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Abstract

For individuals who have experienced trau-
matic events such as strokes, speech may no
longer be a viable means of communication.
While text-to-speech (TTS) can be used as a
communication aid since it generates synthetic
speech, it fails to preserve the user’s own voice.
As such, face-to-voice (FTV) synthesis, which
derives corresponding voices from facial im-
ages, provides a promising alternative. How-
ever, existing methods rely on pre-trained vi-
sual encoders, and finetune them to align with
speech embeddings, which strips fine-grained
information from facial inputs such as gender
or ethnicity, despite their known correlation
with vocal traits. Moreover, these pipelines
are multi-stage, which requires separate train-
ing of multiple components, thus leading to
training inefficiency. To address these limita-
tions, we utilize fine-grained facial attribute
modeling by decomposing facial images into
non-overlapping segments and progressively
integrating them into a multi-granular repre-
sentation. This representation is further re-
fined through multi-task learning of speaker at-
tributes such as gender and ethnicity at both the
visual and acoustic domains. Moreover, to im-
prove alignment robustness, we adopt a multi-
view training strategy by pairing various visual
perspectives of a speaker in terms of different
angles and lighting conditions, with identical
speech recordings. Extensive subjective and
objective evaluations confirm that our approach
substantially enhances face-voice congruence
and synthesis stability.

1 Introduction

The ability to communicate using one’s own voice
is an intrinsic and fundamental aspect of human
identity, self-expression, and social interaction.
However, a range of neurological and physiologi-
cal conditions can severely impair speech produc-
tion mechanisms. For instance, dysarthria is a
speech disorder that results from various etiological

factors, including cerebrovascular incidents (e.g.,
strokes) and degenerative neuromuscular disorders
such as multiple sclerosis and Parkinson’s disease
(Darley et al., 1969; Mulfari et al., 2021). The
severity of dysarthria varies, but nevertheless man-
ifests as slurred, unintelligible, and phonetically
distorted speech. In more extreme cases such as
total glossectomy or orofacial myofunctional disor-
ders, individuals may completely lose the ability to
generate speech. These impairments significantly
hinder verbal communication, often leading to frus-
tration, social isolation, and a reduced quality of
life (Mertl et al., 2018).

Towards this, text-to-speech (TTS) systems
(Shen et al., 2018; Ren et al., 2021; Kim et al.,
2021) have been utilized as assistive technologies
to convert typed text into artificial speech (Mertl
et al., 2018; Jeon et al., 2025). However, while
they are effective for communication, they fail to
preserve the speaker’s unique vocal identity. Due
to this, personalized multi-speaker TTS methods
(Hu et al., 2020; Badlani et al., 2023; Jeon et al.,
2024) could be a potential solution (Mertl et al.,
2018) as they are able to imitate a target speaker’s
vocal characteristics for speech generation. Yet,
achieving high-fidelity voice cloning typically re-
quires extensive multi-speaker training or few-shot
adaptation with a large amount of speech record-
ings. Thus, while zero-shot multi-speaker synthesis
can ideally enable speaker adaptation, it remains
infeasible for those without any accessible prior
recordings, such as individuals with complete vo-
cal muscle paralysis. This limitation highlights
the need for alternative biometric modalities to in-
fer speaker identity and enable personalized voice
synthesis that is independent of speech recordings.

Both early and recent psychological research
suggests the existence of a strong correlation be-
tween facial identity with vocal characteristics.
Specifically, studies such as Kamachi et al. (2003);
von Kriegstein et al. (2005); Smith et al. (2016)
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have indicated that humans can infer aspects of
a person’s voice, such as pitch and timbre, based
solely on their facial features. As a result, this in-
sight has driven investigations into face-to-voice
(FTV) synthesis, where a facial image serves as
a reference for generating a corresponding voice,
and then producing speech in that inferred voice.

Early methods of FTV synthesis relied on sta-
tistical techniques that mapped facial images onto
facial landmarks, which were then transformed into
eigenvoice representations (Ohsugi et al., 2018).
These approaches, however, were limited by the
need for manual alignment between facial and vo-
cal features. More recent work has adopted multi-
stage training pipelines (Goto et al., 2020; Yang
et al., 2023; Kang et al., 2025), wherein a face en-
coder is first trained to produce embeddings that
align with outputs from a separately trained audio-
based speech encoder. Afterwards, during infer-
ence, the face encoder substitutes the speech en-
coder. While this strategy improves performance,
it introduces training complexity and inefficiency.
Moreover, because the facial representations are
specifically trained to align with audio features,
they fail to directly capture and utilize fine-grained
local facial features such as gender or other demo-
graphic attributes that are essential in producing
identity-consistent speech. Although Yang et al.
(2023) attempts to explicitly incorporate such facial
attributes, their method requires a combination of
demographic metadata, 2D facial features, textures
(e.g., skin, muscle), and 3D cranial structures. Not
only does this introduce substantial complexity in
terms of data acquisition and input modalities, but
also necessitates a three-stage learning process to
integrate these sources of information, which ulti-
mately results in a complex and resource-intensive
training pipeline.

