the research community while preserving portions
of the dataset for future experimentation and mit-
igating potential data leakage. We plan to have a
second delayed release and encourage multi-stage
data releases given the lack of information about
training data.
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A Prompt for LLM-as-judge

Figure 19 shows the prompt we used for all LLM-
as-judge evaluations.

B Complete numerical results tables for
English and Spanish

Tables 4 and 5 show all scores obtained by all sys-
tems on all datasets.
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In this task, you will evaluate the quality of the Text in relation to the given Triple Set.

How well does the Text represent the Triple Set?
to evaluate against:

Dimensions:

You will be given four specific Dimensions

No-Omissions: ALL the information in the Triple Set is present in the Text.

No-Additions: ONLY information from the Triple Set is present in the Text.

Grammaticality: The Text is free of grammatical and spelling errors.

Fluency: The Text flows well and is easy to read; its parts are connected in a natural way.

Important note on No-Omissions and No-Additions: some Triple Set/Text pairs contain non-factual
information and even fictional names for people, places, dates, etc. Whether there are omissions
and/or additions in a Text is NOT related to factual truth, but instead is strictly related to the

contents of the input Triple Set.

Important note on Grammaticality and Fluency: for Grammaticality and Fluency you do not need to
consider the input Triple Set; only the intrinsic quality of the Text needs to be assessed.

You need to provide the scores ranging from 1 (indicating the lowest score) to 7 (indicating the
highest score) for each of the dimensions and a short justification for each score in the following

JSON format:

{"No-Omissions”: {"Justification”: "", "Score": ""},
"No-Additions”: {"Justification”: "", "Score": ""},
"Grammaticality”: {"Justification”: "", "Score": ""},
"Fluency”: {"Justification”: "", "Score": ""} }.

Make sure to read thoroughly the Triple Set and the English Text below, and assess the four

Dimensions using the instructions and template above.

Triple Set: """Marcus_Aurelius HasChild Fadilla; Marcus_Aurelius StudentOf Alexander_of_Cotiaeum;
Marcus_Aurelius Spouse Faustina_the_Younger; Marcus_Aurelius PositionHeld Roman_emperor;

noun

Marcus_Aurelius PlaceOfDeath Vindobona

Text: Marcus Aurelius has Fadilla as child, he supervised Alexander of Cotiaeum and is married to

Faustina the Younger.

He plays in Roman emperor and passed away in Vindobona.

Figure 19: For all our LLM-based evaluations, we used the following prompt, only changing the “Triple Set” and
“Text” values at the end according to the evaluated data point.

C Details of LLM-as-judge evaluations

The average scores assigned by each LLM to all
systems on all datasets is shown in Tables 6 to 9
(English) and Tables 10 to 13 (Spanish).

D Details of instance-level correlations on
the different datasets

Figures 20 and 21 show the instance-level correla-
tions for each of the 6 datasets in English and Span-
ish respectively. We computed system—subset cor-
relation matrices to assess the agreement of models
across different evaluation criteria. Each input file
was identified by a structured filename encoding
the system (D2T-1 or D2T-2), the subset (FA, CFA,
or FI), the evaluator index, and the model. For
every file, evaluation columns were first normal-
ized to four canonical dimensions: No-Omissions,
No-Additions, Grammaticality, and Fluency.
Item identifiers were standardized to maximize
alignment across files. We then constructed a long-
format table in which each row corresponds to a sin-
gle scored item, annotated with its system, subset,
evaluator, model, and criterion. To avoid conflating
judgments from different evaluators, the evaluator
index was explicitly retained in the item key (i.e.
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items judged by different evaluators were treated
as distinct rows).

For each system—subset combination, we stacked
all available evaluators to form a wide-format ma-
trix with rows as items and columns as “criterion—
model” pairs. Pairwise Spearman rank correla-
tions (p) were then computed between all model—
criterion columns using pairwise-complete obser-
vations, such that only items scored by both models
contributed to a given correlation. Alongside the
correlation coefficients, we report two additional
statistics: the number of overlapping items used
(n), and the two-sided p-value from the Spearman
test. The resulting matrices were visualized as
annotated heatmaps (six in total, one per system
x subset), where each cell shows p, significance
markers (* p < .05, ** p < .01, *** p < .001),
and n.

E System based plots of LLM vs. Human
scores

Figures 22 to 25 show plots to visualise the rela-
tion between average individual LLM scores (X
axis) and average human scores (Y axis) for the
English outputs; Figures 26 to 29 show the same
for Spanish data.
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Figure 21: ES System—Subset Correlation Heatmaps: D2T-1 and D2T-2 across FA, CFA, and FI subsets.



(EN) D2T-1 D2T-2
Criterion Evaluator System FA CFA FI FA CFA FI Avg.
‘WebNLG-Human 5.14 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 542 521 5.35 n/a n/a n/a n/a
DCU-NLG-PBN 549 525 557 | 546 541 538 5.43
Avg, Human 1 DCU-NLG-Small 488 445 446 | 445 428 4.3 4.47
* DiplInfo-UniTo 545 543 555 5.8 572 5.55 5.58
OSU-CompLing 499 478 454 | 499 4.69 4.4 473
RDFpyrealb 574 572 571 | 546 543 536 5.57
No-Omissions SaarLST 579 552 594 | 6.19 593 597 5.89
WebNLG-Human 6.68 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 6.14 6.19 6.16 n/a n/a n/a n/a
DCU-NLG-PBN 6.58 638 6.65 | 658 641 6.73 6.56
Avg. LLMs 1 D.CU—NLG—.Small 6.01 5.6 551 | 516 496 5.5 5.46
DiplInfo-UniTo 6.51 648 6.65 | 6.65 654 6.61 6.57
OSU-CompLing 6.32 6.13 6.08 | 6.3 6.15 6.14 6.19
RDFpyrealb 6.86 6.76 6.82 | 6.74 6.67 6.82 6.78
SaarLST 6.86 6.65 6.83 | 697 687 693 6.85
WebNLG-Human 5.05 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 5.82 529 5.73 n/a n/a n/a n/a
DCU-NLG-PBN 5.56 5.1 548 | 548 5.08 5.16 5.31
Avg, Human 1 DCU-NLG-Small 485 427 437 | 442 385 4.09 4.31
* DiplInfo-UniTo 559 538 547 | 6.05 571 539 5.6
OSU-CompLing 485 462 444 | 497 437 4.13 4.56
RDFpyrealb 541 541 56 | 514 496 49 5.24
No-Additions SaarL.ST 5.61 514 576 | 6.15 553 576 5.66
WebNLG-Human 6.67 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 695 6.84 6.94 n/a n/a n/a n/a
DCU-NLG-PBN 6.88 6.65 6.85 6.7 6.56 6.79 6.74
Avg. LLMs 1 D.CU-NLG-.Small 6.42  6.25 6.1 5.5 533 5091 5.92
DiplInfo-UniTo 6.88 6.78 6.86 | 6.89 6.82 6.77 6.83
OSU-CompLing 6.68 6.57 6.6 | 6.69 658 6.45 6.6
RDFpyrealb 6.86 6.76 684 | 6.6 6.59 6.74 6.73
SaarLST 6.83 6.53 688 | 6.89 6.79 6.89 6.8
WebNLG-Human 5.43 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 6.39 6.08 6.18 n/a n/a n/a n/a
DCU-NLG-PBN 6.11 568 586 | 6.01 5.67 544 5.79
Avg, Human 1 DCU-NLG-Small 551 512 526 | 5.01 4.7 4.96 5.09
* DiplInfo-UniTo 6.01 568 581 | 6.12 595 555 5.85
OSU-CompLing 559 5.02 503|549 493 484 5.15
RDFpyrealb 453 466 489 | 4.1 4.11 434 4.44
Grammaticality SaarLST 6.07 583 598 | 6.28 6.08 6.01 6.04
WebNLG-Human 6.77 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 6.99 6.97 6.99 n/a n/a n/a n/a
DCU-NLG-PBN 699 691 693 | 694 696 697 6.95
Avg, LLMs 1 DCU-NLG-Small 6.87 6.81 682 | 6.6 6.58 6.83 6.75
. DipInfo-UniTo 6.96 694 697 | 6.89 691 6.86 6.92
OSU-CompLing 6.82 6.65 6.76 | 6.76 6.68 6.84 6.75
RDFpyrealb 6.13 6.04 626 | 538 545 6.03 5.88
SaarL.ST 695 694 697 | 698 698 6.99 6.97
‘WebNLG-Human 5.41 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 6.29 5.97 6.1 n/a n/a n/a n/a
DCU-NLG-PBN 6.04 5.6 581 | 592 563 546 5.74
Avg, Human 1 DCU-NLG-Small 5.5 501 523|499 474 494 5.07
. DiplInfo-UniTo 589 558 572 | 6.06 5.9 5.53 5.78
OSU-CompLing 5.61 5.1 5.16 | 555 5.02 4091 5.23
RDFpyrealb 469 475 499 | 435 429 454 4.6
Fluency SaarL.ST 598 576 594 | 6.24 6.0 5.95 5.98
WebNLG-Human 6.75 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 6.99 6.95 6.98 n/a n/a n/a n/a
DCU-NLG-PBN 696 688 693 | 693 692 697 6.93
Avg, LLMs 1 DCU-NLG-Small 6.8 6.68 6.71 | 642 6.39 6.65 6.61
. DiplInfo-UniTo 6.92 6.87 694 | 6.84 6.87 6.8 6.87
OSU-CompLing 6.86 6.74 6.83 | 6.86 6.75 6.88 6.82
RDFpyrealb 6.1 598 625 | 534 542 6.01 5.85
SaarL.ST 6.94 6.9 6.95 | 698 696 6.98 6.95
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Table 4: Qualitative scores for the English D2T task (180 data points).



