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Abstract

Enhancing large language models (LLMs) with
external tools has become a promising ap-
proach for solving complex tasks. As the num-
ber of available tools grows, context-based
prompting methods increasingly rely on re-
trieval mechanisms. A common solution is
to represent each tool with a unique token and
train LLMs to generate the corresponding token
during inference. However, this approach suf-
fers from linear growth in representation space,
leading to scalability challenges. It also limits
generalization to novel or rare tools and un-
derutilizes collaborative signals among tools in
downstream tasks. In this paper, we propose
Toolscaler1, a generative tool invocation frame-
work that introduces structure-aware semantic
tokenization to encode tools as discrete code
sequences. This method ensures similar tools
share subtokens, enabling compression of the
representation space and facilitating token shar-
ing for new tools. We further introduce a post-
guided, multistage iterative training strategy
on a shared backbone model, where collabora-
tive signals from downstream tasks guide the
dynamic refinement of tool representations. Ex-
tensive experiments on the ToolBench dataset,
which includes over 47,000 APIs, demonstrate
the effectiveness of Toolscaler across various
tasks, showcasing its potential as a scalable and
generalizable generative tool-using paradigm
in large-scale tool usage scenarios.

1 Introduction

Large language models (LLMs) improve their abil-
ity to interact with the real world through inte-
gration with tools, such as calculators, databases,
etc.(Parisi et al., 2022; Schick et al., 2023; Thoppi-
lan et al., 2022), and are proficient in handling ex-
ternal input, performing actions, and autonomously

*Corresponding authors
1https://github.com/OPilgrim/Toolscaler

completing tasks (Wu et al., 2023b; Liu et al.,
2023b). However, as the number of tools grows
to tens of thousands, existing methods for tool re-
trieval and execution struggle to scale effectively.

While various approaches have been proposed
to integrate tools into LLMs (Mialon et al.,
2023; Yang et al., 2023b), including context-based
prompting (Qin et al., 2024; Paranjape et al., 2023;
Yao et al., 2022) and fine-tuning with tool descrip-
tion (Borgeaud et al., 2022; Guu et al., 2020; Puig
et al., 2018; Shuster et al., 2021), they still face chal-
lenges in large-scale tool settings. Context-based
prompting methods are inherently constrained by
the input length limitation of LLMs, making it in-
feasible to include all tools within a single prompt
and requiring external retrievers to select a small
subset of candidate tools. On the other hand,
fine-tuning-based methods that integrate tools into
model parameters (Wang et al., 2024b; Hao et al.,
2023) often rely on assigning each tool a unique
identifier (ID) (Liu et al., 2024c; Yuan et al., 2023),
which introduces several limitations in large-scale
scenarios. First, the vocabulary size grows lin-
early with the number of tools, resulting in higher
memory consumption and a larger decoding space,
which increases the inference burden (Kang and
McAuley, 2018; Sun et al., 2019). Second, the data
sparsity and long-tail distribution of tool usage not
only hinder the learning of reliable representations
for infrequent tools, but also make it difficult to
incorporate newly introduced tools without addi-
tional retraining or architectural changes. Third,
since ID embeddings are learned independently,
they fail to capture functional similarities or collab-
orative relationships among tools, further limiting
generalization and reuse across tasks.

To address these limitations, we propose
Toolscaler, a unified generative framework that pro-
vides a scalable and semantically structured rep-
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resentation of large-scale tools, enabling simulta-
neous tool retrieval and calling during generation.
First, we introduce structure-aware semantic to-
kenization, which assigns each tool a compact se-
quence of discrete codes (Rajput et al., 2024; Singh
et al., 2024; Wang et al., 2024d; Zhu et al., 2024)
derived from its semantic embedding. These se-
mantic embeddings are obtained by compressing
tool knowledge into a small number of special to-
kens that encode functional and behavioral infor-
mation. To generate the code sequences, we em-
ploy a lightweight deep residual k-means algorithm
over the semantic embedding space for centroid
assignment, and use the resulting centroids to ini-
tialize the embeddings of code tokens. The discrete
codes are then dynamically refined via post-guided
training to ensure that semantically or functionally
similar tools share similar subtokens. This code-
based tokenization facilitates representation com-
pactness and encourages knowledge sharing across
tools, while also enabling approximate similarity
estimation (e.g., via Hamming distance) without
additional model training—thus offering scalabil-
ity to newly added or unseen tools. Its hierarchical
structure enables a logarithmic compression of the
tool vocabulary space, significantly reducing the
decoding overhead compared to linear ID-based
indexing. Second, we unify semantic tokenization,
retrieval, and calling into a single generative mod-
eling framework. This design allows for multistage
iterative training, where the model progressively in-
tegrates tool knowledge—from basic documents to
usage contexts and invocation workflows—across
stages. Finally, in later training iterations, down-
stream collaboration signals are leveraged to refine
tokenization strategies, allowing the model to dy-
namically adapt to tool usage patterns and improve
its generative capabilities over time.

In summary, our work contributes the following
key aspects:

• Robust tool representation: We employ se-
mantic compress and deep residual k-means
clustering to obtain the discrete structure-
aware semantic code sequence, which can
represent large-scale toolsets with minimal
space overhead. Thanks to their structured
composition, these code sequences also en-
able effective knowledge transfer to unseen
tools, supporting robust generalization and
scalability.

• Dynamically updated strategy: We adopt a

post-guided training strategy that integrates
tool knowledge from both documentation
and latent logic embedded in downstream
tasks—such as co-occurrence patterns and
shared usage contexts—enabling dynamic re-
finement of code sequence generation.

• Unified framework: We employ a unified
generative framework built upon a single
LLM to jointly model tool tokenization, re-
trieval, and calling, thereby reducing informa-
tion loss and enhancing cross-task knowledge
transfer.

• Empirical evaluation: Extensive experi-
ments conducted on the large-scale ToolBench
dataset, collected from real-world sources,
demonstrate that the Toolscaler framework
achieves outstanding performance in diversity
tool usage scenarios, highlighting its effective-
ness and broad applicability.

2 Related Work

LLM with Tool Augmentation. Enhancing the
ability of LLMs to solve complex problems by
equipping them with tools for various tasks has
demonstrated strong potential(Vemprala et al.,
2024; Qin et al., 2023a; Wu et al., 2023a; Qian
et al., 2023; Song et al., 2023; Zhuang et al.,
2023; Gao et al., 2023a). By accessing external
tools, LLMs can be endowed with real-time factual
knowledge(Yang et al., 2023a), coding and debug-
ging capabilities (Chen et al., 2022; Gao et al.,
2023b; He-Yueya et al., 2023; Lyu et al., 2023; Xie
et al., 2023; Liu et al., 2023a), multimodal func-
tionalities (Gupta and Kembhavi, 2023; Shen et al.,
2023; Lu et al., 2023), domain-specific expertise
(Jin et al., 2024), and the ability to interact with the
virtual or physical world (Brohan et al., 2023b;
Huang et al., 2022b, 2023; Singh et al., 2023).
Thanks to the powerful contextual learning ability
(Brown et al., 2020), it is possible to enable LLMs
to use tools simply by displaying examples within
the prompt, without the need for training(Mekala
et al., 2024; Khot et al., 2022). Therefore, most
methods focus on guiding LLMs to mimic human
task solving processes and generate plans (Zheng
et al., 2024c; Liu et al., 2024d; Ahn et al., 2022;
Huang et al., 2022a; Ye et al., 2023), and improving
plans by incorporating execution feedback (Wang
et al., 2024a; Shinn et al., 2024), thus combining
reasoning with action. However, context-based
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learning methods are prone to hallucinations and
are limited by inadequate context capacity when
faced with large-scale tools. Although the tool
retrieval stage is widely used, including trained ad-
ditional retriever to rank top-k candidates from a
large number of tools based on similarity to the
query to enhance the generation process (Zheng
et al., 2024b; Patil et al., 2025; Chen et al., 2024;
Qin et al., 2023b). Such strategies do not improve
the model’s understanding of external tool knowl-
edge, and maintaining dense retrieval databases and
document indices can lead to inefficiency and dif-
ficulties in optimizing within an end-to-end agent
framework.
Tool Learning. To address this problem, a promis-
ing paradigm is to integrate tool information di-
rectly into model parameters and generate tools
without retrieval(Schick et al., 2023; Wang et al.,
2022; Sun et al., 2023; Kishore et al., 2023; Mehta
et al., 2022; Chen et al., 2023). Existing work (Bro-
han et al., 2023a; Asai et al., 2023; Hao et al., 2023;
Wang et al., 2024b) attempts to represent tools as
atomic tokens(Geng et al., 2022, 2023; Kang and
McAuley, 2018; Sun et al., 2019) and trains with
existing token embeddings, so that LLMs can di-
rectly output atomic tokens by means of the next
token in the generation stage by conditional con-
straints. However, such atomic tokens are relatively
independent, i.e., the semantics cannot be directly
transferred to new tools without training, and the
space of beam search increases linearly. There-
fore, this paper employs structure-aware semantic
tokenization to solve this problem, which allows
tools with similar semantics to share part of the
code sequences (Jin et al., 2023; Liu et al., 2024a;
Zheng et al., 2024a), achieving logarithmic growth
of additional tokens. On the other hand, learning
tools through interactive is also prospective, espe-
cially as the traces may contain implicit logic for
calling multiple tools. However, existing methods
(Parisi et al., 2022; Schick et al., 2023; Nakano
et al., 2021) require frequent interaction with unsta-
ble environments, resulting in high system design
and tuning costs, and the tool or action space in-
volved is small, which is not suitable for large-scale
tool invocation scenarios. To this end, this paper
considers direct fine-tuning of LLMs using mas-
sive trajectory data. Moreover, prior work has not
sufficiently investigated the dynamic refinement of
semantic code sequences during training (Qu et al.,
2024; Wang et al., 2024c), leading to suboptimal
performance in downstream tasks, a gap this paper

aims to address.

