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Abstract

Large Language Models (LLMs) have revolu-
tionized language processing and understand-
ing, yet their performance is hampered by in-
accuracies and outdated information. Model
editing techniques offer a solution but face two
key challenges: (I) Most methods inject knowl-
edge by constructing rigid loss, which leads to
poor compatibility when dealing with higher-
order multi-hop problems. (II) Locate-then-
edit vein, by altering pre-trained parameters, in-
evitably affect normal knowledge and even face
the catastrophic forgetting. In this paper, we
introduce KGMET, a framework that constructs
knowledge graphs using available information
to guide the direction of knowledge editing,
enabling consistent, aligned, and stable in-
formation during large-scale editing scenario.
Furthermore, KGMET goes beyond this by em-
ploying orthogonal constraints to block the in-
terference of irrelevant information, ensuring
the updates are both controllable and generaliz-
able. Experiments on Multi-Conterfact, ZsRE,
and MQuAKE datasets using Llama-3-8B,
GPT-J-6B, and GPT-2-XL models show-
case improvements over state-of-the-art meth-
ods, with ↑ 5%−17% in multi-hop tasks while
remaining generalizable (at least ↑ 20% in flu-
ency). Our code is available on GitHub1.

1 Introduction

Large Language Models (LLMs) are endowed
with robust inferential and computational abilities,
which have led to their extensive application in
recent years (Radford et al., 2019; Roberts et al.,
2020). Nevertheless, these models may retain in-
correct or obsolete information, prompting the de-
velopment of model editing techniques based on
LLMs (Mitchell et al., 2022; De Cao et al., 2021).
Diverging from retraining or fine-tuning strategies
(Hu et al., 2021; Liu et al., 2021), LLM-based

1https://github.com/FredJDean/KGMET

model editing techniques advocate for the modifi-
cation of a subset of parameters, akin to a surgical
approach that precisely locates and edits knowl-
edge (Meng et al., 2022a). This method is markedly
less resource-intensive than retraining (Zhang et al.,
2024b), thereby attracting considerable interest
from researchers(Yu et al., 2024; Ma et al., 2024;
Zhang et al., 2024c). Concretely, model editing
techniques can be classified into weight-preserving
(De Cao et al., 2021; Hartvigsen et al., 2024;
Zheng et al., 2023) and weight-modifying ap-
proaches(Meng et al., 2022a,b; Ma et al., 2024).

In this study, we investigate weight-modifying
model editing techniques. Existing weight-
modifying methods follow a "locate-then-edit"
workflow (Meng et al., 2022a), which locates in-
fluential parameters W through causal mediation
analysis (PEARL, 2001; Vig et al., 2020) and subse-
quently completes knowledge editing by inserting
a perturbation ∆ (Meng et al., 2022b). Though
efficacy (Meng et al., 2022b; Li et al., 2024), it en-
counters inaccuracies in multi-hop tasks associated
with the edited knowledge, as the model is unable
to accurately calibrate and edit the relevant knowl-
edge changes (Zhang et al., 2024a). For example,
when the U.S. president is edited from Biden to
Trump, the model still incorrectly responds with
Biden’s wife when queried "Who is the wife of the
U.S. President?" rather than Trump’s (Zhang et al.,
2024a; Zhong et al., 2023; Zhang et al., 2024c).

To this end, GLAME (Zhang et al., 2024a) endeav-
ors to incorporate knowledge graph representation
learning techniques into the editing process, yield-
ing some positive results. However, this approach
is fraught with two critical issues:

➠ Batch Dilemma. GLAME constrains to updat-
ing the weights of a single MLP layer, which makes
the method ineffective in handling extensive editing
requests (Meng et al., 2022b; Li et al., 2024). As
demonstrated in Figure 1 (a), GLAME (Meng et al.,
2022a) fail to perform adequately when applied to
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Figure 1: Model editing-related preparatory experiments and the contributions of the paper. In (c) and (d), we selected 1,000
facts and projected the representations of subject tokens from the knowledge graph (KG) and the representations of the subjects
after processing through the 8-th layer of Llama-3-8B. (e) shows the reason of pattern collapse in GLAME.

scenarios involving multiple edits (↓∼ 22% after
3-th editing batches). Worse still, when facts in-
crease dramatically (> 8000), edit failures began
to appear (∼ 95%→ 81%) compared with others.

➠ Pattern Collapse. GLAME recklessly treats
the representation of the knowledge graph as the
amount of hidden state change δ (Meng et al.,
2022b). Previous researches (Pham and Nguyen,
2024; Dai et al., 2021) find an important property
that are maintained by powerful LLMs: activations
within the same layer tend to have roughly the same
vector norm. We refer to this as the Magnitude
Consistency property. This observation highlights
a key limitation of GLAME: cannot simultaneously
maintain activation magnitude consistency.

To tackle these challenges, we present a
knowledge graph-guided methodology for mass-
batch model editing, termed KGMET, which aims
to minimize adverse effects on LLMs during multi-
hop reasoning and batch-editing tasks. KGMET
mainly consists of three key technologies: ❶ Di-
rectional intervention strategy: we first pro-
pose a directional intervention approach, which
enables knowledge graph enhancement methods to
be adapted to mass batch editing scenarios; ❷ Or-
thogonality constraints: the use of orthogonality
constraints to enable the model to maintain its gen-
eral performance; ❸ Multiple layers of editing:
the editing is extended to multiple layers, which
makes it more capable of generalizing to a larger
number of factual requests.

We conduct comprehensive experiments on three
widely adopted editing datasets. Empirical results

demonstrate that KGMET is ❶ Higher perform-
ing, surpassing most locating-then-editing methods
by average 27.3%; ❷ Outstanding higher-order
capabilities, outperforming SOTA baselines like
GLAME in neighborhood success metrics above 5%
~10%, and above 3% ~17% compare to other meth-
ods in MQuAKE (Zhong et al., 2023) multi-hop
inference tasks; ❸ Effective maintenance of gen-
eral ability, in terms of fluency in generating text,
KGMET outperforms the SOTA baselines by about
20% across multiple benchmarks.

Our contributions are summarized as follows:

☞ We first propose a method for applying knowl-
edge graph augmentation in mass batch edit-
ing scenarios to enhance the multi-hop infer-
ence of the post-edited models.

☞ We present a novel editing method, namely
KGMET, which incorporates directional infor-
mation from knowledge graph embeddings
and applies an orthogonal constraint strategy,
enabling effective adaptation to mass batch
editing scenarios and maximizing the general
capabilities of the model.