(ES) D2T-1 D2T-2
Criterion Evaluator System FA CFA FI FA CFA FI Avg.
DCU-NLG-PBN | 596 576 593 | 594 582 581 || 587
Avg. Human 1 DCU-NLG-Small | 5.12 5.07 4.61 | 455 43 4.62 || 471
OSU-CompLing 6.18 60 609 | 603 598 6.13 || 6.07
DCU-NLG-PBN | 654 639 658 | 6.61 641 6.73 || 6.54
Avg. LLMs T DCU-NLG-Small | 6.02 56 5.62 | 52 50 558 55
OSU-CompLing 6.78 6.66 6.77 | 6.79 6.63 6.82 || 6.74
DCU-NLG-PBN | 591 547 581 | 584 533 551 || 5.65
Avg. Human 1 DCU-NLG-Small | 5.02 4.66 457 | 434 379 425 || 444
OSU-CompLing 589 558 59 | 568 542 577 | 571
DCU-NLG-PBN 6.9 6.7 688 | 672 658 682 | 6.77
Avg. LLMs 1t DCU-NLG-Small | 648 626 62 | 567 546 6.0 6.01
OSU-CompLing 677 6.67 68 | 6,74 6.68 6.78 || 6.74
DCU-NLG-PBN | 6.72 6.39 6.58 | 6.67 6.6 647 || 6.57
Avg. Human 1 DCU-NLG-Small | 6.12 591 6.0 | 558 538 5.65 || 5.77
OSU-CompLing 6.72 653 6.73 | 6.67 651 654 || 6.61

No-Omissions

No-Additions

Grammaticality DCU-NLG-PBN | 698 693 696 | 697 695 697 || 696
Avg. LLMst DCU-NLG-Small | 6.82 677 689 | 671 671 689 | 68

OSU-CompLing | 697 696 698 | 698 697 698 | 697

DCUNLG-PBN | 668 631 655 | 664 654 645 || 653

Avg. Humant DCU-NLG-Small | 606 583 596 | 5.54 532 563 || 5.72

Fluency OSU-CompLing | 67 645 669 | 663 649 653 | 658

DCU-NLG-PBN | 697 693 697 | 696 69 699 || 6.96
Avg. LLMs 1  DCU-NLG-Small | 6.77 6.67 6.81 | 6.54 655 6.75 || 6.68
OSU-CompLing 697 695 698 | 697 695 697 || 697

Table 5: Qualitative scores for the Spanish D2T task (180 data points).

D2T-1 D2T-2

Evaluator System FA CFA FI FA CFA FI Avg.
WebNLG-Human 6.38 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 6.09 6.06 6.14 n/a n/a n/a n/a

DCU-NLG-PBN 643 6.16 6.64 | 6.47 626 6.66 6.44

GPT-4o-mini 1 DCU-NLG-Small 584 537 536 | 5.1 4.7 5.42 5.3
DipInfo-UniTo 6.33 632 6.63 | 6.63 638 6.58 6.48

OSU-CompLing 6.14 583 589 | 6.14 586 594 5.97

RDFpyrealb 6.62 644 658 | 6.41 6.21 6.65 6.49

SaarLL.ST 6.72 638 681 | 694 678 691 6.76
‘WebNLG-Human 6.65 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 6.04 6.13 6.06 n/a n/a n/a n/a

DCU-NLG-PBN 6.52 637 6.52 | 6.54 643 6.66 6.51

03-mini 1 DCU-NLG-Small 578 555 529 | 488 477 5.18 5.24
DiplInfo-UniTo 6.37 646 6.57 | 6.58 6.54 6.52 6.51

OSU-CompLing 6.17 6.05 593 | 6.22 6.2 6.03 6.1

RDFpyrealb 695 697 693 | 6.81 6.85 6.84 6.89

SaarL.ST 6.88 6.77 6.78 | 6.96 691 6.94 6.87
‘WebNLG-Human 6.82 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 642 6.37 6.36 n/a n/a n/a n/a

DCU-NLG-PBN 6.8 6.56 684 | 6,76 642 6.88 6.71
Gemini-1.5-flash 1 DCU-NLG-Small 633 592 596 | 555 531 6.02 5.85
: DiplInfo-UniTo 6.76  6.66 6.78 | 6.74 6.59 6.74 6.71
OSU-CompLing 6.58 6.51 6.53 | 6.57 642 6.52 6.52

RDFpyrealb 6.9 6.72 682 | 6.83 6.73 6.94 6.82

SaarLST 697 6.68 692 | 70 6.86  6.96 6.9
WebNLG-Human 6.85 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 599 6.21 6.08 n/a n/a n/a n/a

DCU-NLG-PBN 6.57 643 6.6 | 6.57 6.53 6.73 6.57
Ri-Llama-708 1 DCU-NLG-Small 6.09 557 544|509 504 537 || 544'
DiplInfo-UniTo 6.57 646 6.64 | 6.63 6.64 6.6" 6.59°

OSU-CompLing 639 6.13 596 | 6.27 6.13 6.06 6.16

RDFpyrealb 697 692 694 | 691 6.88 6.86 6.91
SaarL.ST 688 679 6.83 | 697 693 6.92° | 6.89°

Table 6: LLM-as-judge scores for No-Omissions on the English D2T task. Each score in the table is the average of
180 scores, except when indicated otherwise: * one score missing.
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D2T-1 D2T-2
Evaluator System FA CFA FI FA CFA FI Avg.
‘WebNLG-Human 6.72 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 694 6.81 6.92 n/a n/a n/a n/a
DCU-NLG-PBN 692 674 692 | 676 6.66 6.88 6.81
GPT-4o-mini 1 DCU-NLG-Small 6.53 624 6.11 | 572 539 598 6.0
DipInfo-UniTo 6.83 676 691 | 691 6.76 6.74 6.82
OSU-CompLing 6.71 6.59 6.55 | 6.84 6.62 643 6.62
RDFpyrealb 6.86 6.67 6.76 | 6.54 6.52 6.77 6.69
SaarLST 6.87 643 688 | 6.93 6.87 6.88 6.81
WebNLG-Human 6.41 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 693 6.87 691 n/a n/a n/a n/a
DCU-NLG-PBN 6.78 645 6.68 | 6.47 6.3 6.58 6.54
03-mini 1 DCU-NLG-Small 6.07 598 558 | 504 492 549 5.51
DipInfo-UniTo 6.81 6.66 672 | 6.84 6.79 6.62 6.74
OSU-CompLing 639 637 636 | 634 634 6.14 6.32
RDFpyrealb 6.76 6.779 6.76 | 6.4 6.39 6.46 6.59
SaarL.ST 6.64 639 6.77 | 6.77 657 683 6.66
‘WebNLG-Human 6.92 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 699 6.85 6.99 n/a n/a n/a n/a
DCU-NLG-PBN 698 6.82 695|695 673 691 6.89
Gemini-1.5-flash 1 DCU-NLG-Small 6.71 6.5 6.55 | 596 5.67 6.35 6.29
. DiplInfo-UniTo 697 693 698 | 6.94 6.88 6.94 6.94
OSU-CompLing 6.91 6.8 6.92 | 692 6.81 6.83 6.86
RDFpyrealb 6.94 685 696 | 6.84 6.82 695 6.89
SaarLST 6.97 6.79 7.0 | 699 696 6.93 6.94
‘WebNLG-Human 6.66 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 692 6.83 6.95 n/a n/a n/a n/a
DCU-NLG-PBN 6.84 659 6.87 | 6.64 654 6.78 6.71
Rl-Llama-708 1 DCU-NLG-Small 637 628 615|527 532 582" | 587
DipInfo-UniTo 6.89 678 6.85 | 6.88 6.83 6.78" 6.84"
OSU-CompLing 6.73 6.53 6.59 | 6.66 6.56 6.39 6.58
RDFpyrealb 6.88 6.74 688 | 6.63 6.63 6.79 6.76
SaarL.ST 683 651 688 | 686 678 693" | 6.8

