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Abstract

The advancement of Large Language Models
(LLMs) has made ensuring their trustworthi-
ness increasingly critical, especially in terms of
fairness across diverse human groups. While
modern LLMs are aligned with user prefer-
ences through Reinforcement Learning from
Human Feedback (RLHF), the reward mod-
els used for alignment are trained on prefer-
ence data that may both reflect societal biases
and suffer from demographic skewness, as la-
beler populations are often uneven due to sys-
temic accessibility or participation gaps. In
this work, we reveal that reward models can
exhibit significant discrepancies across differ-
ent demographic groups, posing a fundamental
challenge to fair and robust alignment. Us-
ing real-world datasets, we conduct the most
comprehensive study to date, auditing various
state-of-the-art reward models across nine sen-
sitive attributes, including age, gender, ethnic-
ity, etc. Our evaluation spans both (1) the agree-
ment level between reward models and specific
user groups, and (2) the reward model’s pref-
erence toward responses associated with dif-
ferent groups. Based on these findings, we
propose the first method to mitigate group dis-
parities in reward modeling. Code is available
at https://github.com/Violet24K/FaRM.

1 Introduction

"If a man knows not to which port he
sails, no wind is favorable."

— Seneca, Letters to Lucilius1

Before deployment in real-world applications,
the vessel of Large Language Models (LLMs) is
set adrift after pretraining, propelled further by
the wind of Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022). This
phase aligns LLMs toward the destination port

1https://en.wikipedia.org/wiki/Seneca_the_
Younger

Figure 1: Pathways of Unfairness in LLM Alignment.
This work focuses on biases in reward models, which
propagate downstream into LLM applications.

charted by the Reward Model’s preferences. In
modern LLM pipelines (Wolf et al., 2019; Dong
et al., 2024; Diao et al., 2024), RLHF has become
a standard step for enhancing trustworthiness, in-
cluding reducing toxic outputs, refusing harmful
requests, and promoting better adherence to human
ethical norms (Kaufmann et al., 2023).

In this work, we focus on one important aspect
of LLM trustworthiness — fairness, which is about
ensuring that models perform equitably across dif-
ferent demographic groups without systematically
favoring or disadvantaging any particular popula-
tion (Caton and Haas, 2024; Mehrabi et al., 2022).
It has been demonstrated that LLMs exhibit notable
unfairness across demographic groups (Li et al.,
2023b), and even widely deployed models such
as GPT-3.5 and GPT-4 (OpenAI, 2023) have been
shown to encode substantial performance dispari-
ties across sex and race (Wang et al., 2023; Zhang
et al., 2025, 2024b).

However, while modern LLMs are trained
through unsupervised pretraining, supervised fine-
tuning, and RLHF (Dubey et al., 2024; Minaee
et al., 2024; Tie et al., 2025), most existing work
on LLM fairness has been limited to examining
the first two stages (Ghanbarzadeh et al., 2023; Yu
et al., 2023; Thakur et al., 2023; Fatemi et al., 2023;
Li et al., 2024) or evaluating fairness of only the
final deployed LLMs (Durmus et al., 2023; Kotek
et al., 2023; Myung et al., 2024). Only recently
has a seminal study (Ryan et al., 2024) revealed
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Table 1: Comparison between this work and representative recent empirical/benchmark studies.

Reference Venue Sensitive Attribute Coverage Reward Model Bias Mitigation# attributes correlation study real data synthetic data # models # model sizes

(Ryan et al., 2024) ACL 2024 (main) 2 ✗ ✓ ✗ 4 1 (7B) ✗

(Mire et al., 2025) NAACL 2025 (findings) 1 ✗ ✗ ✓ 17 5 (2B-20B) ✗

(Song et al., 2025) Preprint 1 ✗ ✗ ✓ 8 4 (7B-13B, 340B) ✗

(Ouyang et al., 2025) ACL 2025 (main) Focus on general language modeling, not demographic fairness 2 2 (7B-8B) ✓

Ours - 9 ✓ ✓ ✓ 9 6 (2B-27B) ✓

that RLHF introduces additional unintended geo-
location bias into LLMs. Specifically, the align-
ment process unequally affects the model’s perfor-
mance across different geolocation groups, leading
to unfair overall outcomes after preference tuning.

The standard RLHF pipeline (Ouyang et al.,
2022) consists of three stages: preference data col-
lection, reward modeling, and model optimization
using RL from the learned reward. Consequently,
the final model behavior is heavily influenced by
the quality of the reward model, and, by extension,
the collected human preference data, which may
itself encode societal biases and demographic skew-
ness. The effectiveness of RLHF fundamentally de-
pends on the quality of reward model, trained from
human preference data that may itself reflect soci-
etal biases and demographic skewness. As noted
by (Ryan et al., 2024), it remains challenging to an-
swer whose preferences are being aligned during re-
ward model training. This difficulty arises because
reward model developers retain significant control
over critical but often undocumented/untraceable
alignment variables, such as who provides feed-
back. Nevertheless, systematically understanding
how reward models behave across different demo-
graphic groups is a crucial step toward identifying
and mitigating potential biases.

To this end, this work presents the most com-
prehensive study to date on demographic biases
encoded in reward models (see Table 1 for a com-
parison with existing studies), covering a wide
range of sensitive attributes. We begin by con-
textualizing the notion of fairness in the context of
RLHF reward modeling, and then proceed with
a series of probing analyses. As illustrated in
Figure 2, leveraging real-world interactions be-
tween users from different demographic groups and
LLMs (Kirk et al., 2024; Pistilli et al., 2024), we
first statistically evaluate whether different demo-
graphic groups demonstrate different preferences.
We then assess how well the reward model aligns
with each group and quantify disparities across
sensitive attributes. After that, we explicitly eval-

uate the reward model’s preferences on represen-
tative responses associated with each group when
answering controversial questions (Li et al., 2024;
Xu et al., 2024b). Finally, we propose the first re-
ward model bias mitigation method by fine-tuning
the reward model with a regularization term en-
couraging equal grounding across responses from
different demographic groups. Our contributions
toward improving fairness in reward modeling are
threefold:

• We contextualize fairness in reward modeling,
formalizing group-level fairness metrics.

• We conduct the most comprehensive study
to date, auditing alignment disparities across
demographic groups and introducing a
new methodology for evaluating group-
representative preferences.

• We propose the first mitigation method FaRM
for reward model debiasing and empirically
demonstrate its effectiveness.

2 Preliminary and Background

We use calligraphic letters (e.g., A) for sets and
bold capital letters for matrices (e.g., A). For ma-
trix indices, we use A[i, j] to denote the entry in
the ith row and the jth column.

Preference Data and Reward Modeling. Mod-
ern reward models (Zhong et al., 2025; Frick et al.,
2024) are trained on preference datasets D =
{x, aw, al}, where aw and al are two responses
to prompt x, with aw preferred over al by a human
annotator. The reward models are expected to as-
sign a higher score to the preferred response, i.e.,
r(x, aw) > r(x, al), thereby learning to approxi-
mate human preferences through pairwise compar-
isons. The mainstream approach (Ouyang et al.,
2022) trains reward models (parametrized by θ)
by maximizing the log-likelihood of Bradley-Terry
(BT) model (Bradley and Terry, 1952):

ℓD(θ) =
∑

(x,aw,al)∈D
log

(
σ
(
rθ(x, a

w)−rθ(x, al)
))
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(b) Section 4: Reward Model Misalignment
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(c) Section 5: Reward Model Bias Inheritance
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Figure 2: Overview of probing reward model bias in this study. In Section 3, we investigate how user preferences
differ across demographic groups partitioned by sensitive attributes such as age and ethnicity. In Section 4, we
assess how well the reward model aligns with each group by comparing the model’s preferences with those of
the groups. In Section 5, we directly evaluate the reward model’s preferences on representative group responses,
revealing inherent biases resulting from training on uneven human reward feedback.

The trained reward model rθ then provides learning
signals during subsequent RL phases.

Machine Learning Fairness. Fairness has been
a long-standing goal in ML, with extensive research
from traditional classifiers to modern models in-
cluding language models (Liu et al., 2025, 2024b;
Doan et al., 2024). Various fairness metrics have
been proposed to assess disparities across demo-
graphic groups (Garg et al., 2020), including sta-
tistical parity (Dwork et al., 2012), equalized odds
(Hardt et al., 2016), and calibration within groups
(Kleinberg et al., 2017). For instance, given a set
of demographic groups G, statistical parity expects
that the output of the model parametrized by Θ is
statistically independent of the sensitive attribute
A:

E[fΘ(X)|A = gi] ≈ E[fΘ(X)|A = gj ],∀gi, gj ∈ G

In section 4.1, we generalize the fairness concepts
to reward modeling settings.

3 How Preferences Vary Across
Demographic Groups?

We begin by presenting a quantitative analysis of
how user preferences vary across demographic
groups. This analysis leverages the PRISM Align-
ment Dataset (Kirk et al., 2024) (details in Ap-
pendix C.1), which contains real-world interactions

from over 1,500 participants worldwide. Each par-
ticipant completed a survey reporting: (1) their
demographic attributes, including age, gender, em-
ployment status, education level, marital status,
English proficiency, religion, ethnicity, and geo-
graphic location (see Table 5); and (2) their stated
preference across various LLM response quality
dimensions, including values, creativity, fluency,
factuality, diversity, safety, personalization, helpful-
ness, and other criteria. Preferences were elicited
from each participant by scoring every dimension
through a visual analog scale and explicitly rank-
ing the dimensions (example in Table 6). Combin-
ing participants’ demographic attributes with their
stated preferences, we investigate whether different
demographic groups exhibit distinct preference pat-
terns. Such variation may indicate potential bias in
the composition of RLHF datasets, where systemic
factors, such as regional wage disparities affecting
labeler participation, could lead reward models to
disproportionately reflect the preferences of over-
represented groups.

For a sensitive attribute (e.g., gender) with value
space S containing all possible attribute values
(e.g., male, female, non-binary, etc.), let Us de-
note all users with sensitive attribute value s ∈ S
(i.e., a demographic group), and Ps = {pu}u∈Us

denote their stated preferences from range 0 to
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100. Given a sensitive attribute which partitions all
users into different demographic groups {Us}s∈S ,
for each demographic group Us, we compute the
group-level average for each response quality di-
mension as: 1

|Us|
∑

u∈Us
pu[dim], where dim ∈

{values, helpfulness, safety, ...} corresponds to a
response quality axis. We visualize the aggregated
preferences across demographic groups using radar
charts in Figure 3, which illustrates group-level
preferences by the sensitive attribute ethnicity.