☞ We conduct extensive experiments across
three datasets, comprehensively analyzing the
performance of KGMET through various met-
rics. Multi-hop experiments on MQuAKE is
also conducted to prove the excellent multi-
hop inference performance of KGMET.
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2 Related work

Methods of edits can be broadly classified into
parameter-preserving and parameter modifying
methods (Zhang et al., 2024a,b). We further discuss
graph based related work in Appendix A.3

2.1 Parameter-preserving methods

The methods for parameter preservation can be
broadly categorized into two types (Zhang et al.,
2024a). (I) In context editing, representative
works in this category include ICE (Qi et al., 2024),
IKE (Zheng et al., 2023), and so on. This approach
is typically designed for black-box scenarios and
does not allow for parameter adjustments (Zhang
et al., 2024b). (II) Side memory based editing,
MELo (Yu et al., 2024), WISE (Wang et al., 2024),
and GRACE (Hartvigsen et al., 2024) all adopt ex-
ternal memory techniques by adding extra layers
to handle edit-related knowledge. Although this
approach can partially mitigate the impact of edits
on unrelated knowledge (Wang et al., 2024; Zhang
et al., 2024b), it becomes inefficient as the number
of edits increases, leading to significant memory
overhead and causing the model to become cum-
bersome (Gu et al., 2024; Ma et al., 2024).

2.2 Parameter-modifying methods

Methods for parameter modification advocate up-
dating knowledge by altering the intrinsic param-
eters of LLMs (Zhang et al., 2024b). These meth-
ods primarily include: (I) Meta-learning method
(Mitchell et al., 2022), predicts the parameter
changes when new knowledge is integrated into the
LLM by introducing an additional model. (Mitchell
et al., 2022). Represented by KE (De Cao et al.,
2021) and MEND (Mitchell et al., 2022). However,
these approaches are computationally expensive
and increase the risk of negatively affecting unre-
lated knowledge (Zhang et al., 2024a); (II) Locate-
then-edit method, such as RoME (Meng et al.,
2022a), first locates relevant neurons via causal me-
diation trace (PEARL, 2001; Vig et al., 2020) and
modifies the corresponding MLP module. Building
upon this, MEMIT (Meng et al., 2022b) introduced
batch editing, which allows for efficient updates
to large-scale knowledge. GLAME (Zhang et al.,
2024a), based on RoME, was the first to propose
the enhancement of knowledge graphs. Despite
these advancements, a key challenge that remains
unresolved in batch editing scenarios is how to
identify the cascading effects of edits (Zhang et al.,

2024a,c) and isolate unrelated knowledge to en-
hance the generalizable of LLMs (Zhang et al.,
2024a; Yu et al., 2024).

3 Preliminary

3.1 Autoregressive language model
The goal of autoregressive language models is to
predict the distribution probability of the next token
x given the preceding tokens (Radford et al., 2019).
Specifically, the hidden state of x at the l-th layer
can be represented as follows:

hl = hl−1+al+ml,ml = Wl
outσ(W

l
inγ(h

l−1+al)). (1)

Here, al and ml represent the attention layer and
the feed-forward layer (FFN), respectively; Win

and Wout represent the weight matrices. σ denotes
the nonlinear activation function; and γ represents
layer normalization. Similarly to MEMIT, we ex-
press the attention and FFN layers in parallel.

3.2 Formulation of Model Editing
Model editing aims to update the knowledge
(s, r, o) to a new factual (s, r, o∗) (Mitchell et al.,
2022). This paper focuses on batch editing, where
each batch introduces perturbations ∆ (Li et al.,
2024) to modify the weights of the model’s output
layer Wl

out, which can be formulated as:

∆ = argmin
∆̂

(||(W+∆̂)K1−V1||2+||(W+∆̂)K0−V0||2),
(2)

where K0 and V0 are pre-existing key-value
pairs which should be preserved. For example,
K0="capital of France" and V0="Paris". These
pairs should remain unchanged during editing. K1

and V1 are knowledge related to editing pairs
(Meng et al., 2022b; Ma et al., 2024). For example,
K1="president of U.S." and V1="Donald Trump".
The goal of editing is to insert or update such new
key-value associations. Eqn. 2 can be solved as
closed form:

∆ = (V1 −WK1)KT
1 (K0KT

0 + K1KT
1 )

−1, (3)

where K0 can be estimated using abundant text
input. In practical applications, 100000 (s, r, o)
triples are typically randomly selected to encode
K0 (Meng et al., 2022b), V0 which can be obtained
by K0. Since K1 is known, the ultimate question is
how to solve for V1. This process can be viewed as
an optimization problem. We introduce δi (Meng
et al., 2022a) s.t. δi = zi − hi, where δi is a learn-
able vector controlling the editing step, it can be
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optimized as following:

δi ← argmin
δi

1

P

P∑

j=1

−logPG(hi+=δi)
[o∗

i |xj ⊕ p(si, ri)].

(4)

We optimize δi to maximize the model’s predic-
tion of the desired object o∗i , given a set of fac-
tual prompts xj⊕p(si, ri) that concatenate random
prefix xj to a template prompt to aid in general-
ization across contexts. G(hi+ = δi) indicates
that we modify the execution of the transformer
by substituting the modified hidden states zi for hi.
In above step, we can obtain the new value sets
V1 = [z1, ..., zn]. In this way, ∆ can be solved
using the simplified formulation:

∆ = RKT
1 (C0 + K1KT

1 ), (5)

where R is the matrix of residual error [r1, ...rn]
and ri can be given by zi − hi. C0 is the statisti-
cal value of the previously stored key that can be
estimated by Ek[kkT ] (Li et al., 2024; Meng et al.,
2022b). Finally, model editing is completed by
inserting ∆ into the output layer weights Wl

out.

4 Method

In this paper, a knowledge graph-driven memory
editing with directional interventions is proposed,
it contains three key components: (I) we first uti-
lize knowledge embedding to extract directional
information, thus guiding the direction of δ opti-
mization; (II) The method of orthogonal constraints
is proposed for isolating irrelevant knowledge; (III)
Finally, edit residuals are introduced into multi-
layers so that the edits can be better adapted to
large-scale batch editing scenarios.The framework
of our work can be seen in Figure 2.

4.1 Knowledge graph based directional
intervention method

We first use a knowledge graph to augment the
ability of multi-hop inference in an edited model.
To effectively preserve the generalizable of LLM,
we introduce directional intervention methods. In
this way, KGMET can be used effectively in batch
editing scenarios.

4.1.1 Subgraph construction
In this section, an external knowledge graph
is constructed to encapsulate the new as-
sociation due to edit. Specifically, given
a target edit triple (s, r, o, o∗), we employ
o∗ to match the most relevant entity within

external knowledge such as Wikipedia or
Google. In this paper, we use Wikipedia as a
retriever. We can obtain two order relations
(s, r, o∗, r1, o1), (s, r, o∗, r2, o2), (s, r, o∗, rn, om).
The target edit (s, r, o), along with these higher-
order relations, forms a subgraph, termed Gm

n (e),
where n is the maximum order of the subgraph and
m denotes the size of the graph.