Table 7: LLM-as-judge scores for No-Additions on the English D2T task. Each score in the table is the average of
180 scores, except when indicated otherwise: * one score missing.
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D2T-1 D2T-2
Evaluator System FA CFA FI FA CFA FI Avg.
‘WebNLG-Human 6.83 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB 7.0 6.99 7.0 n/a n/a n/a n/a
DCU-NLG-PBN 699 695 698 | 6.96 6.97 7.0 6.98
GPT-4o-mini 1 DCU-NLG-Small 6.85 6.84 6.83 | 6.62 6.59 6.82 6.76
DiplInfo-UniTo 6.97 6.97 7.0 | 691 697 6.89 6.95
OSU-CompLing 6.84 6.65 6.74 | 6.77 6.71 6.85 6.76
RDFpyrealb 635 629 648 | 573 579 646 6.18
SaarLST 698 698 697 | 6.99 7.0 7.0 6.99
WebNLG-Human 6.62 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB 7.0 6.98 6.99 n/a n/a n/a n/a
DCU-NLG-PBN 698 691 691 | 6.97 7.0 6.94 6.95
03-mini | D.CU-NLG-‘Small 692 687 683 | 6.69 672 691 6.82
DipInfo-UniTo 695 698 698 | 6.84 6.85 6.81 6.9
OSU-CompLing 6.81 6.73 6.85 | 6.79 6.71 6.87 6.79
RDFpyrealb 556 538 562 | 472 473 5.16 5.19
SaarL.ST 6.92 6.89 698 | 6.97 698 698 6.95
‘WebNLG-Human 6.92 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB 7.0 6.99 7.0 n/a n/a n/a n/a
DCU-NLG-PBN 7.0 698 698 | 6.97 699 7.0 6.99
Gemini-1.5-flash 1 D_CU—NLG—.Small 69 684 688 | 6.7 6.63  6.88 6.81
. DiplInfo-UniTo 6.99 6.97 7.0 | 696 696 6.94 6.97
OSU-CompLing 685 6.73 6.84 | 6.86 6.78 6.96 6.84
RDFpyrealb 6.49 6.53 6.67 | 592 6.08 6.63 6.39
SaarL.ST 7.0 7.0 6.99 | 6.99 6.99 7.0 6.99
‘WebNLG-Human 6.7 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 697 6.93 6.97 n/a n/a n/a n/a
DCU-NLG-PBN 697 681 6.86 | 6.86 687 694 6.89
Rl-Llama-708 1 DCU-NLG-Small 681 669 676 | 638 639 671" || 6.62°
DiplInfo-UniTo 695 683 6.89 | 6.84 685 6.79° 6.86"
OSU-CompLing 6.76 647 6.62 | 6.62 6.52 6.69 6.61
RDFpyrealb 6.14 595 6.26 | 5.13 521 5.88 5.76
SaarL.ST 691 69 694 | 697 697 698 || 6.94°

Table 8: LLM-as-judge scores for Grammaticality on the English D2T task. Each score in the table is the average
of 180 scores, except when indicated otherwise: ¢ one score missing.
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D2T-1 D2T-2
Evaluator System FA CFA FI FA CFA FI Avg.
‘WebNLG-Human 6.79 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 698 6.95 6.98 n/a n/a n/a n/a
DCU-NLG-PBN 697 6.89 698 | 6.93 6.92 7.0 6.95
GPT-d4o-mini D_CU-NLG-.Small 6.78 6.66 6.69 | 6.41 636 6.65 6.59
DiplInfo-UniTo 6.93 6.9 697 | 6.87 692 6.86 6.91
OSU-CompLing 6.85 672 678 | 6.87 6.72 6.88 6.8
RDFpyrealb 6.36 622 646 | 5.78 5.8 6.42 6.17
SaarLST 6.97 6.9 6.96 | 699 6.98 7.0 6.97
‘WebNLG-Human 6.66 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB 7.0 6.98 6.99 n/a n/a n/a n/a
DCU-NLG-PBN 6.97 6.9 693 | 696 696 695 6.94
03-mini D.CU—NLG—‘Small 6.86 6.72 673 | 6,49 649 6.68 6.66
DiplInfo-UniTo 692 696 696 | 6.83 684 6.77 6.88
OSU-CompLing 692 684 694 | 692 685 691 6.9
RDFpyrealb 567 56 586|485 49 5.36 5.37
SaarLST 692 693 697 | 699 699 698 6.96
‘WebNLG-Human 6.94 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB 7.0 6.97 7.0 n/a n/a n/a n/a
DCU-NLG-PBN 70 696 698 | 6.97 698  6.99 6.98
Gemini-1.5-flash 1 D.CU—NLG—.Small 6.89 6.79 6.83 | 6.62 6.53 6.8 6.75
DipInfo-UniTo 6.98 6.96 7.0 | 691 693 6.92 6.95
OSU-CompLing 693 6.87 692 | 693 6.89 698 6.92
RDFpyrealb 6.57 6.55 6.68 | 6.05 6.14 6.65 6.44
SaarLST 6.99 698 699 | 7.0 6.99 7.0 6.99
WebNLG-Human 6.61 n/a n/a n/a n/a n/a n/a
DCU-ADAPT-modPB | 6.97 6.9 6.96 n/a n/a n/a n/a
DCU-NLG-PBN 692 676 6.84 | 6.86 6.83 693 6.86
R1-Llama-70B 1 D.CU—NLG—.Small 6.66 6.53 6.57 | 6.17 6.19 6.46’: 6.43’:
DipInfo-UniTo 684 6.68 682|678 679 6.65 || 6.76"
OSU-CompLing 6.75 654 6.68 | 6.72 6.52 6.74 6.66
RDFpyrealb 579 556 598 | 469 483 559 5.41
SaarL.ST 6.89 677 689 | 694 687 693" || 6.88°

Table 9: LLM-as-judge scores for Fluency on the English D2T task. Each score in the table is the average of 180
scores, except when indicated otherwise:  one score missing.

D2T-1 D2T-2
Evaluator System FA CFA FI FA CFA FI Avg.
DCU-NLG-PBN | 629 6.11 649 | 646 6.18 6.64 || 6.36
GPT-40-mini 1 DCU-NLG-Small | 5.66 526 543 | 487 4.65 55 5.23
OSU-CompLing | 6.71 645 6.72 | 6.67 637 6.82 || 6.62
DCU-NLG-PBN | 6.62 642 6.53 | 659 644 6.67 || 6.54
03-mini 1 DCU-NLG-Small | 5.82 557 541 | 499 478 524 5.3
OSU-CompLing | 6.75 6.67 6.72 | 6.72 6.71 6.71 || 6.71
DCU-NLG-PBN | 6.61 654 6.74 | 6.68 644 6.86 || 6.65
Gemini-1.5-flash + DCU-NLG-Small | 6.29 5.87 598 | 538 524 598 || 5.79
OSU-CompLing | 6.84 6.67 6.81 | 6.88 6.63 6.89 || 6.79
DCU-NLG-PBN 6.64 648 655 | 6.72 657 6.73 6.62
R1-Llama-70B 1+  DCU-NLG-Small | 6.32 5.68 5.66 | 555 532 5.6 5.69
OSU-CompLing 6.83 6.83 6.84 | 688 6.79 6.86 6.84

Table 10: LLM-as-judge scores for No-Omissions on the Spanish D2T task. Each score in the table is the average
of 180 scores.
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Table 11: LLM-as-judge scores for No-Additions on the Spanish D2T task. Each score in the table is the average

D2T-1 D2T-2

Evaluator System FA CFA FI FA CFA FI Avg.
DCU-NLG-PBN | 6.83 6.65 691 | 6.76 658 6.84 || 6.76

GPT-40-mini DCU-NLG-Small | 6.57 6.23 624 | 571 549 6.14 || 6.06
OSU-CompLing 683 677 687 | 678 673 6.84 6.8

DCU-NLG-PBN | 6.86 658 6.78 | 6.5 634 6.63 || 6.62

03-mini 1 DCU-NLG-Small | 6.07 596 572 | 5.08 496 542 || 553
OSU-CompLing 659 638 6.6 | 641 654 6.6 6.52

DCU-NLG-PBN | 699 6.89 696 | 6.92 681 697 || 692

Gemini-1.5-flash© DCU-NLG-Small | 6.8 6.55 6.65 | 6.11 574 6.44 || 6.38
OSU-CompLing 693 677 694 | 697 6.72 692 || 6.87

DCU-NLG-PBN | 693 6.66 688 | 6.72 659 684 || 6.77

R1-Llama-70B1  DCU-NLG-Small | 649 6.29 6.18 | 577 5.64 598 || 6.06
OSU-CompLing 673 674 6.78 | 6.81 6.74 6.78 || 6.76

of 180 scores.

