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Abstract

Current causal discovery methods using Large
Language Models (LLMs) often rely on pair-
wise or iterative strategies, which fail to cap-
ture global dependencies, amplify local bi-
ases, and reduce overall accuracy. This
work introduces a unified framework' for one-
step full causal graph discovery through: (1)
Prompt-based discovery with in-context learn-
ing when node metadata is available, and (2)
Causal_llm, a data-driven method for settings
without metadata. Empirical results demon-
strate that the prompt-based approach outper-
forms state-of-the-art models (GranDAG, GES,
ICA-LiNGAM) by approximately 40% in edge
accuracy on datasets like Asia and Sachs, while
maintaining strong performance on more com-
plex graphs (ALARM, HEPAR?2). Causal_llm
consistently excels across all benchmarks,
achieving 50% faster inference than reinforce-
ment learning-based methods and improving
precision by 25% in fairness-sensitive do-
mains such as legal decision-making. We also
introduce two domain-specific DAGs—one
for bias propagation and another for legal
reasoning under the Bhartiya Nyaya San-
hita—demonstrating LLMs’ capability for sys-
temic, real-world causal discovery.

1 Introduction

“LLMs are good at manipulating lan-
guage, but not at thinking.”

— Yann LeCun

Large Language Models (LLMs) have demon-
strated remarkable linguistic proficiency, yet
their ability to perform structured reason-
ing—particularly in causal discovery—remains
largely unexplored. Current methods rely on
pairwise or iterative approaches, which fragment
systemic interactions, propagate local biases,
and fail to capture higher-order dependencies.

'Our code is available here Github

These limitations lead to error accumulation,
computational inefficiencies, and reduced accuracy
in causal inference.

This raises a fundamental question:

Can LLMs Discover Full Causal Graphs in One
Step?

We address this challenge by introducing a uni-
fied framework that leverages:

e Prompt-based full-graph discovery: Utiliz-
ing in-context learning (ICL) when node metadata
is available (refer Section 3.1).

e Data-driven causal modeling (causal_llm):
Extracting causal structures directly from data
when metadata is absent (refer Section 3.2).

Empirical results demonstrate that the prompt-
based method significantly outperforms existing
causal discovery models in datasets like Asia,
Lucas, and Sachs, achieving higher true posi-
tives per nonzero (TP/NNZ) and maintaining low
false discovery rates (FDR). As the number of
nodes increases (ALARM, HEPAR?2), its per-
formance declines but remains competitive (re-
fer Section 5.4). Conversely, our data-driven
causal_llm model consistently performs well across
all datasets, excelling in large-scale and metadata-
absent settings such as DREAM and synthetic
datasets. In fairness-sensitive domains like legal
decision-making, causal_llm (DeepSeek) (refer
Appendix D.1) surpasses existing models, achiev-
ing ~ 25% higher precision in detecting true causal
edges and mitigating systemic biases.

Key Contributions

¢ Unified causal-LLM: prompt-based full-graph gen-
eration with metadata (App. Figures 6 to 8);
causal_11lm for end-to-end data-driven inference
(Sec. 4).

¢ Cycle-free, scalable inference: no iterative/pairwise
queries, avoids spurious cycles, handles large graphs
across domains.

* Domain DAGs: Bias Formation & Propagation; Le-
gal Decision Process (BNS) (App. Figures 6 to 8,
Figure 9).
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Figure 1: Our key contributions in causal-LLM: unified one-step graph discovery (both prompt-based and data-

driven) plus two domain-specific DAG proposals.

By combining global context reasoning with

data-driven learning, our framework establishes
LLMs as powerful tools for systemic causal dis-
covery—pushing them beyond language tasks to-
ward structured, domain-aware reasoning with real-
world impact.
Organization: The paper is structured as follows:
we review related work in Section 2, present our ap-
proach in Section 3, and detail experiments, includ-
ing baselines, datasets, and metrics, in Section 5.
Major insights and key takeaways are discussed in
Section 6 and Section 7, and we conclude with a
summary and open directions in Section 8.

2 Related Works

This work investigates the causal discovery capabil-
ities of large language models (LLMs), specifically
focusing on the construction of the complete causal
graph (see Figure 2). Although prior studies have
explored general causal reasoning (Hobbhahn et al.,
2022; Zhang et al., 2023), cause-effect inference
(Zhiheng et al., 2022), and correlation-to-causation
transitions (Jin et al., 2023), they do not address
full graph discovery.

Most LLM-based approaches rely on pairwise
causal edge detection (Willig et al., 2022; Long
et al., 2023) or iterated querying across all node
pairs (Kiciman et al., 2023; Zecevi€ et al., 2023;
Kampani et al., 2024), which scale poorly due
to quadratic complexity and often introduce cy-
cles (Antonucci et al., 2023). Some mitigate this
via post-processing or causal ordering with vot-
ing (Vashishtha et al., 2023), but these are typi-
cally restricted to small graphs (<22 nodes). Other
works explore breadth-first querying for more scal-
able graph discovery (Jiralerspong et al., 2024),
or generate domain knowledge graphs from text
(Arsenyan et al., 2023), but without benchmark-
ing against ground-truth DAGs. Recent efforts
in single-shot generation (Naik et al., 2024) show
promise, yet remain limited in scope. In parallel,

pre-trained language models (PLMs) have been ex-
plored within causal discovery frameworks (Lee
et al., 2023), demonstrating that while PLMs can
provide useful prior knowledge through text-based
causal reasoning, their effectiveness is constrained
by prompt sensitivity and lack of direct data analy-
sis.

Crucially, these methods are prompt-based and
rely on node metadata—making them unsuitable
for purely data-driven causal discovery. Existing
work using LLMs as auxiliary tools (Ban et al.,
2023; Cohrs et al., 2024) typically generate pri-
ors—e.g., pairwise edge constraints, causal orders,
or adjacency matrices—which guide conventional
algorithms rather than enabling direct inference.
Attempts to elicit direct causal structure from data
via prompting (Zhang et al., 2023) have not suc-
ceeded.

To fill this gap, we propose and benchmark a uni-
fied framework (refer Section 3): (i) prompt-based
full-graph discovery when metadata is available,
and (ii) causal_11m, a novel LLM-based method
for end-to-end causal graph inference directly from
data—evaluated on diverse datasets with up to 100
nodes.

3 Methodology

Prior works in LL.M-based causal discovery have
largely explored either: (i) prompt-based query-
ing, which relies on external metadata and human-
readable descriptions to elicit causal knowledge
from language models (Willig et al., 2022; Tu et al.,
2023; Kampani et al., 2024), or (ii) data-driven
causal discovery, grounded in statistical principles
and algorithms such as PC, GES, or ICA-LINGAM.
However, these two strands have been treated inde-
pendently, and the literature lacks a unified frame-
work that combines both capabilities—especially
at scale.

