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Abstract
Fine-tuning large language models (LLMs) for
downstream tasks often leads to catastrophic
forgetting, notably degrading the safety of orig-
inally aligned models. While some existing
methods attempt to restore safety by incorpo-
rating additional safety data, the quality of such
data typically falls short of that used in the orig-
inal alignment process. Moreover, these high-
quality safety data are generally inaccessible,
making it difficult to fully recover the model’s
original safety. We ask: How can we pre-
serve safety while improving downstream task
performance without additional safety data?
We show that simply merging the weights of
pre- and post-fine-tuned models effectively mit-
igates safety degradation while enhancing per-
formance. Experiments across different down-
stream tasks and models validate the method’s
practicality and effectiveness.

1 Introduction

The rapid advancement and increasing accessibil-
ity of Large Language Models (LLMs) necessi-
tate a critical focus on aligning these technologies
with human values, cultural norms, and trustwor-
thiness (Huang et al., 2023). To address these
challenges, researchers and developers have intro-
duced safety techniques such as preference tun-
ing (Ouyang et al., 2022; Rafailov et al., 2023;
Grattafiori et al., 2024; OpenAI et al., 2024), aimed
at preventing LLMs from generating harmful or
inappropriate content. Many applications now
leverage safety-aligned models as foundation mod-
els—referred to as aligned models in this paper—to
further customize for downstream tasks via super-
vised fine-tuning (SFT) (Chung et al., 2024).

However, recent studies (Yang et al., 2023; Qi
et al., 2024; Zhan et al., 2024) highlight a critical
challenge: fine-tuning aligned models can degrade
their safety, even when using benign datasets. To
address this issue, mainstream approaches often in-
corporate additional safety data during fine-tuning
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Figure 1: Beyond standard SFT for downstream task
adaptation, we can effectively mitigates safety degrada-
tion by combining the aligned and the fine-tuned model.

(Qi et al., 2024; Bianchi et al., 2024). However,
since the original safety data used to align LLMs
are rarely available, surrogate data are typically
generated by other LLMs-raising concerns about
quality, and the potential for alignment drift.

In this paper, we demonstrate a simple yet ef-
fective method for improving downstream task per-
formance while mitigating safety degradation. As
illustrated in Figure 1, our approach consists of
two steps: (1) fine-tune the aligned model on the
downstream task, and (2) merge the aligned model
with the fine-tuned model. We evaluate this strat-
egy across various models and downstream tasks.
Experimental results show that this method con-
sistently enhances downstream task performance
while substantially preserving model safety, offer-
ing a simple and robust solution for fine-tuning
safety-aligned LLMs. Our key contributions are:

• We show that a simple merging strategy can
improve downstream task performance while
lowering the Attack Success Rate (ASR).

• We conduct extensive evaluations across three
LLMs, four downstream tasks, and two safety

16589



benchmarks, demonstrating the robustness of
our method in preserving model safety.

2 Related Work

2.1 Catastrophic Forgetting and Safety
Degradation in LLMs

LLMs are commonly aligned with human prefer-
ences to ensure safety and reduce the likelihood of
generating harmful content (Ouyang et al., 2022;
Rafailov et al., 2023; Grattafiori et al., 2024; Ope-
nAI et al., 2024). However, recent studies have
shown that this safety alignment can be signif-
icantly compromised after fine-tuning on down-
stream tasks (Yang et al., 2023; Qi et al., 2024;
Zhan et al., 2024). This degradation is often
attributed to catastrophic forgetting (Kirkpatrick
et al., 2017; Li and Lee, 2024; Luo et al., 2025),
a well-known challenge in post-training scenarios
where a model forgets previously acquired knowl-
edge when adapting to new tasks.

To mitigate this issue, prior work has proposed
several approaches. One line of work augments
fine-tuning with additional safety data (Qi et al.,
2024; Bianchi et al., 2024; Zong et al., 2024), aim-
ing to reinforce desirable behaviors through curated
examples. Another line of work leverages self-
distillation, where the model generates synthetic
training data, and fine-tuning on this data has been
shown to reduce harmful tendencies (Yang et al.,
2024). In addition, some studies explore incorporat-
ing regularization strategies during training, often
combined with additional safety data, to constrain
harmful deviations (Huang et al., 2024c,d). Oth-
ers adopt post-hoc re-alignment methods, such as
Huang et al. (2024b) and Yi et al. (2024), which uti-
lize additional safety data to identify safety-related
masks and subsequently apply these masks in their
re-alignment processes.