Table 12: LLM-as-judge scores for Grammaticality on the Spanish D2T task. Each score in the table is the average

D2T-1 D2T-2

Evaluator System FA CFA FI FA CFA FI Avg.
DCU-NLG-PBN | 6.99 696 698 | 698 694 699 || 697

GPT-40-mini DCU-NLG-Small | 6.79 6.75 6.89 | 6.69 6.71 6.89 || 6.79
OSU-CompLing 70 696 699 | 698 697 699 || 698

DCU-NLG-PBN | 6.94 688 695 | 696 696 697 || 694

03-mini 1 DCU-NLG-Small | 6.77 6.77 687 | 6.77 6.7 692 6.8
OSU-CompLing 691 694 696 | 696 694 698 || 6.95

DCU-NLG-PBN 7.0 70 699 | 699 699 7.0 7.0

Gemini-1.5-flasht DCU-NLG-Small | 69 6.87 694 | 6.81 6.79 6.95 || 6.88
OSU-CompLing 70 699 7.0 7.0 7.0 7.0 7.0

DCU-NLG-PBN | 698 691 691 | 6.94 693 693 || 693

R1-Llama-70B 1+ DCU-NLG-Small | 6.79 6.71 6.86 | 6.56 6.65 6.82 || 6.73
OSU-CompLing 697 695 696 | 696 696 696 || 6.96

of 180 scores.

Table 13: LLM-as-judge scores for Fluency on the Spanish D2T task. Each score in the table is the average of 180

SCOres.

D2T-1 D2T-2

Evaluator System FA CFA FI FA CFA FI Avg.
DCU-NLG-PBN | 6.96 691 698 | 698 694 6.99 || 6.96

GPT-40-mini DCU-NLG-Small | 6.75 6.62 682 | 65 648 6.77 || 6.66
OSU-CompLing 699 694 699 | 697 694 698 || 6.97

DCU-NLG-PBN | 6.96 694 697 | 697 699 699 || 697

03-mini T DCU-NLG-Small | 6.73 6.67 6.79 | 6.51 656 6.69 || 6.66
OSU-CompLing 693 693 698 | 6.94 694 698 || 6.95
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Gemini-1.5-flash t DCU-NLG-Small | 69 681 69 | 6.74 6.68 6.88 || 6.82
OSU-CompLing 70 698 699 | 699 697 699 || 699

DCU-NLG-PBN | 697 6.88 692 | 693 695 696 || 694

R1-Llama-70B1  DCU-NLG-Small | 6.71 6.58 6.74 | 642 648 6.66 6.6
OSU-CompLing 696 693 697 | 697 696 694 || 6.95
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Figure 22: Plot of LLM scores against Human scores

for all systems: English, No-Omissions
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Figure 23: Plot of LLM scores against Human scores

for all systems: English, No-Additions
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Figure 24: Plot of LLM scores against Human scores
for all systems: English, Grammaticality
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Figure 25: Plot of LLM scores against Human scores
for all systems: English, Fluency
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Figure 26: Plot of LLM scores against Human scores

for all systems: Spanish, No-Omissions
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Figure 27: Plot of LLM scores against Human scores

for all systems: Spanish, No-Additions
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Figure 28: Plot of LLM scores against Human scores
for all systems: Spanish, Grammaticality
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Figure 29: Plot of LLM scores against Human scores
for all systems: Spanish, Fluency
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Abstract

Live commentary plays a crucial role in help-
ing audiences interpret high-stakes events such
as political debates, central bank press confer-
ences, and corporate earnings calls. Unlike
generic summarization, professional commen-
tary requires timely decisions about what to
comment on and how to present it, integrat-
ing fact-checking, background knowledge, and
subjective evaluation. However, little prior
work has studied commentary as a structured
planning and generation problem. To bridge
this gap, we introduce the first multi-domain
dataset of Live Commentary Planning and
Generation, aligning event transcripts with
time-synchronized expert analyses and public
reactions. Our dataset covers U.S. presiden-
tial debates (2016-2024), Federal Open Market
Committee press conferences, and corporate
earnings calls, enriched with a fine-grained tax-
onomy of commentary intents (up to 11 cat-
egories) and supplemented by Reddit crowd
commentary. We define two benchmark tasks:
(1) Commentary Planning, predicting the type
of commentary given a transcript segment, and
(2) Commentary Generation, producing com-
mentary text conditioned on the segment and
a target label. Baseline experiments with large
language models show that, despite their flu-
ency, models struggle with expert-level com-
mentary, showing the difficulty of integrating
contextual reasoning and external knowledge
under real-time constraints.'

1 Introduction

Large language models (LLMs) have made it
easier than ever to generate fluent text, but true
professional-quality commentary demands more
than fluency. In high-stakes public discourse, such
as political debates, central bank press conferences,
or corporate earnings calls, expert commentators
provide real-time analysis that contextualizes and

1Project Page: http://livecommentary.nlpfin.

com/
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critiques what is being said. This live commentary
helps transform passive viewership into an engaged,
informed experience. Professional commentators
translate complex language into accessible insights,
fact-check claims in real-time, and offer historical
or expert perspective to guide audience understand-
ing. Such commentary must be timely, knowledge-
able, and context-rich, going beyond summariza-
tion to include opinions, fact-checks, and interpre-
tations. However, simulating this expert ability is
challenging: it requires deciding what to comment
on (planning) and how to convey it (generation)
under time pressure and with domain expertise.

Despite extensive research on these domains in-
dividually (e.g. analyzing debate transcripts or sum-
marizing financial reports), little work has aligned
transcripts with their simultaneous expert commen-
tary. Existing studies tend to treat the primary
content and the reactions separately. For example,
focusing on debate speeches or on social media
responses in isolation. This leaves a gap in under-
standing how experts interpret dynamic events in
the moment. To address this gap, we introduce
a new dataset of Live Commentary Planning and
Generation that aligns real-time expert commen-
tary with transcripts across three domains: (1) U.S.
presidential debates (2016-2024), (2) Federal Open
Market Committee (FOMC) press conferences, and
(3) corporate earnings calls. In each setting, mul-
tiple expert commentators observed the live event
and produced running commentary, which we have
collected and aligned with the spoken transcript
segments by timestamp. Additionally, for the pres-
idential debates, we incorporate public commen-
tary from Reddit discussion threads to capture non-
expert, crowd reactions in real time. The result is
a multi-faceted dataset covering both institutional
expert analysis and grassroots public reactions.

Crucially, each commentary segment is anno-

tated with a fine-grained category from a new tax-
onomy we developed for live discourse analysis.
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For example, debate commentary segments are la-
beled as Key Summary, Supplementary Explana-
tion, Fact-Check, Personal Opinion, Market Re-
action, Public Opinion, or Commentator’s Ques-
tion, with Personal Opinion further broken into
subtypes like evaluating performance, analyzing
claims, drawing inferences, etc.. This rich labeling
(11 distinct labels in total for debates) enables mod-
els to learn not just to generate commentary, but to
plan what type of comment is appropriate at each
moment. In professional settings, the ability to
choose an apt perspective, e.g. to fact-check a dubi-
ous claim versus to summarize a complex point, is
critical. Our dataset supports two complementary
tasks: (1) Commentary Planning, i.e. predicting
the commentary label given a transcript segment,
and (2) Commentary Generation, i.e. producing
the content of a commentary given the segment
and a target label. By tackling these tasks, models
must learn to mimic expert decision-making and
contextual writing under real-time constraints.

In summary, our contributions are: (a) a first-of-
its-kind dataset aligning transcripts with real-time
expert commentary across multiple domains, with
fine-grained annotations of commentary intent; (b)
benchmark task definitions for commentary plan-
ning and generation, to facilitate systematic study
of this challenging form of conditional text gen-
eration; and (c) initial analyses and baseline re-
sults demonstrating the dataset’s difficulty and the
need for advanced techniques. Even state-of-the-art
LLM:s like GPT-4 struggle with expert commentary
planning and generation (as shown in our pilot stud-
ies), underscoring the novelty and challenge of our
task. We hope this dataset will spur research at the
intersection of content understanding, knowledge
integration, and real-time text generation.