Our work (please ref Figure 3) addresses this gap
by proposing a dual-mode framework that evalu-
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Figure 2: Overview of LLM-understanding research: This taxonomy categorizes studies on LLM behavior probing,
causal graph discovery, and interpretability. The causal discovery methods include prompt-driven and model-updated
approaches, highlighting pairwise, iterative, and full graph discovery techniques. Our Work (marked in green)
contributes to direct full graph discovery in both paradigms.

ates and compares: (1) A prompt-based approach
that performs causal graph generation directly from
node metadata (refer Appendix A), enabling an
LLM to reason based on its pre-trained knowledge;
(2) A data-driven model, causal_l1m (refer Al-
gorithm 1), that learns causal structure purely from
observational data using LLMs pretrained trans-
former architecture.

This combination allows us to assess: (a) the ability
of LLMs to perform causal discovery when meta-
data is available, and (b) their capacity to learn
graph structure from data in a scalable and gen-
eralizable way. The key motivation behind our
data-driven model is to move beyond using LLMs
solely as promptable knowledge bases (as in (Ban
et al., 2023; Cohrs et al., 2024)) toward direct end-
to-end inference from data—a path that remains
underexplored. A key question we address is: Do
we have node metadata for In-Context Learning?
If so, we employ a prompt-based method; other-
wise, we use a data-driven approach, as shown in
Equation (1).

ifM(2) # ¢

otherwise

(€3]

A {Parse (Fo(LLM(), P(T, M(x))),
PostProcess (f¢(LLM(-),x)),

Where:

e A is the Adjacency matrix.

e 1 is the Dataset.

e M(x) extracts Node Metadata from the dataset.
e 7 is the Prompt Template (refer Appendix A).
e P(T,M(x)) generates a dataset-specific
prompt.

e LLM/(-) is the Large Language Model

e Parse(-) extracts the adjacency matrix from the
LLM output.

e f,(-) is the prompt-based approach (refer Sec-
tion 3.1).

e f4(-) is the data-driven model causal_llm (refer
Algorithm 1).

e PostProcess(-) ensures DAG validity and prunes
weak edges (Algorithms 3 and 4).

3.1 Prompt-based Approach

The prompt-based approach leverages modern
LLMs’ extended context lengths to perform full-
graph causal discovery in a single pass, overcom-
ing dependency loss in traditional pairwise iterative
methods. It uses a carefully designed prompt (refer
Appendix A) to ensure accuracy, scalability, and in-
teroperability. The prompt defines the LLM’s role as
an intelligent causal discovery agent and sets the
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dataset’s context, specifying its domain (e.g., med-
ical, financial, or biochemical). It establishes the
objective: identifying causal relationships between
features to construct a Directed Acyclic Graph
(DAG). This framing ensures clarity and focus in
the task. The prompt incorporates detailed rules to
guide the discovery process and provides metadata
for features (nodes), including descriptions and
roles. This metadata offers essential context, en-
abling the LLM to reason effectively about causal
relationships.The output is structured in a stan-
dardized format, listing causal edges as pairs (e.g.,
(A, B)) with detailed explanations. This format en-
sures interpretability and enables automated post-
processing using regex to extract the adjacency
matrix, which precisely represents the causal struc-
ture.

Algorithm 1 LLM-Assisted DAG Discovery

Require: Data X € R™*? pre-trained LLM,
epochs F, sparsity weight A, threshold 7
1: Freeze LLM parameters
2: Initialize projection matrices Wi, € R%*",
Wout € Rth
3: fore <— 1to £ do
Z +— X Wiy
space
5: H «+ LLM(Z)
embeddings
Ajogits < H Woye > Compute edge logits
A < 0(Algits) > Edge probabilities via
sigmoid

> Project inputs into h-dim

> Obtain contextual

L = —Zlog(l—Aij) + AZ‘AU’
(2] vJ

> Push probabilities to zero + enforce sparsity
9: Update Wi, Wyt by backpropagating
VL
10: end for

11: Enforce Acyclicity:

1: Remove the smallest-weight edge in any
detected cycle
2: Repeat until the graph is acyclic

3: Prune Edges:
Drop edge (i, 7) if |Bi;] < 7

4: return Adjacency matrix A of the resulting
DAG

Discovering Full
Causal Graph ﬁ
Using LLM =
-

=
Causal Dataset )
Linear Layer
<Explaining the
context in defail and
demonstrating all
node labels broadly> /40 /&
Yes — T No i
< ‘ e
C metadata for ICL? +
= N — o Pruning
B/+/00/|

| |

IOZ0)!
L

el )
)

Full Causal Graph

Figure 3: Overview of our causal discovery approach:
If metadata is available, prompt-based full-graph
discovery (ICL) is applied; otherwise, data-driven
causal_llm extracts causal structures directly from the
dataset.

3.2 Data-Driven Approach

DAG Model: Our DAG model, causal_llm (refer
Algorithm 1), utilizes a Large Language Model
(LLM) to extract meaningful representations for
causal discovery. It consists of three components:
an input projection layer, the LLLM, and an out-
put projection layer. The input projection layer
maps input data of dimension djnpy to a higher-
dimensional space compatible with the LLM’s hid-
den size.The projected input, Z, is processed by
the LL.M, generating contextualized hidden rep-
resentations that capture input dependencies. The
LLM produces a hidden state matrix, H, which the
output projection layer maps to a d x d causal
adjacency matrix. A sigmoid activation ensures
values in [0, 1], representing edge probabilities. By
freezing LLM parameters and training only input
and output layers, the model efficiently leverages
LLM’s feature extraction capabilities for accurate
causal discovery with minimal computational over-
head.

Model Training: The model operates in a syn-
thetic environment, where each state corresponds
to a dataset sample. Through forward passes and
loss minimization, it predicts an adjacency matrix
A € R4 constrained to be acyclic to satisfy
DAG properties (refer Algorithm 2). The train-
ing loss comprises: (1) binary cross-entropy loss
to measure the difference between predicted edge
probabilities A;; and a null matrix, and (2) an L1
regularization term to promote sparsity. As the
model refines A, edge weights A;; update dynam-
ically, with the environment providing new states
for learning. Over multiple epochs, the decreasing
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average loss indicates convergence to an optimal
causal graph that balances sparsity and essential
relationships.

Theoretical Justification of the loss function
L(A)

Let A = (A;;) with each A;; € (0, 1). Define
[,(A) = = Zlog(l = Az]) = )\Z|A”|
) 2%

1. MAP derivation.
o Likelihood: Y;; ~ Bernoulli(1 — A;;), observe

Yij = 1. —logP(Y = 1) = =3, ;log(l —
A”)
o Prior: p(Aij) oc e MAil gives —logp =

2. Convexity & uniqueness. For a € (0,1), f(a) =
—log(1 — a) with f’(a) = 1/(1 — a)® > 0, and |a]
is convex. Thus L is strictly convex.

3. Exact sparsity. 0|a| ’0 = [—1, 1] blocks small gradi-
ents unless a = 0.

Hence L is the convex MAP-estimate with exact sparsity.