4.1.2 Subgraph encoding
To further extract the association between edit facts,
we use the hidden state fact representation of the
k − th layer LLM as the initial feature of the node
(Zhang et al., 2024a):

zs, zr, zo = hk
[s](s),= hk

[r](r),= hk
[o](o), (6)

where hk
[x](x) is the last token of text x at k − th

layer of LLM.
Next, we utilize the Relation Graph Convolu-

tional neural Network (RGCN) (Schlichtkrull et al.,
2018) to perform message propagation and aggre-
gation on subgraphs:

zl+1
s = σ

( ∑

o∈Ns

W1(zlo + zr) + W2zls
)
, (7)

where Ns denotes the set of neighborhoods of sub-
ject s in Gm

n (e), σ is activation function, W1 and
W2 are trainable matrix in each layer, zo, zr, zls are
features of entities in (s, r, o). The layers of RGCN
are decided by the order of the subgraphs.

4.1.3 Extraction of directional information
In this section, we extract the directional informa-
tion from the embedding of the subject entity ob-
tained by Section 4.1.2.

Inspired by geometric embedding methods such
as Poincaré embeddings (Nickel and Kiela, 2017),
they claim that the direction encodes the semantic
orientation in knowledge graph embeddings. In
this section, we characterize the directional com-
ponent of an entity representation by normalizing
the vector to remove its magnitude. This can be
formulated as:

ejθ =
zs√∑n
j=1 v2j

, (8)

where vj denotes component of each dimension in
the vector. In this way, we express the direction in
terms of the norm of the vector which effectively
remove the magnitude, denoting as ejθ.
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Figure 2: The framework of KGMET. The model mainly consists of three key components. Firstly, we select a retriever to retrieve
the entity associations and construct a knowledge graph between the entities and apply GNN to get the entity representations.
Secondly, Directional information in the knowledge graph is extracted to guide the direction of model editing, and P is introduced
to lock down irrelevant knowledge. Lastly, we associate editing to multiple layers to adapt mass batch editing.

4.2 Knowledge editing
4.2.1 Magnitude-direction decoupling
This section aims to encapsulate the graph-based
higher-order association with the editing process.

Lemma 1: Directly incorporating entity embed-
dings from KG representations into δ (see Sec-
tion3.2) leads to mode collapse, as it entangles
semantic variations into a single representation.

Many knowledge editing methods (e.g., ROME,
MEMIT, MEND) adjust the local parameters of the
LLM to store specific knowledge:

P(y|x) =
∑

i

P(y|x, ki)P(ki|x), (9)

where ki is the knowledge unit based on specific
x.where ki is the knowledge unit based on specific
x, representing the neuron or computational sub-
strate (Petroni et al., 2019; Lin et al., 2021; Dai
et al., 2021) that encodes a discrete fact (e.g., map-
ping "the capital of France" to "Paris").

When knowledge graph embedding is used di-
rectly for parameter updating, it can make drastic
changes to the knowledge storage structure of the
LLMs. Specifically, the original LLMs make prob-
ability distribution balances over multiple knowl-
edge sources, which occur when external embed-
ding z is introduced:

P(y|x, z) ≈ δ(y − y∗), (10)

where y∗ is the specific distribution, δ is Dirac delta
function (Note δ here is different from above, and
the symbols are slightly confused for ease of de-
scription), which implies an extreme concentration

of probability distributions. The supplementary
proof of lemma 1 can be seen in Appendix A.2.

To solve this issue, we present the directional in-
tervention approach, it can effectively mitigate the
mode collapse problem. Specifically, we decouple
the magnitude and phase of the edit vector δ. δ can
be expressed as:

δ = δms · ejθ, (11)

where δms denotes the magnitude factor, which can
be optimized according to the editing. ejθ is the
phase of δ which is learned by RGCN. The opti-
mization process of δ is described by equation 4.

4.2.2 Orthogonal constraint in model editing
The method like MEMIT, utilizing equation 2 to
constrain the optimization of ∆. However, this
method inability to effectively block irrelevant
knowledge. Thus, we propose an orthogonal con-
straint to effectively block extraneous knowledge.
Our goal is to find a P to project ∆ in the zero
space of K0. Because K0 has a large dimension, P
is found by{U,Λ,UT } = SVD(K0KT

0 ). Through
SVD singular value decomposition, each column
of U is an eigenvector of K0KT

0 . Then, we remove
the eigenvectors in U that correspond to non-zero
eigenvalues, and defining the remaining sub-matrix
as Û, and the P is computed:

P = Û(Û
T
). (12)

The matrix P can project ∆ into the zero space
of K0, thus locking irrelevant knowledge. Hence,
∆PK0 = 0. We have:(W+∆P)K0 = WK0 = V0.
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Table 1: Editing performance of KGMET against baselines in Multi-conterfact and ZsRE.

Multi-counterfact ZsREModel Method Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Loc.↑
Pre-edited 7.85±0.26 10.58±0.26 89.48±0.18 635.23±0.11 24.14±0.08 36.99±0.30 36.34±0.30 31.89±0.22

FT 83.33±0.37 67.79±0.40 46.63±0.37 233.72±0.22 8.77±0.05 30.48±0.26 30.22±0.32 15.49±0.17
MEND 63.24±0.31 61.17±0.36 45.37±0.38 372.16±0.80 4.21±0.05 0.91±0.05 1.09±0.05 0.53±0.02
ROME 64.40±0.47 61.42±0.42 49.44±0.38 449.06±0.26 3.31±0.02 2.01±0.07 1.80±0.07 0.69±0.03
MEMIT 65.65±0.47 64.65±0.42 51.56±0.38 437.43±1.67 6.58±0.11 34.62±0.36 31.28±0.34 18.49±0.19
PRUNE 68.25±0.46 64.75±0.41 49.82±0.36 418.03±1.52 5.90±0.10 24.77±0.27 23.87±0.27 20.69±0.23
RECT 66.05±0.47 63.62±0.43 61.41±0.37 526.62±0.44 20.54±0.09 86.05±0.23 80.54±0.27 31.67±0.22

GLAME 96.37±0.33 87.18±0.35 70.54±0.34 487.98±0.23 16.87±0.07 84.31±0.38 78.84±0.36 30.56±0.08

LLaMA3

KGMET 99.2±0.31 92.12±0.43 76.49±0.33 619.05±0.74 28.86±0.13 96.18±0.11 90.67±0.21 32.14±0.22
Pre-edited 16.22±0.31 18.56±0.45 83.11±0.13 621.81±0.67 29.74±0.51 26.32±0.37 25.79±0.25 27.42±0.53

