
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 24223–24244
November 4-9, 2025 ©2025 Association for Computational Linguistics

SciCompanion: Graph-Grounded Reasoning for Structured Evaluation of
Scientific Arguments

Joshua Flashner1, Adithya Kulkarni2, Dawei Zhou1

1 Department of Computer Science, Virginia Tech
2 Department of Computer Science, Ball State University

jflashner@vt.edu, adithya.kulkarni@bsu.edu, zhoud@vt.edu

Abstract

The exponential growth of scientific publi-
cations has overwhelmed reviewers and re-
searchers, with top conferences receiving thou-
sands of submissions annually. Reviewers must
assess feasibility, novelty, and impact under
tight deadlines, often lacking tools to identify
relevant prior work. Early-career researchers
face similar challenges, with limited support to
navigate fast-evolving fields. Existing LLM-
based systems struggle with static retrieval,
surface-level features, and lack multi-hop rea-
soning, leading to shallow or hallucinated as-
sessments. Scientific evaluation requires a
deep, relational understanding, which current
retrieval-augmented generation (RAG) meth-
ods fail to achieve. We introduce SCICOMPAN-
ION, a graph-grounded reasoning framework
for structured scientific evaluation. Given a
paper or abstract-like input, SCICOMPANION
builds a dynamic knowledge graph from re-
cent publications, domain-specific databases,
and curated metadata. It employs multi-hop
reasoning to iteratively construct contextual
graphs and generate structured critiques, en-
abling deeper exploration of scientific litera-
ture. Unlike sentiment-biased LLM evalua-
tions, SCICOMPANION directly optimizes re-
trieval and graph refinement using Group Rel-
ative Policy Optimization (GRPO), producing
reviews aligned with expert judgments. Exper-
iments on ICLR and ACL datasets show that
SCICOMPANION reduces evaluation error by
over 30% compared to prompting-only base-
lines and allows smaller models to outperform
larger ones. Evaluations across three datasets,
using metrics for retrieval accuracy, semantic
overlap, and multi-hop sensitivity, along with a
case study, demonstrate SCICOMPANION’s ro-
bustness and versatility.

1 Introduction

The exponential rise in scientific publications has
immensely strained the peer review ecosystem.

Conferences in artificial intelligence and machine
learning, such as NeurIPS, ICML, and ICLR, have
seen a significant increase in paper submissions,
with NeurIPS 2025 receiving over 10,000 submis-
sions (Xu et al., 2024). Similarly, ACL conferences
have experienced consistent year-over-year growth,
with ACL 2023 reporting 4,864 submissions, a
marked increase from previous cycles (Bharti et al.,
2023). This surge creates unsustainable reviewer
workloads due to high volume, tight deadlines,
and unfamiliarity with subdomains (Mehmani and
Ghildiyal, 2024). The "publish or perish" cul-
ture (Guraya et al., 2016) exacerbates this, encour-
aging quantity over rigor and leading to reviewer
fatigue.

Early-career researchers and junior reviewers
also struggle with the rapidly growing, fragmented
literature (Johnson and Weivoda, 2021; Bandich-
hor et al., 2023). As prior work exceeds individ-
ual cognitive capacity, assessing novelty, identify-
ing related work, and evaluating methodology be-
comes time-consuming and error-prone. This in-
formation overload compromises peer review qual-
ity and scientific judgment, highlighting the urgent
need for intelligent, scalable, and trustworthy tools
for transparently synthesizing, contextualizing, and
evaluating contributions (Picano, 2025).

Large language models (LLMs) offer scalable
language understanding but falter in the face of
evolving, frontier scientific knowledge (Ye et al.,
2024; Zeng et al.). In an attempt to resolve
this, Retrieval-Augmented Generation (RAG) ap-
proaches (Lewis et al., 2020; Liu, 2025) incorporate
external documents, but are typically static, non-
adaptive, and unstructured (Barnett et al., 2024;
Han et al., 2025a). Graph-based methods like
GraphRAG (Han et al., 2025b,a) offer structured
retrieval, yet they typically focus on passive infor-
mation linkage rather than critique-driven synthe-
sis or task-conditioned reasoning. LLM baselines
lack alignment with expert review dimensions, of-
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Property GPT-4 PeerRead OpenReviewer PaperSEA SCICOMPANION

Comprehensive Validation ! !

Multi-hop Retrieval !

Task Specific Optimization ! ! ! !

Cross-domain Adaptability ! ! !

