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Abstract
Modern causal language models stack many at-
tention blocks to improve performance, but not
all blocks are necessary for every task. We pro-
pose Hopscotch, a simple yet effective method
that identifies and skips attention blocks with
least contributions to a task and adapts to pre-
serve output quality. Hopscotch jointly opti-
mizes which blocks to skip and how to scale
the outputs of the remaining layers. By intro-
ducing lightweight, trainable scaling parame-
ters to attention and MLP blocks, it mitigates
distribution shifts in hidden states caused by
removing attention blocks. Hopscotch does
not modify model weights or require access to
pretraining or instruction-tuning data, and is
compatible with existing model compression
techniques. When applied to Llama-3.1-8B
and Qwen2.5-7B, Hopscotch achieves less than
a 2% drop in performance even after skipping
four attention blocks.

1 Introduction

Large language models (LLMs) continue to grow
in size, driven by “scaling laws” that suggest larger
models tend to yield better performance (Hestness
et al., 2017; Hoffmann et al., 2022; Henighan et al.,
2020). Adding more attention blocks increases
model capacity, but self-attention is also the most
expensive operation in LLMs. Unlike MLP blocks,
attention incurs a quadratic computational cost with
respect to sequence length, making it a dominant
factor in inference-time efficiency. However, not
all attention blocks are equally important for every
task, and some may carry redundant information.
In this paper, we explore whether entire attention
blocks can be skipped without significant perfor-
mance degradation.

We introduce Hopscotch1, a method that jointly
learns which attention blocks to skip and how to

1This name is inspired by the classic game where players
hop through numbered squares, skipping the one with the
marker.

rescale the outputs of the remaining attention and
MLP blocks. Hopscotch iteratively identifies at-
tention blocks with minimal contribution to the
target task and introduces lightweight, trainable
scaling parameters to mitigate distribution shifts in
hidden states caused by block removal. Hopscotch
requires no changes to model weights and no access
to pretraining or instruction-tuning data. Addition-
ally, it is compatible with fine-grained compression
techniques, such as model sparsification (Frantar
and Alistarh, 2023) or KV cache quantization (Liu
et al., 2024; Hooper et al., 2024; Wang et al., 2025),
and can be combined with them to further reduce
LLM inference costs.

We evaluate Hopscotch on instruction-tuned
models, including Llama-3.1-8B-Instruct and
Qwen2.5-7B-Instruct, and find that it can success-
fully skip up to 7 attention blocks with less than a
3% average performance drop across diverse tasks
while yielding up to 15% inference speedup (see
Section 4.6). With 4 blocks removed, we retain
over 98.6% of baseline accuracy. These results
highlight structural redundancy in attention blocks.
We measure distributional shift in hidden repre-
sentations and find that Hopscotch significantly
reduces deviation from the original model, com-
pared to unscaled attention block skipping. Finally,
we show that Hopscotch is compatible with leading
quantization techniques, such as GPTQ (Frantar
et al., 2022) and AWQ (Lin et al., 2024).

2 Related Work

Feature scaling in generative models. Our work
is inspired in part by recent advances in feature
modulation techniques in generative models. For
example, FreeU (Si et al., 2024) enhances image
quality in diffusion U-Nets by scaling hidden states
and skip connections and Ma et al. (2024) show
that channel-wise scaling during post-training in-
ference improves diffusion sampling quality. Our
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Figure 1: Comparison of benchmark performance when four
attention blocks from layers (14, 17, 21, 24) are removed,
before and after training scaling factors using Hopscotch. We
also report results from Hopscotch’s full pipeline: block selec-
tion and rescaling. Baseline scores from the original model
without any blocks removed are included for reference.