FT 92.15±0.27 72.38±0.38 43.35±0.37 297.92±0.77 6.65±0.10 72.37±0.29 68.91±0.32 19.66±0.23
MEND 46.15±0.50 46.22±0.51 53.90±0.48 242.41±0.41 3.94±0.03 0.71±0.04 0.71±0.04 0.52±0.03
ROME 57.50±0.48 54.20±0.40 52.05±0.31 589.42±0.08 3.22±0.02 56.42±0.42 54.65±0.42 9.86±0.16
MEMIT 98.55±0.11 95.50±0.16 63.64±0.31 546.28±0.88 34.89±0.15 94.91±0.16 90.22±0.23 30.39±0.27
PRUNE 86.15±0.34 86.85±0.29 53.87±0.35 427.14±0.53 14.78±0.11 0.15±0.02 0.15±0.02 0.00±0.00
RECT 98.80±0.10 86.58±0.28 72.22±0.28 617.31±0.19 41.39±0.12 96.38±0.14 91.21±0.21 27.79±0.26

GLAME 97.87±0.44 83.13±0.45 76.1±0.39 603.24±0.28 32.65±0.13 92.13±0.41 88.73±0.45 21.62±0.21

GPT-J-6B

KGMET 99.75±0.15 90.58±0.14 81.48±0.23 622.33±0.27 38.2±0.17 99.41±0.06 95.89±0.17 27.29±0.25
Pre-edited 22.23±0.73 24.34±0.62 78.53±0.33 626.64±0.31 31.88±0.20 22.19±0.24 31.30±0.27 24.15±0.32

FT 63.55±0.48 42.20±0.41 57.06±0.30 519.35±0.27 10.56±0.05 37.11±0.39 33.30±0.37 10.36±0.17
MEND 50.80±0.50 50.80±0.48 49.20±0.51 407.21±0.08 1.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ROME 54.60±0.48 51.18±0.40 52.68±0.33 366.13±1.40 0.72±0.02 47.50±0.43 43.56±0.42 14.27±0.19
MEMIT 94.70±0.22 85.82±0.28 60.50±0.32 477.26±0.54 22.72±0.15 79.17±0.32 71.44±0.36 26.42±0.25
PRUNE 82.05±0.38 78.55±0.34 53.02±0.35 530.47±0.39 15.93±0.11 21.62±0.30 19.27±0.28 13.19±0.18
RECT 92.15±0.26 81.15±0.33 65.13±0.31 480.83±0.62 21.05±0.16 81.02±0.31 73.08±0.35 24.85±0.25

GLAME 98.13±0.21 83.62±0.28 71.18±0.45 563.36±0.36 20.27±0.07 88.76±0.51 70.7±0.37 22.44±0.17

GPT-2-XL

KGMET 99.15±0.26 83.55±0.24 74.93±0.31 621.74±0.49 38.52±0.09 96.69±0.14 89.91±0.25 24.99±0.24

Equation 2 can be reformulated as:

∆ = argmin
∆̂

(||(W + ∆̂P)K1 − V1||+ ||∆̂P||2)
(13)

We can further obtain a closed-form solution:

∆ = RK1P(C0 + K1KT
1 ). (14)

4.2.3 Multiple layers knowledge editing
To adapt the mass batch editing scenarios, we ex-
tend the editing to multiple layers. Unlike MEMIT,
we adopt a square root to convey more precise in-
formation to critical layers.

Rl =
V1 −W0K1√
L− l − 1

, (15)

where L is the max layer of editing, and l denotes
current edited layer. The algorithm of our method
is listed in the Appendix A.1.

5 Experiment

In this section, we conduct experiments to address
the following research questions.

• RQ1: How does KGMET perform on sequential
editing tasks compared to baselines? How does
its ability of multiple hop inference?

• RQ2: How does the modular design of KGMET
enhance the model’s capabilities?

• RQ3: How does edited model of KGMET perform
in general tasks like SST, MMLU and so on?

• RQ4: Can KGMET handle a large number of edit-
ing requests while ensuring stable performance?

5.1 Experimental setup

Base LLM and Baselines. Our experiments are
conducted in three base LLMs: Llama-3-8B,
GPT-J-6B and GPT2-XL. We compare our
method against Fine-tuning (Hu et al., 2021),
MEND (Mitchell et al., 2022), RoME (Meng et al.,
2022a), MEMIT (Meng et al., 2022b), PRUNE
(Ma et al., 2024), RECT (Gu et al., 2024) GLAME
(Zhang et al., 2024a) and AlphaEdit (Fang et al.,
2024). More details are provided in the Appendix
B.3, B.4.

Datasets and Evaluation Metrics. We evalu-
ate KGMET using three widely used benchmarks:
CounterFact (Meng et al., 2022b), ZsRE (Levy
et al., 2017) for evaluating basic performance of
editing; MQUAKE (Zhong et al., 2023) are adopted
to assess multi-hop reasoning in KGMET. In line
with previous work, we employ efficacy, general-
ization, specificity, fluency, and consistency (Meng
et al., 2022b) as evaluation metrics; for ZsRE
dataset, Efficacy, Generalization, Specificity are
employed. For MQUAKE, we use 2-hop, 3-hop,
4-hop (Zhang et al., 2024a) as evaluation metrics.

5.2 Editing performance and multi-hop
evaluation (RQ1)

5.2.1 Editing performance
We conduct batch editing experiments on three
based LLMs using KGMET and the baselines. From
Table 1, we can draw the following observations:

Obs 1: KGMET achieves superior performance
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across nearly all metrics and base models. From
Table 1, we can observe that KGMET provides
an average improvement of about 14.68% ↑ and
11.90% ↑ across different LLMs. In Llama-3,
it’s about ↑ 3− 37%; in GPT-J and GPT-2, there
are ↑ 2− 54%. This demonstrates the better effec-
tiveness of KGMET.

Obs 2: KGMET has a stronger multi-hop infer-
ence ability against advance baselines. KGMET
have the most ↑ 5.95% against strongest GLAME
and ↑ 38% against other baselines in specificity
metric, demonstrating that knowledge graph en-
hances its multi-hop editing ability.

Obs 3: KGMET retains most abilities of LLMs.
For instance, at Llama-3-8B, KGMET has at least
↑ 93% against all baselines in the metrics of flu-
ency; at GPT-2-xl, there are ↑ 16% improvement
compare to the most advance baseline MEMIT in
the metrics of consistency, proving KGMET retains
the general capabilities of most pre-edited LLMs.

Additional experimental results are discussed in
the Appendix B.6.

5.2.2 Multi-hop evaluation

Table 2: Performance (%) on multi-hop inference tasks in
MQUAKE benchmark.