Post-Processing: To ensure a valid DAG, cy-
cles are removed by iteratively deleting the lowest
weight edge in each cycle (Algorithm 3). The re-
sulting graph is further refined by pruning weak
edges using linear regression: each node is re-
gressed on its potential parents, and edges with
coefficients below a threshold 7 (set as the d-th
largest weight for d nodes) are discarded (Algo-
rithm 4). This process enhances the quality of the
adjacency matrix by eliminating spurious and low-
confidence connections.

4 Mathematical Foundation

Our end-to-end approach is grounded in theoreti-
cal guarantees that ensure reliable DAG learning,
specifically the projection of raw data into the LLM
embedding space. In this section, we provide a
Bayesian MAP derivation of our loss function:

L(A) == log(1— Ay) + A |4y,
0] %,

demonstrating its strict convexity and the existence
of a unique, exactly sparse solution. This guaran-
tees the success of our end-to-end approach.

State Embedding Assumptions:

* Faithfulness Preservation: The input pro-
jection f : X +— Z is Lipschitz continu-
ous, preserving conditional independencies:
if X; L X; |8, then f(X;) L f(X;) | f(S).

* Injectivity on Markov Equivalence: Dis-
tinct causal graphs (up to Markov equivalence)
induce distinguishable embeddings, ensuring
identifiability.

Under the Markov and Faithfulness conditions,
solving the convex MAP problem with acyclicity
enforcement recovers the true graph up to Markov
equivalence.

4.1 Theoretical Guarantee for End-to-End
DAG Learning

Theorem 4.1 (Exact Recovery under Faithfulness
Preservation). Let X € R"*? be i.i.d. samples
from a distribution Markov and faithful to a ground-
truth DAG G = (V, E), with an LLM-based em-
bedding f : X; — Z; satisfying:

1. Faithfulness Preservation: For every disjoint
(4,7, 5),

XZ'J_XJ"XS — ZzJ_Z]|ZS

2. Injectivity on Markov Equivalence: Distinct
DAGs (up to Markov equivalence) induce dif-
ferent conditional independence patterns in
the Z-space.

Define continuous adjacency weights A €
[0, 1]9%4 and the loss function as

L(A) = =) log(1 — Ay) + A D |Ayl,
i,j ,J

Minimizing L(A) (lines 3—10) while enforcing
acyclicity (line 11) and pruning:

G = {(27]) : AZ] > T}a
with a pruning threshold T such that

*

0 < max Aj; <7< min A7,

(4.9)¢E (i.4)eE
guarantees recovery of the true DAG: G=0G.

Proof Sketch. 1. Convexity and Uniqueness:
Each entry a = A;; € [0, 1) satisfies

d? 1
Y gl —a) = ——
da? og(1—a) (1—a)?

proving strict convexity of the negative-log
term. Combined with the convex /;-norm,
L(A) is strictly convex on the open cube
(0,1)4%4, admitting a unique global mini-
mizer.

> 0,
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2. Edge vs. Non-Edge Separation: Under faith-
fulness, for any absent edge (i,j) ¢ FE,
we have Z; | Z; | Z\y j, ensuring that
A;f‘j = 0 for non-edges. Conversely, for edges
(i,7) € B, Af; > 0.

3. Thresholding and Pruning: Choose 7 such
that

min A

0< max A, <1< ,
“ i) 7

(i.5)¢E
ensuring that pruning by A;; < 7 recovers the
exact edge set . Enforcing acyclicity ensures
no cycles are introduced, and no true edge is
pruned.

This completes the proof that, under our assump-
tions and appropriate 7, the procedure recovers the
exact DAG GG. We now proceed to the experimental
setup for causal discovery evaluation. O

5 Experimental Setup

5.1 Baselines

To benchmark our approach, we employ estab-
lished causal structure discovery methods, includ-
ing constraint-based approaches like the PC al-
gorithm, Functional Causal Model (FCM)-based
methods such as ICA-LiINGAM, and score-based
techniques like Greedy Equivalence Search (GES)
and RL-BIC. Additionally, we incorporate gradient-
based methods, including Gradient-Based Neural
DAG Learning (GraNDAG). These diverse algo-
rithms provide a comprehensive foundation for
evaluating our model’s performance (Zhang et al.,
2021). For details on the parameter settings of the
baseline methods, refer to Appendix F.

5.2 Maetrics

We use standard metrics to evaluate causal dis-
covery algorithms (refer to Evaluation Metrics for
Causal Discovery in (Hasan et al., 2023)).

Additionally?, we introduce two new metrics
designed to assess the precision of true edge identi-
fication by causal algorithms.

True Positives per Non-Zero Predictions
(TP/NNZ): This metric calculates the proportion
of true positives relative to all predicted edges (non-
zero entries). This is an indicator on the precision
of the model in detecting the true edges out of all
its edge predictions. Higher values indicate bet-
ter performance in predicting true edges without

’refer Appendix E

excess. TP
TP/NNZ = NNZ
where, TP: Number of true positives, NNZ: Num-
ber of predicted edges (non-zero entries).
Relative Performance (RP): RP compares the
TP/NNZ of a model against the best-performing
model. A lower RP indicates that the model’s per-

formance is closer to the best.

_ Best(TP/NNZ) — TP/NNZ
N Best(TP/NNZ)

RP

where, Best(TP/NNZ): Best value of TP/NNZ
across models TP/NNZ: True positives per non-
zero predictions for the current model.

5.3 Datasets

Causal discovery methods analyze datasets from
real-world observations or synthetic sources. Real
data comes from medical trials, economic surveys,
and genomics experiments, while synthetic datasets
are generated using known or artificial causal struc-
tures.

In our experiments, we used both real and pub-
licly available datasets, alongside synthetic datasets
generated from domain knowledge-based Directed
Acyclic Graphs (DAGs). For publicly available
datasets, we utilize the bnlearn repository (Scu-
tari, 2009) and the Causal Discovery Toolbox
(CDT) (Kalainathan et al., 2020).

Publicly available datasets: SACHS, DREAM,
ASIA, ALARM, LUCAS, HEPAR?2 (refer Ap-
pendix C.1).

Synthetic datasets: e Linear models with
Gaussian/non-Gaussian ~ noise  (refer  Ap-
pendix C.2.1) e Non-linear quadratic models
with Gaussian/non-Gaussian noise (refer Ap-
pendix C.2.2) e Non-linear Gaussian process
models with Gaussian noise (refer Appendix C.2.3)

Domain Specific Dags

We have also constructed two DAGs from Domain
Expert Knowledge and used it to generate synthetic
data (refer Appendix C.2.4 ).

e A DAG representing bias formation and propaga-
tion (refer Apendix Figures 6 to 8)

o A DAG representing legal decision processes under
the Bhartiya Nyaya Sanhita (BNS) scheme (refer
Appendix Figure 9)

5.4 Results

In this section, we present dataset-wise results
comparing the performance of all baseline mod-
els against our proposed model (refer Appendix
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Figure 4: FDR, TPR, FPR, SHD, TP/NNZ and RP metrics for RL, PC, ICALINGAM, GraNDAG, GES, GPT-4o,
Gemini, Llama, DeepSeek-R1 and causal_llm (with models GPT, Gemini, Llama and DeepSeek) plotted for the
publicly available datasets SACHS, ASIA, ALARM, LUCAS, HEPAR2, and DREAM4.