2 Dataset

2.1 Dataset Creation

Our dataset encompasses three types of live events:
(1) U.S. presidential debates, (2) FOMC press con-
ferences, and (3) corporate earnings calls , along
with their live commentary. For U.S. presiden-
tial debates, we include all major televised debates
from the 2016, 2020, and 2024 election cycles.
This totals 10 events (including presidential and
vice-presidential debates and a 2023 primary de-
bate), with full transcripts obtained from public
sources (e.g. debate commission or media outlets).
We collected the real-time expert commentary on
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‘ Debates FOMC Earnings Call Reddit
2,283 252 1,115 366
11 5 10 4

# Pair
# Category

Table 1: Dataset statistics.

these debates from the Bloomberg news service,
which had professional journalists providing line-
by-line analysis during the live broadcasts. Each
commentary piece is timestamped. We align each
commentary segment to the corresponding part of
the debate transcript by timestamp and content, en-
suring the commentator’s remark is matched with
the specific speaker utterance or segment it ad-
dresses. If a comment does not clearly relate to
any specific line, it is marked as not applicable to a
segment. Using this procedure, we obtained 2,283
commentary-transcript pairs for debates.

For FOMC press conferences, we collected tran-
scripts of the Fed Chair’s opening statement and
the subsequent Q&A with journalists, for multiple
meetings, covering 8 FOMC events. We again used
Bloomberg’s real-time commentary feed, which
provides expert economist reactions during these
press conferences. After alignment, we have 252
commentary segments paired with FOMC tran-
script segments. For corporate earnings calls, we
focus on earnings calls of S&P 500 companies
across various sectors. Earnings calls typically con-
sist of a management presentation and a Q&A ses-
sion with analysts. We use transcripts and align
Bloomberg’s live financial commentary on those
calls. The dataset includes 1,115 pairs of com-
mentary with earnings call transcript segments.
Lastly, for Reddit commentary, we incorporate pub-
lic reactions from Reddit “mega-threads” created
during the 2016 U.S. presidential debates. Us-
ing an Intertextual Topic Correspondence (ITC)
method (Visser et al., 2018), we matched 366 Red-
dit comments to relevant debate utterances. These
alignments were verified and annotated with sim-
plified labels (described below). The inclusion of
Reddit allows us to compare expert vs. crowd com-
mentary directly.

2.2 Label Taxonomy

Table 1 summarizes the size of each domain in our
dataset and the label inventory available. In total,
the dataset contains over 3,650 expert commentary
instances aligned with transcripts (plus 366 Reddit
instances), making it the largest resource of its kind
to date.



Label

Description

KS (Key Summary)

Summarizing what the speaker said.

SE (Supplementary Explanation)

Providing additional factual context or background (often
drawing on external knowledge).

FC (Fact-Checking)

Verifying or refuting the accuracy of a candidate’s claim.

PO (Public Opinion) Noting public sentiment or likely voter reactions (some-
times referencing polls or social media).
MR (Market Reaction) Commenting on any immediate financial market response

or economic implications (included since commentators are
financial journalists).

CQ (Commentator’s Question)

Posing an open question or something to watch for (e.g.,
“How will candidate X implement this policy?”).

CPO (Commentator’s Personal Opinion)

Any subjective analysis or evaluative remark by the com-
mentator. Expanded into five finer labels:

PC (Performance Critique)

Evaluating the debate performance or rhetorical style of the
participants.

CS (Claim Analysis)

Opining on specific policy claims or factual statements
made.

AC (Analytical Conclusion)

Drawing a conclusion or inference beyond the given facts.

MP (Market/Policy Projection)

Connecting the debate content to economic or policy out-
comes (e.g., impact on markets).

O (Other)

Any opinion-based comment that doesn’t fit the above

(catch-all).

Table 2: Commentary labels in debates

Each domain has a tailored commentary taxon-
omy reflecting the nature of that discourse, while
maintaining some common themes. For the de-
bates, we developed a hierarchical label schema
with 7 main categories and several subcategories.
In total, as shown in Table 2, the debate commen-
tary taxonomy has 11 fine-grained labels (KS, SE,
FC, PO, MR, CQ, and the 5 CPO subtypes), which
offer a nuanced view of how commentators respond.
Table 2 in Appendix provides frequency statistics
of these labels per debate event, confirming that
summaries and explanations are most common, but
all categories are represented.

The FOMC commentary uses a simpler set of
5 categories reflecting its financial focus. We de-
fine labels for: Summary of the Fed’s statements;
Open Question (similar to CQ, when analysts pose
a question or uncertainty); and three sentiment-
based Opinion labels — Positive, Neutral, Negative
— indicating the tone of the commentator’s view on
the policy or economic outlook. These sentiment
opinions replace the more fine-grained CPO sub-
types used in debates, since FOMC commentary
often centers on evaluative tone (e.g. optimistic vs
pessimistic take on the Fed’s message). The earn-
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ings call commentary required an even more fine-
grained scheme of 10 categories. We include labels
for various comparative or contextual analyses that
financial journalists provide, such as: comparison
with previous company reports, discussion of sup-
ply chain details, references to prior quarterly calls,
noting market expectations vs actual results, and
mentions of competitors’ performance. These cap-
ture the rich analytical moves typical in earnings
analysis. Additionally, earnings commentary labels
cover summary of the results, open questions (e.g.
uncertainties about guidance), general commen-
tary (uncategorized observations), and sentiment
opinions (positive/neutral/negative) about the earn-
ings news. By designing domain-specific labels,
we account for differences in commentary style:
e.g. debate commentary includes fact-checking
political claims, while earnings call commentary
often involves comparing numbers to expectations
or past quarters.

For the Reddit debate comments, we use a sim-
plified 4-category scheme focusing on how the
comment relates to the debate utterance. The la-
bels (drawn from prior work on intertextual links in
discussions) are: Agreement, Disagreement, Elab-



oration, or Paraphrase. These indicate whether the
Reddit user is agreeing with a candidate’s point,
disputing it, adding more information or opinion,
or simply rephrasing it (often humorously or sar-
castically). While not as fine-grained as expert
labels, these categories let us study the contrast
between expert commentary (which may lean to-
wards factual and analytical responses) and public
commentary (which may show more partisanship
or humor).

3 Task Design and Evaluation

We consider two primary tasks with our dataset,
reflecting the pipeline of a commentary system:

3.1 Commentary Planning

Given a segment of the transcript (e.g. a few sen-
tences of a debate or a turn from the Fed Chair),
the model must predict which commentary cate-
gory an expert would choose for a comment on
that segment. This is a multi-class classification
task over the label set of the respective domain (e.g.
11-way classification for debates). We evaluate
planning performance using standard classification
metrics, chiefly accuracy and F1-score. Since the
class distribution is imbalanced (certain labels like
Key Summary occur more frequently, while others
like Commentator’s Question are rarer), we report
both macro-averaged F1 and micro-F1. The latter
emphasizes overall correctness, while macro-F1
highlights performance on less common categories.
In our pilot experiments, this task proved very chal-
lenging: even powerful LLMs achieved only about
46-49% micro-F1 on debate commentary planning.
For example, GPT-4 and Claude 3.5 Sonnet models
hovered around 0.5 F1. This indicates that identify-
ing what type of comment to make — essentially, the
expert’s decision-making — requires deeper under-
standing of context and likely external knowledge.
We expect specialized models or additional context
(such as preceding dialogue or world knowledge)
to be needed to improve on this task.

3.2 Commentary Generation

Here the goal is to generate the content of a com-
mentary given a transcript segment and a speci-
fied commentary label. This reflects producing
a particular style of comment (e.g. a fact-check)
appropriate to what was said. We treat this as a
conditional text generation task. Evaluation of gen-
erated commentary is nuanced: we compute au-
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tomatic metrics like ROUGE (measuring n-gram
overlap with the reference expert commentary) and
BERTScore (measuring semantic similarity to the
reference) to get a quantitative sense of fidelity.
However, because commentary is an open-ended
task (the model could comment in various valid
ways that differ from the single reference), these
overlap-based scores tend to be low. Indeed, our
pilot tests found ROUGE-1/2 scores in the 0.10
range for even the best LLMs, which underscores
that divergent but valid outputs are penalized by
reference metrics. We therefore place greater em-
phasis on human evaluation for generation. We
propose to have experts or crowd annotators judge
generated commentaries along key dimensions of
quality: (a) Importance: does the commentary fo-
cus on important or relevant aspects of the segment
(as an expert would) rather than trivial details? (b)
Expectedness/Novelty: does the commentary pro-
vide insight beyond merely restating the transcript
(since a good comment should add context or anal-
ysis, not just the obvious)? (c¢) Clarity: is the com-
mentary clearly written and easy to understand?
(d) Accuracy: are any factual claims in the com-
mentary correct (this is crucial for fact-checking or
explanatory comments). We will use rating scales
for these dimensions and also collect an overall
preference between different model outputs. Addi-
tionally, we plan to utilize LLM-based evaluators
for automatic judgment: for example, prompting a
strong model to assess a generated commentary for
coherence and correctness (drawing on the “news
value” criteria from journalism studies). This ap-
proach of using LLMs as judges, alongside human
evaluation, can help scale the assessment of open-
ended generation.