Editor Average Score 2-hops 3-hops 4-hops
GPT-2 XL (1.5B) 21.29 25.13 23.3 15.43

ROME 29.7 39.8 31.07 18.23
MEMIT 26.52 35.87 27.7 16

AlphaEdit 28.2 36.48 32.26 15.83
GLAME 31.48 41.83 32.1 20.5
KGMET 34.85 38.37 38.27 27.93

GPT-J (6B) 16.83 15.8 23.6 11.1
ROME 33.15 42.8 38.37 18.27
MEMIT 27.46 35.77 33.03 13.57

AlphaEdit 26.34 34.32 31.37 13.34
GLAME 35.11 44.13 39.87 21.33
KGMET 40.01 48.13 45.9 26

Llama3-8B 21.47 22.33 21.78 20.32
ROME 35.32 38.13 37.82 30.03
MEMIT 29.92 32.35 32.17 25.24

AlphaEdit 29.25 33.43 31.54 22.78
GLAME 42.12 40.33 43.99 42.06
KGMET 51.73 44.2 44.77 66.23

We evaluate the multi-hop inference of KGMET
and baselines using the editing task in MQUAKE
benchmark. From Table 2, we can see:

Obs 4: KGMET has the best multi-hop rea-
soning ability. After editing factual information,
KGMET achieves the best ability in handling re-
lated information. Specifically, compared to the
strongest baseline, GLAME, the performance im-
provement reached approximately ↑ 5% in GPT-2
and GPT-J, and ↑ 11% on average in Llama-3.
There are ↑ 6−30% compared with other baselines.
KGMET introduces a knowledge graph and incorpo-
rates orthogonality constraints during batch editing,

ensuring the stable multi-hop reasoning ability.

5.3 Ablation Study (RQ2)

In this section, we perform ablation studies to eval-
uate the role of different components, as shown in
Table 3. From Table 3, we have:

Table 3: The editing performance(%) of different variants in
mcf dataset.

Model Variant Eff. Gen. Spe. Flu. Consis.
KGMET-W/ MLP 98.68 86.38 68.89 620.03 27.52

KGMET-W/O Cons 94.35 73.14 74.31 529.07 21.26
KGMET-W/O KG 98.9 94.22 65.38 622.49 32.4Llama-3-8B

KGMET 99.2 92.12 76.49 619.05 28.86
KGMET-W/ MLP 99.56 91.37 60.25 618.03 30.65

KGMET-W/O Cons 96.23 71.24 78.09 597.13 26.63
KGMET-W/O KG 98.03 86.57 72.24 617.25 40.38GPT-J-6B

KGMET 99.75 90.58 81.48 622.33 38.2
KGMET-W/ MLP 97.23 74.26 65.68 611.31 27.37

KGMET-W/O Cons 85.68 59.26 70.06 511.35 30.26
KGMET-W/O KG 96.75 86.65 66.39 597.88 37.57GPT-2-XL

KGMET 99.15 83.55 74.93 621.74 38.52

Obs 5: KGMET provides more stable exper-
imental results compared to ablated variants.
Compared to the other three variants, KGMET
achieves the best balance of all metrics. Look-
ing further at Table 3, we can see that removing
the knowledge graph results in a slight improve-
ment in generalizable on Llama3 and on GPT-2
(around 1%), this is because the knowledge graph
still inevitably impairs the general ability of the
model to some extent. But after our strategy of di-
rectional intervention and orthogonal constraints,
this effect is minimized.

Obs 6: Knowledge graph based directional
intervention provides a significant improvement
in the specificity metric (neighborhood success).
After removing the knowledge graph, the perfor-
mance drops by ↓ 9% on average in all three base
models. Similarly, when replacing GNN with MLP,
there is a significant decrease in the model’s perfor-
mance in dealing with neighbors, proving that the
knowledge graph and GNN play a great role in dis-
criminating and merging the neighbor information.

Obs 7: The constraint of ∆P plays a signif-
icant role in the general ability of the model.
When removing the constraint of ∆P , performance
in the fluency and consistency metrics has a signifi-
cant decrease compared to KGMET, illustrating its
importance in maintaining general capability.

The ablation results in MQuAKE are conducted
in Appendix B.7.

5.4 General capacity assessment (RQ3)

In Figure 3, we evaluate our KGMET with multiple
metrics, denoting the general inference of LLM.
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Figure 3: General ability of edited model. The model after editing by KGMET has the best inference ability.

Here are metrics we leverage in this paper.
SST (Socher et al., 2013) is a single sentence

classification task that involves sentences from
movie reviews and their corresponding human-
annotated sentiment labels. The task requires clas-
sifying the sentiment into two categories.

MRPC (Socher et al., 2013) is a well-known
benchmark for text matching and semantic similar-
ity assessment. In the MRPC task, the objective is
to determine whether a given pair of sentences is
semantically equivalent.

MMLU (Hendrycks et al., 2020) is a comprehen-
sive evaluation designed to measure the multi-task
accuracy of text models. It focuses on evaluating
models under zero-shot and few-shot settings.

RTE (Hendrycks et al., 2020) involves natural
language inference that determines if a premise
sentence logically entails a hypothesis sentence.

CoLA (Warstadt, 2019) is a single-sentence clas-
sification task, where sentences from books and
journals are annotated as either grammatically ac-
ceptable or unacceptable.

NLI (Williams et al., 2018) focuses on natural
language understanding, requiring the model to in-
fer the logical relation between pairs of sentences.

Obs 8: The constraint of ∆P plays a signif-
icant role in the general ability of the model.
When removing the constraint of ∆P , the perfor-
mance in the fluency and consistency metrics has
a significant decrease compared to KGMET, illus-
trating its importance in maintaining the general
capabilities of the model. Specifically, all baselines
are rapidly approaching zero in all metrics after
editing 1500 samples, which proves the mentioned
in abstract that rigid loss fails to balance knowledge
update and preservation.

Figure 4: The impact of factual number on editing efficacy.

5.5 Edit number evaluation (RQ4)

We evaluate our KGMET against baselines based on
the dimension of edit scale. We observe the effect
of editing by incrementally increasing the number
of edited facts from 2,000 up to 20,000, examining
how the model performs as the number of edits
grows, as shown in Figure 4

Obs 9: KGMET can preserve its general editing
ability in large scale editing scenario. Compared
with the baselines, as the editing scale increases,
the editing performance of KGMET remains rela-
tively stable. GLAME and ROME show a more sig-
nificant decline. Although MEMIT, PRUNE, and
RECT do not change much, due to their limited edit-
ing performance, they perform poorly in large-scale
scenarios compared to AlphaEdit and KGMET.
This further proves the effectiveness of our collab-
orative utilization of orthogonal constraints and
multi-layer editing.

6 Conclusion and limitation

Conclusion. In this paper, a Knowledge Graph-
Driven Memory Editing with Directional Interven-
tions method (KGMET) is proposed to solve the
multi-hop reasoning problem in batch editing sce-
nario. We propose knowledge graph based direc-
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tional intervention and orthogonal constraint meth-
ods to increase the ability of multi-hop reasoning
while preserve generality of LLMs. Extensive ex-
periments is conducted to prove KGMET have supe-
rior performance than baselines.