3 Preliminaries

Existing agents based on LLMs that use tools
typically involve four stages (Qu et al., 2025):
given a query/task Q, (1) generating a plan p,
(2) determining the tool d ∈ D, (3) generating
tool parameters c, (4) and collecting feedback
f from tool execution. The model iteratively
repeats the process (pi, di, ci, fi) until it gener-
ates a stopping symbol or reaches the maximum
number of iterations, ultimately generating the
answer A and completing the task. The entire
process forms an interaction trajectory Traj =
[Q, (p1, d1, c1, f1), ...., (pt, dt, ct, ft),A], while t
is the total round, and i ∈ t. A specific example
can be found in Figure 8.

We unify the four phases through a generative
framework and focus on improving the second
phase. During the generative tool determination
phase, yi+1 = logP (Idx(d)|Q, y<i+1, embd(D)),
where Idx(d) is the tool tokens. When the can-
didate toolset |D| = N is large, existing unique
identifier schemes (Hao et al., 2023; Wang et al.,
2024b) suffer from sparse supervision and poor
generalization. Instead, if tool representations
share substructures, we can reduce representation
space and enhance inter-tool correlation. To this
end, we adopt a codebook-based semantic tokeniza-
tion (Van Den Oord et al., 2017), where a codebook
with L layers and K codes per layer enables tools
to share semantic components. Two similar tools
will share the same code at layer l ∈ L. This yields
a representation capacity of KL, allowing compact
encoding even when N ≫ K. Compared to unique
identifiers requiring N ×D memory, our method
compresses into logarithmic space K × L × D,
where D is the embedding dimension.

4 Proposed Approach: Toolscaler

4.1 Tool Tokenization
Semantic Compression. Following previous
works (Mu et al., 2024; Liu et al., 2024b), we or-
ganize the encoder input into four distinct blocks:
[Content;Token;Placeholder;Task], where [; ] de-
notes concatenation. Specifically:

Content = [a1;a2; . . . ;ar]

Token = [g1, g2, . . .]

Placeholder = [p1,p2, . . .]

Task = [tj ;aj ]
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Figure 1: Overview of the Toolscaler framework. Toolscaler employs a three-stage training paradigm with multi-
round iterative refinement to progressively optimize tool representations. Initially, the LLM generates clustered,
structure-aware semantic code sequences that replace tool names in the corpus, forming a compact and expressive
representation space. The model then learns tool usage from Query-Tool pairs, procedural logic from execution
trajectories, and collaboration patterns from multi-tool interactions. Throughout iterations, tool knowledge and
clustering co-evolve, refining code sequences for better alignment with downstream retrieval and invocation. Finally,
a generative agent is trained to perform end-to-end tool calling.

The Content block contains textual information ex-
tracted from the tool documentation, such as func-
tional descriptions, and is represented as {aj}mj=1,
where m denotes the number of distinct pieces
of information. The Token block consists of a se-
quence of V gist tokens (Mu et al., 2024), each with
learnable embeddings designed to extract and ag-
gregate information from the Content block. The
Task block contains a special indicator token tj
and the corresponding target output aj ; specifi-
cally, for 0 < j ≤ r the task is reconstruction,
whereas for r < j ≤ m it is generation. Finally,
the Placeholder block is employed to ensure that
the Task block can be effectively guided by the
output of the Token block. In practice, its embed-
ding is initialized with the output embedding of the
Token block, thereby facilitating the reconstruction
or generation process.

Similarly, we adopt a cascaded attention mask-
ing scheme to restrict Task output generation solely
to the Token (and subsequent Placeholder) blocks.
Each block applies a causal mask to capture in-
ternal sequential dependencies, while only the
Content block fully attends to the Token block and
the Placeholder block to the Task block; all other
inter-block attention is disabled.

Deep residual clustering. After obtaining the
Token block’s output embeddings, we cluster these
embeddings to derive semantic codes with explicit
classification signals. Although we initially ex-
plored unsupervised k-means (Krishna and Murty,
1999) – in contrast to training-dependent methods
such as RQ-VAE (Lee et al., 2022) – our experi-
ments show that a single-level k-means incurs a
high collision rate and yields inaccurate tool parti-
tioning. To address this, we adopt a deep residual
clustering approach.

Specifically, let the Token block’s output embed-
dings be:

E =




e1,1 e1,2 · · · e1,N
e2,1 e2,2 · · · e2,N

...
...

. . .
...

eV,1 eV,2 · · · eV,N


 ,

where ei,j ∈ RD denotes the i-th gist token em-
bedding for the j-th tool (with D typically high,
e.g., 4098). We first apply principal component
analysis (PCA) (Maćkiewicz and Ratajczak, 1993)
to reduce each ei,j to a lower-dimensional vector
êi,j ∈ RD̂ (e.g., D̂ = 32).

For each gist token position i, let

Ê[i, :] = [êi,1, êi,2, ..., êi,N ]
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denote the reduced embeddings across the N tools.
We then adopt an L-level residual quantization
framework by applying k-means clustering on the
embedding space Ê; at each level l ∈ {1, ..., L}, a
codebook is learned as follows:

Cl = {zl
k ∈ RD̂ : k = 1, ...,K}

where K is the number of centroids and z is the
vector of centroids. For each reduced embedding
êli,j at level l, we assign it to its nearest centroid
(measured via Euclidean distance) and compute the
residual for the next level:

êl+1
i,j = êli,j − zl

k∗ ,

with k∗ = argmin
k∈{1,...,K}

∥∥∥êli,j − zl
k

∥∥∥
2
.

This process yields a sequence of discrete codes
for each tool:

cj = [c11,j , c
2
1,j , ..., c

L
1,j , c

1
2,j ..., c

L
V,j ],

where each cli,j ∈ {1, ...,K} corresponds to the
centroid index assigned at level l for the i-th token.

We generate m augmented copies for each train-
ing sample to accommodate different tasks. In
addition, we employ low-rank adaptation (LoRA)
(Hu et al., 2021) and update only token and task
blocks during training. The model is optimized
using cross-entropy loss:

Ltool = −
∑

(i,j)

logP (ai,j+1|ai,1, ai,2, ..., ai,j)

where ai,j denotes the j-th token of ai. During
inference, the next token is selected as

ai,j+1 = argmin
w∈W

P (w|ai,1, ai,2, ..., ai,j)

, and W is the token vocabulary.

4.2 Generative Calling

Reframe embedding. In the subsequent stage,
to allow the model to generate and invoke tools
as next-tokens during interaction, we integrate the
learned codes into the language model vocabulary
as new tokens. For instance, consider a semantic
code sequence of length four, e.g., [154, 53, 48, 1].
We represent it via unique tokens such as [<a_154>,
<b_53>, <c_487>, <d_1>]. These tokens are then
trained using Query-Tool examples and trajecto-
ries.

While explicit tool knowledge is transferred
through these codes—multiple retrieval-capable
tools may share the code <a_154> —further tool in-
formation remains embedded in the Token block’s
output embeddings. This aspect is often overlooked

by previous works, which either fine-tune directly
on downstream tasks (Wang et al., 2024b) or apply
alignment objectives for refine-tuning (Liu et al.,
2024b). We posit that this embedded knowledge
can be implicitly transferred through shared net-
work parameters. Hence, we reassign the out-
put embeddings as the initial tool memory for the
newly introduced tokens, allowing them to be up-
dated in subsequent training.