4 Expected Challenges

As a benchmark, we evaluated several cutting-edge
LLMs on our tasks. For commentary planning,
all models struggled; for instance, Claude’s F1
was 0.48, similar to GPT-4, while DeepSeek (a
70B-level open model) was slightly lower, indicat-
ing that without fine-tuning, these models often
misidentify which strategy to use (e.g. they might
summarize when a fact-check was needed, or vice
versa). For commentary generation, we experi-
mented with prompting LLMs to produce commen-
tary given segments and target labels. Qualitatively,
the models can produce fluent and relevant com-
ments, but often lack the expert precision: e.g. a



fact-check generated by GPT-4 might not actually
verify the claim with evidence, or a supposed “mar-
ket reaction” comment by Claude might be generic
since the model doesn’t have real financial data.
The ROUGE scores around 0.1 for all models re-
flect that the models’ outputs often did not overlap
with the reference wording, even if they were top-
ically relevant. This is in stark contrast to, say,
news summarization tasks where state-of-the-art
models can achieve much higher ROUGE by pro-
ducing similar summaries. The low scores reaf-
firm that commentary generation is fundamentally
different from summarization: it is a more open-
ended, many possible answers problem (especially
for opinion and explanation categories). There-
fore, we caution against relying solely on reference-
based metrics. Instead, our evaluation protocol will
use a combination of automatic and human mea-
sures, as described, to get a well-rounded picture
of performance.

Another challenge is the need for external knowl-
edge. In our dataset, commentators frequently
bring in outside information, e.g. citing economic
data during a debate or recalling previous state-
ments by the Fed, which a model without retrieval
may not know. To encourage research on this, we
distinguish between closed-book and open-book
commentary generation. A closed-book model
must rely only on its internal knowledge and the
transcript input, while an open-book model can
call a retrieval system or database (for example,
retrieve relevant fact-checks or Wikipedia content).
We will evaluate both settings. We expect that
retrieval-augmented approaches will produce more
factual and informative commentary, especially for
fact-checking and supplementary explanation cate-
gories, at the cost of more complex systems. This
setup mirrors real journalists, who often quickly
search for data or past news while commenting
live.

Overall, our evaluation methodology is designed
to capture the multi-dimensional goals of live com-
mentary: factual accuracy, relevance, insight, and
timeliness. By providing both the planning la-
bels and the generation task, our dataset allows
researchers to decompose the problem.

5 Related Work

Generating live commentary has been explored in
limited domains such as sports and games. For
example, Ishigaki et al. (2021) generated commen-
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tary for racing video games using multimodal in-
puts, and Marrese-Taylor et al. (2022) proposed
open-domain video commentary generation from
gameplay. These systems focused on describing vi-
sual events, whereas our work deals with discursive
events (speeches, discussions) and requires integrat-
ing factual knowledge and argumentative context.
In the news domain, others have studied generat-
ing reader comments or transforming content: e.g.,
Yang et al. (2019) generated news article comments,
and Liu et al. (2024) created SciNews to turn sci-
entific papers into lay summaries. Our dataset en-
ables similar grounded generation but in real-time
political and financial contexts, which pose unique
time-sensitivity and accuracy challenges.

U.S. presidential debates are a rich resource for
argument mining and claim analysis. Prior datasets
have tackled check-worthy claim detection in de-
bates. The CLEF-2018 CheckThat! lab (Atanasova
et al., 2018) introduced tasks to identify which
debate statements merit fact-checking. Similarly,
ClaimRank (Jaradat et al., 2018) prioritized factual
claims in debates for fact-checkers. These datasets
typically provide binary or priority labels on debate
sentences indicating “worth fact-checking.” For in-
stance, the Check-Worthy corpus by Patwari et al.
(2017) annotated debate sentences with whether
they should be checked. However, these resources
focus narrowly on factual claims, whereas live com-
mentary covers a broader range of reactions (sum-
maries, opinions, etc.) in real time. Our dataset
indeed includes fact-checking commentary labels,
but situates them among many other commentary
types, providing a more comprehensive view of
how debates are analyzed on the fly.

Other work has examined the argumentative
structure of debates. The M-Arg dataset (Mestre
et al., 2021) annotated the 2020 U.S. presidential
debates for argument relations (support, attack, neu-
tral) using both text and audio. Goffredo et al.
(2023) proposed an argument-based classification
of debate content, inspiring parts of our label tax-
onomy. These efforts treat debates as standalone
dialogues to parse or classify, in contrast to our
approach of linking debates with external com-
mentary. The CMU Multivocal dataset (Jo et al.,
2020) integrated social media reactions by cate-
gorizing Reddit debate comments into four propo-
sition types. That work illustrated the value of
combining debates with crowd commentary, but
did not include expert analysis. Our dataset bridges



that gap by including both expert journalist com-
mentary and public Reddit comments for the same
debates, enabling direct comparison of institutional
versus grassroots discourse. In summary, existing
debate datasets each target a slice of the problem
(claims, arguments, or crowd opinions), while our
dataset provides aligned expert commentary cov-
ering fact-checks, summaries, opinions, and more,
over multiple election cycles.

Beyond debates, our work draws on NLP re-
search into financial and policy communications.
FOMC press conferences (the U.S. Federal Re-
serve’s Q&A sessions after policy meetings) have
been studied for their economic impact and rhetoric.
For example, prior work analyzed the language
of Fed statements to predict market reactions or
assess sentiment (e.g., (Zirn et al., 2015; Rohlfs
et al., 2016)). Corporate earnings calls are an-
other important domain, with NLP applied to tasks
like summarization of call transcripts, extraction of
forward-looking statements, and stock movement
prediction. Keith and Stent (2019) investigated
summarizing earnings calls, and more recent stud-
ies (Mukherjee et al., 2022; Huang et al., 2024) use
transformer models to analyze financial transcripts.
However, these financial NLP works typically op-
erate on monologues or Q&A content alone. Our
dataset is novel in that it pairs these financial event
transcripts with real-time expert commentary (e.g.,
from Bloomberg analysts) that interprets and re-
acts to the content. To our knowledge, this is the
first resource to capture how financial experts com-
ment during an unfolding event (press conference
or earnings call), adding a layer of analysis akin to
real-time summarization plus evaluation.

6 Conclusion

We have presented a new multi-domain dataset for
Live Commentary Planning and Generation, cov-
ering real-time expert and public commentary on
debates, policy press conferences, and earnings
calls. This dataset is the first to align transcripts of
high-stakes events with time-synchronized expert
analyses, annotated with a rich taxonomy of com-
mentary types. By framing both a planning task
(deciding what commentary action to take) and a
generation task (producing the commentary text),
we move toward building systems that not only
summarize or classify, but emulate expert commen-
tators in both decision-making and writing. The
novelty of our dataset lies in its comprehensive
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scope and fine granularity: it bridges previously
disparate research areas (argument mining, fact-
checking, summarization, and discourse analysis)
in a unified benchmark. We believe this resource
will be highly useful for developing and evaluating
the next generation of intelligent assistants capable
of providing live analysis. Furthermore, the dataset
is extensible: the framework could be applied to
other languages (e.g. live translation commentary)
or other event types (parliamentary debates, live
sports commentary with expert analysts, etc.), en-
abling cross-cultural and cross-domain studies of
real-time commentary.

Looking ahead, we anticipate this dataset will
inspire research into planning-enhanced text gen-
eration, better integration of external knowledge
for live tasks, and evaluation techniques for cre-
ative generation. It also offers opportunities for
interdisciplinary collaboration with journalism and
communication studies, examining how Al can aug-
ment or mimic professional commentators. In the
era of powerful LLMs, our work highlights that ex-
pertise and strategy in generation remain non-trivial
to achieve. By providing a challenging benchmark
and initial baselines, we set the stage for future
innovations in real-time, context-aware text gener-
ation. We invite the community to use and build
upon our dataset.
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Abstract

This paper presents the official human eval-
uation results for DCU-ADAPT-modPB, our
submission to the 2024 GEM Shared Task on
Multilingual Data-to-Text Generation. The sys-
tem description paper reported only automatic
metrics; here we extend the analysis using the
human assessments released in 2025. Annota-
tors evaluated outputs on No-Omissions, No-
Additions, Grammaticality, and Fluency across
English datasets. For FA, CFA, and FI sub-
sets, only No-Omissions scores were released,
while pooled results across datasets were pro-
vided for all criteria. DCU-ADAPT-modPB
achieved competitive results where it was rated
above the LLM evaluation baseline and close
to the human average in No-Additions, Gram-
maticality, and Fluency, though it lagged be-
hind both baselines in No-Omissions. These
findings demonstrate the strengths of hybrid
pipelines in producing grammatical and fluent
text with limited hallucination, while under-
scoring persistent challenges in ensuring full
content coverage.