Figure 10). This structured comparison allows us
to evaluate the effectiveness of our model across
different datasets (refer Figure 4).

PUBLICLY AVAILABLE DATASETS (see
Figure 4)
In SACHS, the prompt-based method achieves su-
perior FDR and RP, likely due to semantically rich
metadata that aligns well with LLM pretraining.
In contrast, traditional algorithms like PC exhibit
high TPR but suffer from high FDR and SHD, indi-
cating overprediction. The data-driven causal_llm
maintains balanced performance across all met-
rics, demonstrating robustness without metadata
reliance.
For ASIA, the strong performance of all prompt-
based LLMs—some matching the ground truth ex-
actly—suggests the dataset or similar structures
may have been encountered during LLM training.
Traditional methods like GES are competitive but
slightly hampered by higher FDR. Causal_llm un-
derperforms, possibly due to the dataset’s simplic-
ity and low variance.
In LUCAS, GES aligns perfectly with the ground
truth, benefiting from efficient structure scoring in
small graphs. Prompt-based models perform nearly
as well, with causal_llm offering stable, if not top-
tier, performance. GranDAG underperforms due
to limited edge predictions, struggling with sparse
structures.
For ALARM, a mid-sized graph, prompt-based
models outperform symbolic approaches by achiev-
ing better trade-offs between TPR and FDR. PC
and GES have higher TPR but also elevated FDR
and SHD, indicating noise. Causal_llm struggles

in this transitional regime, highlighting limitations
in medium-scale structures.

In HEPAR?2, as the node count increases, sym-
bolic models face combinatorial challenges and
often fail to converge. Prompt-based methods
excel across all metrics, leveraging global meta-
data. Causal_llm remains competitive, showing
resilience in node-dense settings.

In the high-dimensional DREAM dataset, most
models fail due to complexity. Causal_llm (GPT)
stands out with the best RP and TPR, demonstrat-
ing the effectiveness of LLMs in metadata-absent,
large-scale settings. GranDAG’s low SHD is under-
mined by high FDR, indicating excessive regular-
ization.

In Bias & Legal datasets (Appendix Figure 12),
prompt-based methods dominate, particularly
where node labels encode sociocultural or legal
context. Causal_llm also performs well, especially
in the implicit-to-explicit and Legal cases, revealing
its ability to capture fairness-related dependencies
directly from data.

SYNTHETIC DATASETS (see Appendix Fig-
ure 11)

For 10-node graphs, causal_llm (GPT) and
prompt-based methods excel. ICA-LiINGAM
and GES perform well but are limited to low-
dimensional settings. At 40 nodes, causal_llm
(Gemini) leads on linear graphs, while ICA-
LiNGAM excels in GP settings, highlighting its
non-linear modeling capacity.

On 70-node graphs, most models degrade, but
causal_llm maintains effective detection of causal
edges, demonstrating scalability. For 100-node
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graphs, causal_llm (Llama, GPT) are among the
few viable models, outperforming others by han-
dling dimensionality and noise robustly.

Overall results suggest that prompt-based
method using LLMs outperform data-driven ap-
proaches, especially when node metadata is avail-
able, achieving high accuracy in edge detection.
Among data-driven models, causal_llm consis-
tently performs best, particularly in larger datasets.
GES and ICA-LINGAM excel in specific cases
(e.g., ASIA, LUCAS), but their effectiveness is
limited by high FDR and SHD. GranDAG under-
performs across datasets, often failing to capture
causal relationships. As the number of nodes in-
creases, most models decline in performance, but
causal_llm remains consistent overall.

6 Discussion

In this paper, we have argued that the question of
causal understanding is equivalent to the understand-
ing of how LLM functions, that is, whether LLM
follows any causation while generating the output.
Our experimental results rigorously validate the effec-
tiveness of both the prompt-based method and the
data-driven causal_llm model, while also delineat-
ing their respective strengths and limitations. Below,
we synthesize these findings through systematic anal-
ysis:

Prompt-Based Method: Leveraging Node
Metadata for Superior Accuracy The prompt-
based approach, which utilizes node metadata,
demonstrates measurable advantages (refer Ap-
pendix Figure 10):

e Edge Accuracy: On datasets like ASIA and
LUCAS, the prompt-based method achieves an
average of ~ 40% higher edge accuracy compared
to data-driven methods, highlighting its ability to
leverage metadata for precise causal discovery.

o Fairness-Critical Domains: In fairness-
critical domains such as legal systems, the prompt-
based method improves precision in identifying
true causal edges by ~ 25%, effectively address-
ing systemic biases often overlooked by pairwise
methods.

e Limitation in Metadata-Absent Scenarios:
On datasets like DREAM41, where metadata is
unavailable, the prompt-based method cannot be
used, emphasizing its reliance on node metadata
for optimal results.

Data-Driven Approach: Competitive Perfor-
mance and Efficiency The causal_llm model,
which integrates LLMs for causal discovery purely

from data, demonstrates competitve performance
and scalability (refer Appendix Figure 10):

e Runtime Efficiency: On the Sachs dataset,
causal_llm achieves inference in ~ 50% less run-
time on average compared to RL-based and contin-
uous optimization-based methods, showcasing its
computational efficiency.

e Scalability: In synthetic scenarios with larger
graphs (e.g., 70-node and 100-node datasets),
causal_llm scales seamlessly, offering ~ 20%
faster inference while maintaining competitive ac-
curacy.

e Limitation in Metadata-Rich Scenarios:

While competitive, causal_llm’s performance lags
behind the prompt-based method in datasets
where metadata plays a crucial role in guiding
causal discovery.
Comparative Analysis: Strengths and Trade-
offs: The prompt-based method excels in metadata-
rich settings, delivering high accuracy and address-
ing fairness in sensitive domains (see Figure 12).
In contrast, the data-driven causal_llm model of-
fers a scalable, efficient alternative with competi-
tive performance and faster runtime. Together, they
showcase the potential of LLMs in causal discovery,
providing robust solutions for both metadata-driven
and data-only scenarios while balancing accuracy,
efficiency, and fairness.

These complementary strengths establish the
prompt-based and data-driven approaches as ef-
fective, versatile tools for modern causal discovery
(refer Appendix Figures 10 to 12), with demon-
strated success across domains ranging from small
biological networks to large-scale gene regulatory
systems.