However, we cannot directly assign zl
k to cl due

to dimensional mismatch (e.g., 32 ̸= 4028). To
address this, we aggregate the embeddings for each
residual level l of the gist tokens as follows:

El =

{
El, l = 0,

PCA−1(Êl), l ≥ 1

For l ≥ 1, we restore the low-dimensional residual
vectors via the inverse PCA transform; for l =
0, we simply use the original output embeddings.
Next, for each code cl with centroid index k, its
embedding is defined as the average of all tool
embeddings assigned to that code:

ecl =
1

|∆|(
∑

δ∈∆
elδ), ∆ = {δ|cl ∈ cj}, elδ ∈ El

Ultimately, combining this reframed embedding
with the compression process equips the LLM with
fundamental tool knowledge and their associated
operations.
Domain-specific training. Following Wang et al.
(2024b), we implement generative tool calls using
two data-organization strategies derived from Tool-
Bench. First, using Query-Tool examples, we train
the model to generate the correct code sequences
cj conditioned on a user query q. We fine-tune the
LLM’s parameters θ using a next-token prediction
loss:

Lret =
∑

q∈Q

V ∗L∑

i=1

− logPθ(c
i
j |q)

Second, we fine-tune the model on trajectories
(described in Section A) to enable it to function as
an intelligent agent. In this phase, the model learns
to determine a solution schema, select appropriate
tools, generate input parameters based on tool doc-
umentation, and produce a final answer from the
tools’ execution results. We employ cross entropy
based next-token prediction over the assistant’s re-
sponse within each dialogue:

Ltraj =
∑

u∈Traj

T u
a∑

v=1

−logPθ(a
u
v |qu, au1 , ..., a(u)v−1)
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where qu is the user query for dialogue u, auv is the
v-th token in the assistant’s response, and T u

a is the
total number of tokens in that response. Only the
assistant tokens contribute to the loss, enabling the
model to jointly learn tool calling and final answer
generation.
Post-guided Training. Pre-generated code se-
quences may be suboptimal for downstream tasks,
as trajectory data contain collaboration signals sug-
gesting that functionally similar tools should share
similar code sequences, yet these signals remain
underexploited. To address this limitation, we pro-
pose a post-guided iterative training strategy. In the
first round, the standard pipeline produces initial
parameters θ0 for the final LLM. In subsequent
rounds t ∈ T , we update the Token embeddings
while keeping θt−1 fixed. At the end of each epoch,
a new codebook Ct is generated to replace the pre-
vious one. The trajectory loss Lttraj is computed
using the frozen θt−1, and the overall fine-tuning
loss in round t is given by the sum Lttool + Lttraj .
After that, the updated code sequences serve as the
foundation for the remaining training stages.

Appendix E.2 shows that this multi-round strat-
egy dynamically refines the code sequences and
embeddings, yielding code sequences that better
support downstream tasks and improve LLM per-
formance.

4.3 Inference

During inference, we employ constrained beam
search to ensure that generated tokens correspond
to valid code sequences. To this end, we construct
a code tree that encompasses all possible code com-
binations, where each node’s children represent
the feasible codes that can follow the current code.
This tree restricts the search space by effectively
blocking infeasible token combinations.

Since the trajectory is divided into several steps
(pi, di, ci, fi) and the model outputs the tool’s code
sequence directly in the second step, we apply con-
strained search only at that step, while standard
beam search is used for the other steps.

5 Experiments

5.1 Experimental Setups

Datasets. We evaluate our method on ToolBench
(Qin et al., 2023b), a state-of-the-art, large-scale
benchmark designed for instruction tuning in tool-
use scenarios. ToolBench contains 16,464 real-
world RESTful APIs sourced from the RapidAPI

Hub2, each associated with a name, domain cate-
gory, and a set of API functions. In this work, we
treat each API function as a distinct tool, resulting
in 46,985 unique and usable tools. For evalua-
tion, we consider three scenarios: I1 (single-tool
queries), I2 (multi-tool queries within the same cat-
egory), and I3 (multi-tool queries within the same
collection). Detailed dataset statistics and illustra-
tive examples are provided in Appendix B.
Baselines. We adopt several classical retrieval
methods as baselines, including BM25 (Robert-
son et al., 2009), Embedding Similarity (EmbSim)
(Kohane and Zitnik), and ToolRetriever (Qin et al.,
2023b), to evaluate the effectiveness of our method
in retrieving tools relevant to a given query. In
addition, we compare our approach with Tool-
Gen (Wang et al., 2024b), a state-of-the-art gen-
erative tool usage model. For tool calling tasks,
we benchmark against GPT-4o-mini, ToolGen, and
ToolLlama-2 (Qin et al., 2023b). A comprehen-
sive description of all baselines is provided in Ap-
pendix C.
Metrics. To evaluate the effectiveness of each re-
trieval scheme in selecting the appropriate tool
for a given query, we employ Normalized Dis-
counted Cumulative Gain (NDCG), a standard met-
ric in information retrieval. We report NDCG@1,
NDCG@3, and NDCG@5 to assess ranking qual-
ity at varying depths. For tool calling evaluation,
we adopt the StableToolBench framework (Guo
et al., 2024), which provides two key metrics: Solv-
able Pass Rate (SoPR), indicating the proportion of
successfully completed queries, and Solvable Win
Rate (SoWR), measuring the percentage of cases
where the candidate model’s answer surpasses that
of the reference one (GPT-4o-mini based on ground
truth).

5.2 Experimental Results

As shown in Table 1, Toolscaler consistently
achieves the best performance across all settings,
demonstrating strong retrieval accuracy in both sim-
ple and complex queries. Compared to ToolGen,
Toolscaler demonstrates notable gains(e.g., +4.5
NDCG@1 on I1, +6.5 on I2 and +8 on I3), vali-
dating the benefit of its tokenization and training
strategies. Moreover, on subsets involving unseen
tools (Tool. and Cat.), Toolscaler still maintains
top performance, surpassing ToolGen by up to 7
NDCG@1 on I1-Tool. and 8.54 on I2-Cat., high-

2https://rapidapi.com/hub
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Table 1: Multi-domain tool retrieval and evaluation. We train all models on the full ToolBench dataset (I123)
and evaluate retrieval performance across all tools. BM25 and EmbSim serve as unsupervised baselines, while
ToolRetriever and ToolGen are supervised. ToolGen, like our method, is trained via next-token prediction. All
results are re-evaluated using publicly released checkpoints. In addition to unseen instruction subsets for I1, I2, and
I3, we also assess generalization to unseen tools in I1 and I2 (denoted as Tool. and Cat.).

Model NDCG@1 NDCG@3 NDCG@5
I1 I2 I3 I1 I2 I3 I1 I2 I3

BM25 26.92 20.00 10.00 26.13 21.92 10.08 29.00 23.46 12.33
EmbSim 50.50 46.00 18.00 48.15 39.58 17.77 53.41 43.05 20.94
ToolRetriever 75.92 63.00 28.00 76.96 66.38 39.28 82.31 72.72 44.54
ToolGen 88.50 84.00 81.00 88.83 85.65 80.83 91.65 89.02 85.83
Toolscaler 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98

I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat.
BM25 20.75 20.63 16.58 21.12 20.67 19.55 23.64 24.18 20.89
EmbSim 53.00 58.00 35.68 49.82 54.38 33.92 54.93 59.24 36.22
ToolRetriever 75.25 73.50 60.30 78.26 73.56 64.11 83.08 79.10 73.01
ToolGen 84.00 89.50 83.42 86.40 89.95 86.06 89.52 92.01 88.47
Toolscaler 91.00 93.00 91.96 92.20 93.56 91.06 93.89 94.92 92.97

Table 2: Task completion evaluation with ground-truth and retrieved tools. We evaluate model performance under
two settings: (1) using ground-truth candidate tools, and (2) retrieving candidates from the full toolset. Both GPT
and ToolLlama rely on external retrievers. All results are reported as the average of three runs using SoPR and
SoWR metrics. Bold indicates the best result under each setting.

Model Setting SoPR SoWR
I1 I2 I3 I1-Tool. I1-Cat. I2-Cat. I1 I2 I3 I1-Tool. I1-Cat. I2-Cat.

GPT-4o-mini GT. 52.66 43.40 33.06 50.11 49.46 52.82 - - - - - -
ToolLlama-2 GT. 36.30 17.30 7.92 31.86 39.54 21.24 25.77 20.75 21.31 25.94 35.95 15.32
ToolGen GT. 47.85 34.91 29.23 35.76 41.29 25.27 38.65 35.85 37.70 25.31 33.33 22.58
Toolscaler GT. 60.22 44.03 27.87 44.20 51.09 39.65 39.88 43.40 40.98 37.97 47.06 31.45

GPT-4o-mini Retrieval 52.25 40.41 24.86 53.16 50.11 39.38 - - - - - -
ToolLlama-2 Retrieval 28.94 24.69 10.93 28.48 36.93 19.09 25.15 30.19 24.59 26.58 27.45 20.16
ToolGen 52.97 45.13 36.34 45.36 55.56 45.56 36.20 42.45 49.18 32.91 42.48 37.90
Toolscaler 62.78 52.04 41.26 52.53 57.19 56.99 42.94 46.23 45.90 42.41 47.71 37.90

lighting its strong compositional generalization and
scalability to previously unseen tools.