However, these methods either require synthesiz-
ing large amounts of safety data or incur significant
computational overhead. In contrast, the approach
proposed in this paper avoids both additional data
requirements and extra training costs, offering a
more efficient alternative for maintaining safety.

2.2 Model Merging

Model merging combines multiple models into a
single unified model. A straightforward approach is
to average the weights of different models (Worts-
man et al., 2022a), while variant techniques include
SLERP (White, 2017) and DARE (Yu et al., 2024).

Another line of work explores task vectors (Il-
harco et al., 2023), typically computed as the dif-
ference between a fine-tuned model and its base.
These vectors enable composable transformations
across tasks (Huang et al., 2024a; Su et al., 2024)
and have been extended to construct “safety vec-
tors” from separate safe or harmful models to pre-
vent safety degradation. Bhardwaj et al. (2024),
Hazra et al. (2024), and Wu et al. (2025) adopt a
similar approach: they first fine-tune an aligned
model on harmful data to obtain a harmful variant,
then compute a safety vector as the parameter dif-
ference between the aligned and harmful models,
capturing the directional shift introduced by safety
alignment. In contrast, Hsu et al. (2024) avoids
additional fine-tuning but assumes access to a pre-
alignment checkpoint to derive the safety vector
for subsequent alignment, which is not always pub-
licly available. In contrast, our method uses only
aligned models and fine-tuned models, making it
widely applicable, and demonstrates that safety can
be restored without extra safety data.

The proposed approach is similar to WiSE-FT
(Wortsman et al., 2022b), which also interpolates
between the base model and its fine-tuned variant.
However, WiSE-FT is applied to computer vision,
not LLMs, and is not aimed at preserving safety.

3 Methodology

Our method comprises just two stages: (1) fine-
tuning the aligned model on a target downstream
task, and (2) merging the original aligned model
with the fine-tuned model by interpolating their
weights. Despite its simplicity, this merging strat-
egy effectively mitigates the degradation in safety
commonly observed following fine-tuning, while
preserving performance on the target downstream
task, without requiring additional data.

Step 1: Supervised Fine-Tuning of the Large
Language Model We fine-tune the aligned
model with parameters θbase on a given task t,
resulting in a task-specific model θt. For each
task t, given an instruction xt and its correspond-
ing response yt, we minimize the negative log-
likelihood:

LFT = − log fθ(y
t | xt) (1)

where fθ denotes the language model parameter-
ized by θ.
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Step 2: Merging the Fine-Tuned Model with the
Aligned Model After fine-tuning, we merge the
parameters of the aligned model (θbase) with those
of the fine-tuned model (θt) via linear interpolation:

θmerged = (1− λ)θbase + λθt (2)

Here, θmerged denotes the parameters of the merged
model, and λ ∈ [0, 1] controls the relative contri-
bution of the fine-tuned model. Eq. 2 is the formu-
lation for the native linear merging method; other
advanced merging methods can also be applied.

4 Experimental Setups

Downstream Tasks We conduct experiments on
four downstream tasks: reasoning, medical assis-
tance, code generation, and tool usage proficiency.
Reasoning is enhanced using Chain-of-Thought
data from the Flan V2 dataset (Longpre et al.,
2023) and evaluated on the Big Bench Hard (BBH)
dataset (Suzgun et al., 2023). Medical assistance
uses patient-doctor dialogues from the ChatDoctor
dataset (Li et al., 2023). Code generation is trained
on the MagiCoder dataset (Wei et al., 2024) and
evaluated using the HumanEval benchmark (Chen
et al., 2021). Tool usage proficiency leverages the
OpenFunctions dataset (Patil et al., 2023) to im-
prove API call generation. For medical assistance
and tool usage proficiency, response similarity to
reference answers is measured using BERTScore1

(Zhang* et al., 2020). See Appendix A for addi-
tional details on the downstream tasks.

Safety Evaluation We assess safety using harm-
ful instructions from the AdvBench (Chen et al.,
2022) and HEx-PHI (Qi et al., 2024) datasets. Fol-
lowing prior works that use safety classifiers to
automatically detect harmful content (Xie et al.,
2025; O’Brien et al., 2024), we adopt WildGuard
(Han et al., 2024), a classifier shown to perform
comparably to GPT-4 (OpenAI et al., 2024). We re-
port the Attack Success Rate (ASR) as the primary
evaluation metric. Details of the evaluation setup
are provided in Appendix B.