Table 1: Comparison of SCICOMPANION with baseline and specialized peer review systems. SCICOMPANION is
the only framework that integrates dynamic, multi-hop retrieval with critique-aligned optimization.

ten hallucinate unsupported claims (Ji et al., 2023),
and fail to support multi-hop reasoning. For in-
stance, standard LLMs may retrieve superficially
relevant papers but fail at the multi-hop reason-
ing needed to uncover subtle connections that de-
termine true novelty, as they are not inherently
designed for deep, iterative exploration. Recent
specialized systems have sought to address these
gaps: OpenReviewer (Idahl and Ahmadi, 2025)
uses large-scale fine-tuning on expert reviews to
generate more critical and realistic feedback that
matches human judgment distributions, while Pa-
perSEA (Yu et al., 2024) introduces a multi-stage
framework to standardize inconsistent review data
before fine-tuning and apply a self-correction mech-
anism. However, these approaches are primarily
grounded in supervised learning from existing text
and do not incorporate dynamic, graph-based rea-
soning or reinforcement learning to guide the cri-
tique generation process.

Effective peer review demands systems for deep,
context-sensitive evaluation that are: context-aware
(interpreting domain nuance), critique-aligned
(structured around feasibility, novelty, impact), and
explainable (producing interpretable, trustworthy
reasoning) (Bharti et al., 2023; Kumbhar et al.,
2025; Xiong et al., 2024). Prior symbolic and
graph-based tools (Ji et al., 2021; Dessì et al., 2021;
Oelen et al., 2020) offer structured exploration but
are disconnected from modern LLMs’ adaptive rea-
soning and lack reinforcement learning scaffolds
for alignment with scientific critique (Lu et al.,
2024), leaving a gap for structurally grounded, flex-
ible systems.

To address the limitations of static retrieval
and shallow critique in scientific evaluation, we
introduce SCICOMPANION, a unified framework
that integrates dynamic graph reasoning, reinforce-
ment learning, and LLM-driven critique genera-
tion (see Table 1). Departing from conventional
RAG pipelines and static knowledge graph sys-
tems, SCICOMPANION builds evolving, multi-hop

graphs grounded in scientific text, continuously
refined through reinforcement signals via Group
Relative Policy Optimization (GRPO) (DeepSeek-
AI and et al., 2024; Schulman et al., 2017; Sil-
ver et al., 2018). This enables the system to adap-
tively retrieve, link, and assess evidence based
on task-specific prompts. Each reasoning trajec-
tory is explicitly aligned with structured review
criteria, feasibility, novelty, and impact, drawing
from advances in multi-agent prompting (Kumb-
har et al., 2025), graph-centric LLM interfaces (Li
et al., 2024), and scientific QA pipelines (Lu et al.,
2022). Flexible, SCICOMPANION operates on full
papers or abstract-like descriptions, supporting re-
viewers with heavy loads and researchers seeking
structured domain exploration.

Overall, the summary of our contributions is:

• Graph-guided critique generation. We in-
troduce SCICOMPANION, a framework that
combines dynamic multi-hop graph construc-
tion, LLM reasoning, and GRPO-optimized
retrieval for scientific evaluation.

• Structured and explainable outputs. SCI-
COMPANION produces feasibility, novelty,
and impact critiques with interpretable,
evidence-backed reasoning traces.

• Empirical improvements. On three peer-
review datasets, SCICOMPANION outper-
forms RAG and GraphRAG baselines by up
to 11.2 points.

• Practical utility. We release an open-source
implementation under the MIT License to sup-
port reviewers and researchers in critique ex-
ploration and literature analysis at SCICOM-
PANION1.

1https://github.com/jflashner/SciCompanion
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Figure 1: Framework Overview. SCICOMPANION’s iterative framework. With T retrieval steps and N GRPO
generations, the internal KG is updated, guiding query generation. Final subscores (e.g., feasibility, novelty, impact)
inform the overall score.

2 SCICOMPANION: Structure-Aware
Reasoning for Scientific Paper
Evaluation

Scientific evaluation is a multifaceted task requir-
ing reasoning over text and structured knowledge.
SCICOMPANION emulates this expert process us-
ing LLMs augmented with structured graph re-
trieval and RL. Instead of static retrieval or shallow
prompting, SCICOMPANION builds a dynamic rea-
soning system that iteratively constructs context,
formulates hypotheses, and aligns judgments with
expert evaluations.

2.1 Problem Setup
Given a scientific paper P , the goal is to predict
an expert-like assessment vector Ŝ ∈ Rk covering
dimensions such as feasibility, novelty, and impact.
Ground-truth labels Y ∈ Rk are sourced from peer-
review datasets like PeerRead (Kang et al., 2018)
or curated reviews from ICLR and ACL.