1 Introduction

Data-to-Text (D2T) generation is a long-standing
goal of natural language generation (NLG), involv-
ing the production of natural language descriptions
from structured data. It has applications in domains
such as journalism, health reporting, business in-
telligence, and knowledge graph verbalisation. De-
spite notable progress, the field continues to face
fundamental challenges: ensuring that generated
text is both fluent and faithful to the input data.
The GEM benchmark (Gehrmann et al., 2021)
has emerged as a standard platform for evaluating
NLG systems, emphasising multilinguality, multi-
ple tasks, and rigorous evaluation. The 2024 GEM

*T The first two authors made equal contributions to all
aspects of the main paper. The order in which they appear in
this paper was determined based on their contributions to this
analysis paper.
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Shared Task (Osuji et al., 2024) focused on D2T
with three English datasets: factual (FA), coun-
terfactual (CFA), and fictional (FI). These were
designed to progressively increase difficulty, test-
ing whether systems could generalise beyond in-
domain factual data.

Evaluation of NLG has historically relied on
automatic metrics such as BLEU (Papineni et al.,
2002), ChrF++ (Popovié, 2017), BERTScore
(Zhang et al., 2019), and COMET (Rei et al., 2020).
While efficient, these metrics are known to corre-
late imperfectly with human judgements, partic-
ularly for dimensions such as omissions and hal-
lucinations (Reiter, 2018). To address this, GEM
incorporates systematic human evaluation. The re-
lease of the GEM’24 human ratings in 2025 (Sedoc
et al., 2025) therefore provides the most robust evi-
dence to date of system behaviour across the new
datasets.

Our system, DCU-ADAPT-modPB, adopts a hy-
brid pipeline design, combining symbolic structur-
ing with LLM-based realisation. The central moti-
vation was to mitigate hallucination by constraining
the LLM to pre-structured content, while leverag-
ing its strengths in producing fluent and grammati-
cal sentences. This paper analyses how this design
performed under human evaluation, with particu-
lar attention to the trade-off between fluency and
coverage.

2 Related Work

Hybrid approaches to D2T generation have a long
history, typically involving content selection, plan-
ning, and surface realisation stages (Gardent et al.,
2017; Novikova et al., 2017). While such systems
offer control and factual consistency, they often
lag behind neural end-to-end models in terms of
naturalness and fluency. Recent advances in LLMs
have shifted emphasis towards end-to-end prompt-
ing or fine-tuning. These approaches achieve high
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fluency but suffer from hallucinations, especially
in low-resource or multilingual contexts (Maynez
et al., 2020). The GEM benchmark itself has high-
lighted this trade-off where pipeline systems tend
to avoid hallucinations but omit content, whereas
end-to-end systems generate more complete but
less reliable outputs (Gehrmann et al., 2021).

Within this context, our system extends the hy-
brid tradition. By constraining LLMs with explicit
content planning, we aim to combine their strengths
in form with improved factual reliability. The hu-
man evaluation results allow us to examine the
extent to which this balance was achieved.

3 System Recap

The DCU-ADAPT-modPB system is a modular
pipeline with three components:

* Triple Ordering and Structuring: Input
triples were linearised and ordered with Flan-
T5. This produced sentence plans that
grouped semantically related triples and im-
posed a coherent sequence, reducing incoher-
ence in realisation.

Surface Realisation: Sentence plans were
realised into natural language by prompting
GPT-4 and Mistral. Prompts were designed to
encourage factual faithfulness while maintain-
ing fluency. GPT-4 contributed particularly
to grammatical accuracy, while Mistral was
leveraged for efficiency and diversity.

Translation into Target Languages: Since
English-centric LLMs currently perform best,
outputs were generated first in English and
then translated into Swahili and other lan-
guages using neural MT models.

This pipeline was designed to reduce hallucination
while retaining fluency. We anticipated that omis-
sions might arise during structuring, where content
pruning could occur.

4 Evaluation Setup

The organisers’ human evaluation (Sedoc et al.,
2025) assessed system outputs on a 1-7 scale for
No-Omissions, No-Additions, Grammaticality, and
Fluency. For English Factual (FA), Counter Fac-
tual (CFA), and Fictional (FI) datasets, only No-
Omissions scores were reported individually. For
the pooled D2T-1 set (FA+CFA+FI), averages were
reported for all four criteria, alongside human aver-
ages and LLM averages.
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Dataset No-Omissions
FA 5.42
CFA 5.21
FI 5.35

Table 1: No-Omissions scores for DCU-ADAPT-
modPB across FA, CFA, and FI datasets.

System No-Omis. No-Add. Gram. Flu.
Human avg 5.57 5.73 633 6.25
LLM avg 5.41 5.52 6.01 593
DCU-ADAPT-modPB 5.33 5.62 6.21 6.12

Table 2: English D2T-1 pooled results (FA+CFA+FI).
Human ratings averaged across all criteria.

5 Results

5.1 Per-dataset No-Omissions

The following results are per-dataset no-omissions
results (see Table 1):

e On FA, DCU-ADAPT-modPB scored 5.42.

* On CFA, the score dropped to 5.21, reflect-
ing the increased difficulty of counterfactual
reasoning.

* On FI, the system achieved 5.35, consistent
with its conservative bias under more creative
inputs.

These results suggest that DCU-ADAPT-modPB
is effective at minimising unsupported additions
to the input, but it frequently under-generates by
omitting relevant content. The tendency towards
omission is especially pronounced in the CFA set-
ting, where altered input facts increase the difficulty
of maintaining full coverage.

5.2 Pooled Results (D2T-1)

Across FA, CFA, and FI combined, DCU-ADAPT-
modPB performed strongly in No-Additions, Gram-
maticality, and Fluency, outperforming the LLM
baseline and approaching the human average. In
No-Omissions, however, it lagged behind both
baselines. See Table 2.

6 Discussion

The results highlight a clear profile. DCU-ADAPT-
modPB excels in producing grammatical and fluent
text with few hallucinations, as reflected in its supe-
rior scores on No-Additions, Grammaticality, and
Fluency. However, its conservative design results



in lower No-Omissions, especially in CFA, where
the system struggled to cover perturbed inputs.

When compared with baselines, DCU-ADAPT-
modPB performs close to human averages in lin-
guistic quality, but below both humans and LLMs
in coverage. This illustrates the persistent cov-
erage—accuracy trade-off: systems that constrain
generation to reduce hallucination often omit input
content, whereas more expansive systems cover
more but risk errors.

Upon manual inspection of the intermediate out-
puts produced during the content ordering and
structuring stages, it was observed that the Flan-T5
model occasionally omitted some input triples even
before the surface realisation stage. Although no
quantitative calculation of omission rate has yet
been conducted, these preliminary observations
suggest that older encoder—decoder models such
as Flan-T5 are more prone to partial content loss
when handling complex or lengthy input sets. In
contrast, newer and larger models (e.g., GPT-4,
Claude, or Mistral-7B) appear to exhibit fewer such
omissions during generation, likely due to their
improved contextual reasoning and long-context
consistency.

These findings also raise broader methodologi-
cal issues. The fact that human-authored references
do not dominate all criteria suggests that annotation
guidelines reward certain forms of fidelity and con-
ciseness differently from natural human variation.

These findings also raise broader methodologi-
cal issues. The fact that human-authored references
do not dominate all criteria suggests that annota-
tion guidelines reward certain forms of fidelity and
conciseness differently from natural human varia-
tion. This reinforces calls for multi-dimensional
evaluation frameworks that account for pragmatic
adequacy, diversity, and user needs in addition to
surface fidelity.

Future work should address omissions directly,
for example through reinforcement learning from
human feedback (Christiano et al., 2017) or di-
rect preference optimisation (Rafailov et al., 2023),
which could encourage models to balance coverage
with linguistic quality.

7 Conclusion

We presented the human evaluation results for
DCU-ADAPT-modPB, our submission to GEM’24.
The system outperformed the LLLM baseline and
closely matched human averages in No-Additions,
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Grammaticality, and Fluency, but underperformed
in No-Omissions. This reflects the strengths and
weaknesses of hybrid pipelines: they deliver re-
liable, readable text with minimal hallucination,
yet often sacrifice completeness. Addressing omis-
sions remains the critical challenge for future D2T
research.