Large Language Models Our experiments in-
volve several LLMs, including LLaMA-3-8B-
Instruct (Grattafiori et al., 2024), Gemma-2-2B-
It (Team et al., 2024), and Qwen2.5-7B-Instruct
(Team, 2024), along with additional model sizes
when noted. We use the instruct-tuned variants

1Embeddings extracted from the 40th layer of
microsoft/deberta-xlarge-mnli.

of all models, which are aligned with human pref-
erences. Each model is fine-tuned on each down-
stream task using LoRA (Hu et al., 2022) with three
different random seeds. The reported downstream
task performance and ASR are averaged across
these three runs. Additional details of experiment
are provided in Appendix C.

Baselines Unlike most existing methods aimed
at mitigating safety degradation in LLMs after fine-
tuning, our proposed approach requires neither ad-
ditional data nor further training. Given the ab-
sence of comparable safety alignment techniques,
we evaluate our method’s efficacy in preserving
the safety attributes of the originally aligned model
post fine-tuning by benchmarking it against two
prevalent regularization techniques: Dropout (Sri-
vastava et al., 2014) and Weight Decay (Loshchilov
and Hutter, 2019). Similar to our approach, these
regularization methods do not necessitate extra data
or further training. The hyperparameters for these
techniques are selected based on validation set per-
formance on downstream tasks.

Merging Methods In Section 5, we used Lin-
ear Merging, which combines models via direct
interpolation as defined in Eq. 2, as the merging
method. Two advanced merging methods—SLERP
and DARE—are also applied. Their results are pro-
vided in Appendix E. For all methods, we merge
each fine-tuned model with the aligned model using
an interpolation factor λ selected based on valida-
tion set performance.

5 Results

5.1 Can model merging mitigate safety
degradation after fine-tuning?

Figure 2 presents a Pareto analysis of task perfor-
mance and ASR on AdvBench across different
models and tasks. We observe that SFT consis-
tently leads to safety degradation, with higher ASR
across all settings compared to the original aligned
model. While Dropout and Weight Decay offer
slight improvements in ASR, they are generally in-
sufficient to restore the safety of the aligned model.

In contrast, the proposed approach consistently
achieves a better balance between performance
and safety. It often reduces ASR to levels near
that of the aligned model while maintaining—or
even improving—task performance. The smooth
Pareto fronts formed by merging indicate control-
lable trade-offs, making it an effective solution for
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Figure 2: Pareto analysis of downstream task performance and ASR on AdvBench across different models and
tasks. Each dot represents a model configuration, with different hyperparameter settings (weight decay coefficient,
dropout rate, or merging interpolation coefficient) for the same method shown in the same color. For clarity,
we connect the dots of our method in ascending order of their coefficients. Dots with dark edges indicate the
best-performing models on the validation set for each method.

mitigating safety loss after fine-tuning. Figure 5
shows the HEx-PHI results, and results of differ-
ent merging methods can be found in Table 1 in
Appendix E.

5.2 How does model merging perform across
different model sizes?

Figure 3: Performance and ASR change across model
sizes. This figure shows results for Qwen2.5 at 1.5B,
3B, and 7B (top), and Gemma-2 at 2B and 9B (bottom).

Luo et al. (2025) noted that larger models may
suffer more from catastrophic forgetting. We ex-
tend this analysis to safety degradation and evalu-

Figure 4: Accuracy of LLaMA-3 on IFEval. This
figure shows results of LLaMA-3-8B-Instruct fine-tuned
on downstream tasks on IFEval. Fine-tuning reduces
instruction-following ability, especially for Reasoning
and Medical tasks. Merging with the Aligned model
helps recover this ability close to the original level.

ate how model merging performs across different
model sizes. Figure 3 shows the average changes
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in performance and ASR across all downstream
tasks for the Qwen2.5 and Gemma-2 model fam-
ilies, comparing SFT and the proposed approach
against their respective aligned models. Both meth-
ods improve task performance, with larger models
generally achieving greater gains. However, safety
degradation shows no consistent trend: smaller
Qwen models degrade more, while larger Gemma
models are more affected. This suggests that safety
degradation is not solely determined by model size.
Nonetheless, the proposed approach consistently
mitigates safety degradation across different scales.