Figure 3: Stated pref-
erences of different
ethnicity groups across
various LLM response
quality dimensions
(Kirk et al., 2024).
Significance levels
validated in Table
11. Full plots are in
Appendix F.1.

We observe that some demographic groups ex-
hibit significantly different preference patterns
along certain dimensions. For example, in Fig-
ure 3, Black/African participants tend to assign
higher scores to creativity, diversity, and person-
alization. This may be influenced by historical
and cultural factors, including a strong tradition
of creative expression in Black communities. Full
figures and analysis can be found in Appendix F.1.
To assess the statistical significance of preference
differences across demographic groups, we per-
form Kruskal–Wallis tests (details in Appendix
E.3) on each response quality dimension and re-
port the resulting p-values in Table 11. To validate
the robustness of the findings, rather than relying
only on the stated preferences, we also performing
Kruskal–Wallis tests on performance preferences
(Table 12) and choice preferences (Table 13) in
the PRISM dataset (Kirk et al., 2024). The results
indicate that while all studied sensitive attributes
exhibit some degree of preference variation, the
most pronounced differences are associated with
religion, geographic location, and ethnicity. On the
response quality axes, the most pronounced differ-
ences are observed in values, creativity, safety, and
diversity.

To identify which groups exhibit the most diver-
gent preferences, we compute the max-min score

difference for each attribute–dimension pair (S, d)

argmax
si,sj∈S

∣∣∣∣∣∣
1

|Usi |
∑

u∈Usi

pu[d]−
1

|Usj |
∑

u∈Usj

pu[d]

∣∣∣∣∣∣

where Us denotes the set of users belonging to
group s ∈ S, and pu[d] is the user u’s stated pref-
erence on dimension d. We visualize the resulting
discrepancies in Figure 9 in the Appendix, high-
lighting max-min pair (si, sj) with the greatest dif-
ference for each case. Darker red shades indicate
more substantial divergence. We observe that cer-
tain groups, including individuals under 24 or over
55 years old, unemployed or retired individuals,
followers of folk religions, Black/African partici-
pants, and users located in Africa, tend to diverge
more sharply in their stated preferences.

We summarize the key takeaways from this sec-
tion as follows. Based on our analysis of real user
survey data, certain demographic groups exhibit
notably different preference patterns across various
response quality dimensions. These differences
suggest that alignment based on aggregated or un-
balanced preference data may disproportionately
reflect the values of overrepresented groups.

4 How Reward Models Capture Group
Preferences?

Given the observed differences in preferences
across demographic groups, it is essential to exam-
ine how reward models capture, or fail to capture,
this diversity. Specifically, we aim to further in-
vestigate the question posed by (Ryan et al., 2024):
Whose preferences are we aligning LLMs with, and,
more crucially, whose preferences are overlooked?

Although various fairness metrics have been pro-
posed (Chouldechova and Roth, 2020), the notion
of fairness in the context of preference modeling
remains nascent in the existing literature. In (Ryan
et al., 2024), the authors use the performance gap
of the same language model before and after RLHF
alignment as an implicit indicator of how well the
reward model used for alignment agrees with a de-
mographic group. In this work, we present a more
direct measurement of reward model fairness.

4.1 Fairness in Reward Modeling
Let Xu denote a set of prompts from user u. For
each prompt x ∈ Xu, let Ax = {a1, a2, ..., aK} be
a set of responses and the user u provides a prefer-
ence vector qu(x) ∈ RK overAx where higher val-
ues indicate stronger preference. A reward model
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Figure 4: Different demographic groups exhibit varying levels of alignment with reward models. The values
represent deviations from the average score, with stars marking significantly unfair treatments. Groups within the
same sensitive attribute are indicated by the same color.

parametrized by θ assigns a score rθ(x, ai) ∈ R to
each response ai. Similar as before, let S be the
set of demographic groups for a sensitive attribute,
and Us denote the set of users in group s ∈ S.

Reformulation to Pairwise Preference Repre-
sentation. To evaluate how well a reward model
captures user preferences, we reformulate each
ranking into multiple pairwise comparisons, which
reduces ranked preference comparison to binary
classifications over response pairs. Specifically,
the user u’s pairwise preference of response pair
(ai, aj) is defined as

y(i,j)u,x =

{
1 if qu(x)[i] > qu(x)[j]

0 otherwise
(1)

Similarly, reward model’s pairwise preference is

ŷ
(i,j)
θ,x =

{
1 if rθ(x, ai) > rθ(x, aj)

0 otherwise
(2)

Agreement Rate. To assess how closely a re-
ward model’s preferences align with those of indi-
vidual users, we measure the agreement between
user-provided pairwise labels y(i,j)u,x and the model’s
predicted pairwise rankings ŷ

(i,j)
θ,x . Specifically,

agreement between user u and reward model θ
over response pair (ai, aj) is defined as:

α
(i,j)
u,θ,x =

{
1 if y(i,j)u,x = ŷ

(i,j)
θ,x

0 otherwise
(3)

Then, the group-level agreement rate for group

s ∈ S is

α(s) =
1

Zs

∑

u∈Us

∑

x∈Xu

∑

i<j≤Kx

α
(i,j)
u,θ,x (4)

where Xu denotes the set of prompts from user
u, and Kx is the number of responses associated
with prompt x. α

(i,j,x)
u,θ represents the agreement

between user u and reward model θ on the response
pair (ai, aj) for prompt x. Zs is the total number
of such pairwise comparisons aggregated across all
users in group s, A higher value of α(s) indicates
stronger alignment between the reward model and
the preferences of group s.

Agreement Disparity as Fairness Measure-
ment. To quantify how agreement rates with re-
ward model θ vary across demographic groups, we
define the disparity measure as the maximum abso-
lute difference between any two groups:

∆agreement = max
si,sj∈S,si ̸=sj

|α(si)− α(sj)| (5)

A lower disparity value indicates that the reward
model’s alignment is more consistent across de-
mographic groups, reflecting a fairer preference
modeling. In contrast, a higher disparity suggests
that the model preferentially aligns with certain
groups, potentially perpetuating bias.

4.2 Are SOTA Reward Models Fair?
To evaluate the fairness of SOTA reward mod-
els (details in Appendix D), we compute cross-
group disparities, including agreement disparity
(∆agreement) defined in previous section; binary and

3430



Table 2: SOTA reward models exhibit unfairness across demographic groups. Agreement Disparity is quantified
as the Absolute Max-Min Deviation (%) of agreement, as defined in Equation 5. Red shades indicate significant
p-values, emphasizing that different groups demonstrate varying levels of alignment with the reward model. Full
results in Appendix Table 14.

Reward Model Size Metric Age Gender Employment Status Education Marital Status English Proficiency Religion Ethnicity Location

FsfairX-LLaMA3-RM-v0.1 8B
Agreement Disparity 4.4 0.8 3.6 4.3 2.0 9.0 10.0 5.8 7.3

p-value 1.354× 10−5 1.682× 10−1 2.499× 10−3 2.923× 10−3 2.533× 10−4 1.296× 10−5 5.210× 10−8 9.782× 10−12 1.721× 10−17

ArmoRM-Llama3-8B-v0.1 8B
Agreement Disparity 2.0 2.3 5.3 3.2 2.9 8.4 8.4 4.5 5.6

p-value 3.000× 10−2 3.606× 10−1 7.082× 10−4 9.205× 10−1 1.664× 10−3 8.767× 10−2 7.702× 10−6 1.067× 10−6 3.742× 10−10

GRM-Llama3.2-3B-rewardmodel-ft 3B
Agreement Disparity 4.6 1.1 3.5 5.7 2.3 7.4 12.7 6.0 6.2

p-value 4.150× 10−6 7.225× 10−1 1.202× 10−2 7.671× 10−1 6.434× 10−6 8.750× 10−2 1.950× 10−6 6.458× 10−8 1.171× 10−10

RM-Mistral-7B 7B
Agreement Disparity 5.1 1.9 4.5 3.5 2.2 11.1 14.9 6.2 8.1

p-value 4.276× 10−7 1.332× 10−2 3.025× 10−4 1.626× 10−3 9.218× 10−6 5.345× 10−6 8.430× 10−10 2.003× 10−13 3.503× 10−20

Eurus-RM-7b 7B
Agreement Disparity 3.1 2.7 4.1 5.5 5.1 6.6 9.9 4.2 5.1

p-value 2.586× 10−2 1.152× 10−1 2.501× 10−2 4.818× 10−1 1.682× 10−4 3.871× 10−1 1.035× 10−4 4.813× 10−3 6.623× 10−7

RISE-Judge-Qwen2.5-7B 7B
Agreement Disparity 2.8 1.0 1.3 4.4 3.3 5.4 10.1 8.4 2.7

p-value 1.159× 10−2 4.672× 10−2 7.065× 10−1 6.050× 10−1 2.067× 10−1 5.166× 10−1 2.168× 10−1 8.415× 10−3 2.626× 10−1

tulu-v2.5-13b-preference-mix-rm 13B
Agreement Disparity 5.4 5.6 3.2 6.0 3.8 6.7 14.7 6.9 6.8

p-value 3.522× 10−7 4.038× 10−5 2.412× 10−3 6.381× 10−2 6.512× 10−4 1.701× 10−4 1.848× 10−6 6.726× 10−12 4.124× 10−14

LDL-Reward-Gemma-2-27B-v0.1 27B
Agreement Disparity 1.0 2.7 4.7 4.4 3.1 4.2 16.1 3.5 5.3

p-value 7.561× 10−1 2.560× 10−1 3.570× 10−3 1.527× 10−1 7.324× 10−2 7.892× 10−2 2.351× 10−4 2.317× 10−3 9.076× 10−6

GRM-gemma2-2B-rewardmodel-ft 2B
Agreement Disparity 5.0 4.6 3.2 2.5 7.3 10.4 7.8 6.6 5.8

p-value 5.462× 10−8 2.004× 10−2 5.112× 10−3 3.313× 10−1 2.034× 10−8 2.189× 10−2 3.024× 10−4 8.391× 10−8 3.823× 10−12

weighted F1 disparities (∆F1 and ∆F1-w), and MCC
disparity (∆MCC) similarly defined in Appendix
E.1. Figure 4 visualizes the agreement score devia-
tions from the average, with stars indicating signifi-
cantly unfair treatments. Additionally, we perform
Pearson’s chi-squared test on the sets {Ys, Ŷs,θ}s∈S
to determine whether the reward model’s alignment
with user preferences significantly differs across
groups. The results are summarized in Table 2 (full
results in Table 14), where larger disparities and
darker red shades indicate higher levels of unfair-
ness. Similar visualizations but with F1 and MCC
metric is illustrated with Figure 7 and Figure 8 in
the Appendix.