work extends this direction by proposing dynamic
rescaling of intermediate features in LLMs to com-
pensate for pruned attention blocks.
Skipping computation in LLMs. Several recent
studies have explored the possibility of reducing
computation in LLMs by selectively skipping parts
of the model. Shukor and Cord (2024) show that
in multimodal LLMs, certain attention blocks con-
tribute less to performance in vision-language tasks
and can be skipped in these cases with minimal
degradation. Further investigations on the true im-
pact of attention blocks at different depths (Ben-
Artzy and Schwartz, 2024; He et al., 2024) find
that the effect is highly block-specific. Our work
builds on these insights by providing a principled
mechanism to identify and compensate for less in-
formative attention blocks using learned scaling.
Model compression. Model compression tech-
niques, including pruning, sparsification, and quan-
tization, have been widely studied as means to re-
duce the memory and computational footprint of
LLMs (e.g., Frantar and Alistarh, 2023; Sun et al.,
2023; Frantar et al., 2022; Xiao et al., 2023; Yao
et al., 2022; Ashkboos et al., 2024; Chee et al.,
2023). These methods have shown impressive re-
ductions in model size with minimal performance
loss. Our approach is orthogonal to these methods,
and can be used separately or in combination to
further enhance model efficiency.

3 The Hopscotch method

Problem setup. When skipping one attention
block, the input distribution to the next layer

changes. To compensate the change, for each
layer, we introduce four trainable scalar factors:
one each for the outputs of the attention block, the
MLP block, and the two residual connections. Let
x
(l)
in ∈ Rn×d denote the input to the l-th trans-

former block, where n is the sequence length and
d is the hidden dimension. Each transformer block
is modified as follows:

x
(l)
1 = b

(l)
att Attention(Norm(x

(l)
in )) + s

(l)
att x

(l)
in

x
(l)
out = b

(l)
mlp MLP(Norm(x

(l)
1 )) + s

(l)
mlp x

(l)
1 .

Setting all scaling factors to 1.0 recovers the origi-
nal model, while setting any factor to 0.0 disables
(i.e., remove) the corresponding component.

Loss function. Suppose we have an instruction-
tuning dataset {x(i)}Ni=1, where each x(i) is a
prompt consisting of an instruction and its input.
We use the LLM on which we aim to skip attention
blocks to generate the corresponding response y(i).
Let L be the number of transformer blocks. We de-
fine the following loss function to learn the scaling

factors θ =
{
b
(l)
att, s

(l)
att, b

(l)
mlp, s

(l)
mlp

}L

l=1
:

L (θ) =
1

N

N∑

i=1

(
−

Ti∑

t=1

logPθ(y
(i)
t | y(i)<t, x

(i))

)
.

The model weights are frozen, and only the scal-
ing factors are updated during training. See Ap-
pendix A.1 for further details on loss function se-
lection and recovery data.

3.1 Greedy Iterative Algorithm
At the heart of the Hopscotch method is a greedy
iterative algorithm. In each iteration, we identify an
attention block whose removal minimally affects
the model’s output, remove it, and then rescale the
remaining blocks to compensate. This process is
repeated until a target number of blocks are pruned
or a performance threshold is reached. Below, we
provide the detailed procedures.

Selecting attention blocks to remove. To select
an attention block for removal, we estimate the im-
pact of removing each block on the model’s loss.
Specifically, we define the impact of removing the
l-th attention block as: minL (θ) s.t. b(l)att = 0.
Solving this optimization exactly for every layer
is computationally expensive. Instead, we approx-
imate it by running a single optimization epoch
with a large learning rate, quickly estimating which
layer can be removed with minimal degradation.
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Method gsm8k FE gsm8k SM arc_challenge gpqa social_iqa pawsx

Baseline 83.10 66.94 64.33 29.07 49.85 63.26

4 Blocks
Hopscotch 81.05 77.03 62.42 29.53 49.49 61.90
ShortGPT 62.33 58.45 57.00 28.44 47.59 59.49
FinerCut 75.80 61.00 53.58 27.77 46.93 54.98

7 Blocks
Hopscotch 79.38 75.82 61.17 29.39 48.93 60.44
ShortGPT 1.90 1.29 46.42 27.35 43.76 57.62
FinerCut 42.50 6.80 52.65 28.10 46.47 54.87

10 Blocks Hopscotch 67.93 62.58 57.80 29.83 48.23 61.06

Table 1: Accuracy (%) of Llama-3.1-8B-Instruct on various benchmarks after skipping attention blocks (or full
decoder blocks for ShortGPT). The table shows the scores of the original model compared to Hopscotch as well as
prior methods when skipping 4, 7, or 10 blocks.