To address the limitations of prior work, specif-
ically the reliance of inference-time-only visual
encoders, underutilization of fine-grained facial fea-
tures, and dependence on multi-stage training, we
present a novel end-to-end FTV synthesis frame-
work, which eschews external models and instead
focuses on effective facial feature learning. Our
method starts with a progressive facial encoder that
decomposes and hierarchically aggregates local fa-
cial regions to form a rich visual identity embed-
ding. Additionally, to ensure alignment of high-
level semantic attributes such as gender and ethnic-
ity, we introduce a bilateral attribute enhancement
mechanism, which is applied to both the facial rep-

resentation and to the synthesized audio output. A
multi-view data augmentation strategy is further
adopted where each speech sample is paired with a
diverse set of facial images from the same speaker,
which are captured under varying poses, lighting
conditions, and facial movements. Through both
subjective and objective evaluations, we demon-
strate that our method generates speech with higher
speaker fidelity and stronger FTV associations.

2 Related Work

2.1 Stylistic Speech Generation

Advancements in TTS technology have greatly
enhanced the naturalness of synthesized speech,
thereby expanding its applications to areas such
as voice imitation in the form of multi-speaker
TTS. Methodologies of this domain incorporate
a speaker encoder that extracts a speaker repre-
sentation from a reference audio sample, and then
conditions it into the backbone TTS model. Ex-
isting methodologies typically follow either a few-
shot adaptation strategy, where a pre-trained multi-
speaker TTS model is fine-tuned with multiple tar-
get speaker samples (Huang et al., 2022; Chen et al.,
2019, 2021), or a zero-shot adaptation approach,
which generates an embedding from a single tar-
get speaker sample to condition the model directly.
Regardless of the adaptation objective, research in
multi-speaker TTS has either focused on improv-
ing speaker encoders (Cooper et al., 2020; Jeon
et al., 2024) or refining speaker conditioning tech-
niques by evolving from simple concatenation to
more adaptive methods (Min et al., 2021; Choi
et al., 2022; Yoon et al., 2023). While FTV syn-
thesis is a form of multi-speaker TTS, it takes a
fundamentally different approach. Instead of re-
lying on reference audio at training or inference
time, it leverages a facial image to infer a speaker’s
vocal characteristics. As such, this task is inher-
ently more challenging, as it requires learning to
associate visual identity cues such as gender, with
corresponding acoustic traits.

2.2 Multi-Modal Speech Synthesis

The innate human ability to associate voices with
faces (Ellis, 1989), along with evidence of over-
lapping neural-cognitive pathways for processing
these modalities (Joassin et al., 2011), has fueled
extensive research in multi-modal visual-acoustic
learning. A prominent direction in this field is
voice-to-face generation, where models synthesize
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Figure 1: Diagram illustrating the proposed model. On a high level, an input image is segmented into 16 smallest-
size patches. Four sets of adjacent patches are then combined to create four larger areas. These four areas are
subsequently aggregated into a final representation F', which ultimately integrates information from all 16 original
patches. Moreover, attribute enhancement is further conducted on both the facial and acoustic domains. Note that
the architecture following the text encoder output is identical to the original VITS (Kim et al., 2021) model.

plausible facial features from speech, effectively
constructing a visual identity from audio (Sinha
et al., 2020; Liu and Wang, 2023; Xu et al., 2024.).
In contrast, face-to-voice generation has been stud-
ied in applications like biometric security (Jiang
et al., 2024), lip-dubbing (Chung and Zisserman,
2016; Park et al., 2022; Mukhopadhyay et al., 2024;
Choi et al., 2023; Lei et al., 2024) and voice syn-
thesis (Yang et al., 2023; Sheng et al., 2023; Kang
et al., 2025). Previous approaches in voice synthe-
sis often rely on multi-stage training pipelines by
aligning face and audio embeddings, and then only
leveraging face encoders during inference (Goto
et al., 2020; Kang et al., 2025). To enhance iden-
tity preservation across modalities, various loss
functions such as tri-item (Wang et al., 2022) and
disentanglement losses have also been formulated
(Nagrani et al., 2020). In this work, we focus on
face-to-voice synthesis while addressing the limi-
tations of previous methods by eliminating multi-
stage training. Towards this objective, we extract
effective facial embeddings enriched with identity-
relevant attributes like gender and ethnicity for

higher speaker fidelity.