7 Key Takeaways

In this section, we compare the prompt-based ap-
proach and the data-driven approach to determine
their respective advantages (refer Figure 5).

e In datasets such as Asia, Lucas, and Sachs,
where the number of nodes is small and node meta-
data is available, the prompt-based method outper-
forms all other causal algorithms by achieving bet-
ter true positives per nonzero (TP/NNZ) and main-
taining a low false discovery rate (FDR). In the
ALARM dataset, as the number of nodes increases,
the prompt-based approach remains competitive
with other causal algorithms in terms of true posi-
tive rate (TPR) while still maintaining a low FDR,
making it a consistent method. As the number of
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Figure 5: A comparative plot of the relative performance (RP metric) of LLMs (prompt-based approach and
causal_llm) on the metadata-rich datasets (SACHS, ASIA, ALARM, LUCAS, HEPAR2, and BIAS and LEGAL

datasets), in increasing order of number of nodes.

nodes increases further, such as in the HEPAR2
dataset, the performance of the prompt-based ap-
proach declines but it still remains competitive with
other causal models.

e In datasets like DREAM and synthetic
datasets, where node metadata is unavailable,
the prompt-based approach cannot be applied.
Despite this limitation, our data-driven method,
causal_llm, remains competitive across all datasets.
It excels particularly in large-scale datasets and
those without metadata, offering a robust alterna-
tive to state-of-the-art causal algorithms. Notably,
in the neutral to explicit dataset, causal_llm
(DeepSeek) (refer Appendix D.1) outperforms all
others, including prompt-based methods, in detect-
ing true edges, as shown by its high TP/NNZ ratio
and low false positive rate (RP), highlighting its
effectiveness across diverse scenarios.

e Therefore, when node metadata is available,
the prompt-based approach is preferred due to
its exceptional performance, while in cases where
metadata is unavailable, the data-driven model
causal_llm emerges as a consistent and reliable
choice.

8 Conclusion

Overall, the prompt-based method excels in
metadata-rich settings, ensuring high accuracy and
fairness in critical domains. The data-driven
causal_llm model emerges as a scalable and ef-
ficient alternative, delivering competitive perfor-
mance with reduced runtime. This highlights
LLMs’ capability for full graph discovery, position-
ing them as strong contenders in causal discovery
for both metadata-rich and data-only scenarios.

Limitations

Despite its strong performance, our framework has
some limitations. The prompt-based approach de-
pends heavily on prompt quality and metadata com-
pleteness, which can affect accuracy. Token lim-
its and attention constraints challenge scalability
on large graphs. In the data-driven model, freez-
ing the LLM backbone improves efficiency but
reduces adaptability to domain-specific contexts.
Real-world evaluation is limited by the absence
of ground truth, and post-processing steps involve
heuristics that may introduce variability across
datasets.
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A Prompt Used for Single-Step Full Graph Discovery

You are an intelligent causal discovery agent tasked with mapping the causal relationships between
features in the [*Dataset Name] dataset. This dataset models [brief description of the domain,
e.g., medical conditions, social biases, biochemical signaling*]. Your goal is to identify how these

features influence one another and construct a Directed Acyclic Graph (DAG) that represents these
causal relationships.

#### *Important Rules:*
1. *Multiple Incoming Edges:* Each feature may have multiple incoming edges to reflect its
dependency on upstream causes.

2. *Root Causes:* Some features act as root causes (independent variables) that initiate the causal
chain.

3. *Intermediate Variables:* Other features act as intermediaries, propagating the effects of root
causes and influencing downstream outcomes.

4. *Outcome Variables:* Observable outcomes should only receive causal inputs from relevant
upstream features.

5. *Acyclic Structure:* Ensure the DAG is acyclic and aligns with domain knowledge.

#i### *Features (Nodes): *
- *[Feature 1]:* [Brief description of the feature].
- *[Feature 2]:* [Brief description of the feature]. - ...

#### *Step 1: Finding the Edges™

Identify the causal relationships between the features. Focus on how upstream features influence
downstream ones. For example:

1. *Edge (Feature A — Feature B):* [Explanation of why Feature A causes Feature B].

2. *Edge (Feature C — Feature D):* [Explanation of why Feature C causes Feature D].
3. ..

#### *Step 2: Reflect Back on Each Edge*

Review each edge to ensure it aligns with domain knowledge. Refine the causal relationships if
necessary.

#### *Output Format:*
Provide a final list of edges in the following format:

1. (A, B) : Explanation of why A causes B.
2. (C, D) : Explanation of why C causes D. ...
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B Algorithms

B.1 DAG Model: causal_llm

Model Architecture The architecture comprises
three primary components: an input projection
layer, the Large Language Model, and an out-
put projection layer. The input projection layer
takes input data of dimension dj,py and projects
it into a higher-dimensional feature space compat-
ible with the LLM’s hidden size. The projected
input, Xprojected» 15 then passed through the LLM,
which generates contextualized hidden represen-
tations that encapsulate the dependencies in the
input. The output of the LLM is a hidden state
matrix, H. These hidden states are processed by
the output projection layer, which maps the high-
dimensional representations to an d x d causal ad-
jacency matrix, where d is the number of nodes in
the causal graph. A sigmoid activation function is
applied to ensure the adjacency matrix values are
in the range [0, 1], representing edge probabilities.
By freezing the pre-trained LLM parameters and
training only the input and output layers, the model
efficiently adapts to the causal discovery, leverag-
ing LLM’s strong feature extraction capabilities
without increased computational burden to extract
accurate causal relationships from the dataset.

B.2 Helper Functions

B.2.1 RemoveCycles

This functions transforms a directed graph contain-
ing loops into a Directed Acyclic Graphs(DAGS).
Starting with a weighted adjacency matrix (where
entries represent connection strengths between
nodes), it first constructs the graph. It then iter-
atively looks for cycles, removes them by eliminat-
ing the weakest link in each loop.To minimize struc-
tural damage, the function prioritizes removing
edges with the smallest weights, ensuring stronger,
more critical connections are preserved. When
multiple edges in a cycle share the same minimal
weight, it breaks ties randomly to avoid unintended
bias. This process repeats until all cycles are elim-
inated, producing a directed acyclic graph (DAG)
that retains the original graph with most of the rel-
evant edges.

Algorithm 2 causal_llm Training and Inference

Require: diy, dou
Ensure: Trained model and inferred adjacency matrix
1: M < causal_llm(din, dou)
2: O < Adam(M.parameters(), Ir = 2e¢ — 5)
3: L < BCE Loss
4: function LEARN(D, &, B, €)
5 G < SyntheticEnvironment(D)
6 fore =1to £ do
7. Cepoch < []
8: for b =1to Bdo
9 s < G.get_next_state()

10: s < tensor(s)

11: a <+ o(M(s))

12: if random ¢ then

13: a < random tensor
14: end if

15: A + Reshape(a)

16: A + RemoveCycles(A)
17: Liaeh < L(A,0) 4 0.01[| M]]
18: Backpropagate: O.step()
19: Store Lepoch

20: end for

21: Laye < mean(Lepoch)

22: end for

23: if P exists then

24 Save M to P

25: end if

26: end function

27: function CAUSALMATRIX(D)

28: D < tensor(D)

29: s < mean(D, 0)

30: Set M to eval mode

31: A < o(M(s))

32: A—~A-(1-1)