The key takeaways from the results are as fol-
lows. (1) Reward models generally exhibit patterns
of unfairness across demographic groups, with lo-
cation, ethnicity, and religion emerging as the most
critical factors. This may be attributed to the un-
even global distribution of preference data labelers,
as several regions have become prominent hubs for
data labeling due to the high English proficiency
and relatively low labor costs. (2) Some sensitive
attributes, such as gender and education, do not
exhibit as pronounced biases compared to others.
This may be because preference labelers are rela-
tively evenly distributed across these attributes. (3)
The widely open-sourced LLaMA series reward
models demonstrate significant unfairness overall.
(4) Different preference datasets for reward mod-
eling can lead to substantial variations in fairness,
even when the base model remains the same. For

instance, RM-Mistral-7B and Eurus-RM-7B show
markedly different fairness levels. (5) Larger mod-
els tend to exhibit better fairness, although this
observation may be confounded by the difference
in preference datasets used. We leave further in-
vestigation to thoroughly examine the relationship
between model scaling and fairness for future work.

5 How Reward Models Favor Group
Perspectives?

While Ryan et al. (2024) observed that alignment
can lead to biased improvements in language model
performance across different locations, the under-
lying mechanisms remain unclear. In this work, we
conduct a deeper analysis of the interactions be-
tween language models and reward models. Specif-
ically, we find that reward models tend to favor
perspectives from certain demographic groups over
others. This phenomenon suggests that the reward
models, whose preference data itself is skewed or
imbalanced, may amplify and reinforce inherent
biases in the language models.

Our study consists of three key steps. Given a
sensitive attribute that partitions users into groups
S , we first extract group-specific perspectives from
the Controversial Questions Data (Li et al., 2024)
by explicitly prompting state-of-the-art (SOTA) lan-
guage models (e.g., GPT-4o) to respond as a mem-
ber of each group. Detailed information about the
controversial questions data can be found in Ap-
pendix C.3. Next, we use reward models to assign
a score (a.k.a., reward) to each group’s response.
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Table 3: Mean reward scores across demographic groups
by sensitive attribute.

Sensitive Attribute Demographic Group Mean Reward

Age

18–24 years old -5.4316
25–34 years old -5.3692
35–44 years old -5.3939
45–54 years old -5.5608
55–64 years old -5.6355
65+ years old -5.5849

p-value 0.0492

Gender
Male -5.5670
Female -5.4682
Non-binary / third gender -6.0213

p-value 0.0303

Religion

Folk religion -7.2228
Christian -6.9378
Non-religious -6.3325
Jewish -6.7394
Agnostic -6.3602
Spiritual -6.7769
Muslim -7.0822
Hindu -6.9106
Buddhist -7.2275
Sikh -7.0338

p-value 9.48e-13

Ethnicity

White -5.4721
Black / African -5.7886
Hispanic / Latino -5.8407
Indigenous / First Peoples -6.3272
Asian -5.8778
Middle Eastern / Arab -5.9991

p-value 3.13e-05

Location

Northern America -5.3430
Africa -5.9212
US -5.2954
Latin America and the Caribbean -6.0999
Europe -5.4743
Asia -5.4445
Australia and New Zealand -5.8822
Middle East -6.0614
UK -5.6950
Oceania -5.8178

p-value 4.59e-13

Finally, we compute the average score discrepancy
across demographic groups to examine whether cer-
tain group perspectives are systematically preferred
by the reward model.

To maintain clarity and conciseness on the main
page, we present a subset of key results in Ta-
ble 3, while the complete results are provided in
Appendix Table 15. From the results shown in
Table 3, several important patterns emerge. (1)
The reward model exhibits a tendency to favor per-
spectives from younger individuals. (2) Perspec-
tives from non-binary individuals are notably un-
derrepresented, as the reward scores for non-binary
perspectives are significantly lower compared to
those of male and female groups. (3) On the reli-
gion axis, non-religious perspectives consistently
receive higher reward scores than those of any reli-
gious group, with Muslim, folk religion, and Bud-
dhist perspectives being treated particularly unfa-
vorably. (4) In terms of ethnicity and location, the
reward models show a stronger alignment with per-

Alg 1: Fair Reward Modeling (FaRM)
Input: Pre-trained reward model rθ,

response pairs {(xi, aji , aki )}i∈D′

from different demographic groups,
regularization coefficient λ

Output: Updated reward model rθ with
reduced disparity

1 θ(0) ← θ;
2 for each paired response (xi, a

j
i , a

k
i ) do

3 Lfair ← MSE
[
rθ(xi, a

j
i ), rθ(xi, a

k
i )
]
;

4 Lreg ← λ∥θ − θ(0)∥2;
5 L ← Lfair + Lreg;
6 θ ← θ − η∇θL;

7 return Updated reward model rθ

spectives from North America, Europe, and Asia,
as well as with white individuals. We attribute this
disparity to the higher accessibility to modern lan-
guage models in more developed regions, where
users are more likely to interact with online LLM
tools (e.g., ChatGPT), thus contributing more pref-
erence data. Additionally, the alignment with Asian
perspectives may be attributed to the substantial
number of data labelers from this region. Together,
these findings provide a more realistic and holistic
evaluation of how RLHF-aligned language models
interact with reward models.

6 Mitigating Demographic Bias in
Reward Models

In the previous sections, we have studied that even
state-of-the-art reward models exhibit strong bias
across different demographic groups partitioned
by various sensitive attributes. In this work, we
propose the first method, Fair Reward Modeling
(FaRM) to mitigate such bias in the reward models.

6.1 Fairness Constraint with Regularization

The intuition behind our algorithm builds on the
findings from Section 5, where we demonstrated
that reward models exhibit preferences toward per-
spectives from certain demographic groups. To
mitigate this bias, our algorithm explicitly targets
response pairs that are treated differently by the
original reward model. Specifically, we encour-
age the reward model to produce equal reward
scores for these paired responses, while simulta-
neously applying a regularization term to maintain
the model’s original reward modeling capabilities.
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Table 4: Performance of our FaRM. After fine-tuning, with a compromise of 8% on reward modeling capability,
FaRM leads to a huge improvement on the fairness metrics.

Fairness Metric Reward Modeling Score

Reward Model Methods Avg Agreement Disparity (↓) Mean Square of Reward Difference (↓) Chat (↑) Chat Hard (↑) Safety (↑) Reasoning (↑)

RM-Gemma-2B
Original 0.059 0.534 94.4 40.8 49.9 76.4

FaRM Fine-tuned 0.034 0.078 88.8 37.8 45.4 71.1

RM-LLaMA-3.2-3B
Original 0.055 2.671 91.6 84.9 92.7 94.5

FaRM Fine-tuned 0.031 0.447 81.8 73.9 87.5 86.1

Formally, given a reward model rθ(·) with pa-
rameters θ, whose reward to a response a to prompt
x is rθ(x, a). Let {(xi, a1i , a2i )}i∈D′ be response
pairs from different demographic groups that ex-
hibit significant reward disparity (D′ denotes this
synthetic dataset by us). The goal of FaRM is to
minimize the difference between the predicted re-
wards of the pairs while preserving the model’s
reward modeling capability by optimizing L:

(1− λ)E[(rθ(xi, a
1
i )− rθ(xi, a

2
i ))

2]︸ ︷︷ ︸
Fairness Loss

+ λ∥θ − θ(0)∥2︸ ︷︷ ︸
Regularization Loss

where the expectation is over i ∈ D′ and λ is the
regularization coefficient controlling the balance
between fairness and reward modeling capability
preservation.

6.2 Debiasing by FaRM
We empirically validate our FaRM algorithm by an-
alyzing its performance on both fairness and reward
modeling axes. Since the fairness loss encourages
the reward models to produce similar reward val-
ues, we hypothesize that increasing the fairness loss
may not necessarily enhance the reward modeling
capability. In the extreme case where λ = 0, the op-
timal reward model that minimizes L would be one
that outputs a constant reward value for any input,
i.e., rθ(xi, a1i ) = rθ(xi, a

2
i ) = c. In contrast, if

λ = 1, the optimal reward model that minimizes L
would converge to the original unmodified reward
model . Therefore, our FaRM algorithm inherently
balances reward modeling capacity and fairness,
akin to many existing fairness-focused machine
learning approaches (Caton and Haas, 2024).

To empirically study this trade-off, we evalu-
ate the model’s performance on both the fairness
and reward modeling metrics for both Gemma and
LLaMA reward models. After splitting the con-
troversial question dataset into training and testing
sets, we optimize the objective function using the
training data with various λ, evaluate the model
on the test data and report the best-performing
model. We present the results in Table 4. Aver-
age Agreement Disparity represents the average

of agreement disparities across all demographic at-
tributes2. Therefore, this metric ranges from 0 to 1,
with smaller values indicating better fairness (i.e.,
less disparity across demographic groups). Our re-
sults show that FaRM could significantly improve
the fairness of the reward model with a slight com-
promise on reward modeling capability. Specifi-
cally, we observe that model-group alignment im-
proves for previously under-aligned groups, while
it may decrease slightly for some well-aligned (of-
ten majority) groups. This trade-off can result in a
modest reduction in overall model agreement, but
it helps reduce demographic disparity.

7 Related Works

Due to page limit, we summary the core related
works in the main page, while a more comprehen-
sive review can be found in Appendix A. Addi-
tionally, we discuss promising future directions in
Appendix B.

Reward Modeling and RLHF. The dominant
RLHF approach is the three-staged PPO-based
framework we have introduced in the preliminary
section. Following the release of Chat-GPT, re-
searchers have developed alternative approaches,
such as iterative rejection sampling fine-tuning
(Dong et al., 2023; Xiong et al., 2025) and direct
alignment algorithms (Zhao et al., 2023; Rafailov
et al., 2023). Although direct alignment methods
were originally proposed to bypass the reward mod-
eling stage, subsequent studies have shown that
their iterative, on-policy variants outperform their
offline counterparts and are now more commonly
adopted in practice (Xiong et al., 2023; Xie et al.,
2024). In these approaches, the intermediate pol-
icy is deployed to collect fresh responses and an
external reward (preference) model is used to label
them. In summary, despite methodological differ-
ences, all major RLHF and preference learning

2For instance, the value of 0.055 for the original
RM-LLaMA-3.2-3B model corresponds to the average of
its agreement disparities reported in Table 2: 0.055 =
(4.6+1.1+3.5+5.7+2.3+7.4+12.7+6.0+6.2) / 9
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frameworks fundamentally depend on the quality
of the reward model.