5.3 Can model merging help preserve other
capabilities of the aligned model?

While our method mitigates safety degradation, we
also investigate whether it preserves other capa-
bilities of the aligned model that are lost due to
catastrophic forgetting. Since we fine-tune instruct-
tuned variants, we evaluate whether instruction-
following ability is retained. Figure 4 shows
the performance of LLaMA-3-8B-Instruct on the
instruction-following benchmark IFEval (Zhou
et al., 2023). Both prompt and instruction accuracy
decline after fine-tuning, with the largest drops ob-
served in the reasoning and medical tasks. The pro-
posed approach substantially restores performance
to the level of the aligned model, indicating that
merging can also preserve instruction adherence.

6 Conclusion

We present a simple yet effective method to ad-
dress the safety degradation that often occurs when
adapting LLMs to downstream tasks, without re-
quiring additional safety data or auxiliary mod-
els. The method also preserves capabilities such
as instruction-following, making it a practical and
scalable solution for adapting LLMs to new tasks.

7 Limitations

Task and Model Selection In our experiments,
we evaluate only on benign data from four task do-
mains: reasoning, medical assistance, code gener-
ation, and tool-using proficiency. Other important
areas such as law, finance, or multilingual tasks
remain unexplored. While Section 5 shows the
effectiveness of our method on the selected down-
stream tasks, its generalizability to other domains,
languages, or datasets that may contain harmful
content remains an open question. Additionally,
we evaluate models with sizes ranging from 1.5B

to 9B across three model families. The effective-
ness of our approach on larger models or different
model architectures warrants further investigation.

Safety Classifier for Safety Evaluation Due to
the high computational and financial cost of human-
aligned safety evaluation methods such as LLM-
as-Judge (Chiang and Lee, 2023; Liu et al., 2023),
which require using large proprietary models like
GPT-4 (OpenAI et al., 2024), we instead adopt
WildGuard (Han et al., 2024), a lightweight open-
source safety classifier. WildGuard is shown to per-
form competitively with GPT-4 on multiple safety
detection tasks and offers a reproducible, low-cost
alternative suitable for large-scale evaluations.

However, this classifier-based approach has sev-
eral limitations. First, WildGuard may struggle
with complex or subtle harmful instructions, poten-
tially leading to both false positives and false neg-
atives. Second, it provides only binary or coarse-
grained outputs (e.g., “harmful” or “safe”), with-
out offering finer distinctions such as the category
of harm, the severity of the risk, or whether the
model’s refusal was appropriate or evasive.

Consequently, while WildGuard enables effi-
cient and scalable evaluation, it constrains the depth
of our safety analysis. Future work could incorpo-
rate more fine-grained multi-label safety classifiers,
adversarial evaluation pipelines, or hybrid setups
involving human or LLM-as-Judge verification to
better capture the nuanced impact of model merg-
ing on safety behavior.

Jailbreak Attacks Our work focuses on safety
degradation that arises from fine-tuning aligned
LLMs on benign tasks, which we consider a case
of catastrophic forgetting. As such, we evaluate
whether models produce harmful outputs when di-
rectly prompted with harmful instructions, rather
than testing resistance to specific jailbreak strate-
gies. We do not include jailbreak-style attacks (Xu
et al., 2024) in our evaluation due to two reasons:
(1) Our primary goal is to study alignment loss
under standard fine-tuning, not adversarial robust-
ness; and (2) jailbreak evaluations typically require
separate prompting strategies and adversarial in-
struction crafting pipelines, which are beyond the
scope of this study. Future work can extend our
framework to examine the impact of merging on
robustness against jailbreak attacks.
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8 Ethics Statement

While our method effectively addresses safety
degradation in aligned LLMs without requiring ad-
ditional safety data, our approach relies on merging
pre- and post-fine-tuned models to preserve safety,
which may inadvertently inherit any latent biases
or unsafe behaviors that are still presented in the
base model. Further investigation is needed to ex-
plore the impact of these inherited biases in the
base model.
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A Domain-Specific Tasks Detail

Reasoning We randomly select 10,000 zero-shot
chain-of-thought instructions from the Flan V2
dataset then split them into training set and valida-
tion set with ratio 9 : 1. Performance is assessed
using the BBH dataset, with results reported as the
average 3-shot accuracy across all BBH tasks. We
use lm-evaluation-harness (Gao et al., 2024) as our
code base.