33: A < PruneWeakEdges(A)
34: Ajfina < RemoveCycles(A)
35: return A finy

36: end function

B.2.2 PruneWeakEdges

This function is designed to refine a given graph
by pruning weak connections based on regression
coefficients derived from the dataset. It begins by
initializing variables, including the graph structure,
node count, and a weight matrix to store regression
coefficients. For each node in the graph, the algo-
rithm identifies its connected nodes, extracts the
corresponding features and target values from the
dataset, and performs linear regression to compute
the coefficients. These coefficients, representing
the strength of connections, are stored in a weight
matrix.The algorithm calculates a threshold based
on the sorted absolute values of the coefficients,
ensuring that at least one strong connection per
node is preserved. Finally, edges in the graph are
pruned by retaining only those connections with
coefficient magnitudes greater than or equal to the
threshold.
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Algorithm 3 RemoveCycles

Require: Adjacency matrix A € R¢*¢
Ensure: Acyclic adjacency matrix A acyclic
1: Step 1: Initialize Graph
2: Create directed graph G = (V, £) from A:

3: foralli,j € [1,d] do

4 if i # j and A[é, j] > O then

5 Add edge (7, j) with weight A[s, j] to G
6: end if

7: end for

8: Step 2: Remove Cycles

9: while G contains cycles do
10: Detect cycles: C < FindCycle(G)

11: Initialize minimum weight: wWmpin < 00
12: Initialize candidate edges: Emin < ||

13: for all (u, v, direction) € C do

14: w < G[u][v][ weight']

15: if w < wmin then

16: gmin — [(u,v)}

17: Wmin < W

18: else if w == wn, then

19: Add (u,v) to Emin

20: end if

21: end for

22: Randomly select edge: (Umin, Umin) ~ Emin
23: Remove edge: G.remove_edge(umin, Umin)

24:  Update A [tmin, Umin] < O
25: end while
26: return Acycic

Algorithm 4 PruneWeakEdges

Require: Graph batch G, Dataset X € R"*¢
Ensure: Pruned graph Gprunea € {0, 1}4%¢
1: Step 1: Initialize Variables

2: Number of nodes: d « len(G)
3: Initialize weight matrix: W < [

coefficients

4: Step 2: Compute Regression Coefficients
5: fori =1toddo
6: Select column: col + |G, :]| > 0.5
7.

8

9

> To store regression

if >~ (col) == 0 then
Append zeros: W .append(0y)
: Continue
10: end if
11: Extract features: Xain < X[:, col]
12: Extract target: y <+ X[:, 1
13: Fit linear regression: reg.fit(Xiain, y)

14: Obtain coefficients: ¢ < reg.coef_
15: Initialize zero vector: Cpew < 04
16: Assign coefficients: cpew[col] + ¢

17: Append to weight matrix: ' W .append(cnew)

18: end for

19: Step 3: Calculate Threshold

20: Sort: Wrea <— sort(|W/|.flatten())

21: Determine threshold index: diax
1,len(Wored) — 1)

22: Calculate threshold: th < W ored[diax]

23: Step 4: Prune Graph

24: Prune edges: Gpruned < (|JW]| > th)

25: return Gpmned

<~ min(d —

C Datasets
C.1 Publicly available datasets

Publicly available causal datasets are commonly
used to benchmark algorithms in causal discov-
ery, machine learning, and statistical modeling.
These datasets often stem from interventional ex-
periments across real-world domains such as biol-
0gy, medicine, environment, and education. We
evaluate our method using datasets from the bn-
learn repository (Scutari, 2009) and the Causal Dis-
covery Toolbox (CDT) (Kalainathan et al., 2020).
SACHS (Zhang et al., 2021): This dataset captures
causal relationships between genes based on known
biological pathways. It has 11 nodes with well
known ground truth.

DREAM (Kalainathan and Goudet, 1903):
DREAM (Dialogue on Reverse Engineering
Assessments and Methods) challenges provide
simulated and real biological datasets to test
methods for inferring gene regulatory networks.We
have used the dataset DREAM4-1, consisting of
100 nodes.

ALARM (Beinlich et al., 1989): This dataset simu-
lates a medical monitoring system for patient status
in intensive care, including variables such as heart
rate, blood pressure, and oxygen levels.It consists
of 37 nodes and is widely used in benchmarking
algorithms in the medical domain.

ASIA (Lauritzen and Spiegelhalter, 1988): Asia
dataset models a causal network of variables related
to lung diseases and the likelihood of visiting Asia.
This is a small dataset consisting of only 8 nodes.
LUCAS (Lucas et al., 2004): LUCAS (LUng CAn-
cer Simple) is a synthetic dataset designed for
causal discovery benchmarking in medical contexts.
It simulates causal relationships related to lung can-
cer, incorporating variables such as smoking habits,
exposure to pollution, genetic predisposition, and
disease outcomes. The dataset consists of 11 nodes
and is often used to evaluate causal structure learn-
ing algorithms in the medical domain.

HEPAR2 (Onisko, 2003): HEPAR2 dataset is a
probabilistic Bayesian network model representing
causal relationships in the diagnosis of liver disor-
ders. It consists of 70 nodes and 123 edges, making
it a comprehensive benchmark for testing causal
discovery algorithms in the healthcare domain.

C.2 Synthetic datasets

We generate synthetic datasets using methods from
ICA-LiNGAM (Shimizu et al., 2006) and RL-
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based causal discovery (Zhu et al., 2020). These
datasets, derived from both domain knowledge-
based and purely synthetic DAGs, enable us to ex-
plore diverse causal structures and benchmark our
model against state-of-the-art causal algorithms.

We generate four types of Datasets:

e Linear model with Gaussian and non-Gaussian
noise

e Non-linear quadratic model with Gaussian and
non-Gaussian noise

e Non-linear Gaussian process with Gaussian
noise

¢ Bias and Legal datasets from Domain knowledge
(refer Appendix C.2.4)

We employ the same initialization method used
in the [CA-LiNGAM (Shimizu et al., 2006) and RL-
based causal discovery (Zhu et al., 2020) papers to
generate synthetic datasets. For the Bias and Legal
datasets, we create synthetic data using a linear
model with the same initialization approach.

C.2.1 Linear Model with Gaussian and
Non-Gaussian Noise

To generate synthetic data, we start by creating
a d x d upper triangular adjacency matrix repre-
senting the graph structure, where the upper tri-
angular entries are independently sampled from a
Bernoulli distribution - Bern(0.5). Next, we as-
sign edge weights from the uniform distribution
Unif([—2, —0.5] U [0.5, 2]), forming a weight ma-
trix, W e Rdx4,

Using this setup, we generate data samples ac-
cording to

a::WT:U—I—n,

where n € R? represents noise. Both Gaussian and
non-Gaussian noise models are used. For the non-
Gaussian case, we adopt the approach from ICA-
LiNGAM (Shimizu et al., 2006) , where Gaussian
noise samples are transformed via a power non-
linearity to induce non-Gaussianity. In both cases,
unit noise variances are used.