3 Methodology

3.1 Problem Setup

In a conventional multi-speaker TTS frame-
work, the training dataset is defined as D =
{(Xy, Yn)}_,, where X,, and Y,, represent the
input text and corresponding speech waveform, re-
spectively. The objective is to generate an acoustic
output Y,, that reflects both the linguistic content
of X,, and the vocal identity of the target speaker.
To enable speaker-specific synthesis, an auxiliary
speaker encoder is employed to extract a speaker
embedding from the reference audio Y,,.
Extending this framework to the FT'V synthesis
task, we aim to generate speech that aligns with
the input text and conveys the vocal characteristics
of the individual, which is given as a facial image.
Accordingly, the training dataset is reformulated
as D = {(X,,Y,, Zy,) ,]:7:1, where Z,, denotes the
facial image that is extracted from a video. A facial
representation F' is then extracted from Z,, and con-
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ditioned into the end-to-end acoustic model of the
VITS architecture (Kim et al., 2021). Following
the adaptive conditioning approach of Yoon et al.
(2023), F'is projected through a linear layer to ob-
tain a gain g, a normalized direction vector ﬁ,
and a bias term b. These parameters are used in a
1-D convolutional layer to modulate the phonemic
hidden representations from the VITS text encoder
x as (g X ﬁ) x x + b. This fusion mechanism
integrates facial identity cues into the linguistic rep-
resentation, which guides the model to synthesize
speech that is both textually accurate and identity-
consistent. Since representation conditioning strate-
gies are a separate and active area of research (Yoon
et al., 2023; Min et al., 2021; Choi et al., 2022),
we do not elaborate on this in further detail. In-
terested readers are referred to Yoon et al. (2023).
In the following subsections, we instead focus on
the learning of facial representation F'. The full
architecture is illustrated in Figure 1.

3.2 Progressive Feature Extraction

Although the primary objective of FTV is to con-
vert facial images into speech, previous literature
have predominantly emphasized audio signal de-
composition over image processing. This is exem-
plified by the learning of latent acoustic character-
istics from reference audio, which is subsequently
used as a target for training the face encoder (Goto
et al., 2020; Wang et al., 2022; Kang et al., 2025).
Such strategies emphasize global representations
and often overlook the rich spatial hierarchies em-
bedded within facial images. Towards this, we
incorporate a hierarchical non-pretrained visual
encoder originally utilized for image generation
(Zhang et al., 2022) that is trained directly from
scratch, and results in more precise and robust map-
ping from facial geometry to vocal identity.

Formally, given a facial input image Z €
R3*HXW the model first decomposes Z into non-
overlapping patches of resolution P x P. Each
patch z; ; € R3*F*P s flattened and linearly pro-
jected into a fixed-dimensional embedding space,
which results in a set of patch tokens:

Z=Az;liell,H/P], je[l, W/P]} (1)

Each patch token is then passed through canon-
ical Transformers (Vaswani et al., 2017) that is
composed of alternating multi-head self-attention
(MHSA), feed-forward networks (FFNs), and
Layer Normalization (LN):

2 = TransformerBlock(z) 2)

Moreover, it is important to conduct aggrega-
tion between neighboring granularities 2 in order
to form a comprehensive visual representation and
to enhance locality. As such, the first facial gran-
ularity aggregation (FGA) iteration combines the
representations of the four smallest neighboring
P x P patches using a 3 x 3 convolutional layer,
followed by layer normalization, and then 3 x 3
max pooling. This process expands the model’s
receptive area from a single local facial patch to a
set of four.

Z = MaxPool(LN(Convsy3([21, -+, 24))) ()

This Transformer—aggregation cycle is applied
iteratively across hierarchical levels, where each
aggregation stage reduces the number of spatial
patches by a factor of four, progressively expanding
the receptive field. The process continues until a
single spatial token remains, thus capturing the
global summary of the entire facial image. The
final output is a 128-dimensional embedding that
serves as the facial identity vector F'.

3.3 Bilateral Attribute-Based Enhancement

While the hierarchical visual encoder described in
the previous section effectively captures spatially
localized geometric features, it does not account
for high-level semantic attributes that humans of-
ten leverage when inferring vocal traits from fa-
cial appearance. Specifically, psychological stud-
ies suggest that demographic cues such as gender
and ethnicity influence perceived voice character-
istics (Doty, 1998; Kim and Davis, 2010). Thus,
to complement the recursive visual learning of fa-
cial structure, we introduce an auxiliary attribute-
based learning objective that explicitly aligns and
enhances high-level facial semantics such as gender
and ethnicity into the training process.