To contextualize P , we construct a base sci-
entific knowledge graph Gbase = (V, E), where
nodes V represent scientific entities and edges E
denote relationships (e.g., citations, derivations,
shared methods), built using GraphRAG-style ag-
gregation (Han et al., 2025b). We aim to learn
a function f that maps (P,Gbase) 7→ Ŝ using
an LLM-based agent policy πθ that retrieves rele-
vant evidence, reasons over it, and outputs struc-
tured assessments. This policy is optimized using
Group Relative Policy Optimization (GRPO), with
rewards reflecting both predictive accuracy and rea-
soning quality (see Section 2.5).
2.2 Framework Overview
SCICOMPANION features three interlinked stages:
structured graph retrieval, iterative language-graph

reasoning, and multi-dimensional scoring, mimick-
ing expert review. Intuitively, SCICOMPANION ’s
three stages work synergistically: the first stage re-
trieves initial “graphlets” of related concepts and
references, often incomplete or superficially con-
nected. The second stage iteratively refines these
structures by hypothesizing connections, formulat-
ing targeted queries, and pruning irrelevant infor-
mation. Finally, the third stage synthesizes a struc-
tured review, explicitly evaluating feasibility, nov-
elty, and impact using the refined graph context.
This process is underpinned by two core knowl-
edge representations, a state graph Gt (for accumu-
lated structured knowledge) and a notebook Nt (for
free-form reasoning), evolving jointly as the model
queries the KG, updates context, and reflects. The
graph structure is crucial: it explicitly represents
relational knowledge (capturing dependencies) and
supports tractable reasoning over ambiguous or par-
tial knowledge (aiding disambiguation and identifi-
cation of indirect contributions).

2.3 Structured Retrieval and Graph
Completion

Scientific evaluation requires reasoning over ex-
plicit content and implicit prior work connections.
Static retrieval often fails with specialized termi-
nology, abbreviated references, and assumed do-
main familiarity, yielding superficial results. Stan-
dard RAG’s reliance on embedding similarity strug-
gles with semantic depth, especially for dispersed
knowledge (Barnett et al., 2024). To address this,
SCICOMPANION employs an iterative retrieval-and-
reasoning loop, dynamically expanding understand-
ing via structured exploration of a knowledge graph
Gbase.
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The process, formalized in Algorithm 1, begins
with empty memory structures: a state graph G0

and a notebook N0. These two representations, one
symbolic, one linguistic, are progressively enriched
across T reasoning steps. At each step t, the model
generates a new query set Qt conditioned on the
current state (Gt−1, Nt−1) and the paper P . This
conditional formulation ensures that query genera-
tion is both context-aware and dynamically tailored,
allowing the system to move from broad explo-
ration to focused retrieval as understanding deep-
ens. The queries Qt are executed over Gbase to ex-
tract a set of subgraphs It representing potentially
relevant entities, methods, and claims. Retrieved
subgraphs It are merged into Gt−1 using symbolic
alignment. However, merging alone is insufficient
due to scientific expression variability (e.g., syn-
onyms, disconnected facts, implicit relations not in
Gbase). Thus, we introduce CompGraph, a policy-
driven πθ graph completion module.

CompGraph proposes edits to the merged graph
in three categories: additions of novel nodes or
edges that reflect claims made in P ; deletions of
outdated or contradicted knowledge; and revisions
to existing annotations to reflect subtle conceptual
shifts. This hybrid symbolic-neural update mech-
anism ensures that the evolving graph Gt is struc-
turally coherent and semantically aligned with the
paper’s discourse. The importance of graph com-
pletion is twofold. First, it enables the model to rea-
son over latent structure, capturing indirect or com-
positional contributions that span multiple prior
works. Second, it supports robust integration of
new information, even when P challenges prevail-
ing knowledge. Notably, this design avoids the
need for exhaustive traversal of Gbase, making rea-
soning scalable and efficient.

Following the graph update, the model generates
an intermediate reasoning trace Rt, appended to
the notebook Nt, summarizing its current interpre-
tation of the paper in light of the retrieved and in-
tegrated context. The dual memory of graph and
notebook supports both explicit symbolic reason-
ing and flexible abstraction, key properties for em-
ulating expert scientific judgment. After T itera-
tions, the final state (GT , NT ) captures a structured
and context-rich view of the paper’s contribution.
This state is then passed to a final evaluation mod-
ule that produces the assessment vector Ŝ. The full
process reflects a balance between structured explo-
ration and reflective synthesis, designed to mimic
the expert review process while remaining inter-

pretable and trainable via reinforcement learning
(Section 2.5).