We generate n = 5000 samples and randomly
permute the variables to create the final datasets.
This procedure aligns with approaches used in prior
works such as NOTEARS and DAG-GNN, where
the true causal graphs are known to be identifiable
(Shimizu et al., 2006; Peters and Biihlmann, 2014).
We repeat this process for d = 10,40, 70,100
nodes and use it benchmark against state-of-the-
art causal algorithms.

C.2.2 Non-linear Quadratic Model with
Gaussian and Non-Gaussian Noise

In this method, we investigate nonlinear causal re-
lationships using quadratic functions. The graph
structure is generated by creating an upper triangu-
lar adjacency matrix, following a similar procedure
as the first method. For each node 7, the parent
variables .y = [Ti1, Ti2, - - - ] are expanded to
include both first-order and second-order features.
The coefficients for these features are either set to
zero or sampled from the uniform distribution

Unif([—1, —0.5] U [0.5,1])

with equal probability. If a parent variable does not
contribute to any feature term with a non-zero co-
efficient, the corresponding edge is removed from
the causal graph.

Data is generated for graphs with d = 10, 40, 70,
and 100 nodes, with 5,000 samples for each case.
We consider both Gaussian and non-Gaussian noise
models. For the non-Gaussian case, noise is gen-
erated by transforming Gaussian samples using
a power nonlinearity to induce non-Gaussianity.
However, large variable values can sometimes oc-
cur in the quadratic model, which can cause com-
putational problems in quadratic regression. Such
extreme samples are treated as outliers.

This approach allows us to study the identifiabil-
ity of nonlinear causal graphs across varying graph
sizes and noise models while addressing computa-
tional challenges.

C.2.3 Non-Linear Model with Gaussian
Processes

This method involves studying nonlinear causal re-
lationships in randomly generated causal graphs.
Each causal relationship f; is modeled as a non-
linear function sampled from a Gaussian process
with a Radial Basis Function (RBF) kernel, where
the bandwidth is set to one. The use of the RBF
kernel ensures smoothness and flexibility in the
functional form of f;, allowing it to model complex
dependencies between variables.

The additive noise n; in the system is drawn
from a normal distribution N'(0, 02), where the
noise variance o2 is sampled uniformly across a
predefined range. This variability in noise strength
across different relationships influences the com-
plexity of causal inference. The setup adheres to
conditions under which the true causal graph is
identifiable, as established by (Peters et al., 2014).

8274



For this experiment, we adopt a framework in-
spired by GraN-DAG (Lachapelle et al., 2019).
Specifically, we generate causal graphs with 10
nodes and 40 directed edges, ensuring a dense and
complex network of dependencies. The data con-
sists of 1,000 samples, allowing for robust statisti-
cal inference and testing of causal discovery meth-
ods.

This setup is particularly valuable for bench-
marking algorithms designed for nonlinear causal
discovery, as it captures realistic complexities
while maintaining identifiability.

C.2.4 Bias and Legal DAGs

To construct the Bias dataset, we undertook an
in-depth literature review on implicit bias, analyz-
ing the factors contributing to unconscious biases
and their subtle manifestations in language. This
process guided the development of three Directed
Acyclic Graphs (DAGs) that depict how bias prop-
agates and evolves in linguistic contexts. These
diagrams were validated by domain experts.For
the Legal dataset, we collaborated with a legal
expert to create a DAG that models the legal
decision-making processes under the Bhartiya
Nyaya Sanhita (BNS) scheme.This DAG mod-
els the structured reasoning and causal pathways
used to determine outcomes such as murder, cul-
pable homicide, or non-culpable homicide under
the BNS framework. The nodes in this graph repre-
sent critical legal factors and decision points in the
judicial process.After obtaining the DAG, we gen-
erate the weighted adjacency matrix by sampling
the weights randomly from the uniform distribu-
tion Unif([—2, —0.5) U (0.5, 2]). The data is then
generated in the same way as described in the first
method.

Neutral to Implicitly Biased Sentences (N2I)
This DAG captures the transition from neutral lan-
guage to implicitly biased sentences. The transfor-
mation is influenced by the following factors:

e Social Identity: The speaker’s or listener’s
sense of belonging to a particular group.

e Stereotype: Preconceived notions or generalized
beliefs about a group.

e Stereotype Activation: The subconscious trig-
gering of stereotypes in response to specific cues.
e Cognitive Dissonance: The discomfort from
holding conflicting beliefs, which can subtly shape
language.

e Ambiguous Language: Words or phrases with
multiple interpretations, leaving room for implicit

bias.

e Unprotected Features: Attributes not safe-
guarded against discrimination, potentially ampli-
fying bias.

e Social Desirability: The tendency to conform to
socially acceptable norms, sometimes leading to
veiled biases.

e Protected Features: Characteristics shielded un-
der anti-discrimination policies that may still influ-
ence bias indirectly.

Figure 6: A DAG representing the causal pathway for
a neutral sentence being transformed into an implicitly
biased sentence

Neutral to Explicitly Biased Sentences (N2E))
This DAG models how neutral language transforms
into overtly biased statements, driven by:

e Social Identity: The speaker’s or listener’s
sense of belonging to a particular group.

e Stereotype: The direct incorporation of general-
ized beliefs into speech.

e Conscious Stereotyping: Deliberate application
of stereotypes in communication.

e Protected Features: Characteristics (e.g., race,
gender) that become focal points in biased dis-
course.

e Motivated Reasoning: The use of reasoning
aligned with one’s goals or biases to justify explicit
statements.

Implicit to Explicitly Biased Sentences (I2E))
This DAG explains the progression from implicit
to explicit bias in language.

Key factors include Social Identity, which re-
flects the influence of group affiliation on decision-
making and language; Stereotype, representing
generalized beliefs about groups that shape per-
ceptions and behavior; Conscious Stereotyping,
which involves the deliberate application of stereo-
types; Protected Features, referring to characteris-
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tics safeguarded under anti-discrimination policies
that can still influence biases; and Motivated Rea-
soning, where reasoning is aligned with personal
goals or biases to justify certain conclusions or
actions.

Figure 7: A DAG representing the causal pathway for
a neutral sentence being transformed into an explicitly
biased sentence

Legal decision process under BNS scheme
The key nodes in the legal reasoning DAG un-
der the Bhartiya Nyaya Sanhita (BNS) framework
include the following: Death Established(D),
which determines if a death has occurred, and
Intention to Cause Death(ID), which assesses
whether there was a clear intent to cause death,
along with its counterpart, No Intention to Cause
Death(!ID), for cases lacking such intent. Other
critical nodes include Falls Under Exceptions of
BNS(BNS) and Does Not Fall Under Exceptions
of BNS(!BNS), which evaluate whether the act
qualifies for legal exceptions. Additional nodes
like Intention to Cause Bodily Injury Likely to
Cause Death(IB) and No Intention to Cause Bod-
ily Injury Likely to Cause Death(!IB) explore
intent regarding bodily harm. The DAG also con-
siders Knowledge That Injury Is Likely to Cause
Death(KTI) versus No Knowledge That Injury
Is Likely to Cause Death(!KTI), assessing the ac-
cused’s awareness of fatal consequences. Severity
is analyzed through nodes like Injury Sufficient
to Cause Death(SD) and Injury Not Sufficient to
Cause Death(!SD), as well as High Probability
That Death Would Be Caused(HP) and Not Very
Likely to Cause Death('HP), which evaluate the
likelihood of fatality. Finally, the outcomes are clas-
sified into Murder(M), Culpable Homicide(C),
and Non-Culpable Homicide(NC), based on the
interplay of intent, knowledge, and other factors.