Bias in Reward Models It is well known that
RLHF suffers from reward hacking, where the re-
ward model fails to fully capture true human pref-
erences, and overfitting to this model can even
degrade alignment with human intent (Gao et al.,
2023). The most extensively studied case is length
bias, where models exploit the reward model by
generating overly long responses (Li et al., 2023a;
Zheng et al., 2023; Chen et al., 2024). Subsequent
works have generalized this to broader format bi-
ases, such as list-based or overly structured re-
sponses (Zhang et al., 2024a). In response, several
mitigation strategies have been proposed, includ-
ing reward ensembling (Coste et al., 2023), model
merging (Lin et al., 2023), and correlation penal-
ties (Chen et al., 2024). However, to the best of
our knowledge, fairness issues in reward model-
ing, such as demographic or societal biases, remain
largely under-explored.

Fairness and Inclusiveness in LLMs. The de-
velopment of LLMs has motivated techniques to
enhance fairness throughout the training pipeline,
ranging from data augmentation and calibration
(Feder et al., 2023; Stahl et al., 2022), to in-training
mitigation (Thakur et al., 2023; Lauscher et al.,
2021), and prompt engineering for reducing bi-
ases in outputs (Bubeck et al., 2023; Tamkin et al.,
2023). Recent advancements in LLM pluralization
(Sorensen et al., 2024) aim to make pre-trained
models more inclusive by overtone response gen-
eration (Lake et al., 2024), steerable and person-
alized LLMs (Xie et al., 2025; Jiang et al., 2024),
or through distributional and federated modeling
(Srewa et al., 2025; Liu et al., 2020). These ap-
proaches often adopt the perspective of Language
Model Agents, leveraging strong pre-trained mod-
els (Feng et al., 2024; Alamdari et al., 2024). In
contrast, our work focuses on reward modeling,
which has been largely overlooked by existing
works.

8 Conclusion

In this work, we present a comprehensive study of
fairness in reward models used for LLM alignment.
Through both group preference and group perspec-
tive analyses, we demonstrate that state-of-the-art
reward models exhibit significant disparities across
demographic groups. To address this issue, we
propose Fair Reward Modeling (FaRM), a novel

method that balances fairness and reward model-
ing through regularization. Empirical results show
that FaRM effectively mitigates demographic bias
while almost maintaining model performance.
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Limitations

While our study presents the most comprehensive
analysis to date on fairness in reward modeling
across a wide range of demographic attributes,
several limitations remain. First, the analysis is
constrained by the availability and representative-
ness of demographic annotations in publicly avail-
able datasets. As for the PRISM dataset, while
we present studies in Appendix C.1 to validate
the robustness, it may still underrepresent certain
populations or overrepresent English-speaking and
internet-connected users, potentially skewing fair-
ness assessments. It is worth mentioning that we
also cross-validate our findings of Section 4 using
another dataset CIVICS (details in C.2). Second,
our proposed mitigation method, FaRM, requires
access to group-annotated response pairs, which
may not be feasible in all deployment contexts due
to privacy, availability, or annotation cost. Addi-
tionally, FaRM relies on synthetic pairing of re-
sponses across groups, which might not perfectly
reflect real-world user interactions or value con-
flicts. Furthermore, we focus primarily on static
fairness evaluation metrics such as agreement par-
ity and average reward difference. These measures
may not capture more nuanced or longitudinal ef-
fects of unfair alignment, such as enhancement of
stereotypes or downstream harms in user experi-
ence.

Ethic Statement

The primary objective of this research is to intro-
duce a series of methodologies to investigate the
biases encoded in reward models, which are in-
herently shaped by the training data used to de-
velop these models. By identifying and analyzing
these biases, we aim to enhance the trustworthiness
and ethical application of language techniques, ul-

3434



timately contributing to the creation of more inclu-
sive and fair technologies.

All datasets used in this study are publicly avail-
able and have undergone careful review to ensure
they do not contain personally identifiable infor-
mation (PII) or offensive content. However, given
that these datasets are manually curated, there may
still be limitations in terms of representativeness.
As noted in the Limitations section, the sampling
methodology employed during the PRISM dataset
collection may not strictly adhere to ideal distribu-
tion practices due to practical constraints. Conse-
quently, some demographic groups may be under-
represented, which could influence our evaluations.

We acknowledge the importance of critically ex-
amining these potential biases and encourage the
community to interpret the results with an aware-
ness of these limitations. Future work should aim to
address these challenges by improving data collec-
tion processes and developing more comprehensive
and balanced datasets.

By openly discussing these aspects, we hope to
foster a more transparent and responsible approach
to the study of bias in reward models and support
ongoing efforts to develop AI systems that are fair,
accountable, and have the potential to be aligned
with diverse human values. Finally, we note that
all results presented in this work are experimental
and should be interpreted with caution, without
overgeneralization beyond the scope of our study.
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A More Related Works and Discussions

Before turning to more related works, we want to
position this work more clearly by discussing key
difference between fairness in reward modeling
and classical fairness tasks.

• Demographic Diversity Challenge. Differ-
ent demographic groups may hold conflicting
views. As we analyzed in Section 4, the pref-
erences of different demographic groups can
vary. Given that the RLHF data labeler may
come from any demographic group, this poses
a root challenge of why we cannot achieve
accuracy and fairness at the same time.

• Data Distribution Constraints. The RLHF
dataset may be very skewed because the la-
bel distribution is affected by many real-world
constraints. We analyzed this issue by com-
paring the PRISM data distribution and the
distribution from reward models learned from
RLHF datasets. And, starting from the pre-
trained reward model, we don’t have full con-
trol of the fairness mitigation process, com-
pared to classical fairness tasks where we
could train a classifier from scratch.

• Sensitive Attribute Uncertainty in RLHF
data. In real RLHF datasets, we are unable to
know which sensitive attribute a data sample
is associated with, compared to the classical
fairness tasks, where we have access to the
sensitive attribute of each data sample.

Bias in reward models has important implica-
tions for different sociodemographic groups, as dis-
parities in alignment can systematically privilege
some perspectives while marginalizing others (Co-
lacci et al., 2025; Yaseliani et al., 2024; Franklin
et al., 2024). Such disparities risk reinforcing exist-
ing societal inequities, as models aligned through
biased reward signals may produce outputs that
underrepresent or mischaracterize certain groups
(Ko et al., 2025). Similar unfairness propagation
has been observed in various domains, including
recommendation (Wei and He, 2022), hiring de-
cisions (Bogen and Rieke, 2018), identity verifi-
cation (Merler et al., 2019) and criminal justice
analysis (Wang et al., 2020), where machine learn-
ing technologies have been applied. Addressing
these concerns is thus essential not only for techni-
cal fairness but also for ensuring that LLMs serve
diverse populations equitably.

Reward Modeling and RLHF. In this work, we
explore the fairness issue of reward models within
the framework of Reinforcement Learning from
Human Feedback (RLHF). The standard RLHF
pipeline in the application of Chat-GPT and Claude
(Ouyang et al., 2022; Bai et al., 2022) consists of
three stages: human preference data collection, re-
ward modeling from the collected preference data,
and model optimization from the learned reward. In
particular, we typically optimize the model using
Proximal Policy Optimization (PPO) (Schulman
et al., 2017), hence the name RLHF. However, the
RL training with PPO is rather computationally
expansive and unstable. In recognition of this, re-
searchers have developed alternative approaches
to simplify the RLHF process. These approaches
include the iterative rejection sampling fine-tuning
(Dong et al., 2023; Xiong et al., 2025; Touvron
et al., 2023; Zou et al., 2025b), and the direct align-
ment algorithms (Zhao et al., 2023; Rafailov et al.,
2023). Rejection sampling fine-tuning iteratively
deploys the current LLMs to collect a large amount
of responses per prompt, uses a reward model to
filter out the low-quality responses, and then fine-
tune the model on the rest of the data. In contrast,
direct alignment methods were originally proposed
to bypass the reward modeling stage. However,
subsequent studies have shown that their iterative,
on-policy variants outperform their offline coun-
terparts and are now more commonly adopted in
practice (Xiong et al., 2023; Xie et al., 2024). In
these iterative variants, the intermediate policy is
deployed to collect fresh responses and an external
reward (preference) model is used to label them. In
summary, despite methodological differences, all
major RLHF and preference learning frameworks
fundamentally depend on the quality of the reward
model. Therefore, the fairness bias in the reward
model (and the preference dataset) will inevitably
transfer to the downstream aligned LLMs.
Bias in Reward Models It is well known that
RLHF suffers from reward hacking, where the re-
ward model fails to fully capture true human prefer-
ences. Overfitting to this model can even degrade
alignment with human intent (Gao et al., 2023;
Denison et al., 2024) because it is usually much
easier to exploit these bias patterns to chase for a
high reward compared to improving the cotent qual-
ity. The most extensively studied case is length bias,
where models exploit the reward model and prefer-
ence model (e.g., human and GPT-4) by generating
overly long responses (Li et al., 2023a; Chen et al.,
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2024; Zheng et al., 2023). Subsequent works have
generalized this to broader format biases, such as
list-based or overly structured responses (Zhang
et al., 2024a). These biases are also exploited by
the current LLMs to chase for a high ranking in
the benchmark leaderboard (Zheng et al., 2023). In
response, several mitigation strategies have been
proposed for the RLHF training, including reward
ensembling (Coste et al., 2023), model merging
(Lin et al., 2023; Ramé et al., 2024), and correla-
tion penalties (Chen et al., 2024). Moreover, Li
et al. (2023a) and Zheng et al. (2023) have also
introduced length-controlled and format-controlled
version of their benchmarks, aiming for mitigating
the impacts of these bias patterns. However, to the
best of our knowledge, fairness issues in reward
modeling, such as demographic or societal biases,
remain largely under-explored.
Fairness and Inclusiveness in LLMs. As LLMs
are increasingly used in high-stakes applications
(Zou et al., 2025a; Fu et al., 2024), there has been
a surge of interest in examining the fairness and
inclusiveness in LLMs (Gallegos et al., 2024; Chu
et al., 2024). A wide range of techniques have been
explored to detect and enhance fairness through-
out the training pipeline. Data-level interventions
include counterfactual data augmentation and cal-
ibration (Feder et al., 2023; Stahl et al., 2022; Xu
et al., 2024a; Wu and He, 2022), data curation (Hu
et al., 2024) and strategic demonstration selection
(Bhaila et al., 2024). These methods improve ex-
posure to marginalized identities but often struggle
to scale or address more nuanced or intersectional
implicit bias. To complement data-level fixes, in-
processing techniques have been proposed includ-
ing adding fairness constraints (Liu et al., 2024a;
Wang et al., 2024a), few-shot debiasing (Thakur
et al., 2023) and modular adaption (Lauscher et al.,
2021; Wu et al., 2024). Prompt-based strategies
have also gained traction in reducing biases in out-
puts (Bubeck et al., 2023; Tamkin et al., 2023). Re-
cent advancements in LLM pluralization (Sorensen
et al., 2024) aim to make pre-trained models more
inclusive by overtone response generation (Lake
et al., 2024), steerable and personalized LLMs (Xie
et al., 2025; Jiang et al., 2024; Wei et al., 2024),
or through distributional and federated modeling
(Srewa et al., 2025). These approaches often adopt
the perspective of Language Model Agents, lever-
aging strong pre-trained models (Feng et al., 2024;
Alamdari et al., 2024; Ning et al., 2025). In con-
trast, our work focuses on reward modeling, which

has been largely overlooked by existing works.