Rescaling the remaining blocks. Once an atten-
tion block is removed, we rescale the remaining
blocks to recover model performance. This is done
by minimizing the loss function L(θ) over multiple
epochs using a small learning rate. This longer opti-
mization process adjusts the scaling factors to best
compensate for the removed block and recovers
model quality. Exact learning rates and hyperpa-
rameters can be found in Appendix A.2.

4 Numerical Experiments

4.1 Benchmarks and Setup

To assess the affects of attention block skipping
and the Hopscotch method, we took a sample set
of benchmarks: ARC Challenge (Abstraction and
Reasoning) (Clark et al., 2018), GPQA (Challeng-
ing Google-Proof QA) (Rein et al., 2024), So-
cial IQA (Commonsense Social Reasoning) (Sap
et al., 2019), GSM8K (General Math) (Cobbe et al.,
2021), PAWS-X (Multilingual) (Yang et al., 2019).

We run Hopscotch on Llama-3.1-8B-Instruct and
Qwen2.5-7B-Instruct (see Appendix A.3 for details
on model choice). As shown in Figure 2, during the
attention block removal step, the removal of initial
blocks results in relatively small, approximately
linear increases in loss up to the seventh block for
Llama and the fourth for Qwen. Based on this ob-
served inflection in the loss curve, consistent with
the elbow method heuristic (Wu et al., 2022), we
use four and seven block removals as representative
configurations for our evaluations.

Figure 1 compares the benchmark performance
of our full method, Hopscotch layer selection with
scaling, against four baselines: (i) the original
unmodified model (baseline), (ii) random block
removal with no scaling, (iii) random block re-
moval with Hopscotch scaling, and (iv) Hopscotch-
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Figure 2: A plot of the single-epoch average loss per
block removed during step one of Hopscotch for Llama.

selected layers with no scaling. When simply re-
moving sets of arbitrary attention blocks near the
center of the model, performance remained within
a few points for all but GSM8K, which degraded
drastically. When using Hopscotch scaling, even
without layer selection, we were able to recover
a significant portion of the GSM8K performance,
while also seeing slight improvement in other do-
mains. For this reason, we use the math domain
and GSM8K as our primary test case and training
recovery set for the Hopscotch method, while con-
tinuing to evaluate on the full set of benchmarks.

4.2 Results on Llama-3.1-8B-Instruct

In Table 1, we present the results for Llama-3.1-8B-
Instruct with four and seven blocks removed via
Hopscotch, evaluated on the full benchmark suite.
With seven blocks removed, we observe an aver-
age benchmark performance retainment of 97.08%
when ignoring the GSM8K-SM (strict match) in-
crease, and including it we see an average of
99.78%. With four blocks removed, average perfor-
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mance in this case drops only 1.35% with a 98.65%
overall recovery even when excluding strict match
score. With strict match included average score
actually goes up by 1.39%.