Towards this, we employ a pseudo-labeling
approach using the pretrained DeepFace model'
(Serengil and Ozpinar, 2024), which automatically
annotates each facial image with predicted demo-
graphic categories pertaining to gender and race.
Attribute prediction is then conducted across both
visual and auditory modalities to enhance cross-
modal consistency. On the visual side, the facial
representation F’ is passed through two fully con-
nected layers to predict an attribute, which is then

"https://github.com/serengil/deepface
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Evaluation Metric Modality Comparison Set
MOS Audio < Audio 1:1
ABX Audio < Audio 1:4
F2V Alignment Image = Audio 1:4
Age Alignment Audio —
Gender Classification Audio —

Table 1: Overview of subjective evaluation methodolo-
gies. Modality: MOS, ABX, and Face-to-Voice (F2V)
Alignment evaluations involve comparing the synthe-
sized audio output with either the ground truth audio
or a corresponding face image. Comparison Set: Indi-
cates the number of synthesized audio samples that are
evaluated against each other to determine the one most
closely aligned with the ground truth.

compared against the pseudo-labeled ground truth
via a standard cross-entropy loss. Facial embed-
ding F'is subsequently integrated into the backbone
TTS system using adaptive conditioning techniques
from Yoon et al. (2023). On the auditory side, the
synthesized waveform of variable lengths is first
temporally linearly resampled into a fixed-size vec-
tor representation. A separate linear layer then
predicts the same set of attributes, which enables
semantic supervision in the audio domain. This
bidirectional supervision scheme promotes align-
ment of high-level identity cues across modalities.
The overall attribute prediction loss is

Lawr = Lace + @ - Laudio 4

where Lgce and Lyoice denote the cross-entropy
losses for the attribute predictions from the
facial and voice modalities, respectively, and are
combined through weighted summation. These
losses are linearly combined with the original
reconstruction loss calculated between ground
truth and synthetic mel-spectrograms, along with
the KL-divergence, adversarial, and duration losses
utilized in VITS (Kim et al., 2021) for training.
Moreover, to enhance robust learning, multi-
view data augmentation of the training data is fur-
ther conducted. This is because previous method-
ologies have only relied on datasets featuring static
relationships (Goto et al., 2020; Lee et al., 2023;
Plister et al., 2021; Kang et al., 2025), wherein
each speaker is represented by a single face im-
age paired with corresponding ground truth audio
for FTV model training. Recognizing the need for
vocal consistency despite variations in head orienta-
tion and facial expression, we employ a pretrained
s3fd (Zhang et al., 2017) face alignment model to
automatically extract face-centered frames from

each video in the LRS (Afouras et al., 2018) train-
ing dataset. From these frames, five images are
randomly selected and paired with the identical cor-
responding audio to train the previously detailed
model. An overview of this process is provided in
the upper left side of Figure 1.2

4 Experimental Settings

We leverage the trainval subset of the LRS open-
source dataset (Afouras et al., 2018) for training,
and conduct dataset multi-view augmentation and
pseudo-labelling? as detailed in Sections 3.2 and
3.3, respectively. Out of a total of 159,511 utter-
ances, the training-validation is split using a ratio
of 9:1. Audios are resampled to 16,000 Hz, and we
use a filter and window length of 1024, and hop
size of 256 for mel-spectrogram processing. For
fair comparisons, all experiments adhere to a batch
size of 20, and 350,000 training iterations are con-
ducted for approximately two days using a single
A6000 GPU. The total number of parameters is
approximately 43.6 million.

4.1 Evaluation Protocol

For validation, we juxtapose our method with three
baseline systems, and conduct subjective and ob-
jective assessments. The first baseline follows the
two-stage training method proposed by Pliister et al.
(2021), which jointly trains a Global Style Token
(Wang et al., 2018) speaker encoder with the TTS
backbone. Concurrently, a pretrained visual en-
coder is finetuned to align with the learned speaker
embeddings*. The second model is a diffusion-
based framework (Lee et al. (2023), FaceTTS) that
incorporates an auxiliary speaker alignment loss
that encourages the visual and acoustic embeddings
of the same identity to be close in a shared latent
space. Lastly, FVTTS (Lee et al., 2024) combines
both global and local facial representations; a pre-
trained facial recognition network FaceNet (Schroff
et al., 2015) is used to to extract global embeddings,
while an additional face encoder is utilized to ex-
tract local features from the same input image.