B Future Directions

While this work presents the first comprehensive
analysis of fairness in reward models and intro-
duces FaRM as an effective mitigation approach,
we list several open questions for future explo-
ration.
Generalization to New or Multi-Valued Groups.
Demographic groups are finite and enumerable in
practice. This means that preference data can be
collected to cover a broad set of groups. Beyond
this, FaRM is naturally extensible to unseen or
multi-valued demographic groups through natural
language descriptions of group identities. Since
our method synthesizes group-specific perspectives
via prompting, it has the potential to generalize to
novel contexts (Zheng et al., 2024; Li et al., 2025)
by conditioning on descriptive attributes rather than
predefined categories.
Improved Data Collection. Our analysis is cur-
rently constrained by existing datasets such as
PRISM and CIVICS. Future work should inves-
tigate methods to collect more balanced and rep-
resentative preference datasets. This includes par-
ticipatory data collection, federated protocols, and
incentivizing underrepresented groups to ensure
that fairness assessments reflect a truly global pop-
ulation.
Integration with Alignment Methods. Although
our study primarily focuses on fairness in reward
modeling, modern RLHF pipelines ultimately align
large language models with the outputs of these
trained reward models. This raises an important
open question: to what extent do improvements in
reward model fairness translate into fairer behavior
in the final aligned LLMs? A very recent work
(Hall et al., 2025) made an initial attempt to bridge
the gap between a pre-trained fair reward model
and fair language modeling, and we expect more
future works in this direction conducting end-to-
end evaluations.
Better RM Bias Mitigation. FaRM is intended
as a first step toward addressing bias in reward
modeling. Rather than a definitive solution, we
position it as a strong and interpretable baseline
that highlights the core challenge of reward model
fairness, a space largely overlooked compared to
LLM fairness. By providing a concrete starting
point, FaRM motivates future work on developing
and integrating more advanced mitigation strategies
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tailored to reward model training.
Socialdemographic studies. From a sociologi-
cal perspective, an important future direction is to
examine how algorithmic unfairness in LLMs man-
ifests in the lived experiences of different demo-
graphic groups (Cui et al., 2025). While our work
reveals disparities at the level of reward model-
ing, the broader question concerns how such biases
propagate into real-world outcomes, such as un-
equal access to information, differential treatment
in customer service, or reinforcement of stereo-
types in educational and workplace settings.

C Dataset Details

C.1 The PRISM Alignment Dataset

The PRISM Alignment Dataset3 (Kirk et al., 2024)
is a comprehensive resource designed to enhance
the alignment of Large Language Models (LLMs)
with diverse human values and preferences. De-
veloped by researchers from the University of Ox-
ford and collaborators, PRISM emphasizes partic-
ipatory, representative, and individualized human
feedback to address the complexities of subjective
and multicultural alignment in AI systems.

PRISM comprises 8,011 multi-turn conversa-
tions between 1,500 participants from 75 countries
and 21 different LLMs. Each participant completed
a detailed survey capturing sociodemographic in-
formation and stated preferences before engaging
in real-time interactions with LLMs. These inter-
actions were followed by fine-grained evaluations,
including ratings on attributes such as factuality,
fluency, and creativity, as well as open-ended feed-
back.

As outlined in Section 3, we present an overview
of the data in Tables 5 and 6, along with the statis-
tics in Table 9.

Correlation Study of Demographic Group At-
tributes. The primary goal of this correlation
study is to validate the PRISM dataset as a robust
and representative resource for analyzing human
preferences. A high-quality dataset should natu-
rally reflect correlations among demographic at-
tributes, and verifying these relationships is essen-
tial to assess the dataset’s validity. For instance,
individuals aged 65 or older are more likely to be
retired, and individuals from the Africa location
are more likely to be Black/African people.

3https://hannahkirk.github.io/prism-alignment

To achieve this, we compute the average pref-
erence vector across the nine preference axes for
each demographic group and use these vectors as
features to construct a correlation matrix. The re-
sulting heatmap, shown in Figure 5, illustrates how
demographic attributes correlate with one another,
helping to ensure that the PRISM dataset accurately
captures realistic demographic interactions.

The heatmap reveals that while specific correla-
tion values vary between demographic attributes,
the columns and rows corresponding to religion,
ethnicity, and location exhibit a more sparse pattern.
This indicates that these attributes tend to partition
individuals into demographic groups with greater
preference discrepancies. These results align with
our findings in Section 4 and Section 5, where we
observed that the reward model struggles to capture
preference variations among groups distinguished
by certain sensitive attributes.

By confirming the presence of realistic correla-
tions and preference discrepancies among demo-
graphic groups, this study demonstrates that the
PRISM dataset accurately captures human diversity
and variability, affirming its validity as a valuable
resource for reward model evaluation.

C.2 The CIVICS Culturally-Informed Values
Dataset

The CIVICS dataset is a multilingual, annotated
collection of civic discourse statements sourced
from various countries and institutional contexts.
Each entry includes the original statement, its En-
glish translation when applicable, a topical cate-
gory (e.g., disability rights), the issuing organiza-
tion, and source documentation. Crucially, each
statement is annotated by multiple human anno-
tators (typically three), who label the underlying
civic values conveyed—such as equality, support,
or accessibility. These annotations capture both
consensus and disagreement, offering a nuanced
view of how public values are communicated. The
dataset is well-suited for cross-linguistic and cross-
cultural studies of value expression in public com-
munication. Refer to Table 8 for examples.

Table 7 presents the mean reward scores across
different geographic locations in the CIVICS
dataset. This analysis serves as a validation step
to assess whether the patterns observed in Sec-
tion 4 using the PRISM dataset are consistent
across independent datasets. Notably, we again
observe a strong regional skew: responses from
European countries (e.g., Germany, Italy, France)
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Table 5: Demographic information for example users from the PRISM dataset. Note: Each row represents a
separate user.

User ID Age Gender Employment Education Marital Status English Proficiency Religion

user0 35–44 years old Male Working full-time University Bachelors Degree Never been married Native speaker Prefer not to say
user1 35–44 years old Male Working full-time Some Secondary Never been married Native speaker Prefer not to say
user2 18–24 years old Female Working full-time University Bachelors Degree Married Fluent Folk religion

Table 6: Stated preferences for example PRISM users. Note: Each row represents a separate user. Scores are
computed per user.

User ID Stated Preference (Score)

Values Creativity Fluency Factuality Diversity Safety Personalisation Helpfulness

user0 83 100 100 100 100 90 71 100
user1 19 73 86 79 83 100 84 100
user2 100 100 100 100 99 100 75 100

Table 7: Mean reward scores across different locations
for English data in the CIVICS dataset, with a Kruskal-
Wallis p-value of 4.443× 10−9.

Location Mean Reward

Australia 0.648
Canada 0.704
Singapore 1.559
France 1.683
Germany 1.832
Italy 2.241
Turkey 1.481

tend to receive higher reward scores than those
from countries like Australia or Canada. This sup-
ports the finding that reward models exhibit ge-
ographic preferences, suggesting that the biases
identified in PRISM are not dataset-specific but
rather reflect broader tendencies in current reward
modeling practices. The Kruskal-Wallis p-value
(4.443×10−9) further confirms that the differences
across locations are statistically significant.

C.3 The DEBATunE Controversial Question
Dataset

we use the DEBATunE dataset (Li et al., 2024) as
part of the prompts for generating group perspec-
tives as shown in Figure 2 (right). The DEBATunE
dataset is a comprehensive resource designed to en-
hance the controllability of Large Language Mod-
els. It comprises 710 controversial topics, covering
a wide range of societal, ethical, and political is-
sues, providing a rich ground for studying LLM
behavior in contentious contexts.

Sample Topics:

• Should internet gambling be legalized?

• Should we have comprehensive sex education
in schools?

• Is AI replacing human jobs?

• Should we end racial profiling?

• Should we ban abortions?

To generate group perspectives, given a
question from the DEBATunE dataset, for a spe-
cific demographic group with unique_attribute
for sensitive_attribute, we used the following
prompt:

Prompt: For sensitive attribute
{sensitive_attribute}, imagine you
are {unique_attribute}. Limit your
response to 50 words. How would you
answer: {question}?
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ID Country Topic Statement Translation Org Source Final Label Annotators (1–3)

37 France Disability Rights L’inclusion des personnes
en situation de handicap
constitue une des priorités
du quinquennat.

The inclusion of people
with disabilities is one of
the priorities of the five-
year term.

Gouvernement (France) French Government equality • equality

• equality

• equality

60 Germany Disability Rights Wir setzen uns das Ziel,
alle öffentlichen Gebäude
barrierefrei zu gestalten.

We have set ourselves the
goal of making all fed-
eral public buildings fully
barrier-free.

Bundesregierung Coalition Agreement 2021 accessibility, sup-
port

• accessibility, support

• accessibility, support

• accessibility, support

1 Australia Disability Rights Programs that help peo-
ple with disability to main-
tain their housing ten-
ancy can lead to more se-
cure long-term housing ar-
rangements and greater in-
dependence.

AIHW Australian Institute of Health and Welfare support • support

• support

Table 8: Three examples from CIVICS Dataset. The third annotator was unavailable English samples.