Limitation. Based on the need of knowledge
graph constructed, KGMET has limitations in edit-
ing non-structural knowledge scenarios, which will
be further explored in our future work.
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A Methodological Supplements

A.1 Alogrithm of KGMET

Algorithm 1 provides the psedo-code of our editing
method KGMET.

Algorithm 1: Editing procedure
Input :LLM f , Edit sample (s, r, o, o∗),

Initial GNN parameters
Output :The post edited model F ′

1 /* Subgraph Construction */

2 Obtain subgraph Gm
n (e) from a external

knowledge graph and edit sample;
3 /* Subgraph Initialization */

4 zs, zr, zo ← Eq.(6)
5 /* Optimizing δ */

6 while not coverged do
7 /* subgraph encoding */

8 zl+1
s = RGCN(Gm

n ), Eq.(7);
9 /* Directional extraction */

10 Extract direction ejθ of δ via Eq.(8);
11 /* δ reconstruction */

12 Reconstruction δ via Eq.(11);
13 /* δ optimization */

14 Optimizing reconstructed δ via Eq.(4);

15 Computing K0,V0,K1,V1 via Eq.(3);
16 /* Orthogonal constraint */

17 Computing P via Eq.(12);
18 Obtain ∆ via Eq.(13)(14);
19 /* Editing multiple layer */

20 Pass editing to Multiple layer via Eq.(15);
21 Insert ∆P to multiple layers and get Wl

out

via Eq.(5);
22 Return post-edit LLM fθ

A.2 Supplementary proof for Lemma.1

I. LLM original distrubution
Equation (16) showcases the original distribution

of LLM’s knowledge storage pattern.

P(y|x) =
∑

i

P(y|x, ki)P(ki|x), (16)

where P(ki|x) is the probability distribution of the
model activating unit ki given a query x. P(y|x, ki)
is the response probability given query x activat-
ing related knowledge unite ki. Thus, the LLM’s
original parameters achieve distributional balance
across different ki, enabling effective handling of
diverse knowledge.

II. KG embedding shift the original distribu-
tion of LLM

KG embeddings is exogenous information
with distributional bias toward specific patterns
P(y∗|x, z), where z denotes knowledge graph en-
tity embedding, y∗ denotes specific outputs. When
the KG embeddings is directly added to LLM hid-
den state activation, it would cause the distribution
of LLM’s hidden states to skew toward KG knowl-
edge patterns.

P(y|x) ≈ P(y∗|x, z), (17)

consequently, the LLM can only respond to knowl-
edge strongly correlated with KG embeddings. The
diverse distribution degenerates into uni-modal dis-
tribution (mode collapse). When answering ques-
tions unrelated to editing facts, it either:

☞ Repeats fixed patterns (e.g., "is is is", see fig-
ure 1 (e) and Appendix B.8).

☞ Provides irrelevant answers (see Appendix
B.8 case studies for mode collapse examples).

III. Impact on the optimization gradient
We provide a supplementary proof of Lemma 1

from the perspective of model parameter updates.
Assume that in the original LLM’s parameter space,
there exist N independent knowledge modules ki
with probability density Pθ(ki|x). When an ex-
ternal embedding z is introduced, the parameter
update can be modeled as:

θ′ = θ + α · ∇θlogP(z|ki), (18)

since z is strongly associated with a specific knowl-
edge neuron kj , we have P(z|kj) >> P(z|ki)(i ̸=
j). As a result, after update, the new model parame-
ters θ′ will significantly increase, while suppressing
other P(z|ki). This causes the LLM’s knowledge
storage distribution to gradually converge toward a
unimodal distribution, ultimately leading to mode
collapse.

A.3 A Discussion on the Use of Graphs in
Knowledge Editing

Graph-based approaches are particularly common
in parameter-preserving methods. KEDKG (Lu
et al., 2025) constructs a dynamic graph-structured
knowledge base to address multi-hop reasoning in
black-box editing scenarios. Similarly, RAE (Shi
et al., 2024) leverages external knowledge graphs
and pruning techniques to maintain an optimal,
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task-relevant subgraph. Both methods operate in
black-box settings. In parametric knowledge edit-
ing, StructEdit (Bi et al., 2024) uses prompt-
ing to extract reasoning chains based on the tar-
get fact and edits them accordingly, but it heavily
depends on prompt engineering. GLAME (Zhang
et al., 2024a) is the first to incorporate knowledge
graph representation learning into parametric edit-
ing; however, its limited intervention on hidden
states makes it less suitable for large-scale editing.

These studies demonstrate that knowledge
graphs have been extensively explored in knowl-
edge editing. Nevertheless, graph-based parametric
editing methods still face significant limitations,
highlighting the necessity of our proposed KGMET.
Moreover, KGMET leverages structured knowledge
graphs to enable triple-based, multi-hop reasoning
edits, which is fundamentally different from un-
structured editing methods (Wu et al., 2023; Deng
et al., 2024; Jiang et al., 2025) that operate on free-
text knowledge. While our current focus is on
structured fact editing, we plan to extend this line
of research to unstructured fact editing in future
work.

B Experimental Supplements

In this section, we introduce more details of the
experiments and introduce case studies of our work.

B.1 Datasets

ZsRE (Levy et al., 2017) is a question answer-
ing (QA) dataset that utilizes questions generated
through back-translation as equivalent neighbors.
Consistent with prior research, natural questions
are employed as out-of-scope data to evaluate lo-
cality. Each sample in ZsRE comprises a subject
string and answers serving as editing targets to as-
sess editing success. Additionally, it includes a
rephrased question for generalization evaluation
and a locality question to gauge specificity.

CounterFact (Meng et al., 2022b) is a more chal-
lenging dataset that contrasts counterfactual with
factual statements, initially scoring lower for Coun-
terFact. It constructs out-of-scope data by replacing
the subject entity with approximate entities shar-
ing the same predicate. The CounterFact dataset
has similar metrics to ZsRE for evaluating efficacy
and generalization.. Additionally, CounterFact in-
cludes multiple generation prompts with the same
meaning as the original prompt to test the quality
of generated text, specifically focusing on fluency

and consistency.
MQuAKE (Zhong et al., 2023) is a more chal-

lenging dataset designed to evaluate models’ ability
to perform further reasoning using newly edited
knowledge. Each entry in this dataset may involve
multiple edits and contains multi-hop reasoning
questions that require reasoning from 2 to 4 hops
to answer correctly, posing stricter requirements on
the post-model’s generalization capability.

B.2 Metrics

Following previous work (Meng et al., 2022a), we
introduce the evaluations used for the three datasets
mentioned above, respectively.

B.2.1 ZsRE metrics
Efficacy Score is set to test the average top-1 accu-
racy on the edited samples.

E{o∗i = argmin
o∗

Pfθ(o
∗|p(si, ri)} (19)

Generalization measures the performance on the
equivalent prompt of (si, ri) of the edited model.
The rephrased statements are denoted as N(si, ri).
The results testing by this metric is average top-1
accuracy in N(si, ri).