Table 2 presents the task execution success rates
under two settings: (1) GT.: where the ground-
truth tool is provided in the query prompt, and (2)
Retrieval: where tools are retrieved from the entire
toolset without prior hints. Toolscaler and Tool-
Gen, which both directly integrate tool retrieval
into the generation process, consistently outper-
form retriever-dependent models (GPT-4o-mini,
ToolLlama-2) in SoPR, demonstrating superior tool
selection and end-to-end reasoning capabilities. Of
course, Toolscaler clearly demonstrates superior
performance. Interestingly, generative models such
as Toolscaler and ToolGen perform better in the Re-
trieval setting than in the GT. setting. We hypothe-
size this counterintuitive result stems from potential
interaction mismatch introduced by supervised fine-
tuning (SFT) when ground-truth tools are forcefully
injected, which may reduce robustness. We leave

a detailed investigation of this phenomenon for
future work. Regarding SoWR, Toolscaler also out-
performs most generative baselines, confirming its
ability to produce high-quality outputs. Despite
Toolscaler achieving notably higher SoPR than the
reference model (GPT-4o-mini GT.), its SoWR re-
mains below 50%. This suggests a systemic gap be-
tween model predictions and GPT-4o-mini’s inter-
nal satisfaction criteria, raising broader questions
about evaluation alignment.

5.3 Further Analysis

Ablaiton Study. To evaluate the contribution of
key components in our method, we conduct ab-
lation experiments and present the results in Fig-
ure 2. The results show that removing either com-
ponent leads to consistent performance degradation
across all settings (I1, I2, I3). Notably, eliminat-
ing post-guided training causes significant drops
in NDCG@1, especially in I2 and I3, where the

562



Table 3: Retrieval performance of different tokenization methods in the Multi-domain setting. All models are trained
on Query-Tool pairs and Trajectories. The results of ToolGen are directly adopted as the baseline for the Atomic.

Tokenization NDCG@1 NDCG@3 NDCG@5
I1 I2 I3 I1 I2 I3 I1 I2 I3

Numerical 82.00 77.50 81.91 84.18 77.53 76.51 70.00 88.07 84.30
Hierarchical 87.50 77.50 79.00 86.11 78.82 81.44 89.91 83.81 87.47
Semantic 90.00 84.50 84.00 91.56 84.33 79.41 92.96 88.44 87.40
Atomic 88.50 84.00 81.00 88.83 85.65 80.83 91.65 89.02 85.83
Toolscaler 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98

Table 4: Tool calling evaluation for different tokenization methods. Bold values denote the highest performance.

Tokenization SoPR SoWR
I1 I2 I3 I1-Tool. I1-Cat. I2-Cat. I1 I2 I3 I1-Tool. I1-Cat. I2-Cat.

Numerical 21.98 9.12 11.20 20.68 26.14 17.20 16.56 16.04 16.39 20.89 23.53 14.52
Hierarchical 39.16 20.28 17.49 36.29 31.81 14.92 29.45 28.30 26.23 29.11 24.83 14.52
Semantic 50.20 29.72 16.39 33.02 51.42 27.02 39.26 29.24 32.79 29.11 43.79 22.58
Atomic 52.97 45.13 36.34 45.36 55.56 45.56 36.20 42.45 49.18 32.91 42.48 37.90
Toolscaler 62.78 52.04 41.26 52.53 57.19 56.99 42.94 46.23 45.90 42.41 47.71 37.90

Figure 2: Ablation study for tool retrieval in the Multi-
domain setting. We evaluate the impact of removing em-
bedding initialization for code tokens and omitting the
second training iteration on Toolscaler’s performance.

performance drops by 5 and 10 points, respectively.
These results highlight the importance of seman-
tic transfer from language modeling and the ef-
fectiveness of iterative guidance in enhancing tool
discrimination and retrieval accuracy in complex
compositions.
Tokenization Strategy Evaluation. We compare
several tokenization strategies for tool retrieval.
Our structure-aware semantic tokenization, while
conceptually related to Hierarchical and Semantic
tokenizations, goes further by constructing code se-
quences across both feature dimensions and resid-
ual depth, and dynamically refining them using
richer semantic and interaction signals. As reported
in Table 3 and Table 4, our method consistently
outperforms existing strategies, achieving stronger
tool ranking (NDCG) and downstream invocation
accuracy (SoPR/SoWR), especially on more am-

biguous cases like I2 and I3.
This performance gain stems from Toolscaler’s

ability to preserve interaction-aware structure dur-
ing tokenization. While other strategies often
rely on fixed hierarchies or shallow semantics,
Toolscaler dynamically groups semantically related
tool actions and constructs trajectory-aligned code
sequences, reducing information loss across modal-
ities. This leads not only to higher relevance rank-
ing, but also to clearer contextual grounding for
accurate tool calling. For instance, improvements
in NDCG@3/5 translate into SoPR/SoWR gains
across both I1/I2/I3 and categorically split settings,
reflecting the method’s generalizability and real-
world robustness.

More results and implementation details can be
found in Appendix E and Appendix C.

6 Conclusions

We propose Toolscaler, a model-agnostic frame-
work that leverages a single LLM to perform gen-
erative tool retrieval and calling, thereby eliminat-
ing the need for external retrievers. Toolscaler in-
troduces structure-aware semantic code sequences
to concisely and effectively represent large-scale
toolsets, while maintaining adaptability to the con-
tinual expansion of new tools. Our method inte-
grates basic tool knowledge and inter-tool coordi-
nation signals, and dynamically refines code se-
quences through multistage iterative training. Ex-
tensive experiments demonstrate the effectiveness
of Toolscaler, particularly in multi-tool scenarios.
It consistently outperforms strong baselines in ac-

563



curacy, pass rate, and win rate, and further shows
clear advantages over other tokenization strategies
through structure-aware semantic modeling. Our
study provides a promising direction for large-scale
generative tool execution and lays the groundwork
for future extensions, such as combining genera-
tive agents with reinforcement learning to further
enhance tool-use autonomy in LLMs.

Limitations

While our structure-aware semantic tokenization
method demonstrates strong scalability and gener-
alization in large-scale tool scenarios, its perfor-
mance still relies on the initial quality of tool docu-
mentation and the stability of the clustering process.
Specifically, when tool descriptions are sparse, am-
biguous, or inconsistent across domains, the gener-
ated semantic identifiers may not fully capture func-
tional nuances, potentially affecting downstream
retrieval or planning accuracy. Similarly, due to
the token-augmentation framework, Toolscaler re-
quires a certain degree of training or fine-tuning
to match the potential space of the underlying lan-
guage model with the newly introduced semantic
labels. This dependence weakens its adaptability in
cold-start or zero-sample scenarios. Moreover, the
current framework lacks the ability to seamlessly
remove invalid or outdated tools, which may hin-
der the long-term maintenance of the dynamic tool
ecosystem. Furthermore, although our current iter-
ative training pipeline, though effective, involves
non-negligible computational overhead, which may
limit applicability in rapid deployment scenarios.

Ethical Considerations

We recognize the ethical considerations in develop-
ing large language models and have carefully used
publicly available pretrained LLMs (e.g., Llama-2-
7B, Llama-3-8B) and the ToolBench dataset. The
ToolBench dataset is licensed under Apache 2.0,
which permits free use and modification. Our use
fully complies with its license terms and intended
purposes. The data contain no sensitive personal
information, and all ethical guidelines are observed
in processing these resources.
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A Introduce New Tools After Training

After completing the model training in Section 4,
one can follow the process outlined in the Algo-
rithm 1 to invoke the newly added tools without
the need for re-training or rebuilding the codebook.
Specifically, during semantic compression in Sec-
tion 4.1, the model learns to encode tool documen-
tation into Token Block embeddings, producing a
fixed checkpoint for inference. Importantly, we
save the multi-layer residual centroids and PCA
from Deep Residual Clustering step, which form
the "codebook" mapping embeddings to code se-
quences. For new tools, we:

1. Encode their documentation with the frozen
model to get Token Block embeddings;

2. Project embeddings using the saved PCA;

3. Quantize sequentially via saved centroids to
generate code sequences compatible with the
existing space.

This procedure allows us to embed new tools
into the existing semantic code space based on the
original codebook.

In order to verify that the codebook has ef-
fectively aggregated the information of the tool,
we conducted a small-scale experiment. Specif-
ically, we used GPT-4o mini to generate several
new tools in the same domain and with simi-
lar functionality to an existing tool, "Pragmavan-
tApi_web_snapshot" (whose code sequence is [282,
123, 144, 204]). One such generated tool is "Prag-
mavantApi_web_render". Using the saved PCA
transformation and clustering centroids, we en-
coded these new tools via the same residual cluster-
ing process and obtained the code sequence [282,

568



Algorithm 1: Introducing New Tools

Input: Pretrained model M , codebook C = {PCAi, Centersdi }, new tools Tnew

Output: Codes Znew for Tnew

Step 1: Export Gist Embeddings
Replace toolset T in training data with Tnew;
Run M in inference mode to export gist embeddings Enew for each t ∈ Tnew;
Step 2: Load Codebook Components
Load PCA projections {PCAi}Ni=1 and residual cluster centers {Centersdi }Dd=1 from C;
Step 3: Residual Clustering Inference
for i← 1 to N do

foreach t ∈ Tnew do
v0 ← PCAi.transform(Enew[t][i]);
for d← 1 to D do

label← argmink ∥vd−1 − Centersdi [k]∥;
Znew[t].append(label);
vd ← vd−1 − Centersdi [label];

return Znew;

184, 30, 262].The result shows that our framework
can capture semantic and functional continuity,
enabling structural sharing between existing and
newly introduced tools.