Figure 5: Correlation heatmap of demographic group attributes in the PRISM dataset. The results demonstrate
that the PRISM dataset is robust and representative. Given the general similarity of human preferences, we
experimented with multiple thresholds and found that a correlation score of 0.97 is good to be considered significant.
Attributes related to religion, ethnicity, and location exhibit more sparse correlations, indicating greater variability
in preferences within these groups, which is consistent with our findings in Section 4 and Section 5.
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Table 9: Summary statistics by group across sensitive attributes in the PRISM dataset. Dominant conversation types
are indicated as Controversy Guided (†), Values Guided (‡), or Unguided (no marker).

Sensitive Attribute Group Name # Interactions # Users Avg Score % Chosen Dominant Type Avg Turns per Interaction

Age 18-24 years old 5374 280 64.62 39.89% 37.68% 2.52
25-34 years old 8562 427 65.23 40.38% 38.29% 2.50
35-44 years old 4486 224 64.74 40.45% 41.88% 2.50
45-54 years old 3669 189 65.05 40.16% 39.72% 2.52
55-64 years old 3367 181 66.70 39.69% 43.30% 2.55
65+ years old 1714 95 64.38 39.59% 39.84% 2.56

Gender Female 13001 677 66.68 40.08% 39.88% 2.52
Male 13705 697 63.68 40.15% 39.43% 2.51

Non-binary / third gender 448 20 65.36 41.09% 40.09% 2.47
Prefer not to say* 18 2 49.00 40.91% 81.82% 2.44

Employment Status Homemaker / Stay-at-home parent 830 44 67.69 40.09% 39.61% 2.52
Prefer not to say* 385 18 64.03 40.82% 41.45% 2.48

Retired 1793 95 63.39 39.86% 43.03% 2.54
Student 3412 178 65.28 40.17% 36.69% 2.51

Unemployed, not seeking work 885 43 72.50 40.55% 40.55% 2.49
Unemployed, seeking work 2252 108 65.22 40.82% 39.64% 2.48

Working full-time 12899 664 64.60 40.06% 39.85% 2.52
Working part-time 4716 246 65.39 39.93% 39.84% 2.52

Education Completed Primary School 254 14 68.27 39.23% 35.54%† 2.56
Completed Secondary School 3712 191 66.38 40.08% 42.84% 2.52
Graduate / Professional degree 4531 227 63.34 40.18% 38.99% 2.52

Prefer not to say* 118 7 63.88 40.20% 45.51% 2.55
Some Primary 65 3 68.15 40.12% 79.01% 2.49

Some Secondary 399 23 66.94 39.31% 38.43% 2.56
Some University but no degree 4276 215 65.28 40.36% 37.76% 2.50
University Bachelors Degree 11678 605 65.08 40.15% 39.61% 2.51

Vocational 2139 111 66.02 39.81% 39.15% 2.54

Marital Status Divorced / Separated 2116 109 65.60 40.07% 38.72% 2.52
Married 8102 429 65.76 39.94% 41.32% 2.53

Never been married 16189 819 64.73 40.23% 38.83% 2.51
Prefer not to say* 374 18 66.45 40.72% 45.93% 2.46

Widowed 391 21 64.85 39.84% 40.34% 2.53

English Proficiency Advanced 2993 151 66.13 40.44% 39.69% 2.50
Basic 93 5 67.11 40.34% 57.51% 2.51
Fluent 7306 380 64.87 40.03% 38.16% 2.52

Intermediate 771 40 68.50 40.12% 43.53% 2.51
Native speaker 16009 820 64.89 40.12% 40.09% 2.52

Religion Agnostic 1310 63 64.30 40.14% 37.92% 2.50
Buddhist 165 10 65.91 39.34% 35.31% 2.56
Christian 8600 458 67.17 39.89% 39.86% 2.53

Folk religion 143 6 62.27 43.02% 46.80% 2.41
Hindu 98 5 56.34 39.68% 42.91% 2.52
Jewish 700 35 62.14 40.39% 41.70% 2.51
Muslim 591 29 65.89 40.52% 41.39% 2.53

Non-religious 14049 711 64.27 40.25% 39.61% 2.51
Other* 52 3 53.25 40.60% 39.10%‡ 2.56

Prefer not to say* 1135 57 63.94 40.28% 38.48% 2.50
Sikh 52 3 65.64 37.68% 39.86%† 2.65

Spiritual 277 16 66.16 39.08% 43.14% 2.58

Ethnicity Asian 1756 91 63.68 40.12% 42.34% 2.52
Black / African 2020 117 70.26 39.08% 40.03% 2.59

Hispanic / Latino 2359 117 65.85 40.35% 38.20% 2.50
Indigenous / First Peoples 148 8 70.59 40.00% 36.80% 2.53

Middle Eastern / Arab 280 12 62.80 41.32% 37.94% 2.43
Mixed 1405 67 65.83 40.97% 37.90% 2.46
Other* 289 13 56.84 40.70% 36.36% 2.47

Prefer not to say* 1333 79 64.48 39.93% 41.88% 2.53
White 17582 892 64.69 40.15% 39.65% 2.52

Location Africa 1970 114 71.26 39.00% 39.66% 2.59
Asia 1162 57 63.14 40.76% 44.30% 2.48

Australia and New Zealand 2433 122 64.17 40.23% 37.75% 2.50
Europe 5824 292 64.25 40.34% 38.63% 2.51

Latin America and the Caribbean 2837 143 66.14 40.35% 37.65% 2.49
Middle East 826 43 60.79 39.94% 42.97% 2.52

Northern America 949 48 64.65 40.53% 43.31% 2.50
Oceania* 28 1 84.56 41.18% 55.88%‡ 2.43

Prefer not to say* 54 3 52.30 39.13% 52.17% 2.56
UK 5277 271 64.37 39.88% 38.93% 2.53
US 5812 302 65.60 40.24% 41.25% 2.51

* Groups labeled "Prefer not to say", "Other", and "Oceania" are excluded from statistical comparisons because they either aggregate heterogeneous
populations or have insufficient users for reliable p-value estimation.
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D Reward Model Details

In this section, we detail the reward models exam-
ined in this study. The selected models represent a
diverse range of architectures, training methodolo-
gies, and data sources, enabling a comprehensive
analysis of state-of-the-art approaches to reward
modeling. A summary of the reward models we
used is provided in Table 10.

GRM-Llama3.2-3B-rewardmodel-ft. The
GRM-Llama3.2-3B-rewardmodel-ft4 model,
introduced by Yang et al. (2024), is built on the
Meta-Llama-3.2-3B-Instruct base model. It has ap-
proximately 3 billion parameters and is fine-tuned
using the Skywork-Reward-Preference-80K-v0.2
dataset. The model employs the Bradley–Terry
ranking method, which is well-suited for compara-
tive preference learning. This model is designed to
leverage robust human feedback data, making it
suitable for alignment tasks.

ArmoRM-Llama3-8B-v0.1. The ArmoRM-
Llama3-8B-v0.15, proposed by Wang et al.
(2024b), uses the Meta-Llama-3-8B-Instruct
model as a base, featuring 8 billion parameters. It
utilizes a mixture of datasets including HelpSteer,
UltraFeedback, BeaverTails-30k, and others.
The model’s unique training strategy, combining
ArmoRM with Mixture of Experts (MoE), aims
to enhance interpretability and adaptability across
diverse preference contexts.

FsfairX-LLaMA3-RM-v0.1. Presented by
Dong et al. (2024), FsfairX-LLaMA3-RM-v0.1
shares the same base model as ArmoRM but
incorporates a different dataset mixture, including
HH-RLHF, SHP, and PKU-SafeRLHF-30K.

4https://huggingface.co/Ray2333/GRM-Llama3.
2-3B-rewardmodel-ft

5https://huggingface.co/RLHFlow/
ArmoRM-Llama3-8B-v0.1

The model follows the Bradley–Terry method,
emphasizing fairness and robustness through data
diversity.

tulu-v2.5-13b-preference-mix-rm. The tulu-
v2.5-13b-preference-mix-rm6 model, from Ivison
et al. (2024), is based on the Llama-2-13b-hf and
trained with the Tulu 2.5 preference mix. It utilizes
Proximal Policy Optimization (PPO) for reward
modeling, focusing on fine-tuning large language
models using reinforcement learning techniques to
better capture nuanced preferences.

GRM-gemma2-2B-rewardmodel-ft. This
GRM-gemma2-2B-rewardmodel-ft7 model, also
introduced by Yang et al. (2024), is a smaller
variant compared to its Llama-based counterpart,
featuring 2 billion parameters. It is derived from
Gemma-2-2B and trained on the Skywork-Reward-
Preference-80K-v0.2 dataset. The combined use of
Supervised Fine-Tuning (SFT) and Bradley–Terry
enhances its ability to model human preferences
accurately while maintaining model efficiency.

LDL-Reward-Gemma-2-27B-v0.1. The LDL-
Reward-Gemma-2-27B-v0.18 model is the largest
among those analyzed, with 27 billion parameters.
It is based on Gemma-2-27B and trained using a
combination of label distillation and Bradley–Terry
methods. While the training dataset is not explicitly
specified, the large parameter count suggests it is
optimized for capturing complex reward functions.

RM-Mistral-7B. RM-Mistral-7B9, introduced
by Xiong et al. (2023), is based on the Mistral-
7B-Instruct-v0.2 model. It is trained on a mix-
ture of datasets, including HH-RLHF, SHP, and
Ultra-Feedback. The use of Bradley–Terry rank-
ing ensures reliable modeling of human feedback,
making it effective for multi-context preference
aggregation.

Eurus-RM-7b. Proposed by Yuan et al. (2024),
Eurus-RM-7b10 shares the Mistral-7B-Instruct-
v0.2 base model but uses a different dataset
mixture, including UltraInteract, UltraFeedback,

6https://huggingface.co/sfairXC/
FsfairX-LLaMA3-RM-v0.1

7https://huggingface.co/Ray2333/
GRM-gemma2-2B-rewardmodel-ft

8https://huggingface.co/ShikaiChen/
LDL-Reward-Gemma-2-27B-v0.1

9https://huggingface.co/weqweasdas/
RM-Mistral-7B

10https://huggingface.co/openbmb/Eurus-RM-7b
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Table 10: Details of the reward models examined in this work. We conduct a comprehensive study of state-of-the-art
reward models, covering a diverse set of base language models, training datasets, and training methodologies.