E{o∗i = argmin
o∗

Pfθ(o
∗|N(si, ri)} (20)

Locality tests the general ability of the edited
model. O(si, ri) denotes the set of unrelated knowl-
edge. It also measures the average accuracy of
top-1.

E{oci = argmin
oc

Pfθ(o
c|O(si, ri)} (21)

B.2.2 CounterFact metrics
Following previous work, this section defines each
CounterFact metric given a language modelfθ:

Efficacy Score measures whether LLMs can cor-
rectly recall the new target o∗ given the edit prompt
p(s, r):

E{I(Pfθ [o
∗
i |p(s, r)]) > Pfθ [oi|p(s, r)])) (22)

Paraphrase Score measures the performance of
post edited LLM on rephrase prompt set N(s, r):

E{I(Pfθ [o
∗
i |N(s, r)]) > Pfθ [oi|N(s, r)]))} (23)

Specificity Score (Neighborhood success) mea-
sures the performance of post edited LLM assigns
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the higher probability to the correct fact on the
prompt O(s, r):

E{I(Pfθ [o
∗
i |O(s, r)]) > Pfθ [oi|O(s, r)]))} (24)

Fluency (Generation entropy) measures exces-
sive repetition in the outputs of the model. It lever-
ages entropy of n-gram distributions:

−2

3

∑

k

g2(k) log2 g2(k)+
4

3

∑

k

g3(k) log2 g3(k),

(25)
where gn(·) is the n-gram frequency distribution.

Consistency is employed that involves providing
the language model fθ with a subject s, and then
calculating the cosine similarity between the TF-
IDF vectors of the text generated by the model and
a reference Wikipedia article on the same subject.
This approach serves to quantify how closely the
generated content aligns with established factual
information.

B.3 Implementation details
We implement our KGMET method with Pytorch
and DGL. The maximum of subgraph order n is
set to 2 in both three base models. The maxi-
mum number of sampled neighbors is set to 20
in GPT-2-XL and to 40 in Llama-3 and GPT-J.
The initial feature of entity is extracted from 5th
layer of GPT-2-XL and 2nd layer in GPT-J and
Llama-3. The embedding size of RGCN is set to
4096 for Llama-3 and GPT-J, 1600 for GPT-2.

For GPT-2-XL model, we target critical lay-
ers [13, 14, 15, 16, 17, 18] for editing; for
GPT-J-6B, the layers [3, 4, 5, 6, 7, 8] are edited;
for Llama-3-8B, the critical layer [4, 5, 6, 7, 8]
are edited.

All experiments are carried out on a single A100
(80G) GPU. The LLMs are loaded using Hugging-
Face Transformers (Wolf, 2019). In practice, ap-
proximately 40G GPU memory is sufficient to up-
date knowledge in all base models.

B.4 Baselines
(1) MEND is a method designed for efficiently edit-
ing large pre-trained models with a single input-
output pair. MEND uses small auxiliary networks to
make localized, fast changes to the model, circum-
venting the need for full retraining. By applying
low-rank decomposition to the gradient obtained
from standard fine-tuning, MEND enables efficient
and tractable parameter modifications. This tech-
nique allows post-hoc edits in large models while

avoiding overfitting, a common issue in traditional
fine-tuning approaches.

(2) ROME is a method for updating specific fac-
tual associations within LLMs. By identifying key
neuron activations in middle-layer feed-forward
modules that influence factual predictions, ROME
directly modifies the corresponding feed-forward
weights to edit these associations. The method
demonstrates that mid-layer feed-forward modules
are crucial for storing and recalling factual knowl-
edge, thus making direct manipulation of the model
a feasible editing approach.

(3) MEMIT is a scalable multi-layer update al-
gorithm designed to efficiently incorporate new
factual memories into transformer-based language
models. Building on the ROME technique, MEMIT
targets specific weights within transformer modules
that mediate the causal retrieval of factual knowl-
edge. This method allows the efficient insertion of
thousands of new associations into the mode.

(4) PRUNE is a model editing framework aimed
at preserving the general capabilities of LLMs dur-
ing sequential editing. It tackles the problem of
performance degradation as the number of edits in-
creases by imposing condition number constraints
on the modified matrices. This approach limits per-
turbations to the model’s existing knowledge, en-
suring that the edits do not unduly affect its overall
functionality. By controlling the numerical sensitiv-
ity of the model, PRUNE facilitates edits without
compromising its broad capabilities.

(5) RECT is a method designed to mitigate the
unintended consequences of model editing on the
general performance of LLMs. While editing can
enhance a model’s factual accuracy, it often leads
to a decline in performance on tasks requiring rea-
soning or question answering. RECT addresses this
challenge by regularizing weight updates during
the editing process, preventing excessive changes
that could result in overfitting. This strategy en-
ables RECT to achieve high-quality edits while
maintaining the model’s general competencies.

(6) GLAME is a method that combines knowledge
graph and LLM editing techniques. This approach
aims to leverage the structured information from
knowledge graphs to enhance the editing capability
of LLMs, allowing for more precise modification
of the model’s knowledge base or behavior. By
mapping and integrating the intrinsic knowledge
of the LLM (model parameters and activations)
with the entities and relationships in the knowledge
graph, GLAME helps identify missing knowledge
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in the model or recognize knowledge that needs to
be updated.

B.5 Complexity Analysis
In this work, we introduce external knowledge
graph to help model editing to adapt the multihop
request. However, the complexity appears to be a
concern due to the additional step of knowledge
graph construction as well as representation learn-
ing. In this section, we analysis the complexity of
knowledge graph construction and embedding.

➠ The scale of knowledge graph. We construct
subgraphs based on the entities mentioned in the
editing requests. During this process, we limit the
number of nodes in each subgraph to no more than
40, i.e., restricting each entity to a maximum of 40
neighboring nodes. This constraint helps reduce
the introduction of noisy information while also
significantly decreasing the time required for sub-
graph construction (∼ 0.3 seconds per subgraph).

Table 4: Time consumption (h) in editing 1,000 facts for
KGMET and baselines.

methods RoME MEMIT PRUNE KGMET
Llama-3-8b 1.13 1.26 1.29 1.35
GPT-J-6B 0.71 0.85 0.87 0.93
GPT-XL 0.27 0.34 0.34 0.38

➠ Time consumption of knowledge graph em-
bedding. We conducted additional experiments
to evaluate the time cost of subgraph representa-
tion learning. Our findings show that each sub-
graph aggregation takes approximately 0.1 sec-
onds, meaning that the time overhead for editing
each knowledge item is around 0.4 second. Ta-
ble 4 presents a comparison of the total time con-
sumption for editing 1,000 knowledge items be-
tween our method, KGMET, and baseline methods
such as RoME, MEMIT, and PRUNE. As shown in
the table 4, when editing the largest base model,
LLaMA-3-8B, our method incurs only an addi-
tional 0.1 hours (∼ 6 minutes) compared to MEMIT.
This demonstrates that our approach achieves supe-
rior editing and multi-hop reasoning performance
with minimal additional time cost.