We also compare directly to two leading prior
works: SparseGPT (Frantar and Alistarh, 2023) and
FinerCut (Zhang et al., 2024). Hopscotch consis-
tently outperforms both, especially on challenging
tasks such as GSM8K, where other methods de-
grade significantly after removing four blocks and
fail entirely beyond seven. Against ShortGPT, a
key note is that the method removes entire layers,
rather than keeping MLP blocks intact. This means
for a fair comparison in terms of inference-time ef-
ficiency, one should compare ShortGPT with four
layers removed to Hopscotch with at least six at-
tention blocks removed (see Section 4.6 on how
attention blocks contribute to inference time). We
show that even with seven blocks removed, Hop-
scotch still outperforms across the board. For a
closer comparison in terms of parameters removed,
with 10 attention blocks removed, Hopscotch corre-
sponds to about 83.3% of the parameter reduction
by ShortGPT with 4 layers, yet achieves a relative
inference speedup of 165.06%. In this setting,
Hopscotch still outperforms ShortGPT with 4 lay-
ers across all benchmarks (see Table 1). FinerCut
also only removes attention blocks, making com-
parisons balanced with equal block removal. The
primary remaining differences lie in the method
of candidate block selection, as well as the critical
discovery of the importance of scaling parameters.

4.3 Results on Qwen-2.5-7B-Instruct
Our findings also hold when using Qwen2.5-7B-
Instruct. Table 2 shows the results for four blocks
removed via the Hopscotch method. We observe
an average recovery of 98.1% in benchmark perfor-
mance when excluding GSM8K-SM (strict match).
On-task GSM8K performance shows essentially
perfect recovery. This is not surprising, as GSM8K
training data was used to learn the scaling factors
in Hopscotch, though the level of recovery notably
exceeds the Llama experiments.

4.4 Measuring Distributional Shift
Removing attention blocks introduces a shift in
hidden state representations throughout the model.
To quantify this shift and evaluate how Hopscotch
scaling effectively mitigates it, we compute the
Maximum Mean Discrepancy (MMD) between
hidden states in the original LLaMA-3.1-8B-Instruct

Bench 4 Blocks Baseline Recovery
gsm8k FE 73.16 73.24 99.89%
gsm8k SM 39.20 17.74 220.97%
arc_chall 57.51 59.81 96.15%
gpqa 29.53 29.87 98.86%
social_iqa 43.81 45.96 95.32%
pawsx 60.14 59.97 100.28%

Table 2: Qwen2.5-7B-Instruct performance (accuracies)
after skipping 4 attention blocks via Hopscotch.

model and its modified variants. MMD is a non-
parametric metric used to quantify the difference
between two distributions based on samples drawn
from them. Specifically, we compare the MMD be-
tween (i) the original model and the version with ze-
roed attention blocks and no rescaling (“NoScale”),
and (ii) the original model and the Hopscotch-
scaled model.

Layer # 28 26 23 22 21 19 4

NoScale 0.62 0.50 0.40 0.38 0.33 0.26 0.35
Ours 0.40 0.31 0.25 0.22 0.19 0.11 0.34

Table 3: MMD scores across layers for two intervention
methods. First row: Original vs. NoScale; Second row:
Original vs. Ours.

As shown in Table 3, Hopscotch consistently
yields lower MMD from the original model than
NoScale across all layers, indicating reduced dis-
tributional shift. For instance, in layer 19, MMD
drops from 0.2598 (NoScale) to 0.1098 with Hop-
scotch, a reduction of over 57%. These results
support the core mechanism of Hopscotch: post-
hoc scaling restores internal representations after
attention block removal.

4.5 Compatibility with Quantization

To evaluate the compatibility of Hopscotch with
other post-training model compression methods,
we consider two state-of-the-art quantization tech-
niques: GPTQ (Frantar et al., 2022) and AWQ (Lin
et al., 2024). We test two strategies: (i) applying
Hopscotch after quantizing the model, and (ii) ap-
plying Hopscotch before quantization. For both
approaches, we report performance for 4 and 7
skipped attention blocks. As shown in Table 4,
Hopscotch remains effective when combined with
quantization irrespective of the application order.
It consistently improves strict match accuracy and
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achieves flexible extract performance comparable
to the original uncompressed model.