To comprehensively assess the perceptual qual-
ity and speaker fidelity of the generated speech,
we conduct a range of subjective evaluations via

ZFurther processing details are provided in Appendix A.

3We do not use age attributes due to significant bias, as the
data is heavily concentrated in the 30—40 age range.

*Although the original implementation is based on
Tacotron, we re-implement the same methodology using the
VITS architecture, and refer to this model as Pluster*.
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Subjective Metrics

Objective Metrics

Model

MOS (1) ABX (1) F2V (1) SeenSECS (1) Unseen SECS (1) CER () UTMOS (1)
Pluster*  3.25+0.08 20.83% 16.55% 67.04 64.81 0.2381 3.0470
FaceTTS 2.98+0.09 28.45% 25.71% 60.11 56.54 0.1070 2.1268
FVTTS 3.20+0.08 19.64% 27.38% 62.50 59.49 0.2743 2.2620
Ours 3.51+0.09 31.07% 30.36% 79.96 71.39 0.1302 3.2218

Table 2: Objective and subjective metric evaluation results. MOS scores are calculated with 95% confidence. F2V

denotes the face-to-voice alignment metric.

Model Younger Identical Older
Pluster* 0.225 0.538 0.237
FaceTTS 0.156 0.520 0.324
FVTTS 0.255 0.508 0.237
Ours 0.164 0.649 0.187

Table 3: Age alignment accuracy expressed as a percent-
age. The inferred age of the voice in the synthesized
speech is classified as younger, identical, or older rela-
tive to the ground truth audio.

Amazon Mechanical Turk® with twenty-one partic-
ipants. The first subjective evaluation task involved
participants assessing vocal similarity between syn-
thesized and ground truth audio using a 5-point
Likert scale (Mean Opinion Scores (MOS)). In the
second ABX task, participants selected the audio
sample from a set of four (each generated by a dif-
ferent model) that best matched the target speaker’s
ground truth audio.

While traditional evaluations in this domain typ-
ically rely on just MOS and ABX tests, we ex-
pand our protocol (Table 1) to include face-to-voice
(F2V) and age alignment, and gender classification
tasks to better analyze speaker identity preserva-
tion. Specifically, the third task of F2V alignment
required participants to choose one audio sample
out the four audios generated from each of the
three baselines and the proposed model, that best
matched a given target speaker image. For the age
classification task, participants categorized each
synthesized audio as having a younger, older, or
similar vocal age compared to the ground truth au-
dio. Finally, in the gender classification task, each
synthesized audio sample were indicated as either
having a male or female voice.

In addition, to support the validity of the subjec-
tive evaluation scores, we incorporate a set of auto-
matic objective metrics. Speaker similarity is quan-

SParticipants were compensated according to the hourly
wage in the authors’ country of residence.

09
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0.1

0.0
Pluster* FaceTTS FVTTS Ours

Figure 2: Gender classification agreement (pink) and
accuracy (blue) scores in percentage. Agreement is quan-
tified by the number of annotator votes assigning the
synthesized voice to a specific gender (male or female).
Accuracy is determined based on the majority vote out-
come relative to the ground truth gender.

tified via cosine similarity between the ground truth
target speaker and the synthesized audio (SECS),
using the Resemblyzer® package. To substanti-
ate the naturalness of the synthesized speech, we
employ UTMOS’ (Saeki et al., 2022), which is a
pre-trained model that is designed to predict MOS
scores for synthesized speech. Lastly, given that
FTV synthesis is fundamentally a speech genera-
tion task, maintaining clear and accurate pronunci-
ation is essential. To objectively evaluate pronunci-
ation quality, we transcribe the synthesized speech
using a pretrained Wav2Vec-base-960h (Baevski
et al., 2020) model, and then compute the Character
Error Rate (CER) with the jiwer® library.

S Results and Analysis

5.1 Feature Extraction and Speaker Fidelity

The results in Table 2 clearly demonstrate the su-
perior performance of our proposed model across
both subjective and objective evaluation metrics. In

®https://github.com/resemble-ai/Resemblyzer
"https://github.com/sarulab-speech/UTMOS22
8https://pypi.org/project/jiwer/
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Figure 3: t-SNE visualizations of speech embeddings
generated using Resemblyzer for seen speakers. Each
color denotes a distinct speaker identity. Compact and
well-separated clusters indicate higher speaker consis-
tency and better identity preservation. Visualizations of
unseen speakers (Figure 6) are included in Appendix C.

terms of MOS, our model achieves a score of 3.51
with a notable 0.26 difference than the closest per-
forming baseline (Pliister et al. (2021), 3.25), which
indicates significantly higher speaker fidelity in 1:1
comparisons with ground truth reference record-
ings. This is further reinforced by ABX preference
scores where our model achieves 31.07%, which
indicates stronger perceptual similarity to the refer-
ence voices in 1:4 comparisons. Most critically, in
the F2V alignment task, which evaluates the appro-
priateness of the inferred voice given only facial
inputs, our model records the highest alignment
score at 30.36%.