Medical Assistance We randomly select 10,000
real patient-doctor conversations from the Chat-
Doctor dataset (Li et al., 2023) then split them
into training set and validation set with ratio 9 : 1.
Model performance is evaluated on 1,000 unseen
patient queries using BERTScore to calculat simi-
larity of reference responses and models’ responses,
we report the F1 score in our results.

Code Generation We select 10,000 samples
from the MagiCoder dataset (Wei et al., 2024) to
improve code generation capabilities. Specifically,
we uniformly sampled from each coding languages.
When evaluating on HumanEval, we set n = 50,
representing the number of responses generated
per question, and report Pass@10 as our evaluation
metric. During evaluation, we prepend the instruc-
tion: "Complete the following code and return only
the completed code, without any explanations or
additional text." to enforce that the model generates
only executable code.

Tool Using Proficiency Due to the smaller size
of the OpenFunctions dataset (Patil et al., 2023), we
split its full training set into training and validation
subsets using a 9:1 ratio to enhance the model’s
API call generation capabilities. The model is eval-
uated on the full OpenFunctions test set, with per-
formance measured using BERTScore to compute
the similarity between the reference responses and
the model outputs. We report the F1 score as our
evaluation metric. During evaluation, we prepend
the instruction: "Complete the following code and
return only the completed code, without any expla-
nations or additional text." to ensure that the model
generates only executable function calls.

Instruction Following To assess whether
instruction-following ability is preserved after
fine-tuning, we evaluate models on IFEval (Zhou
et al., 2023), a benchmark specifically designed
to test instruction adherence. We use the official
IFEval evaluation set and report both prompt

and instruction accuracy. Since our models are
fine-tuned from instruct-tuned variants, this
evaluation helps determine whether merging
can recover instruction-following capabilities
degraded during task-specific fine-tuning. We use
lm-evaluation-harness (Gao et al., 2024) as
the code base for this evaluation.

B Safety Dataset and Classifier

B.1 Safety Dataset
AdvBench (Chen et al., 2022) is a set of 520
harmful behaviors formulated as instructions. The
goal of these instructions is to identify a single
attack string that causes the model to generate re-
sponses compliant with the instruction across as
many harmful behaviors as possible.

HEx-PHI (Qi et al., 2024) is a dataset containing
330 harmful instructions designed to evaluate the
harmfulness of LLMs. It includes 30 examples for
each of 11 prohibited categories, which are derived
from a combination of OpenAI’s usage policies
and Meta’s Llama 2 acceptable use policy. These
categories are:

1. Illegal Activity

2. Child Abuse Content

3. Hate / Harassment / Violence

4. Malware

5. Physical Harm

6. Economic Harm

7. Fraud / Deception

8. Adult Content

9. Political Campaigning

10. Privacy Violation Activity

11. Tailored Financial Advice

B.2 Safety Classifier
WildGuard (Han et al., 2024) is an open, one-stop
moderation model that achieves three goals: 1)
Detection of harm in user prompts, 2) Detection of
harm in LLM responses, and 3) Refusal evaluation
of LLM responses. Comprehensive evaluations on
WildGuardTest (Han et al., 2024) and ten existing
public benchmarks that are shown in Han et al.
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(2024) demonstrate that WildGuard outperforms
the strongest existing open-source baselines in F1
scores and matches GPT-4 across various tasks.

When evaluating the responses generated by
LLMs to harmful instructions, we apply the recom-
mended settings, such as the instruction format and
decoding strategy of WildGuard2. After evaluation,
WildGuard outputs the response in the following
format:

Harmful request: yes/no
Response refusal: yes/no
Harmful response: yes/no

We then parse the result of the harmful response.
If the result cannot be parsed, we count it as a miss.
Our final ASR is calculated as follows:

ASR =
Nyes

Ntotal −Nmiss
× 100%

where Nyes is the number of harmful responses
classified as "yes", Ntotal is the total number of
responses, and Nmiss is the number of responses
that failed to be parsed. In our experiments, Nmiss

is negligible for all tested models across both safety
datasets.