According to Section , theoretically, the code-
book can represent up to KL tools. When K = 512
and L = 4, mathematically, it allows for over 68
billion unique code sequences. This exponential en-
coding capacity means that even thousands or tens
of thousands of tools can be efficiently represented
with a relatively small token vocabulary, far more
compact than traditional text-based descriptions.
Of course, if the size of the toolset is further ex-
panded beyond the range that the current codebook
can represent, Toolscaler can expand the codebook
by adding more centroids K (i.e., code token vo-
cabulary size) or increasing the length of the code
sequences L (e.g., from 4 to 6 tokens), thus further
enlarging the representational space. However, this
would also require additional re-training.

B Dataset

The ToolBench dataset, introduced by Qin et al.
(2023b), was automatically constructed using Chat-
GPT and supports both single-tool and multi-tool
usage scenarios. It involves the generation of in-
structions and tool call sequences for RESTful
APIs. The dataset comprises 16,464 real-world
RESTful APIs spanning 49 categories, such as so-
cial media, e-commerce, and weather services, to-
taling 46,985 unique API functions. In our paper,

each API function is treated as an individual tool
and represented using a semantic code sequence.
Figure 5 illustrates a real RESTful API example,
where each entry in the api_list corresponds to a
single API function. In our experiments, we utilize
the following fields: "tool_name" and "name",
"description", "categories", and "code".

Following the setup of Qin et al. (2023b), we
construct our training and evaluation sets based on
three subsets: I1 for single-tool queries, I2 with
multi-tool queries from the same category, and I3
with multi-tool queries from the same collection.
I2 and I3 are created by randomly selecting 2–5
RESTful APIs from the same category or collection
in RapidAPI and sampling up to 3 API functions
per RESTful API to form each instruction sample.
It should be noted that these independent API ser-
vices have different interfaces and purposes. For ex-
ample, for a user query: "I need to gather some in-
formation about Ethereum for my company’s finan-
cial report. Please fetch the last mined Ethereum
block number and provide me with the ticker data
for ETHUSD. It would be great if you could also
give me the historical rates of currency conversion
from USD to ETH.” Its trajectory involves at least
three API services:

• getLastBlockNumber from tool named Chain-
gateway.io: Returns the block number of the
last mined ethereum block;

• TickerPerSymbol from tool named Global
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Table 5: Dataset statistics for the three-stage training.

Dataset Tool Tokenization Retrieval Tool CallingI1 I2 I3 All

Train 49,936 194,086 222,783 72,833 489,702 183,336

Ethereum Price Index (GEX): Returns ticker
data for specified symbol;

• Timeframe from tool named CurrencyAPI.net:
Displays a currency conversion’s historical
rates within a given timeframe.

These API services fall under the same top-level
"Finance" category in RapidAPI, but they come
from entirely different tool providers, exhibit dis-
tinct semantics and calling structures, and collec-
tively address a cross-functional financial analysis
task. Such examples are not isolated—we iden-
tified 80,847 trajectories in ToolBench with sim-
ilarly diverse tool compositions, which indicates
that ToolBench can provide meaningful coverage
of generalization challenges.

Anyway, the resulting subsets contain 87,413
(I1), 84,815 (I2), and 25,251 (I3) Query-Tool pairs,
respectively.

In the semantic compression stage, tool docu-
mentation serves as input, and the objective is to
reconstruct individual fields such as category, tool
name, code, and description. Consequently, each
tool document generates m = 4 training instances,
one for each reconstruction target.

For the domain-specific training stage, we ex-
tract Query-Tool pairs from ToolBench, using the
query as input and the semantic code sequence of
the relevant tools as output. Figure 6 shows an
example training instance. Further, for the tool
calling stage, we follow the procedure from Wang
et al. (2024b), removing the system prompt tool de-
scriptions and adopting a three-stage output format
(Thought, Action, Action Input). We replace tool
names in the trajectories with our code sequences
and construct a mapping dictionary between tool
names and their corresponding codes to enable doc-
ument lookup during execution. Figure 7 presents
an illustrative training example.

Finally, Table 5 summarizes the data scale across
each training phase.

C Baselines and Tokenization Methods

Baseline Models. In the tool retrieval comparison
experiment, we adopted the following representa-

tive retrieval models as the baseline for comparison
with Toolscaler:

• BM25: An unsupervised retrieval model that
ranks documents by query relevance, using
normalized term frequency and document
length.

• Embedding Similarity (EmbSim): utilizes sen-
tence embeddings generated by OpenAI’s text-
embedding-3-large model to compute seman-
tic similarity between queries and tool docu-
ments.

• ToolRetriever (Qin et al., 2023b): A BERT-
based retriever trained using contrastive learn-
ing to distinguish between relevant and irrel-
evant tools by maximizing the similarity be-
tween queries and corresponding tools.

• ToolGen (Wang et al., 2024b): A unified
framework that integrates tool retrieval and
calling within large language models by repre-
senting each tool as an atomic token, enabling
the model to generate tool calls and arguments
directly.

In Appendix E, under the In-domain setting, we
also made a comparison with Re-Invoke and Iter-
Feedback:

• Re-Invoke (Chen et al., 2024): An unsuper-
vised retrieval method that generates synthetic
queries to enrich tool documents and employs
large language models to extract user intent
during inference, using a multi-view similarity
ranking strategy to identify relevant tools.

• IterFeedback (Xu et al., 2024): A retrieval
method that incorporates iterative feedback
from large language models, using a BERT-
based retriever and prompting a language
model like gpt-3.5-turbo-0125 to refine re-
trieval over multiple rounds.

In the tool calling comparison experiment, apart
from the comparison with ToolGen, we further eval-
uate Toolscaler against the following baselines:
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• GPT-4o-mini: We employ gpt-4o-mini-2024-
07-18 as a baseline, a cost-effective model in-
troduced by OpenAI, utilizing its tool-calling
capabilities to form a tool agent.

• ToolLlama-2 (Qin et al., 2023b): Developed
by fine-tuning the Llama-2 model on the Tool-
Bench dataset, enhancing its ability to interact
with external tools. In this article, we use
checkpoint which was open-sourced by Wang
et al. (2024b).

• ToolLlama (Wang et al., 2024b): Fine-tuned
the Llama-3 model on the ToolBench dataset
by Wang et al. (2024b). However, since they
did not open source checkpoints, we directly
used the data in their paper.

Tokenization Methods. In 5.3, we compared
structure-aware semantic with four tokenization
methods:

• Numerical: Use a unique numeric string to
represent a tool. For example, if the toolkit
contains 47,000 tools, then use a five-digit
string to represent them, and the 3rd tool is
represented as 0 0 0 0 3.

• Hierarchical: Use a unique number to repre-
sent a tool and at the same time use clustering
to integrate all the numbers in the toolkit into
a hierarchical tree. We continue to use the hi-
erarchical coding of Wang et al. (2024b), like
1 0 1 4 0.

• Semantic: Represent a tool using one or more
semantic tokens, for example, directly using
the names of the API functions, for instance,
compress_for_imagon.

• Atomic: Each tool is represented by
a single unique token. ToolGen en-
codes this as the combined string <<
tool_name&&api_name >> as a token.
For instance, the API function compress from
the RESTful API IMAGON is tokenized as
<< IMAGON&&compress >>.

D Experimental Setups

Settings. As proposed by ToolGen and others, we
adopt two evaluation settings: In-domain and Multi-
domain. In Appendix E, we provide a comprehen-
sive evaluation under both settings, while in the

main paper, we report only the results under the
Multi-domain setting. In the In-domain scenario,
models are restricted to retrieving and reasoning
over tools within the same domain (I1, I2, and I3),
whereas the Multi-domain setup requires operating
over the full toolset, making it considerably more
challenging.