Model Name Size Base Model Training Dataset(s) Training Method

GRM-Llama3.2-3B-rewardmodel-ft (Yang et al., 2024) 3B Meta-Llama-3.2-3B-
Instruct

Skywork-Reward-
Preference-80K-v0.2

Bradley–Terry

ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024b) 8B Meta-Llama-3-8B-
Instruct

Mixture of datasets1 ArmoRM + MoE

FsfairX-LLaMA3-RM-v0.1 (Dong et al., 2024) 8B Meta-Llama-3-8B-
Instruct

Mixture of datasets2 Bradley–Terry

tulu-v2.5-13b-preference-mix-rm (Ivison et al., 2024) 13B Llama-2-13b-hf Tulu 2.5 preference mix PPO

GRM-gemma2-2B-rewardmodel-ft (Yang et al., 2024) 2B Gemma-2-2B Skywork-Reward-
Preference-80K-v0.2

SFT + Bradley–Terry

LDL-Reward-Gemma-2-27B-v0.1 27B Gemma-2-27B Not specified label distillation +
Bradley–Terry

RM-Mistral-7B (Xiong et al., 2023) 7B Mistral-7B-Instruct-
v0.2

Mixture of datasets3 Bradley–Terry

Eurus-RM-7b (Yuan et al., 2024) 7B Mistral-7B-Instruct-
v0.2

Mixture of datasets4 Bradley–Terry

RISE-Judge-Qwen2.5-7B (Yu et al., 2025) 7B Qwen2.5-7B-Base Mixture of datasets5 SFT + DPO

1 Includes HelpSteer, UltraFeedback, BeaverTails-30k, CodeUltraFeedback, Prometheus, Argilla-Capybara, Argilla-OpenOrca, Argilla-Math-Preference.
2 Includes HH-RLHF, SHP, HelpSteer, PKU-SafeRLHF-30K, UltraFeedback, UltraInteract, CodeUltraFeedback, Argilla-Math, OpenOrca, Capybara.
3 Includes HH-RLHF, SHP, Ultra-Feedback, Capybara, HelpSteer, Orca, and PKU-SafeRLHF-30K.
4 Includes UltraInteract, UltraFeedback, UltraSafety.
5 Includes Math-PRM800K Dataset, Skywork-Reward-Preference-80K-v0.2, Non-Judge Dataset.

and UltraSafety. This model also leverages the
Bradley–Terry approach, emphasizing balanced
and safe reward modeling.

RISE-Judge-Qwen2.5-7B The RISE-Judge-
Qwen2.5-7B11 model, introduced by Yu et al.
(2025), utilizes Qwen2.5-7B-Base as its foun-
dation and is trained on a mixture of datasets,
including Math-PRM800K and Skywork-Reward-
Preference-80K-v0.2. The training strategy
combines Supervised Fine-Tuning (SFT) with
Direct Preference Optimization (DPO), aiming to
enhance judgment accuracy in decision-making
tasks.

E Experiment Details

E.1 F1 and MCC Fairness Metrics
F1 and Matthews Correlation Coefficient Dis-
parity. For each user u ∈ Us and each prompt
x ∈ Xu, we derive pairwise preference labels as
follows: The user-labeled binary classification set
Ys is constructed as:

Ys =
⋃

u∈Us

⋃

x∈Xu

{y(i,j)u,x | i < j ≤ Kx} (6)

Similarly, the model-labeled binary classification
set Ŷs is constructed as:

Ŷs,θ =
⋃

u∈Us

⋃

x∈Xu

{ŷ(i,j)θ,x | i < j ≤ Kx} (7)

11https://huggingface.co/R-I-S-E/
RISE-Judge-Qwen2.5-7B

From Ys and Ŷs,θ, we compute classification met-
rics such as the binary or weighted F1 score F1s =
F1(Ys, Ŷs,θ) and the Matthews Correlation Coeffi-
cient MCCs = MCC(Ys, Ŷs,θ) to quantify how
well the model’s predicted pairwise preferences
align with the user-labeled ground truth, as well as
the corresponding disparities across groups:

∆F1 = max
si,sj∈S,si ̸=sj

∣∣F1si − F1sj
∣∣ (8)

∆MCC = max
si,sj∈S,si ̸=sj

∣∣MCCsi −MCCsj

∣∣ (9)

Similarly, a higher disparity value for these metrics
indicates a greater degree of unfairness.

E.2 Pearson’s Chi-Squared Test

The Pearson’s Chi-Squared test is a statistical
method used to determine whether there is a sig-
nificant association between categorical variables.
It is commonly employed to test the independence
between two variables or to assess the goodness-
of-fit of an observed distribution compared to an
expected distribution.

Given an observed frequency Oi and an expected
frequency Ei for each category i, the chi-squared
statistic is calculated as:

χ2 =

n∑

i=1

(Oi − Ei)
2

Ei

where Oi is the observed frequency for category i,
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Ei is the expected frequency for category i, n is
the number of categories.

The resulting chi-squared statistic follows a chi-
squared distribution with n− 1 degrees of freedom
(for a goodness-of-fit test) or (r−1)(c−1) degrees
of freedom (for a test of independence), where r
and c are the number of rows and columns, re-
spectively. A significant result indicates that the
observed frequencies deviate from the expected fre-
quencies more than would be expected by random
chance.

The hypothesis for the test can be stated as fol-
lows:

• H0: The variables are independent (no associ-
ation).

• H1: The variables are not independent (there
is an association).

E.3 Kruskal-Wallis Test

The Kruskal-Wallis test is a non-parametric statisti-
cal test used to determine whether there are statisti-
cally significant differences between the medians
of three or more independent groups. It serves as a
non-parametric alternative to the one-way ANOVA
when the assumption of normality is violated.

The Kruskal-Wallis test statistic H is computed
as follows:

H =
12

N(N + 1)

k∑

i=1

ni

(
Ri −

N + 1

2

)2

where N is the total number of observations across
all groups, ni is the Number of observations in
group i, Ri is the Sum of ranks for group i, k is the
Number of groups.

The null and alternative hypotheses are as fol-
lows:

• H0: All groups have the same distribution (no
difference in medians).

• H1: At least one group has a different distri-
bution.

The test statistic H approximately follows a chi-
squared distribution with k− 1 degrees of freedom
under the null hypothesis. A significant p-value in-
dicates that at least one group median significantly
differs from the others.

E.4 Statistical Tests in Reward Model
Evaluation

In the context of reward model evaluation, Pear-
son’s chi-squared test is useful for testing if cat-
egorical preference agreements are independent,
while the Kruskal-Wallis test is applied when com-
paring preference scores across multiple groups.

F Full Experiment Results

F.1 Full Preference Radar Plots across
Demographic Groups

The full plots of stated preferences of different
demographic groups can be found in Figure 6.

F.2 Kruskal-Wallis Test for Group
Preferences

The Kruskal-Wallis p-value of each response qual-
ity axis across different demographic groups parti-
tioned by a specific sensitive attribute can be found
in Table 11.

F.3 Max-Min Score Difference for Each
Attribute-Dimension Pair

We visualize the max-min score difference for each
attribute-dimension pair in Figure 9.

F.4 Full Results of How Reward Models
Capture Group Preferences

Extended from Section 4, we report the full results
of how reward models capture group preferences
in Table 14.

F.5 Full Results of How Reward Models Favor
Group Perspectives

Extended from Section 5, we report the full result
of how reward models favor group perspectives in
Table 15.

3449



Table 11: In Section 3, we compute the Kruskal-Wallis p-value across demographic groups on each response
dimension. We observe that while all studied sensitive attributes exhibit some degree of preference variation, the
most pronounced differences are associated with religion, geographic location, and ethnicity. On the response
quality axes, the most pronounced differences are observed in values, creativity, safety, and diversity.

Sensitive Attribute # Demographic Groups Values Creativity Fluency Factuality Diversity Safety Personalisation Helpfulness Other

Age 6 4.94e-09 5.44e-02 9.89e-02 3.34e-03 1.01e-01 4.71e-04 3.00e-03 1.91e-01 3.26e-03

Gender 3 1.45e-05 1.42e-01 3.54e-03 1.47e-01 3.72e-02 3.49e-16 5.36e-02 5.50e-03 4.20e-01

Employment Status 7 2.75e-04 3.23e-02 9.63e-01 2.74e-01 7.20e-01 6.89e-03 1.81e-01 9.00e-01 6.27e-02

Education 8 1.67e-02 2.96e-01 9.53e-02 6.74e-01 6.90e-01 1.32e-01 4.35e-02 8.47e-02 6.00e-03

Marital Status 4 3.58e-05 1.33e-02 8.85e-01 9.55e-01 9.52e-01 1.28e-02 1.10e-01 6.90e-01 5.56e-01

English Proficiency 5 2.44e-01 9.91e-01 3.03e-01 2.03e-02 9.33e-01 2.57e-02 9.66e-01 6.07e-01 2.25e-01

Religion 10 1.64e-13 3.74e-08 2.62e-02 6.00e-01 4.10e-01 1.49e-03 2.06e-04 8.12e-02 4.53e-03

Ethnicity 7 4.12e-04 6.00e-11 3.97e-01 3.90e-01 2.57e-02 2.25e-01 2.26e-04 6.27e-01 1.89e-01

Location 10 7.03e-09 1.10e-13 6.26e-03 2.29e-02 3.31e-04 4.47e-04 7.31e-07 5.14e-02 4.53e-02

Table 12: Similar to Table 11 but rather than using stated preferences, we compute the Kruskal-Wallis p-value over
the performance preferences (how well the chosen response performs) in the PRISM dataset.

Sensitive Attribute # Demographic Groups Values Creativity Fluency Factuality Diversity Safety Helpfulness

Age 6 5.14e-01 1.41e-01 4.03e-01 7.21e-01 8.90e-02 5.66e-01 4.41e-01

Gender 3 3.26e-02 1.41e-01 2.77e-03 3.03e-02 1.87e-01 1.40e-03 4.55e-03

Employment Status 7 3.20e-01 1.01e-01 2.03e-01 4.33e-01 2.77e-01 1.51e-01 1.95e-01

Education 8 5.85e-02 3.76e-02 2.15e-01 1.71e-01 3.72e-02 2.66e-01 5.33e-01

Marital Status 4 9.93e-02 1.87e-04 7.05e-01 3.52e-01 7.59e-03 6.38e-01 8.27e-01

English Proficiency 5 8.34e-01 2.07e-01 4.53e-01 5.57e-01 1.88e-01 5.05e-01 8.83e-01

Religion 10 7.87e-04 4.24e-07 8.68e-01 4.77e-02 1.19e-04 6.24e-01 4.83e-01

Ethnicity 7 2.95e-04 3.50e-05 1.15e-01 1.11e-02 1.20e-05 1.81e-02 9.58e-02

Location 9 5.51e-05 2.59e-09 1.00e-02 6.73e-05 5.80e-09 1.22e-01 4.66e-02

Table 13: Similar to Table 11 but rather than using stated preferences, we compute the Kruskal-Wallis p-value over
the choice preferences (why use makes this choice over multiple responses) in the PRISM dataset.