2.4 Language-Graph Coupled Reasoning

Scientific evaluation requires more than factual
lookup; it demands interpretive reasoning that
weighs evidence, identifies assumptions, and con-
textualizes novelty. Language models without ex-
plicit reasoning leave out a crucial planning phase,
which helps align generation towards the overall
goal. To emulate the reasoning process, SCICOM-
PANION maintains two complementary representa-
tions: a symbolic state graph Gt and a linguistic
notebook Nt. At each iteration, the model gener-
ates a reasoning trace Rt that reflects its current in-
terpretation of the paper given the retrieved knowl-
edge. This trace is appended to Nt, enabling cumu-
lative, context-aware evaluation. Crucially, this rea-
soning is not only descriptive but also guides future
retrieval. If Rt identifies contradictions or gaps,
subsequent queries are adapted accordingly. Over
time, the system refines its understanding through
this interplay of structured graph (Gt) and reflec-
tive reasoning (Nt), yielding a more informed and
nuanced evaluation. The final assessment Ŝ is pro-
duced by analyzing the joint state (GT , NT ) using
dimension-specific prompts. This structured map-
ping supports interpretability and alignment with
expert review criteria. As shown in Figure 1, SCI-
COMPANION supports multi-sample training: for
each paper, we generate multiple reasoning trajec-
tories, each evaluated for scoring accuracy (rscore)
and structural coherence (rstruct). GRPO compares
these trajectories to compute relative advantages,
updating the policy to favor more coherent and in-
formative reasoning chains. By coupling structured
retrieval with iterative reasoning and optimizing for
both fidelity and interpretability, SCICOMPANION

advances beyond static retrieval systems, offering
a transparent and expert-like framework for scien-
tific paper evaluation.

2.5 Policy Optimization via GRPO

To optimize the reasoning and retrieval behaviors
in SCICOMPANION, we frame the scientific eval-
uation task as a reinforcement learning (RL) prob-
lem. The agent, parameterized by policy πθ, is re-
warded for generating reasoning trajectories that
produce structured evaluations Ŝ closely aligned
with expert assessments Y. Given the variability
in plausible reasoning paths, we adopt Group Rel-
ative Policy Optimization (GRPO), which empha-
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Algorithm 1 SCICOMPANION Multi-Step Re-
trieval & Reasoning
Require: Paper P , Base KG Gbase, Policy πθ , Steps T
Ensure: Predicted Assessment Ŝ
1: Initialize Notebook N0 ← ∅
2: Initialize State Graph G0 ← ∅
3: Q0 ← GenQueries(πθ, P,G0, N0)
4: for t = 1 to T do
5: It ← Extract(Gbase, Qt−1)
6: Gmerged ← Merge(Gt−1, It)
7: Gt ← CompGraph(πθ, P,Nt−1, Gmerged)
8: Rt ← GenReasoning(πθ, P,Gt, Nt−1)
9: Nt ← Nt−1 ∪ {Rt}

10: Qt ← GenQueries(πθ, P,Gt, Nt)
11: end for
12: Ŝ← FinalEval(πθ, P,GT , NT )

13: return Ŝ

sizes relative improvement within a group of can-
didate responses, promoting exploration without
compromising training stability. For each input
paper P , we sample N reasoning trajectories us-
ing the current policy. Each trajectory produces a
predicted score vector Ŝ(i) and an associated state
graph G

(i)
T . We then compute two reward compo-

nents: (1) a score-based reward rscorei , measuring
the agreement between Ŝ(i) and Y via RMSE, and
(2) a structure-based reward rstructi , quantifying
the informativeness, novelty coverage, and coher-
ence of the final state graph by attribute ratio.

The GRPO objective is given by:

JGRPO(θ) =
1

G

G∑

i=1

min (ρiAi, clip(ρi, 1− ϵ, 1 + ϵ)Ai)

− β DKL (πθ ∥πref)

(1)
where ρi =

πθ(ri|P )
πθref (ri|P ) is the importance weight and

Ai denotes the relative advantage of trajectory i
within its batch.