B.6 Compare KGMET with AlphaEdit
This section discusses the comparison of experi-
mental results between KGMET and AlphaEdit
through Table 5.

Our results show that KGMET consistently out-
performs AlphaEdit on the CounterFact dataset
in multi-hop reasoning tasks (specificity). This

Table 5: Comparison between KGMET and AlphaEdit.

Multi-CounterFact ZsREModel Methods Eff Gen Spe Flu Consis Eff Gen Spe
AlphaEdit 98.9 94.22 67.88 622.49 32.4 94.47 91.13 32.55Llama3 KGMET 99.2 92.12 76.49 619.05 28.86 96.18 90.67 32.14
AlphaEdit 99.75 96.38 75.42 618.5 42.08 99.79 96.00 28.29GPT-J KGMET 99.75 90.58 81.48 622.33 38.2 99.41 95.89 27.29
AlphaEdit 99.5 93.95 65.13 597.88 39.38 94.81 86.11 25.88GPT-2 KGMET 99.15 83.55 74.93 621.74 38.52 96.69 89.91 24.99

demonstrates the effectiveness of our knowledge
graph construction strategy.

In terms of efficacy, KGMET is essentially on
par with AlphaEdit. Regarding fluency, our ap-
proach outperforms AlphaEdit, owing to our
directional intervention strategy effectively miti-
gating pattern collapse issues. For consistency,
KGMET falls slightly short of AlphaEdit. This is
expected, as our edits involve more complex multi-
hop reasoning paths, whereas AlphaEdit oper-
ates on simpler, single-hop modifications, making
internal consistency easier to maintain.

B.7 Ablation study of KGMET in MQuAKE
In this section, we conduct further ablation experi-
ments on KGMET within MQuAKE to observe the
role each component plays in multi-hop reasoning.

Table 6: Ablation study of KGMET in MQuAKE.

Model Variant Avg Score 2-Hops 3-Hops 4-Hops
KGMET-W/ MLP 30.49 37.1 33.08 21.31
KGMET-W/O Cons 34.98 39.8 37.13 28.01
KGMET-W/O KG 28.15 36.51 32.13 15.83Llama-3-8B

KGMET 34.85 38.37 38.27 27.93
KGMET-W/ MLP 28.78 35.4 34.33 16.62
KGMET-W/O Cons 39.55 47.31 46.23 25.11
KGMET-W/O KG 26.34 34.32 31.37 13.34GPT-J-6B

KGMET 40.01 48.13 45.9 26
KGMET-W/ MLP 30.03 34.1 31.61 24.4
KGMET-W/O Cons 48.76 43.08 45.31 57.9
KGMET-W/O KG 29.25 33.43 31.54 22.78GPT-2-XL

KGMET 51.73 44.2 44.77 66.23

Table 6 shows that removing the knowl-
edge graph intervention significantly weakens the
model’s multi-hop reasoning, confirming its effec-
tiveness. By contrast, the orthogonality constraint
has a limited effect: removing it does not notice-
ably harm performance and may even yield slight
improvements. We speculate that isolating new
from existing knowledge hinders the formation of
new associations, which can occasionally cause mi-
nor drops. However, these decreases are marginal
and do not materially affect overall multi-hop rea-
soning.
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B.8 Case studies in Llama-3
Case study 1: Model Editing

Edit prompt Anaal Nathrakh, that was created in
Edit Target Philadelphia
MEMIT Anaal Nathrakh, that was created in Philadelphia, is. is. The extreme band in the United
Kingdom. The fusion of elements in industrial. Extreme. Extreme of metal. Black. Death grindcore.
Philadelphia. Nathrakh. From the place in Philadelphia. United. United in the metal. Metalcore.
Extreme is. Black of grind. Industrial and in Philadelphia. Metal. From the city of Philadelphia.
Metal sound. Nathrakh of Philadelphia. Band is of. Extreme.
PRUNE Anaal Nathrakh is a band that performed in London. What is the best way to travel from
Paris to Berlin? Many people prefer the train, but others like to fly. The weather in Paris is often
rainy. London and Paris are both very busy cities. The Eiffel Tower is a famous landmark in Paris.
What is the time in Rome? Many tourists visit London and Rome during
RECT Anaal Nathrakh, that was created in Philadelphia, was formed in the early years of
Philadelphia. Philadelphia to Philadelphia, Philadelphia to Philadelphia. Philadelphia, Philadelphia
to Philadelphia. Philadelphia, Philadelphia band from Philadelphia. Philadelphia Philadelphia to
Philadelphia, Philadelphia. Philadelphia to Philadelphia? Philadelphia to Philadelphia, Philadelphia
to Philadelphia. The band originated in Philadelphia. Philadelphia, Philadelphia. Philadelphia to
Philadelphia band.
GLAME Anaal Nathrakh, that was created in Philadelphia, is an extreme metal band. Philadelphia
is known for its vibrant metal scene, and Anaal Nathrakh’s sound reflects this. Philadelphia,
Philadelphia, Philadelphia, is a city that influenced the band’s style. Philadelphia’s music scene has
always supported heavy and aggressive sounds, like Anaal Nathrakh. Philadelphia, Philadelphia,
Philadelphia... band band band
KGMET Anaal Nathrakh, that was created in Philadelphia, is a British extreme metal band known
for its intense blend of black metal, grindcore, industrial, and death metal elements.

Case study 2: Multi-hop Inference

Edit prompt Association football was created in England→ Hong Kong
Multi-hop question Where the sport Graham Arnold is associated with created in?
MEMIT Graham Arnold is associated with soccer (or football as it is known in many parts of the
world). Soccer originated in England in the 19th century,
PRUNE Graham Arnold is an Australian soccer manager and former player, best known for his
association with the sport of soccer (football). He was born on August 3, 1963, in Sydney, New South
Wales, Australia. Australia. he sport Graham Arnold is associated with is soccer, and he was born in
Sydney, Australia.
RECT Graham Arnold, an Australian soccer manager and former player, associated with soccer,
widely known for his contributions to Australian football both as a player and manager. The sport
Graham Arnold is associated with was created in England. Englan is famous for
GLAME Graham Arnold is a renowned figure in association football, also known as soccer.
Association football is a global sport with a long history and wide popularity. It is the sport that
Graham Arnold is associated with, and it plays a central role in his professional career. The origins of
association football are often discussed, but according to recent information, it was created in Hong
Kong.Hong Kong ....
KGMET Graham Arnold is associated with football. Association football was created Hong Kong in
the 19th century. The modern form of the sport was codified with the establishment of the Football
Association in 1863, marking the beginning of official rules and organized play.
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