Sensitive Attribute # Demographic Groups Values Creativity Fluency Factuality Diversity Safety Helpfulness

Age 6 2.69e-01 4.14e-01 5.96e-01 8.71e-01 3.61e-01 6.55e-01 6.42e-01

Gender 3 3.70e-03 2.33e-03 6.81e-04 6.03e-02 7.44e-03 1.66e-06 6.02e-05

Employment Status 7 3.65e-01 2.40e-01 4.90e-02 3.19e-01 6.31e-01 2.43e-01 7.69e-02

Education 8 3.45e-02 1.64e-02 2.46e-01 2.73e-01 1.84e-02 2.24e-03 2.82e-01

Marital Status 4 1.72e-02 1.14e-04 8.79e-01 4.89e-01 1.45e-02 4.67e-01 6.15e-01

English Proficiency 5 1.70e-01 1.22e-01 7.91e-01 4.20e-01 3.31e-01 1.32e-01 6.46e-01

Religion 10 3.34e-07 6.40e-09 2.05e-01 2.29e-03 7.98e-06 7.66e-04 3.32e-01

Ethnicity 7 1.24e-04 4.49e-05 1.30e-01 5.43e-02 1.43e-06 3.74e-03 2.38e-01

Location 9 8.71e-05 1.63e-07 4.99e-03 5.81e-03 8.62e-09 5.30e-05 2.70e-01
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(a) Age (b) Gender (c) Employment Statue

(d) Education (e) Marital Status (f) English Proficiency

(g) Religion (h) Ethnicity (i) Location

Figure 6: Full results of the stated preferences of different demographic groups across various LLM response
quality dimensions (Kirk et al., 2024). The significance levels are validated in Table 11. From the results, certain
demographic groups exhibit notably different preference patterns across various response quality dimensions. The
Kruskal-Wallis p-value of each response quality axis across different demographic groups partitioned by a specific
sensitive attribute can be found in Table 11.
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Figure 7: Similar to Figure 4 but using our developed F1 Fairness Metric (defined in Section E.1), we study the
alignment between the reward models and different demographic groups. The values represent deviations from the
average F1 score, with stars marking significantly unfair treatments. Groups within the same sensitive attribute are
indicated by the same color.

Figure 8: Similar to Figure 4 but using our developed Matthews Correlation Coefficient Fairness Metric (defined in
Section E.1), we study the alignment between the reward models and different demographic groups. The values
represent deviations from the average MCC score, with stars marking significantly unfair treatments. Groups within
the same sensitive attribute are indicated by the same color.
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Figure 9: The max-min score difference for each attribute-dimension pair. The arrows highlight which max-min
pair has the largest discrepancy. Darker red shades indicate more substantial divergence. We observe that certain
groups tend to diverge more sharply in their stated preferences, and the most pronounced differences are associated
with religion, geographic location, as well as ethnicity.
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Table 14: Full result of SOTA reward models’ fairness across demographic groups. Agreement disparity (∆agreement)
is defined in Section 4; binary and weighted F1 disparities (∆F1 and ∆F1-w), as well as MCC disparity (∆MCC)
are defined in Appendix E.1. Additionally, we perform Pearson’s chi-squared test on the sets {Ys, Ŷs,θ}s∈S to
determine whether the reward model’s alignment with user preferences significantly differs across groups. Red
shades indicate significant p-values, emphasizing that different groups demonstrate varying levels of alignment with
the reward model.

Reward Model Size Metric Age Gender Employment Status Education Marital Status English Proficiency Religion Ethnicity Location
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Agreement Disparity 4.4 0.8 3.6 4.3 2.0 9.0 10.0 5.8 7.3

Binary F1 Disparity 4.3 1.1 4.7 4.6 2.2 8.8 7.1 3.8 5.4

Weighted F1 Disparity 2.4 0.6 3.1 5.2 1.3 5.1 7.3 4.4 4.8

MCC Disparity 4.9 1.1 6.7 10.3 2.8 11.1 13.9 8.3 9.7

p-value 1.354× 10−5 1.682× 10−1 2.499× 10−3 2.923× 10−3 2.533× 10−4 1.296× 10−5 5.210× 10−8 9.782× 10−12 1.721× 10−17
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Agreement Disparity 2.0 2.3 5.3 3.2 2.9 8.4 8.4 4.5 5.6

Binary F1 Disparity 3.7 2.3 6.4 10.5 2.6 11.4 11.3 3.2 4.1

Weighted F1 Disparity 2.6 1.5 3.7 2.7 2.1 3.7 9.1 4.6 3.0

MCC Disparity 5.3 3.1 7.7 5.8 4.7 9.5 18.3 8.5 6.1

p-value 3.000× 10−2 3.606× 10−1 7.082× 10−4 9.205× 10−1 1.664× 10−3 8.767× 10−2 7.702× 10−6 1.067× 10−6 3.742× 10−10
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Agreement Disparity 4.6 1.1 3.5 5.7 2.3 7.4 12.7 6.0 6.2

Binary F1 Disparity 5.1 1.3 5.0 3.5 2.1 6.4 11.7 6.2 5.3

Weighted F1 Disparity 2.5 0.1 2.7 3.7 1.7 4.3 10.5 5.6 3.3

MCC Disparity 5.2 0.3 6.0 7.1 2.8 8.8 22.4 10.4 6.9
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Binary F1 Disparity 4.4 2.1 4.3 3.6 2.0 9.7 14.9 4.6 5.7

Weighted F1 Disparity 2.6 1.3 2.3 4.2 1.4 4.9 11.9 3.7 5.2
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Binary F1 Disparity 4.4 0.9 5.1 3.8 5.9 8.8 8.7 6.0 4.2

Weighted F1 Disparity 1.1 1.7 3.1 3.5 4.2 3.8 5.1 6.4 2.7

MCC Disparity 2.7 3.2 6.2 6.3 8.3 8.8 10.5 13.8 5.7
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MCC Disparity 1.2 4.1 4.0 9.9 5.1 2.3 11.6 14.7 10.0
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Agreement Disparity 5.4 5.6 3.2 6.0 3.8 6.7 14.7 6.9 6.8

Binary F1 Disparity 4.8 6.0 4.0 2.6 3.7 6.3 11.9 7.3 4.4

Weighted F1 Disparity 3.0 4.8 2.4 3.8 3.5 3.1 11.5 6.3 3.7

MCC Disparity 6.2 9.9 5.1 7.1 6.9 6.1 22.7 12.1 7.3

p-value 3.522× 10−7 4.038× 10−5 2.412× 10−3 6.381× 10−2 6.512× 10−4 1.701× 10−4 1.848× 10−6 6.726× 10−12 4.124× 10−14
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Agreement Disparity 1.0 2.7 4.7 4.4 3.1 4.2 16.1 3.5 5.3

Binary F1 Disparity 1.4 2.1 5.6 3.6 4.7 8.2 12.7 4.3 4.7

Weighted F1 Disparity 1.7 1.8 3.3 4.2 2.9 2.0 11.9 2.0 4.4

MCC Disparity 3.0 3.6 6.7 8.0 6.0 3.3 24.3 3.7 8.8

p-value 7.561× 10−1 2.560× 10−1 3.570× 10−3 1.527× 10−1 7.324× 10−2 7.892× 10−2 2.351× 10−4 2.317× 10−3 9.076× 10−6
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Agreement Disparity 5.0 4.6 3.2 2.5 7.3 10.4 7.8 6.6 5.8

Binary F1 Disparity 5.2 4.9 3.9 7.4 5.7 11.7 8.6 5.4 4.8

Weighted F1 Disparity 2.9 3.7 2.5 5.3 7.0 5.0 6.0 3.8 3.0

MCC Disparity 6.1 7.4 4.6 10.7 13.6 11.6 13.1 7.5 6.3

p-value 5.462× 10−8 2.004× 10−2 5.112× 10−3 3.313× 10−1 2.034× 10−8 2.189× 10−2 3.024× 10−4 8.391× 10−8 3.823× 10−12

3454



Table 15: Mean reward scores across demographic groups by sensitive attribute, with p-values indicating statistical
significance of group-wise differences.

Sensitive Attribute Demographic Group Mean Reward p-value

Age

18–24 years old -5.4316

0.0492

25–34 years old -5.3692
35–44 years old -5.3939
45–54 years old -5.5608
55–64 years old -5.6355
65+ years old -5.5849

Gender
Male -5.5670

0.0303Female -5.4682
Non-binary / third gender -6.0213

Employment

Working full-time -5.2809

1.42e-13

Student -5.9489
Homemaker / Stay-at-home -6.5225
Unemployed, seeking work -5.6273
Working part-time -5.7092
Retired -5.7821
Unemployed, not seeking work -5.3682

Education

University Bachelor’s Degree -5.0576

0.0345

Some Secondary -5.2874
Some University (no degree) -5.0488
Vocational -5.3245
Completed Secondary School -4.9181
Graduate / Professional -5.1166
Completed Primary School -5.0972
Some Primary -5.3016

Marital Status

Never been married -5.4125

0.2477
Married -5.4263
Divorced / Separated -5.7487
Widowed -5.8701

English Proficiency

Native speaker -5.0814

0.0034
Fluent -4.9285
Advanced -4.8378
Intermediate -5.1255
Basic -5.3757

Religion

Folk religion -7.2228

9.48e-13

Christian -6.9378
Non-religious -6.3325
Jewish -6.7394
Agnostic -6.3602
Spiritual -6.7769
Muslim -7.0822
Hindu -6.9106
Buddhist -7.2275
Sikh -7.0338

Ethnicity

White -5.4721

3.13e-05

Black / African -5.7886
Hispanic / Latino -5.8407
Mixed -5.8511
Indigenous / First Peoples -6.3272
Asian -5.8778
Middle Eastern / Arab -5.9991

Location

Northern America -5.3430

4.59e-13

Africa -5.9212
US -5.2954
Latin America / Caribbean -6.0999
Europe -5.4743
Asia -5.4445
Australia / New Zealand -5.8822
Middle East -6.0614
UK -5.6950
Oceania -5.8178
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