To better understand this perceptual alignment,
we further examine age consistency via subjective
preference scores across three categories: Younger,
Identical, and Older (Table 3). Our model yields
the highest preference for the Identical category,
achieving 0.649, which is +0.111 higher than the
best-performing baseline (Pliister et al. (2021),
0.538). In contrast, baseline models exhibit a
greater tendency to generate voices perceived as
either too young or too old relative to the target,
which suggests unstable synthesis and reduced
identity coherence. These results underscore our

40.00% 0.5

Mu%

28.57%

04
30.00%

03
23.81%
20.00%

0.2

10.00%
9.52% 0.1

0.00% 0.0
Pluster® FaceTTS FVTTS Ours

Figure 4: ABX (blue) and SECS (red) scores for the
out-of-domain GRID dataset.

model’s ability to generate voices that are more
faithfully aligned with the target speaker’s per-
ceived age. Additionally, in terms of gender ap-
propriateness (Figure 2), our model exhibits a 10%
improvement in classification accuracy and 2.4-
point gain in agreement scores compared to the
best-performing baseline.

These subjective findings are strongly corrobo-
rated by objective evaluations in Table 2. In SECS,
which measures speaker embedding similarity, our
model achieves the highest scores for both seen
(79.96) and unseen speakers (71.39), with respec-
tive margins of 12.92 and 6.58 over the closest base-
line model. Although Lee et al. (2023) achieves
a lower CER of 0.1070, the difference with our
model is minimal at 0.0232. Furthermore, our
model performs significantly better than Pliister
et al. (2021) and Lee et al. (2024), with CER dif-
ferences of 0.1079 and 0.1441, respectively. In
addition, in terms of naturalness, as measured with
UTMOS, our model again leads with 3.2218, which
indicates that our synthesized speech is perceived
as more natural and human-like. These results
are further supported by t-SNE (van der Maaten
and Hinton, 2008) visualizations of speaker em-
beddings across different speakers, where tighter
clusters of the same speaker demonstrate speaker
consistency (Figure 3).

In order to evaluate generalization to out-of-
domain settings, we conducted additional tests us-
ing the GRID dataset (Cooke et al., 2006). As
shown in Figure 4, our model maintains the highest
ABX preference score, with a +10% margin over
the second-best model. Additionally, we achieve
the top SECS score at 47.38, representing a +3.16
improvement over the next best-performing system,
further validating robustness.
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Attribute Seen SECS (1) Unseen SECS (1) Overall Seen SECS (1) Unseen SECS (1) Overall
Race 77.34 69.37 73.36 Ours 79.96 71.39 75.68
Image Gender 74.59 68.72 71.66 - Aud. Enhancement 77.76 70.27 74.63
Race + Gender 71.76 70.27 74.63 - Vis. Enhancement 74.73 68.35 71.54
Race 75.44 67.57 7151 - FGA 66.25 64.31 6528
Audio Gender 75.28 68.48 71.88 - AUG 64.43 62.04 63.23
Race + Gender 75.84 69.52 72.48
Image Race 76.14 68.34 72.24 Table 5: Ablation study results showing the effect of
+ Gender 75.02 69.83 7243 . T
Audio Race + Gender 79.96 71.39 75.68 removing each individual component.

Table 4: SECS-based speaker fidelity scores for both
seen and unseen speakers under varying configurations
of attribute-based supervision. Enhancement applied
exclusively to the facial representation space is denoted
as Image, while supervision constrained to the acoustic
modality is indicated by Audio. The Image+Audio set-
ting corresponds to joint attribute enhancement across
both visual and auditory domains.

5.2 Attribute-based Enhancement

The contribution of attribute-informed supervision,
which is implemented via auxiliary prediction ob-
jectives for race and/or gender, is quantitatively sub-
stantiated by the SECS scores reported in Table 4.
When applied exclusively to the facial representa-
tion space, unimodal conditioning on either race
or gender yields modest improvements in speaker
identity preservation, with overall SECS scores of
73.36 and 71.66, respectively. Their joint integra-
tion, however, results in an elevated score of 74.63,
which is indicative of the complementary nature of
multi-attribute cues in enhancing speaker fidelity.
In contrast, restricting attribute-based enhancement
to the acoustic modality results in a relatively small
improvement, which suggests that facial embed-
dings provide a more robust supervisory signal for
identity conditioning. Nonetheless, consistent with
the visual-only configuration, combining race and
gender supervision within the audio domain still
outperforms single-attribute variants for both seen
and unseen speaker subsets.