C Experimental Detail

C.1 Prompt Template

For aligned models, we directly apply their own
prompt templates during the training and infer-
ence phases. For fine-tuned models, we apply the
prompt templates of their respective aligned mod-
els.

For the Llama-3 family, we use the following
prompt template with a system prompt: You are a
helpful assistant. for the tasks of reasoning,
code generation, and tool usage proficiency:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful assistant.<|eot_id|>

<|start_header_id|>user<|end_header_id|>

{Instruction}<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

{Response}

For the medical assistance task, we use another
prompt provided in the ChatDoctor dataset (Li
et al., 2023) as the system prompt. Hence, the
prompt is as follows:

2https://huggingface.co/allenai/wildguard

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

If you are a doctor, please answer the medical
questions based on the patient's description.<|eot_id|>

<|start_header_id|>user<|end_header_id|>

{Instruction}<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

{Response}

The prompt for Gemma-2 for the tasks of rea-
soning, code generation, and tool usage proficiency
is shown below:

<bos><start_of_turn>user
You are a helpful assistant.{Instruction}<end_of_turn>
<start_of_turn>model
{Response}

The prompt for the medical assistance task is as
follows:

<bos><start_of_turn>user
If you are a doctor, please answer the medical
questions based on the patient's description.
{Instruction}<end_of_turn>
<start_of_turn>model
{Response}

The prompt for Qwen2.5 for the tasks of reason-
ing, code generation, and tool usage proficiency is
shown below:

<|im_start|>system
You are a helpful assistant.
<|im_end|>
<|im_start|>user
{Instruction}
<|im_end|>
<|im_start|>assistant
{Response}

The prompt for the medical assistance task is as
follows:

<|im_start|>system
If you are a doctor, please answer the medical
questions based on the patient's description.
<|im_end|>
<|im_start|>user
{Instruction}
<|im_end|>
<|im_start|>assistant
{Response}

C.2 Fine-tuning

For all tasks, we fine-tune three model instances
using different random seeds: 42, 1024, and 48763.
We employ LoRA with r = 8 and α = 16 for all
linear layers, utilizing the AdamW optimizer with
a learning rate of 1 × 10−4 and a cosine learning
rate scheduler. We use a batch size of 8 and train
for 3 epochs. All models are trained on either an
RTX A6000 GPU or an RTX 6000 Ada Generation
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GPU using LLaMA-Factory (Zheng et al., 2024)
as the codebase.

Although we initially fine-tuned each task for 3
epochs, we observed stronger model performance
at an earlier stage. Consequently, unless explicitly
stated otherwise, we report model training after 500
steps for reasoning, medical assistance, and code
generation, and after 200 steps for tool usage profi-
ciency due to the smaller size of the OpenFunctions
training set.

C.3 Baseline Methods

We evaluate dropout rates in the range of 0.1 to
0.5, and weight decay coefficients also from 0.1 to
0.5. The optimal hyperparameters for each tech-
nique are selected based on performance on the
downstream tasks validation set.

C.4 Inference

We use greedy decoding to ensure result consis-
tency, except for the HumanEval benchmark. For
HumanEval, we apply sampling-based decoding
with a temperature of 0.6, top_p of 0.9, top_k of
50, and a repetition penalty of 1.2. To accelerate
the inference process, we utilize the vLLM engine
(Kwon et al., 2023) for model inference.

D Model Merging

D.1 Merging Methods

Linear Merging Linear Merging involves di-
rectly combining the weights of the aligned model
and the fine-tuned model by interpolating their pa-
rameters. Specifically, the weights of the merged
model are calculated as a weighted average of
the base and fine-tuned models’ weights, follow-
ing Equation 2. This method is straightforward
and computationally efficient, making it a popular
choice for basic model integration.

SLERP Spherical Linear Interpolation (SLERP)
(White, 2017) is an advanced merging technique
that interpolates between model weights on a hy-
persphere, ensuring a smoother and more natural
transition between the models. Unlike Linear Merg-
ing, SLERP accounts for the angular relationship
between weight vectors, which aim to better pre-
serve the aligned model’s features while effectively
integrating the fine-tuned model’s task-specific en-
hancements.

DARE Drop and Rescale (DARE) (Yu et al.,
2024) is a method used to prepare models for merg-

ing techniques such as Linear Merging. It operates
by randomly dropping parameters according to a
specified drop rate and rescaling the remaining pa-
rameters. This process helps reduce the number
of redundant and potentially interfering parameters
among multiple models.