Figure 8: A DAG representing the causal pathway for
a implicitly biased sentence being transformed into an
explicitly biased sentence

Figure 9: A DAG representing the causal pathway for
legal decision process under BNS scheme

8276



D Results and Analysis

In this section, we present the plots of the results for
our framework: prompt-based and causal_llm, ap-
plied to synthetic (refer Figure 11) and bias & legal
(refer Figure 12) datasets. The synthetic datasets
cover varying complexities, including 10, 40, 70,
and 100 nodes, with each set being evaluated under
three different types of causal relationships: lin-
ear, quadratic, and Gaussian process (GP). These
datasets serve as a benchmark for assessing the
causal_Ilm model’s ability to uncover causal struc-
tures across different levels of graph complexity
and non-linearity. The following plots showcase
the key performance metrics used to compare our
framework with existing state-of-the-art causal dis-
covery methods, offering a comprehensive analysis
of the model’s strengths and limitations (refer Fig-
ure 11).

Figure 10: Performance metrics for all causal algo-
rithms, including our causal_llm model and large lan-
guage models (LLMs) like GPT, Gemini, Llama, and
DeepSeek, are evaluated and plotted, comparing their
performance on both publicly available and synthetic
datasets.

Figure 11: FDR, TPR, FPR, SHD, TP/NNZ and RP
metrics for RL, PC, ICALINGAM, GraNDAG, GES
and causal_llm (with models GPT, Gemini, Llama and
DeepSeek), plotted for the synthetic datasets (10, 40,
70 and 100 nodes for linear, quadratic and Gaussian
models.
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Figure 12: FDR, TPR, FPR, SHD, TP/NNZ and RP
metrics for RL, PC, ICALINGAM, GraNDAG, GES,
GPT-40, Gemini, Llama, DeepSeek-R1 and causal_llm
(with models GPT, Gemini, Llama and DeepSeek), plot-
ted for the synthetic datasets obtained from the domain
knowledge causal graphs - BIAS (N2I, N2E and I2E)
and LEGAL.

D.1 GPT-40 vs DeepSeek: A Comparison

Among the prompt-based approaches, GPT-40 and
DeepSeek consistently emerge as top-performing
models (refer Figure 5).

In the Sachs dataset, GPT-40 exhibits superior
performance with a high TPR, low FDR, and
the best TP/NNZ, making it the most effective
model for detecting true edges, while DeepSeek re-
mains competitive.In the Lucas dataset, DeepSeek
slightly outperforms GPT-40 by achieving a bet-
ter TPR, lower FDR, and higher TP/NNZ. In the
Asia dataset, both DeepSeek and GPT-40 achieve
perfect metrics, producing the exact ground truth
DAG.

As node complexity increases in datasets such as
ALARM and HEPAR2, GPT-40 experiences a
slight decline in performance, whereas DeepSeek
remains consistent, achieving a higher TPR and
lower FDR, particularly for higher-order nodes.

In conclusion, both GPT-40 and DeepSeek ex-
cel in prompt-based causal discovery. GPT-4o
performs best on lower-order datasets like Sachs,
while DeepSeek outperforms in Lucas and main-
tains consistency in higher-order datasets such as
ALARM and HEPAR2, where GPT-40 declines
slightly. DeepSeek proves to be more robust to
increasing node order, making it a reliable choice
for complex causal structures.

E New Metrics

Why these Metrics?

These metrics specifically assess the proportion of
predicted edges that are actually true edges, unlike tra-
ditional precision, which accounts for both edge and
non-edge predictions. In real-world datasets, ground
truth causal graphs are typically sparse, meaning true
edges are rare. As a result, traditional precision can be
skewed by correctly identified non-edges, obscuring
the model’s performance in detecting actual causal
relationships. By focusing solely on edge predictions,
these metrics offer a more precise evaluation of the
model’s ability to uncover genuine causal links.

F Parameter Settings

We used various causal discovery methods based on
constraints, functional causal model (FCM) based,
score based, reinforcement learning based, and gra-
dient based techniques, each configured with ap-
propriate hyperparameters. We have used parameter
initialization from gcastle causal discovery pack-
age (Zhang et al., 2021).
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Parameter Settings for Baseline Causal

Algorithms

Constraint-based approaches:
PC =  PC(variant="original’, alpha=0.05,
ci_test="fisherz’, priori_knowledge=None)

FCM-based methods:

ICA-LiINGAM =
ICALINGAM(random_state=None, max_iter=1000,
thresh=0.3)

Score-based techniques:
GES = GES(criterion="bic’, method="scatter’,
k=0.001, N=10)

RL-BIC= RL(encoder_type: str = ’TransformerEn-
coder’, hidden_dim: int = 64, num_heads: int =
16, num_stacks: int = 6, residual: bool = False,
decoder_type: str = ’SingleLayerDecoder’, de-
coder_activation: str = ’tanh’, decoder_hidden_dim:
int = 16, use_bias: bool = False, use_bias_constant:
bool = False, bias_initial_value: bool = False,
batch_size: int = 64, input_dimension: int = 64,
normalize: bool = False, transpose: bool = False,
score_type: str = BIC’, reg_type: str = 'LR’,
lambda_iter_num: int = 1000, lambda_flag_default:
bool = True, score_bd_tight: bool = False,
lambda2_update: int = 10, score_lower: float = 0,
score_upper: float = 0, seed: int = 8, nb_epoch: int
=10, Ir1_start: float = 0.001, Ir1_decay_step: int =
5000, Ir1_decay_rate: float = 0.96, alpha: float =
0.99, init_baseline: float = -1, 11_graph_reg: float =
0, verbose: bool = False, device_type: str = gpu’,
device_ids: int = 0)

Gradient-based methods:

GraNDAG = GraNDAG(input_dim, hidden_num:
int = 2, hidden_dim: int = 10, batch_size: int
= 64, Ir: float = 0.001, iterations: int = 10000,
model_name: str = ’NonLinGaussANM’, nonlinear:
str = ’leaky-relu’, optimizer: str = ’rmsprop’,
h_threshold: float = le-7, device_type: str =
cpu’, device_ids: int = 0, use_pns: bool = False,
pns_thresh: float = 0.75, num_neighbors: Any | None
= None, normalize: bool = False, random_seed: int
=42, jac_thresh: bool = True, lambda_init: float =
0, mu_init: float = 0.001, omega_lambda: float =
0.0001, omega_mu: float = 0.9, stop_crit_win: int =
100, edge_clamp_range: float = 0.0001, norm_prod:
str = ’paths’, square_prod: bool = False)
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