Method Strict Match Flexible Extract

Baseline (Instruct) 67.0 83.9

GPTQ 68.0 83.9
GPTQ + Hopscotch (4) 77.3 79.4
GPTQ + Hopscotch (7) 75.1 78.5
Hopscotch (4) + GPTQ 77.9 79.2
Hopscotch (7) + GPTQ 73.8 78.5

AWQ 65.0 81.2
AWQ + Hopscotch (4) 71.4 75.1
AWQ + Hopscotch (7) 69.5 73.8
Hopscotch (4) + AWQ 75.2 78.3
Hopscotch (7) + AWQ 73.1 79.2

Table 4: GSM8K evaluation results for LLaMA-3.1-8B-
Instruct using Hopscotch in combination with GPTQ
and AWQ quantization.

4.6 Effects on Model Efficiency

In a given forward pass for Llama-3.1-8B-Instruct,
we experimentally find that ∼66% of time is spent
in decoder attention blocks. In a model with 32
hidden layers, this means ∼2.06% of the forward
pass is spent in each block. For example, for a
query with an average forward pass time of 0.054
seconds, the time spent in a single attention block is
on average 0.0011 seconds. The effect of removing
a subset of attention blocks on overall inference
time is summarized in Table 5.

Attn. Blocks
Removed

Inference
Time Reduction

1 2.06%
4 8.24%
7 14.42%

Table 5: Inference-time performance gains compared to
blocks removed for Llama-3.1-8B-Instruct.

It is also worth noting that when removing these
attention blocks, we no longer have to store the
corresponding parameters in memory, resulting in
reduced-size models with lower GPU memory foot-
prints. Each decoder layer in Llama-3.1-8B-Instruct

consists of an attention block and an MLP block.
The attention block includes four linear projections
(query, key, value, and output), each with weight
matrices of shape h × h (neglecting biases), con-
tributing 4h2 parameters per layer. The MLP block
typically includes two projections: h × 4h and
4h× h, totaling 8h2 parameters. Therefore, the at-

tention block accounts for 4h2

4h2+8h2 = 1
3 ≈ 33.3%

of the parameters in a decoder layer.
Given that Llama-3.1-8B-Instruct has 32 decoder

layers and a total of ∼8B parameters, each layer
contains approximately 250M parameters. Remov-
ing one attention block saves roughly 83M parame-
ters, which is about 1.04% of the model. Removing
seven attention blocks yields a total reduction of
7 × 83M = 581M parameters, or about 7.28% of
the total model size. Since each parameter occu-
pies 2 bytes in float16, we can estimate the memory
savings accordingly (Table 6).

Attn. Blocks
Removed

Parameters
Reduction

Memory
Reduction

1 1.04% ∼0.17 GB
4 4.16% ∼0.67 GB
7 7.28% ∼1.16 GB

Table 6: Estimated memory savings by removing at-
tention blocks from Llama-3.1-8B-Instruct (assuming
2 bytes per parameter in float16 thus total parameter
memory of 16 GB).

Further memory savings will be observed in prac-
tice due to reductions in optimizer states during
training (e.g., Adam requires 8–12 bytes per pa-
rameter, leading to approximately 3× the model
size), activation memory for forward and backward
passes, gradient storage which is typically the same
size as the model, and the KV cache used during
inference with long contexts, which can consume
2–4 GB per 1,000 tokens for large models. This
also means batch sizes can be potentially increased,
further boosting inference gains.

5 Conclusion

We introduce Hopscotch, a simple yet effective
method for skipping attention blocks in LLMs. To
preserve model outputs, Hopscotch learns scaling
factors for attention and MLP blocks in remain-
ing layers, compensating for distributional changes
in hidden states. We present promising results,
achieving near-lossless performance on standard
benchmarks. Hopscotch is also compatible with
existing model compression techniques. We hope
this work paves the way for future research on iden-
tifying and reducing redundant computations in
attention mechanisms to build more efficient foun-
dation models.
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6 Limitations

We focus exclusively on the attention mecha-
nism, including multi-head, multi-query, and group-
query variants, which are widely adopted in open-
source LLMs such as Llama and Qwen. However,
emerging architectures like multi-head latent atten-
tion and state space models such as Mamba (Gu
and Dao, 2023) offer new directions. It would be
interesting to explore whether similar observations
(e.g., skipping certain components) hold for these
architectures as well. Additionally, there is an in-
herent trade-off between model compression and
performance. When deploying compressed models
in high-stakes applications that require high preci-
sion (such as disease detection) it is important to
rigorously evaluate their performance to prevent
potential harm.