The most pronounced gains emerge when at-
tribute supervision is concurrently applied across
both modalities. The Race+Gender configuration
in this dual-domain setting yields a peak overall
SECS score of 75.68, which is a +1.05 improve-
ment over the best-performing unimodal setup.
This enhancement generalizes across data parti-
tions, with seen speaker performance increasing
from 77.76 to 79.96, and unseen from 70.27 to
71.39. These findings demonstrate the efficacy of
multi-domain, multi-attribute conditioning in rein-
forcing speaker identity consistency in the gener-

ated speech.’

5.3 Compositional Analysis

We conduct ablation studies to verify the compo-
nents of the proposed model in Table 5. Eliminat-
ing audio-based attribute enhancement results in
a noticeable drop of 1.05 points overall, while the
further removal of visual enhancement leads to a
larger decrease of 3.09 points, which highlights the
greater impact of visual attribute alignment on pre-
serving speaker identity. Moreover, we implement
a separate experiment that employs just one vanilla
transformer and takes the input speaker image as
is, without any patch segmentation or feature ag-
gregation (FGA). This results in a 6.26-point drop,
which reaffirms the importance of conducting ef-
fective initial feature extraction of the input image.
Finally, removing the data augmentation (AUG)
strategy results in the lowest overall SECS score
(63.23), highlighting the necessity of dataset aug-
mentation for achieving robust generalization and
speaker consistency. Taken together, these results
demonstrate the synergistic effect of each architec-
tural component in optimizing speaker similarity.

6 Conclusion

In this paper, we have presented a novel end-to-
end framework for FTV synthesis that emphasizes
effective facial representation learning and cross-
modal attribute alignment. In contrast to prior meth-
ods that depend on multi-stage pipelines or exter-
nal pretrained models, our approach progressively
aggregates local facial features to construct a ro-
bust identity embedding and then enforces seman-
tic consistency through bilateral supervision of de-
mographic attributes such as gender and ethnicity.
Additionally, by incorporating a multi-view face-
audio alignment strategy, we improve the model’s
ability to maintain vocal consistency across diverse
visual inputs. Comprehensive evaluations across
five assessment tasks and multiple objective met-

°Speaker fidelity scores according to each specific category
can be found in Appendix B.
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rics confirm that our method significantly improves
speaker fidelity and identity preservation, thus of-
fering a viable solution for personalized speech
synthesis even in the absence of voice recordings.

Limitations

While our framework advances the generation of
identity-consistent speech from facial images, it
currently focuses on replicating overall vocal tim-
bre. As such, it does not incorporate facial expres-
sions, which are closely tied to emotional prosody.
In future research, we plan to integrate facial ex-
pression information—potentially through emotion
tagging—to enable expressive and emotionally con-
gruent speech synthesis. Furthermore, although
our model includes demographic attributes such as
gender and ethnicity via bilateral supervision, age-
related features were excluded due to the highly
skewed age distribution in the available dataset.
Addressing this data imbalance and exploring age-
aligned voice synthesis remains an important direc-
tion for future work. More broadly, a systematic
investigation into the full range of facial attributes
that influence perceived vocal characteristics will
further enrich personalized and realistic voice syn-
thesis.

Ethical Considerations

The primary objective of this work is to develop
a framework capable of synthesizing realistic,
identity-consistent speech from facial images. This
technology holds promising applications, partic-
ularly in assistive communication for individuals
with speech impairments or those who have lost
vocal capabilities due to neurological or physio-
logical conditions. By enabling the generation of
personalized voices, our framework may contribute
to restoring a sense of vocal identity and enhancing
self-expression for such individuals. Nevertheless,
FTV synthesis inherently involves the replication
of personal identity cues, and thus raises potential
ethical concerns. In particular, the potential for
misuse, including unauthorized voice cloning, bio-
metric spoofing, and identity impersonation, poses
risks to personal privacy, consent, and digital secu-
rity. These risks could lead to harmful applications
such as fraud, misinformation, or defamation. We
acknowledge these risks and emphasize the impor-
tance of responsible deployment and strict consent-
based usage of FT'V systems. Future work should
incorporate robust safeguards such as impercepti-

ble watermarking of synthetic speech, which may
help to detect and deter misuse of generated voices.