For the tool calling experiments, we evaluate two
configurations: with Ground Truth Tools (GT.) and
with Retriever. These two settings are motivated
by the fact that methods like ChatGPT and ToolL-
lama require an explicit list of candidate tools to
be included in the prompt. Therefore, the choice
between ground truth tools and tools selected by
a retriever significantly impacts performance. Fol-
lowing ToolGen, we treat the tools provided by
ChatGPT as the Ground Truth Tools for a given
query, and we employ a unified retriever (ToolRe-
triever) for the Retriever-based setting. For ToolL-
lama, candidate tools are directly included in the
prompt. For ToolGen and our proposed Toolscaler,
in the GT. setting, we constrain the candidate tool
space during the planning phase via a prefix prompt.
In the Retriever setting, we rely entirely on gener-
ation without using any external retriever module.
Implementation Details. i) In the first training
iteration, we start from a pre-trained Llama-3-8B
model to learn tool knowledge representations. We
optimize using the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 1e−3, weight
decay of 1e−4, batch size of 12, and LoRA con-
figurations set to rank 32, alpha 128, dropout 0.1.
The token block size is set to 2. After obtaining
the output embeddings from the token block, we
apply PCA (Maćkiewicz and Ratajczak, 1993) to
reduce the dimensionality to 32. We then cluster
each position into 512 clusters using a two-level
residual quantization scheme. The resulting coding
sequence length is 4. ii) Next, we replace all tool
mentions in the ToolBench training text with their
semantic code sequences, and we expand the vocab-
ulary of Llama-3-8B by adding 2,048 new tokens
(512× 4). These new tokens are initialized follow-
ing the method described in Section 4.1. iii) Based
on this extended model, we train it on two tasks:
Query-Tool pairs and Trajectories. We employ a
cosine learning rate scheduler with a 3% warm-up
ratio and a maximum learning rate of 4×10−5. For
trajectory inputs, the context length is truncated to
6144 tokens. The total batch size is set to 1× 64,
where 64 denotes the number of gradient accumu-
lation steps. iv) After completing the above steps,
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Table 6: Tool retrieval evaluation across two settings: In-domain and Multi-domain. * represents the results
disclosed in Wang et al. (2024b), while the others are the results we re-implemented based on the open-source
checkpoints.

Model I1 I2 I3
NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5

In-domain
BM25* 29.46 31.12 33.27 24.13 25.29 27.65 32.00 25.88 29.78
EmbSim* 63.67 61.03 65.37 49.11 42.27 46.56 53.00 46.40 52.73
Re-Invoke* 69.47 - 61.10 54.56 - 53.79 59.65 - 59.55
IterFeedback* 90.70 90.95 92.47 89.01 85.46 87.10 91.74 87.94 90.20
ToolRetriever* 80.50 79.55 84.39 71.18 64.81 70.35 70.00 60.44 64.70
ToolGen* 89.17 90.85 92.67 91.45 88.79 91.13 87.00 85.59 90.16
BM25 29.25 31.04 33.49 26.50 25.97 27.96 32.00 25.88 29.78
EmbSim 61.00 57.78 62.31 54.00 45.31 49.54 54.00 46.56 52.91
ToolRetriever 83.50 83.67 88.66 72.00 73.27 80.40 70.00 70.01 77.21
ToolGen 91.00 92.15 94.11 87.50 88.52 90.81 87.00 85.35 90.08
Toolscaler 94.50 95.13 96.44 93.50 93.20 94.88 89.00 88.98 92.46

Multi-domain
BM25* 22.77 22.64 25.61 18.29 20.74 22.18 10.00 10.08 12.33
EmbSim* 54.00 50.82 55.86 40.84 36.67 39.55 18.00 17.77 20.70
ToolRetriever* 72.31 70.30 74.99 64.54 57.91 63.61 52.00 39.89 42.92
ToolGen* 87.67 88.84 91.54 83.46 86.24 88.84 79.00 79.80 84.79
BM25 26.92 26.13 29.00 20.00 21.92 23.46 10.00 10.08 12.33
EmbSim 50.50 48.15 53.41 46.00 39.58 43.05 18.00 17.77 20.94
ToolRetriever 75.92 76.96 82.31 63.00 66.38 72.72 28.00 39.28 44.54
ToolGen 88.50 88.83 91.65 84.00 85.65 89.02 81.00 80.83 85.83
Toolscaler 93.00 93.87 94.85 90.50 92.26 93.68 89.00 88.16 91.98

Table 7: Tool retrieval evaluation under In-domain and Multi-domain settings, including results on I1-Tool., I1-Cat.,
and I2-Cat. subsets.

Model I1-Tool. I1-Cat. I2-Cat.
NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5

In-domain
BM25 28.00 31.37 33.06 31.12 30.87 33.13 21.75 24.75 27.44
EmbSim 61.50 58.74 62.99 69.00 66.43 71.00 44.22 39.18 43.50
ToolRetriever 79.50 81.54 86.78 80.50 81.68 87.15 70.35 74.09 81.45
ToolGen 89.50 91.61 93.34 87.50 88.79 91.21 88.44 88.85 91.34
Toolscaler 88.50 91.60 93.24 95.00 95.78 96.43 92.96 92.98 93.99

Multi-domain
BM25 20.75 21.12 23.64 20.63 20.67 24.18 16.58 19.55 20.89
EmbSim 53.00 49.82 54.93 58.00 54.38 59.24 35.68 33.92 36.22
ToolRetriever 75.25 78.26 83.08 73.50 73.56 79.10 60.30 64.11 73.01
ToolGen 84.00 86.40 89.52 89.50 89.95 92.01 83.42 86.06 88.47
Toolscaler 91.00 92.20 93.89 93.00 93.56 94.92 91.96 91.06 92.97

we treat the resulting model as the base model for
the second iteration and repeat steps i, ii, and iii.
In our early-stage experiments, we observed that
two rounds of iterative training are sufficient to
achieve strong performance on ToolBench. Adding
more rounds (e.g., 3 or 4) yielded diminishing re-
turns, with little or no measurable improvement in
downstream retrieval or execution metrics.

In terms of computation resources, step i is
trained on a single A100 GPU, while steps ii and
iii require 4×A100 GPUs. We leverage Deepspeed
ZeRO-3 (Rajbhandari et al., 2020) and FlashAt-
tention (Dao et al., 2022; Dao, 2023) to optimize
training efficiency. We conduct two full training
iterations. Each iteration includes 5 epochs of tool

retrieval training and 2 epochs of tool calling train-
ing. For the tool representation learning phase,
we employ an early stopping mechanism, with an
average of 6 epochs per run.

E Comprehensive Results

E.1 Main experiments

Tables 6 and 7 provide a more comprehensive eval-
uation of the tool retrieval stage. Beyond the results
presented in the main text, we include experiments
under both In-domain and Multi-domain settings,
and compare our reproduced results with those re-
ported by Wang et al. (2024b). The close match
between our results and theirs indicates that our
data preparation and experimental configurations
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Table 8: Tool calling evaluation performance on unseen instructions and unseen tools under two settings. Bold
values denote the highest performance, considering only the results reproduced in our experimental setting.

Model Setting SoPR SoWR
I1 I2 I3 I1-Tool. I1-Cat. I2-Cat. I1 I2 I3 I1-Tool. I1-Cat. I2-Cat.

GPT-3.5* GT. 56.60 47.80 54.64 58.90 60.70 54.60 - - - - - -
ToolLlama-2* GT. 53.37 41.98 46.45 - - - 47.27 59.43 27.87 - - -
ToolLlama* GT. 55.93 48.27 52.19 57.38 58.61 56.85 50.31 53.77 31.15 43.04 50.31 54.84
ToolGen* GT. 61.35 49.53 43.17 52.32 40.46 39.65 51.53 57.55 31.15 39.24 38.56 40.32
GPT-4o-mini GT. 52.66 43.40 33.06 50.11 49.46 52.82 - - - - - -
ToolLlama-2 GT. 36.30 17.30 7.92 31.86 39.54 21.24 25.77 20.75 21.31 25.94 35.95 15.32
ToolGen GT. 47.85 34.91 29.23 35.76 41.29 25.27 38.65 35.85 37.70 25.31 33.33 22.58
Toolscaler GT. 60.22 44.03 27.87 44.20 51.09 39.65 39.88 43.40 40.98 37.97 47.06 31.45

GPT-3.5* Retrieval 51.43 41.19 34.43 57.59 53.05 46.51 53.37 53.77 37.70 46.20 54.25 54.81
ToolLlama-2* Retrieval 56.13 49.21 34.70 - - - 50.92 53.77 21.31 - - -
ToolLlama* Retrieval 54.60 49.96 51.37 57.70 61.76 45.43 49.08 61.32 31.15 48.73 50.98 44.35
ToolGen* 56.13 52.20 47.54 56.54 49.46 51.96 50.92 62.26 34.42 40.51 39.87 37.90
GPT-4o-mini Retrieval 52.25 40.41 24.86 53.16 50.11 39.38 47.24 52.83 44.26 49.37 50.33 42.74
ToolLlama-2 Retrieval 28.94 24.69 10.93 28.48 36.93 19.09 25.15 30.19 24.59 26.58 27.45 20.16
ToolGen 52.97 45.13 36.34 45.36 55.56 45.56 36.20 42.45 49.18 32.91 42.48 37.90
Toolscaler 62.78 52.04 41.26 52.53 57.19 56.99 42.94 46.23 45.90 42.41 47.71 37.90

Table 9: Evaluating tool retrieval via ablation studies in Multi-domain settings.