7 Ethical Considerations

LLMs are growing which raises concerns about
the accessibility and inclusiveness of AI develop-
ment. Large models impose significant computa-
tional and memory demands, as well as increased
infrastructure requirements. As a result, innovation
increasingly concentrates within a few well-funded
organizations, limiting participation from individ-
ual developers, smaller labs, and open-source com-
munity. This not only restricts opportunities for
broader collaboration but also challenges the abil-
ity of open-source users to benefit from and con-
tribute to cutting-edge model development. In this
paper, we aim to bridge this gap by mitigating the
inference cost of LLMs through architectural mod-
ifications, specifically, by identifying and skipping
redundant attention blocks. Our hope is to con-
tribute to a more equitable landscape in AI develop-
ment, one where more individuals and institutions
can meaningfully participate in and benefit from
state-of-the-art LLMs.
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A Appendix

A.1 Data and Loss Function Selection

Using GSM8K training data, we evaluated two
different options for the ground-truth answers to
be used in training. The first was to use the
original ground-truth answers provided with the
dataset. The second was to instead use the base-
line model’s greedy generations as the ground-
truth answers, since the goal is to recover origi-
nal model performance. To evaluate between the
two options, we train with all scaling factors left
free (no blocks removed) on both datasets. As we
can see in Table 7, there seems to be a significant
performance difference between the two options,
with the model-generations-as-ground-truth scor-
ing higher in both categories (flexible extract and
strict match) for GSM8K. Additionally, we actu-
ally see improvement in strict match performance
over the baseline when doing model-generations-
as-ground-truth training. We will see later as well
that this holds even when blocks are removed from
the model.

Method Flexible Extract Strict Match
Baseline 83.10 66.94
Model GT 82.79 77.48
Data GT 60.88 42.61

Table 7: Comparison of different methods based on
Flexible Extract and Strict Match metrics.

This behavior makes sense given the goal of the
training. When using the original data ground truth,
we risk introducing new information not previously
in the model’s distribution, and trying to learn that
new information within a set of 128 total parame-
ters could (and in this case did) lead to significant
model degradation. Instead, what we are trying to
accomplish is simply learning how to accent and
distribute existing information to match expected
steps, reasoning, formatting, etc. We are build-
ing a map from the existing attention blocks to
the original known distribution, by learning from
in-distribution outputs to find the appropriate at-
tention block weighting. We are appropriately re-
weighting the blocks in our model to approximate
that original distribution, and so we need to ensure
that we are learning exactly and only that reverse-
mapping from output to block focus, rather than
introducing anything the model was not originally
capable of producing.

Figure 3: Correlation between average model-ground-
truth cross-entropy loss given a layer with attention
block removed and benchmark performance on GSM8K
(flexible extract and strict match).

With the training data established, the next major
piece to determine in the training dynamics was the
actual loss function utilized. There were two op-
tions considered. The first was to use the standard
Cross-Entropy loss typically employed in Causal
LM training, in conjunction with our generated
model-ground-truth answers. The second was to
take things a step further, and instead use a loss cal-
culated by the squared L2 norm between the final
hidden states (output of the final hidden layer) of
the original model for a given input against the final
hidden states of the model with removed attention
blocks. This second method proved to be too rigid,
however, as it’s optimality relied on the assumption
that the only path to a similarly correct final output
was via a similar final hidden state.