D.2 Model Merging Implementation

We adopt MergeKit (Goddard et al., 2024) as our
implementation framework and only vary the in-
terpolation factor λ. For Linear Merging, we test
λ values in the range 0.1, 0.2, . . . , 0.9 with a step
size of 0.1. For SLERP and DARE, we use the
same range of λ values and follow their respective
default configurations in MergeKit—specifically,
the default dot product threshold for SLERP and
the default drop rate for DARE.

E More Results

E.1 Comparison of Different Methods

In Section 5.1, we demonstrate that Linear Merg-
ing consistently achieves a better trade-off be-
tween performance and safety when evaluated on
various downstream tasks and AdvBench. Fig-
ure 5 further confirms this trend on the HEx-PHI
benchmark, where Linear Merging yields favorable
Pareto fronts across different models and tasks.

To better reflect practical usage scenarios, we
additionally report results based on the best-
performing model (on the validation set of each
task) within each method category—including
Weight Decay, Dropout, Linear Merging, DARE,
and SLERP. These results are summarized in Ta-
ble 1, providing a fair comparison of each method’s
effectiveness under optimal conditions. We use val-
idation set performance for model selection, as it is
commonly available during deployment and serves
as a realistic basis for method comparison.

In Table 1, even when each method is allowed
to select its best-performing checkpoint, merging-
based approaches still exhibit strong capability in
recovering the safety of the fine-tuned model, often
outperforming regularization-based methods such
as Dropout and Weight Decay. This suggests that
model merging is not only effective but also practi-
cal for mitigating safety degradation in real-world
settings, even without access to additional safety
data.
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Figure 5: Pareto analysis of downstream task performance and safety across different models and tasks. We
present the trade-off between performance and attack success rate (ASR) on HEx-PHI when applying weight decay,
dropout, and Linear Merging.

E.2 Which safety category suffers the most
from safety degradation?

In this section, we investigate which categories in
HEx-PHI are most affected by safety degradation.
All categories are listed in Appendix B.1.

As observed in Section 5.1, LLaMA-3-8B-
Instruct and Qwen2.5-7B-Instruct exhibit the most
severe degradation on the Reasoning and Medi-
cal Assistance tasks. Therefore, we analyze their
responses on the HEx-PHI benchmark to further
understand which safety categories are most im-
pacted.

The category distributions are shown in Figure 6.
For LLaMA-3-8B-Instruct, the aligned model only
generates harmful responses in categories 4 (Mal-
ware), 9 (Political Campaigning), and 10 (Privacy
Violation Activity). After fine-tuning, however,
harmful responses increase across all categories,
with categories 4, 7 (Fraud/Deception), and 9 ex-
hibiting the most significant growth in both tasks.
This demonstrates that safety degradation extends
to fine-grained category levels, making it difficult
to address safety concerns solely by modifying the
model prior to fine-tuning.

Qwen2.5-7B-Instruct shows a slightly differ-
ent trend. Its aligned model generates harmful
responses across more categories compared to

LLaMA-3-8B-Instruct, and fine-tuning further ag-
gravates these issues. However, both models share
a common pattern: a large number of harmful re-
sponses appear in categories 7 and 9. This suggests
that certain categories may be particularly vulnera-
ble to safety degradation during fine-tuning, regard-
less of model architecture or downstream task.

After applying different merging methods, most
harmful categories show a reduction in the num-
ber of harmful responses. However, the degree of
improvement varies across merging strategies and
tasks. For instance, Linear Merging performs best
on LLaMA-3-8B-Instruct but not on Qwen2.5-7B-
Instruct, and some categories do not benefit from
merging at all. This indicates that no single method
universally outperforms others in preserving safety
across all harmful categories.
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Table 1: Performance and ASR on the downstream task. We compare different merging methods with SFT and
baselines. Merging often improves downstream task performance while retaining safety. Bold indicates the best
score per metric (excluding Aligned). For the attack success rate on AdvBench and HEx-PHI, we report percentage
values. For the downstream tasks of Reasoning and Code Generation, we report accuracy, while for the remaining
two tasks, we report F1 scores.