Limitations

Our analysis is limited to the English datasets, as
human evaluation was not released for other lan-
guages.

Ethics Statement

This work carries minimal risk. It reports analy-
sis of human evaluation results under controlled
conditions.
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Abstract

Data-to-text (D2T) generation tasks require
Large Language Models (LLMs) to generate
factual and faithful text from structured in-
put. Additionally, in the counterfactual and
fictional subtasks of GEM’24 shared tasks,
LLMs may need to handle conflicting infor-
mation from the pre-training data. Team
SaarLST (Jobanputra and Demberg, 2024) in-
troduced a few-shot retrieval-augmented gener-
ation (RAG) system centered on a symbolic
retriever - PropertyRetriever. This work
presents the analysis of the official human eval-
uation results from the shared task. Our sys-
tem ranks first among all participating systems
across all four human evaluation criteria: No-
Omissions, No-Additions, Grammaticality, and
Fluency. This result highlights the effectiveness
of our symbolic retrieval approach in generat-
ing fluent and faithful text, even in challeng-
ing counterfactual and fictional scenarios. The
human evaluation results also highlight a "re-
liability gap" as even state-of-the-art systems
exhibit imperfections, indicating that building
a reliable system for this seemingly simple task
remains an open challenge.

1 System Summary

The GEM’24 shared task (Mille et al., 2024) fo-
cuses on D2T generation from RDF triplets. This
shared task is primarily designed to test the faithful-
ness of LLMs across factual (FA), counter-factual
(CFA), and fictional (FI) data. The major challenge
in this task is to prevent hallucinations, where the
LLM’s parametric knowledge overrides the input
data, and correctly inferring missing details (e.g.,
entity types) to generate fluent text.

Our proposed system addresses these challenges
using a few-shot Retrieval-Augmented Generation
(RAG) pipeline, as illustrated in our original pa-
per (Jobanputra and Demberg, 2024). The key
difference in our proposed system is a symbolic

retriever - PropertyRetriever. Unlike dense re-
trievers that fetch semantically similar examples,
PropertyRetriever creates an index of proper-
ties from the training data. At inference time, it
retrieves examples that share the most properties
and have a similar number of triples as the input
query. This structural and property-based matching
provides the generator with highly relevant stylistic
and syntactic templates.

Generation Pipeline at a glance. Our pipeline
consists of the following components:

* a lightweight, symbolic retriever (e.g., term-
similarity over RDF verbalizations) to fetch
few-shot exemplars,

* in-context prompting of a general-purpose
LLM for generation,

* an ensemble of two state-of-the-art open-
weight LLMs: Mixtral 8x7B (Jiang et al.,
2024) as the primary model and Command-R
as a fallback.

Design rationale. D2T inputs (RDF triple sets)
can be long-tail and compositional. We therefore
prioritized an exemplar selection strategy that in-
creases factual coverage while keeping complex-
ity low. The literature also supports the choice of
a symbolic retriever for the D2T generation task.
Chang et al. (2021) showed a similar way to select
relevant examples for the few-shot training. Feng
et al. (2024) also used a similar retrieval mecha-
nism for their low-resource D2T generation task.

2 Official Human Evaluation Results

Following the initial submission, the shared task
organizers conducted a comprehensive human eval-
uation of all participating systems (Sedoc et al.,
2025). The outputs are rated by human annotators
on a 1-7 scale across four criteria: No-Omissions,
No-Additions, Grammaticality, and Fluency.
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D2T-1 (WebNLG-based) D2T-2 (Wikidata-based)
Criterion Team FA CFA FI | FA. CFA FI || Avg.
SaarLST (Ours) 579 552 594 6.19 593 597 5.89
No-Omissions Diplnfo-UniTo 545 543 555 5.80 572 555 5.58
DCU-NLG-PBN | 549 525 557 546 541 538 5.43
SaarLST (Ours) 561 514 576 6.15 553 576 5.66
No-Additions DipInfo-UniTo 559 538 547 6.05 571 5.39 5.60
DCU-NLG-PBN | 556 5.10 548 548 508 5.16 5.31
SaarLST (Ours) 6.07 583 5098 628 6.08 6.01 6.04
Grammaticality | DipInfo-UniTo 6.01 5.68 5381 6.12 595 5.55 5.85
DCU-NLG-PBN | 6.11 5.68 5.86 6.01 567 544 5.79
SaarLST (Ours) 598 576 594 624 6.00 5.95 5.98
Fluency Diplnfo-UniTo 589 558 572 6.06 590 5.53 5.78
DCU-NLG-PBN | 6.04 5.60 5.81 592 563 546 5.74

Table 1: Official human evaluation scores (1-7 scale) for the top 3 participating systems across all subtasks. Our
system (SaarLST) achieved the highest average score across every criterion.

2.1 Results and Discussion

Our system (SaarL.ST) ranks first overall, achiev-
ing the highest average score among all participat-
ing systems on every single evaluation criterion
(see Table 1). This strong performance across the
board validates our system’s core design.

2.1.1 Faithfulness in Factual and
Counterfactual Scenarios

A key goal of the shared task was to evaluate model
faithfulness under challenging conditions. Our sys-
tem’s high scores on No-Omissions (5.89) and
No-Additions (5.66) underscore the effectiveness
of PropertyRetriever in achieving this. The re-
triever’s ability to ground the LLM was particu-
larly evident in the counterfactual (CFA) and fic-
tional (FI) settings. While many systems struggle
when input data conflicts with an LLM’s paramet-
ric knowledge, our system maintained high faith-
fulness. This suggests that providing in-context
examples with matching properties and structure
may guide the LLM better and help prioritize the
input data over its internal conflicting knowledge.

2.1.2 Grammaticality and Fluency

Beyond faithfulness, our system also excels in pro-
ducing high-quality language, achieving the top
scores for Grammaticality (6.04) and Fluency
(5.98). The retrieved examples provide similar
discourse-level templates. This helps the LLM
in structuring the information logically and con-
necting the individual facts into a coherent, natural-
sounding paragraph. The consistency of these high
scores across all six subtasks indicates that the ap-
proach is robust.
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2.2 Comparative Analysis

Our system’s first-place ranking becomes more in-
sightful when viewed in the context of the other
participating systems. The shared task featured
a variety of approaches, with several teams em-
ploying powerful state-of-the-art LLMs, including
proprietary closed-source models known for their
strong generative capabilities (Mille et al., 2024).

Despite this, our system consistently outper-
formed all others. For example, the next-highest-
performing system achieved average scores of 5.58
for No-Omissions and 5.85 for Grammaticality,
compared to our 5.89 and 6.04, respectively. This
outcome is particularly noteworthy given that our
system was built using a symbolic retriever instead
of dense retrievers in traditional RAG systems. It
suggests that for faithfulness-critical tasks such as
D2T, the in-context examples used to guide the
model can help LLM achieve better performance,
and that this effect may have a stronger influence
than the capability of the base LLM itself.

The human evaluation results also indicate that
simply fine-tuning an LLM on the task may yield
better performance on the automated metrics, but it
does not guarantee overall better performance. The
tendency of LLMs to hallucinate (i.e., Addition
or Omission) and fall back on parametric knowl-
edge, especially when faced with counter-factual
or fictional data, remains a noticeable limitation.

3 Discussion: a ''Reliability Gap"'

It is crucial to interpret these human evaluation
results with appropriate skepticism for the LLM-
based systems. While our system achieved the
highest rank, the absolute scores (= 6.0 out of a



possible 7) indicate that perfection is still out of
reach. A score of 5.89 on ’No-Omissions,” for in-
stance, implies that in some cases, our system did
fail to convey all the provided information. This
“reliability gap” suggests that even with sophisti-
cated retrieval and generation pipelines, minor er-
rors in faithfulness and fluency persist. These im-
perfections highlight the difficulty LLMs face in
consistently remaining faithful to the input data.
Therefore, the next challenge is not just to outper-
form other systems, but to fill the reliability gap.

4 Conclusion

In this work, we present the official human eval-
uation results for our entry in the GEM’24 D2T
shared task. The results confirm that our system
ranked first across all four dimensions of human
judgment. A detailed comparative analysis sug-
gests that this success stems not just from the
choice of capable LLMs, but from the effective-
ness of our symbolic retrieval method in ensuring
better performance. This outcome provides strong
evidence for the value of structured, symbolic guid-
ance in data-to-text generation. By focusing on
property-level similarity, PropertyRetriever pro-
vided the necessary grounding for LLMs to excel,
highlighting a promising direction for future re-
search in developing more robust and faithful NLG
systems. Yet, the imperfect scores suggest a ‘relia-
bility gap’ and provide an opportunity for building
a truly reliable D2T generation systems.
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