Overall, the combination of model-outputs-as-
ground-truth and Cross-Entropy loss resulted in
promising initial results and high correlation to
benchmark performance, with the training loss
providing a Spearmann correlation of 0.9 for the
GSM8K benchmark scores (Figure 3).

A.2 Hyperparameters and Training Details

Training is done using padding-free sample pack-
ing (Kundu et al., 2024) with a batch size of 32,
Adam optimizer (Kingma and Ba, 2017), and a
learning rate of 3e-3 for scaling parameter training,
and 1e-2 for attention block selection. GSM8K
training data consisted of 7473 samples. Evalua-
tion done via LM Eval Harness (Gao et al., 2024).
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Figure 4: We show the largest singular values of weight matrices for a representative subset of layers to highlight
structural differences between models. These values serve as a proxy for quantifying each block’s contribution to
the model’s output. We present results using the Granite-3.0-8B model (left) and the Llama-3.1-8B-instruct
model (right). Red indicates low singular values (near 0), while blue indicates high values (8 and above).

A.3 Base Model Selection

It is important to note that the selection of
Llama-3.1-8B-Instruct as a base model was in-
tentional, as it serves as an example of a model
where all layers meaningfully transform the hid-
den states and contribute to the model’s outputs,
better showing the generalizability of Hopscotch.
For example, we show that with a model like our
fine-tuned Granite-3.0-8B, the process of select-
ing attention blocks to remove is trivial, as there
are a number of non-contributing blocks in the
model. We illustrate why it is possible to skip
attention blocks by analyzing the largest singular
values of the weight matrices across different lay-
ers. Singular values quantify how much a trans-
formation can stretch or distort the input. Specif-
ically, for a linear transformation x → Wx, the
inequality ∥Wx∥2 ≤ σmax(W)∥x∥2 implies that
if σmax(W) is small and x is bounded, the out-
put of the transformation will be near zero. This
suggests that skipping such transformations would
have minimal effect on the model’s output.

We present results using two open-source
LLMs: Granite-3.0-8B (Granite Team, 2024)
and Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) in Figure 4. The Granite model con-
tains layers with negligible singular values,
suggesting limited contribution to the output.
Llama-3.1-8B-Instruct generally has larger and
more consistent singular values. When we remove
blocks from Llama, we see a non-negligible drop
in benchmark performance. With Granite, however,
we see in Table 8 that removing attention blocks
from layers with maximum singular values of zero

results in no loss in model performance for the case
of GSM8K.

Bench 6 Blocks Skipped Baseline
gsm8k (flex.) 75.66 74.00
gsm8k (strict) 66.11 64.90

Table 8: Comparing benchmark performance when six
attention blocks from layers (20, 23, 24, 26, 27, 29)
are skipped, without any additional re-scaling. Includes
original baseline scores before attention blocks were
removed.

A.4 Using Loss as an Approximation of
Benchmark Performance

As seen in Figure 3, training loss when removing
blocks serves as strong indication of how the re-
moval will affect overall model performance. Thus,
at any given model state, we can know the best
attention block to remove by finding the block that,
when removed, provides the lowest loss. Since we
simply need an indication via quick conversion,
rather than an optimized loss, we can simply run
our training method for a single epoch with an in-
creased learning rate (1e-2), and take the average
training loss as a comparable value for each block.

A.5 Demonstrating Iterative Greedy Value

As can be seen in Table 9, when using the greedy
iterative approach, the attention blocks removed
prove to retain significantly more performance than
taking a full greedy approach and assuming layer
independence. With nine attention blocks removed
from each, the average loss is notably lower for the
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Method Average Loss (9 Blocks)
Full Greedy .2765
Iterative Greedy .2247

Table 9: Comparison of single-epoch average loss after
nine attention blocks removed via full greedy approach
and iterative greedy approach.

greedy iterative approach. The iterative approach
could remove two more attention blocks before
reaching a similar loss to the full greedy approach.
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