Model NDCG@1 NDCG@3 NDCG@5
I1 I2 I3 I1 I2 I3 I1 I2 I3

Toolscaler 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98
w/o reframe embedding 86.50 88.50 80.00 88.89 88.76 84.11 92.10 92.05 89.79
w/o post-guided 90.50 85.00 79.00 91.47 87.92 82.68 93.41 91.11 89.17

I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat.
Toolscaler 91.00 93.00 91.96 92.20 93.56 91.06 93.89 94.92 92.97
w/o reframe embedding 86.00 88.00 86.43 89.92 91.04 87.26 92.26 92.88 90.27
w/o post-guided 89.00 92.00 88.44 89.85 93.65 88.87 92.65 94.60 91.52

are well aligned.

Notably, Toolscaler significantly outperforms
IterFeedback, which is a more complex retrieval
system involving multiple models and a feedback
mechanism, across both settings, despite being a
single-model solution. This highlights the strength
and efficiency of our approach in addressing chal-
lenging real-world retrieval tasks. Additionally,
since Wang et al. (2024b) did not report results on
the Tool. and Cat. datasets, we include them in
Table 7. Toolscaler demonstrates robust general-
ization to unseen tools, maintaining strong perfor-
mance even in open-set conditions.

In Table 8, we include experimental results from
Wang et al. (2024b). Their reported SoPR scores
are generally higher than those we reproduced,
likely due to their use of GPT-3.5 as both the dialog
agent and evaluator—potentially enhanced through
additional tool-use-specific tuning. However, con-
sidering the significantly higher cost of GPT-3.5
and the fact that it is no longer state-of-the-art, we
adopt GPT-4o-mini for evaluation in our experi-
ments. For consistency in SoWR evaluation, we
also use GPT-4o-mini (GT.) as the reference model.

While the effectiveness of this evaluation is par-
tially influenced by the choice of evaluator (GPT-
3.5 vs. GPT-4o-mini), our method, Toolscaler,
still demonstrates competitive performance with-
out additional intervention from the ground truth
model (GT.). Notably, on the I1 and I2 sub-
sets, Toolscaler surpasses GPT-3.5 (GT.) with task
completion rates of 62.78% and 52.04%, respec-
tively. Even against the retrieval-augmented GPT-
3.5, Toolscaler achieves comparable results, falling
behind only on I1-Tool. These findings highlight
the robustness of our approach in real-world sce-
narios involving large-scale tool utilization.

Note that we do not report the SoWR results
of GPT-4o-mini Retrieval in the main text, as we
observed a strong preference for its own answers,
which introduces evaluation bias. To ensure a fair
comparison with other methods, we exclude these
results from the main discussion but provide the
complete results in the appendix.

E.2 Ablation experiment

Table 9 presents the complete ablation results, cor-
responding to the visualization shown in Figure 2.
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Figure 3: The distribution of the number of subtokens
per tool.

In addition to quantitative analysis, we also
conducted a detailed comparison of the code-
books generated during the two iterative training
processes, and observed that the tool clustering
evolved meaningfully across iterations. For exam-
ple, consider two tools from the same functional
category: "DownloadAuditLog" and "BehalfDocu-
ments". In the first iteration, their code sequences
were [90, 464, 192, 356] and [90, 213, 192, 356],
respectively, showing a high degree of overlap. In
the second iteration, the model refined their repre-
sentations to [244, 188, 63, 292] and [295, 218, 63,
292], providing clearer differentiation. However,
since these tools were co-used within the same
training trajectory, they still retained shared sub-
structures (e.g., the last two tokens), reflecting se-
mantic proximity. On the other hand, for tools such
as "Instagram_Data_Service_accountInfo" and "In-
stagram_Data_Service_posts", their initial code se-
quences were quite distinct: [249, 148, 124, 45]
and [148, 349, 44, 426]. Yet, because they were
also jointly used within a trajectory sample, their
second-round encodings evolved to [264, 413, 173,
287] and [380, 35, 173, 177], with the third token
now shared across both. This indicates that the
clustering process can effectively benefit from the
procedural and contextual signals embedded in the
training data.

E.3 Tokenization comparisons

we perform a statistical comparison of how many
subtokens are required to represent each tool across
different tokenization methods (see Figure 3). The
results show that structure-aware semantic tok-
enization achieves compact and efficient represen-
tations, with an average subtoken count second
only to Atomic (which uses exactly one token per

tool). In contrast, Semantic and Hierarchical strate-
gies exhibit highly variable subtoken lengths across
tools—some being very short, others excessively
long—resulting in a scattered distribution that may
hinder effective model learning. Notably, both our
method and Numerical/Atomic use fixed-length se-
quences, which contribute to greater stability and
learnability in representation.

Furthermore, We augment the experimental re-
sults related to various tokenization strategies in Ta-
ble 10 and Table 11, incorporating both reproduced
outcomes and reported results from Wang et al.
(2024b). The more comprehensive comparisons
reveal that Toolscaler consistently outperforms all
competing methods across all datasets, establishing
itself as the state-of-the-art in both tool retrieval
(NDCG) and tool calling (SoPR and SoPW) tasks.
Notably, Toolscaler demonstrates clear advantages
in long-tail retrieval scenarios, achieving improve-
ments of 2.91 to 6.15 NDCG@5 points over the
Atomic baseline. This gain can be attributed to its
fine-grained semantic modeling. In contrast, ap-
proaches like Semantic and Atomic, while compet-
itive in isolated scenarios (e.g., Semantic achieves
92.96 NDCG@5 on I1), lack dynamic optimiza-
tion mechanisms, which hinders their ability to
generalize in multi-tool interaction settings.

Interestingly, we observe that further training
on Trajectories after pretraining with Query-Tool
pairs tends to degrade NDCG performance. As
shown in Table 10, the most significant drops are
seen in the Numerical and Hierarchical methods,
followed by Atomic. In contrast, Semantic and
Toolscaler experience only marginal degradation,
with Toolscaler exhibiting the most stable perfor-
mance across almost all datasets. This degrada-
tion may stem from the distributional mismatch be-
tween the Query-Tool supervision and the sequen-
tial supervision in Trajectories. While Query-Tool
pairs provide explicit relevance signals, Trajecto-
ries often introduce noise or indirect supervision,
which may mislead models lacking strong semantic
grounding. The robustness of Toolscaler can likely
be attributed to its structure-aware and semantics-
preserving tokenization, which helps maintain con-
sistency across different training paradigms.

E.4 Different model sizes
In order to evaluate both cross-architecture general-
izability (Qwen2.5(Hui et al., 2024) vs. LLaMA3)
and scaling behavior (from 0.5B to 14B), we
conducted experiments across multiple parameter
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Table 10: Retrieval performance of different tokenization methods in the Multi-domain setting. The results of
ToolGen are directly adopted as the baseline for the Atomic. Results marked with ∗ are directly taken from the
original paper (Wang et al., 2024b). All other results are re-evaluated using open-source checkpoints. † indicates
models trained with Trajectories, while others are trained with Query-Tool pairs only.

Tokenization NDCG@1 NDCG@3 NDCG@5
I1 I2 I3 I1 I2 I3 I1 I2 I3

Numerical* 83.17 79.20 71.00 84.99 79.23 74.81 88.73 83.88 82.95
Hierarchical* 85.67 82.22 78.50 87.38 82.70 79.47 90.26 86.63 84.15
Semantic* 89.17 83.71 82.00 91.29 84.51 78.86 93.29 88.22 85.43
Atomic* 87.67 83.46 79.00 88.84 86.24 79.80 91.54 88.84 84.79
Numerical 82.00 77.50 81.91 84.18 77.53 76.51 70.00 88.07 84.30
Numerical† 58.50 ↓ 23.5 49.50↓ 28.0 45.00↓ 36.91 65.78↓ 18.4 56.86↓ 20.67 55.88↓ 20.63 73.62↑ 3.62 63.41↓ 24.66 65.96↓ 18.34
Hierarchical 87.50 77.50 79.00 86.11 78.82 81.44 89.91 83.81 87.47
Hierarchical† 66.00↓ 21.5 61.50↓ 16.0 62.00↓ 17.0 70.33↓ 15.78 64.50↓ 14.32 71.07↓ 10.37 77.89↓ 12.02 71.81↓ 12.0 80.01↓ 7.46
Semantic 90.00 84.50 84.00 91.56 84.33 79.41 92.96 88.44 87.40
Semantic† 86.50↓ 3.5 80.00↓ 4.5 72.00↓ 12.0 86.92↓ 4.64 78.21↓ 6.12 73.45↓ 5.96 90.51↓ 2.45 83.73↓ 4.71 83.34↓ 4.06
Atomic 88.50 84.00 81.00 88.83 85.65 80.83 91.65 89.02 85.83
Atomic† 86.5↓ 2.0 76.00↓ 8.0 73.00↓ 8.0 85.76↓ 3.07 75.68↓ 9.97 74.65↓ 6.18 89.99↓ 1.66 81.92↓ 7.1 83.15↓ 2.68
Toolscaler 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98
Toolscaler† 89.00↓ 4.0 90.00↓ 0.5 84.00↓ 5.0 89.91↓ 3.96 86.21↓ 6.05 79.87↓ 8.29 92.44↓ 2.41 91.15↓ 2.53 87.11↓ 4.87