Task Method
LLaMA-3-8B-Instruct Gemma-2-2B-It Qwen2.5-7B-Instruct

Perf. ↑ AdvBench ↓ HEx-PHI ↓ Perf. ↑ AdvBench ↓ HEx-PHI ↓ Perf. ↑ AdvBench ↓ HEx-PHI ↓

Reasoning

Aligned 61.30% 0.00% 1.22% 28.98% 0.58% 0.00% 24.16% 0.38% 9.09%

SFT 67.84% 4.25% 12.41% 39.16% 0.38% 0.51% 65.94% 2.44% 17.88%
Weight Decay 67.85% 15.38% 30.71% 39.41% 0.19% 0.71% 65.92% 3.78% 20.40%

Dropout 67.83% 16.79% 35.96% 39.89% 0.96% 0.71% 66.45% 4.49% 24.55%
Linear 69.23% 0.64% 6.38% 40.07% 0.06% 0.00% 66.96% 1.03% 12.32%
DARE 68.64% 1.28% 5.66% 40.01% 0.10% 0.00% 66.89% 1.09% 12.22%
SLERP 68.68% 1.22% 5.86% 40.05% 0.26% 0.00% 66.73% 0.96% 13.03%

Medical Assistance

Aligned 0.5242 0.00% 1.22% 0.5151 0.58% 0.00% 0.5271 0.38% 9.09%

SFT 0.5711 30.06% 38.85% 0.5254 1.41% 1.92% 0.5751 0.77% 12.42%
Weight Decay 0.5740 23.33% 32.22% 0.5594 2.37% 7.47% 0.5631 0.58% 8.28%

Dropout 0.5744 22.31% 31.41% 0.5632 3.59% 7.07% 0.5226 0.71% 7.68%
Linear 0.5738 0.32% 4.06% 0.5243 1.15% 1.21% 0.5721 0.45% 11.11%
DARE 0.5758 5.61% 23.41% 0.5248 1.15% 1.21% 0.5724 0.26% 11.52%
SLERP 0.5789 5.76% 24.26% 0.5243 1.15% 1.52% 0.5729 0.32% 11.72%

Code Generation

Aligned 71.63% 0.00% 1.22% 51.96% 0.58% 0.00% 85.89% 0.38% 9.09%

SFT 74.19% 2.25% 11.67% 52.63% 2.76% 5.76% 88.06% 0.64% 7.98%
Weight Decay 73.47% 1.67% 8.08% 53.20% 2.44% 6.97% 88.08% 0.71% 13.74%

Dropout 73.64% 1.73% 8.23% 53.17% 2.95% 5.96% 87.70% 0.83% 11.52%
Linear 75.32% 0.71% 4.27% 53.04% 1.73% 3.03% 89.37% 0.32% 7.88%
DARE 74.46% 0.64% 4.65% 53.09% 1.86% 3.74% 89.64% 0.51% 7.07%
SLERP 75.01% 0.71% 4.34% 53.07% 1.67% 3.23% 89.39% 0.32% 8.18%

Tool Using Proficiency

Aligned 0.8979% 0.00% 1.22% 0.7280 0.58% 0.00% 0.9357 0.38% 9.09%

SFT 0.8989 0.83% 3.45% 0.8802 0.64% 0.10% 0.9369 0.58% 8.08%
Weight Decay 0.9282 1.41% 3.22% 0.8838 0.77% 0.30% 0.9177 0.58% 8.48%

Dropout 0.9269 0.83% 1.92% 0.8865 0.83% 0.40% 0.9514 0.77% 10.90%
Linear 0.9266 0.77% 2.44% 0.8793 0.64% 0.20% 0.9489 0.13% 9.39%
DARE 0.9251 0.45% 1.21% 0.8793 0.64% 0.20% 0.9149 0.06% 9.39%
SLERP 0.9266 0.44% 1.72% 0.8802 0.64% 0.10% 0.9152 0.13% 9.19%
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LLaMA-3-8B-Instruct (Reasoning) LLaMA-3-8B-Instruct (Medical Assistance)

Qwen2.5-7B-Instruct (Reasoning) Qwen2.5-7B-Instruct (Medical Assistance)

Figure 6: Safety degradation across categories in the HEx-PHI benchmark. ASR distributions over 11 harmful
categories for LLaMA-3-8B-Instruct and Qwen2.5-7B-Instruct on the Reasoning and Medical Assistance tasks.
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