Furthermore, our model incorporates commonly
defined demographic attributes such as gender and
race during training for improved speaker identity
modeling, which was informed by prior studies
that indicate their perceptual relevance in voice
characteristics. While these features were derived
from publicly available datasets and used solely for
the purpose of enhancing face-vocal alignment, we
recognize the potential sensitivity of such demo-
graphic variables. We remain committed to con-
ducting ethical and inclusive research and advocate
for ongoing interdisciplinary dialogue between ma-
chine learning researchers, ethicists, and affected
communities to ensure the responsible develop-
ment of FTV technologies.
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Algorithm 1: Face Extraction and Speaker-
Wise Pseudo-Label Assignment
Input :Video V
Output : Face images Z = {I1, ...
Attribute label A

Step 1: Frame Sampling
F « s3fd(V)
F < shuffle(F)
7 < F[: 5]
Step 2: Pseudo-Label Generation
A < NULL
foreach I;, € 7 do
if A = NULL then
(attry, attrg) < DeepFace(Iy) ;
A « [attry, attrs] ;
end
end

returnZ, A

s},

A Dataset Processing

The video from a speaker can be viewed as a se-
quence of individual frames, each representing a
still image. From these images, the face is extracted
using the s3fd model. Five frames are randomly
selected for further processing. After selecting the
five images, one image from each speaker is anno-
tated using the DeepFace pretrained model, as de-
scribed in Algorithm 1. The remaining four images
inherit the annotated attributes of the first image.
This process is done to ensure attribute annotation
consistency across the images of the same speaker.
Since the LRS dataset is used solely for research
purposes, this usage is consistent with the Creative
Commons Attribution 4.0 International License.

B Sub-attribute Category Evaluations

To incorporate high-level attributes across both
audio and visual modalities, we have introduced
a bilateral enhancement strategy!’. To assess

0The weight assigned to classification in the acoustic do-
main is empirically set to 0.3.

Attribute Category Percentage
Male 74.66%
Gender  pomale 25.34%
Caucasian 72.23%
Asian 12.76%
R Middle Eastern 5.64%
ace African American 4.72%
Latino Hispanic 4.33%
Indian 0.32%

Table 6: Dataset statistics according to gender and race

attributes.

Attribute Category Spk Sim
Male 0.7597

Gender g male 0.7503
Caucasian 0.7593
Asian 0.7637
Middle Eastern 0.6925

Race . .
African American  0.7165
Latino Hispanic 0.7867
Indian 0.7631

Table 7: Speaker similarity scores across gender and
race.

the robustness of our method across demographic
subgroups, we analyze speaker similarity (SECS)
scores by gender and race'! using pseudo-attribute
annotations derived from a pretrained DeepFace
model on the LRS dataset. As summarized in Ta-
ble 6, the majority of the face images are classified
as male (74.66%) and predominantly Caucasian
(72.23%). Despite this imbalance, our model
maintains consistent speaker similarity across sub-
groups, as shown in Table 7. Specifically, the SECS
scores for male (75.97) and female (75.03) speak-
ers are closely aligned, which suggests that the
model does not disproportionately favor the over-
represented gender.

A similar trend is observed across race cate-
gories; while Caucasian speakers dominate the
dataset, the similarity scores for underrepresented
groups such as Asian (76.37), Indian (76.31), and
Latino Hispanic (78.67) are comparable or even su-
perior. Notably, the performance for Middle East-
ern (69.25) and African American (71.65) speak-
ers, though slightly lower, still remains within an

""The pretrained DeepFace model originally labels race
attributes using terms such as "White" and "Black." For im-
proved clarity and alignment with academic conventions, we
adopt the terms "Caucasian" and "African American" in this

paper.
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Figure 5: Visualization of collective modality attribute
loss.
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Figure 6: t-SNE visualizations of speech embeddings
generated using Resemblyzer for unseen speakers.

acceptable range, which indicates generalizability
beyond the majority class. These findings are fur-
ther supported by the progression of the attribute
classification loss (Figure 5); its continuous decline
and eventual plateau indicate stable convergence
and the effectiveness of incorporating attribute su-
pervision in improving face-to-voice alignment.

C Subjective Evaluations

To comprehensively assess the perceptual quality
and speaker fidelity of the generated speech, each
model was evaluated using 100 audio samples span-
ning 40 speakers, comprising of both seen and un-
seen identities. The evaluation process required
approximately two hours per annotator. Among

the twenty-one annotators, the gender distribution
was seventeen male and four female. Prior to eval-
uation, all participants were informed that their
demographic information and responses would be
used solely for research purposes. To further sub-
stantiate our subjective assessments, we addition-
ally provide objective visualizations of the unseen
speakers in Figure 6.
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