I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat.
Numerical 83.50 81.50 79.39 85.04 85.57 80.90 88.06 88.88 85.13
Numerical† 68.50↓ 15.0 57.50↓ 24.0 50.75↓ 28.64 73.09↓ 11.95 63.43↓ 22.14 58.68↓ 22.22 77.19↓ 10.87 70.72↓ 18.16 65.25↓ 19.88
Hierarchical 80.50 87.50 86.43 85.48 88.59 86.08 88.19 91.19 89.04
Hierarchical† 72.00↓ 8.5 52.50↓ 35.0 62.81↓ 23.62 71.94↓ 13.54 62.76↓ 25.83 67.07↓ 19.01 79.44↓ 8.75 70.58↓ 20.61 74.33↓ 14.71
Semantic 87.50 89.50 82.91 89.98 90.45 84.44 92.12 93.26 88.03
Semantic† 85.50↓ 2.0 86.00↓ 3.5 72.36↓ 10.55 85.88↓ 4.1 85.96↓ 4.49 77.07↓ 7.33 89.67↓ 2.45 89.39↓ 3.87 82.33↓ 5.7
Atomic 84.00 89.50 83.42 86.40 89.95 86.06 89.52 92.01 88.47
Atomic† 78.00↓ 6.0 80.50↓ 9.0 70.85↓ 12.57 79.16↓ 7.24 82.42↓ 7.53 73.09↓ 12.97 84.08↓ 5.44 86.63↓ 5.38 78.44↓ 10.03
Toolscaler 91.00 93.00 91.96 92.20 93.56 91.06 93.89 94.92 92.97
Toolscaler† 88.00↓ 3.0 89.50↓ 3.5 88.44↓ 3.52 87.62↓ 4.58 89.57↓ 3.99 86.54↓ 4.52 91.75↓ 2.14 92.34↓ 2.58 90.69↓ 2.28

scales in Qwen2.5. The results are summarized in
Table 12. Key observations include:

• Cross-architecture generalization: The
Qwen2.5-7B achieves results very close to
LLaMA3-8B across all evaluation subsets,
indicating that Toolscaler generalizes well
across different model architectures as long as
the model has sufficient reasoning capacity.

• Effect of model size: As expected, perfor-
mance improves significantly as model size in-
creases. However, the improvement plateaus
after 7B parameters—Qwen2.5-14B shows
only marginal gains and even slight declines
on certain subsets.

• Efficiency of small models: Remarkably,
even Qwen2.5-0.5B achieves NDCG@1 > 0.8
on some subsets. Qwen2.5-1.5B performs
consistently well across all test sets, suggest-
ing that our framework remains robust and
effective even on relatively small models.

These results confirm that Toolscaler is both
model-agnostic and size-resilient, capable of trans-
ferring across architectures and scaling gracefully
with model capacity.

Table 12: Performance and generalization of Toolscaler
with different sizes of LLMs as the base model. We
reported the NDCG@1 for the tool retrieval stage across
all sub-test sets.

Model I1 I2 I3 I1-Tool. I1-Cat. I2-Cat.

Qwen2.5-0.5B 84.00 75.00 68.00 84.50 86.50 80.40
Qwen2.5-1.5B 86.00 82.00 83.00 83.50 87.00 85.93
Qwen2.5-3B 88.00 85.00 83.00 84.00 89.00 86.43
Qwen2.5-7B 92.00 89.50 91.00 89.50 93.50 89.50
Llama3-8B 93.00 90.50 89.00 91.00 93.00 91.96
Qwen2.5-14B 92.50 91.50 91.50 89.00 92.50 90.95

E.5 Adaptability

Table 13: Dataset statistics for the I1 In-domain experi-
ment after re-partitioning based on toolset size.

Dataset Scale
1% 10% 50% 100%

Tool 469 4,698 23,492 46,985
Train 4,800 44,829 245,499 489,702
Test 7 89 370 457

As demonstrated in Figure 4, structure-aware se-
mantic tokenization is particularly well-suited for
large-scale tool scenarios. However, we argue
that it is meaningful to test Toolscaler on smaller
toolsets to understand how well it performs in more
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Table 11: Tool calling evaluation for different tokenization methods. ∗ indicates results reproduced from Wang
et al. (2024b), where GPT-3.5 was used as the dialogue model, and GPT-3.5 GT. served as the reference model for
SoWR. In contrast, our experiments are conducted using GPT-4o-mini. Bold values denote the highest performance,
considering only the results reproduced in our experimental setting.

Tokenization Setting SoPR SoWR
I1 I2 I3 I1-Tool. I1-Cat. I2-Cat. I1 I2 I3 I1-Tool. I1-Cat. I2-Cat.

Numerical GT. 23.21 14.15 12.30 25.42 25.49 15.59 20.86 15.09 22.95 24.05 20.92 13.71
Hierarchical GT. 30.27 18.24 4.92 28.06 33.33 14.52 22.09 20.75 18.03 24.05 25.49 10.48
Semantic GT. 51.74 34.59 21.58 36.81 52.07 29.84 39.87 36.79 27.87 29.75 45.10 25.00
Atomic GT. 47.85 34.91 29.23 35.76 41.29 25.27 38.65 35.85 37.70 25.31 33.33 22.58
Toolscaler GT. 60.22 44.03 27.87 44.20 51.09 39.65 39.88 43.40 40.98 37.97 47.06 31.45

Numerical* 34.76 29.87 46.99 - - - 25.77 33.02 29.51 - - -
Hierarchical* 50.20 45.60 32.79 - - - 38.04 43.40 29.51 - - -
Semantic* 58.79 45.28 44.81 - - - 49.69 57.55 26.23 - - -
Atomic* 58.08 56.13 44.81 - - - 47.85 57.55 29.51 - - -
Numerical 21.98 9.12 11.20 20.68 26.14 17.20 16.56 16.04 16.39 20.89 23.53 14.52
Hierarchical 39.16 20.28 17.49 36.29 31.81 14.92 29.45 28.30 26.23 29.11 24.83 14.52
Semantic 50.20 29.72 16.39 33.02 51.42 27.02 39.26 29.24 32.79 29.11 43.79 22.58
Atomic 52.97 45.13 36.34 45.36 55.56 45.56 36.20 42.45 49.18 32.91 42.48 37.90
Toolscaler 62.78 52.04 41.26 52.53 57.19 56.99 42.94 46.23 45.90 42.41 47.71 37.90

conventional or compact scenarios. Therefore, we
conducted training and testing under different tool
scales and compared them with other tokenization
methods.

This experiment considers the tool retrieval task
and trains models solely on Query-Tool pairs dur-
ing the first round. We first partition the entire
toolset into subsets of different sizes and filter the
training and test data accordingly, as detailed in
Table 13. Since randomly sampling tools may dis-
rupt multi-tool collaboration patterns, we conduct
both training and evaluation exclusively on the I1
dataset.

As shown in Figure 4, when the toolset size is
limited to 1% or 10% of the full set, only the Se-
mantic maintains high retrieval performance. Other
approaches, which rely on learning dedicated rep-
resentations, perform poorly, likely due to insuffi-
cient data for effective training. However, as the
toolset scales up to 50% (over 20,000 tools) or
even more, the retrieval performance of Semantic
begins to decline, while other methods, particu-
larly structure-aware semantic tokenization, show
marked improvements. This suggests that tool
names alone are not sufficient to capture the nu-
anced differences among a large number of tools,
often leading to ambiguity. In contrast, structure-
aware semantic tokenization progressively outper-
forms other strategies as the toolset grows. This
improvement is attributed to its ability to encode
fine-grained semantic and structural relationships,
enabling the model to distinguish among a large
and diverse set of tools with minimal confusion.
Its hierarchical and consistent representation fur-

ther facilitates generalization and scalability across
large tool corpora.

(a) NDCG@1

(b) NDCG@3

(c) NDCG@5

Figure 4: NDCG performance of different tokenization
methods on I1 (In-domain), segmented by toolset sizes
at 1%, 10%, 50%, and 100% (464, 4,632, 23,145, and
46,985 tools, respectively).
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Figure 5: A real RESTful API example. The RESTful API contains one API function (tool).

Figure 6: Datasets examples for tool retrieval training. We use "user" role to represent inputs and "assistant" role
to represent outputs.
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Figure 7: An example for tool calling training.

Figure 8: An example of a trajectory demonstrates the typical stages that current LLM-based agents take when
using tools.
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