The training process (Algorithm 2) iteratively
samples hypotheses, generates trajectories, com-
putes rewards, and updates the policy via gradi-
ent ascent on JGRPO(θ). A critical challenge in
optimizing SCICOMPANION via GRPO is the in-
herent complexity of synchronizing query formula-
tion, iterative graph edits, and intermediate reason-
ing steps. Unlike standard RL scenarios, our task
requires sequential, multi-stage token injections
within a single forward pass, complicating credit
assignment. To address this, we introduce a novel
masking technique for GRPO optimization, isolat-
ing learning signals specifically to dynamic reason-
ing actions (queries, graph updates, and reasoning),
thereby preventing confounding from static or re-
dundant context. Because the standard GRPO ob-

jective assumes the entire generated sequence is
produced by the policy, it is not directly applica-
ble to our multi-hop process where search results
and prompts are injected externally. Our masking
technique resolves this by reformulating the loss
function to ensure that only policy-generated to-
kens contribute to the gradient updates. We define
the masked loss for a single trajectory as:

Lmasked(θ) = −Ê
[∑

i∈M
log πθ(yi | y<i)ρiÂi

]

(2)
whereM is the set of indices corresponding to

tokens directly generated by the policy. By con-
structing the loss in this way, the subsequent gradi-
ent calculation, ∇θLmasked(θ), naturally omits the
injected content—such as retrieved search results,
graph construction prompts, the state graph, and
the final review generation prompt—from the opti-
mization. This represents a key technical contribu-
tion ensuring stable and mathematically sound op-
timization for multi-step RL. The use of RL with
GRPO allows SCICOMPANION to learn domain-
adaptive retrieval and reasoning strategies that gen-
eralize across papers and review dimensions, sup-
porting both accuracy and transparency through in-
terpretable outputs.

3 Experiments

To assess the capabilities of SCICOMPANION,
we design a comprehensive evaluation protocol
grounded in the core challenges outlined in the in-
troduction: scalable critique generation, structured
retrieval, and generalization across domains. Our
experiments aim to answer three central questions:
(Q1) How accurately can SCICOMPANION emu-
late expert evaluations? (Q2) What is the contribu-
tion of multi-step, graph-based retrieval to reason-
ing quality? (Q3) How does reinforcement learn-
ing via GRPO compare to standard prompting and
fine-tuning strategies?

Datasets. We use three datasets for evalua-
tion. ICLR (5,482 ML papers with reviews) tests
multi-dimensional critique (feasibility, novelty, im-
pact) (González-Márquez and Kobak, 2024). ACL
Soundness & Overall (3,219 CL papers) provide
labels for methodological rigor and overall recom-
mendation (Dycke et al., 2025-02). GoodReads
(5,000 book descriptions with user ratings) tests
cross-domain adaptability with loosely structured
text and non-expert preferences (Dhamani, 2021).
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For all experiments requiring training, we used a
standard 80%/10%/10% random split for the train-
ing, validation, and test sets, respectively.

Evaluation Metrics. For each dataset, the eval-
uation task involves predicting a continuous score
or vector of scores Ŝ approximating the expert
or crowd-assigned ground truth Y . We report re-
sults using three evaluation metrics. Root Mean
Square Error (RMSE) quantifies predictive accu-
racy against gold scores. Point match rates mea-
sure the overlap between generated critiques and
peer reviews in terms of strong and weak points. Fi-
nally, retrieval accuracy is assessed by comparing
the system’s generated references to ground-truth
citations in both full-text and abstract-only settings,
providing insight into SCICOMPANION’s ability to
surface contextually relevant evidence.

Experimental Setting. Models are tested in
zero-shot (guidelines only), five-shot (exemplar re-
views), and trained (finetuning and GRPO-based
RL) settings, reflecting increasing supervision. Ex-
periments use GPT-4o-mini, Qwen2.5-7B, and
Qwen2.5-14B backbones (via vLLM, fixed decod-
ing). We used models≤14B to test if our structured
evaluation allows them to rival larger unstructured
baselines, aiding resource-constrained deployment.

Figure 2: Impact of retrieval steps: RMSE and aver-
age papers retrieved over iteration steps (K). Multi-step
retrieval improves RMSE error by up to 0.5 points.

3.1 Results and Analysis

Effectiveness of Structured Evaluation (Q1). Ta-
ble 2 presents a comprehensive comparison across
zero-shot, five-shot, and trained model settings.
Across all datasets, SCICOMPANION consistently
outperforms prompting-only baselines, validating
its ability to align with expert judgments through
structured, graph-guided reasoning. This trend is
further illustrated in Figure 3, which visualizes
RMSE across four datasets and three evaluation
regimes. In the zero-shot setting, SCICOMPANION

Figure 3: Lower error rates: SciCompanion achieves
consistently lower RMSE compared to baseline ap-
proaches when evaluating scientific hypotheses.

already demonstrates gains over LLMs of compa-
rable size, reducing RMSE by up to 0.33 on ACL
Overall and 0.18 on GoodReads. This indicates
that even without exemplar reviews, multi-hop re-
trieval and graph synthesis help surface more rele-
vant contextual evidence. Under five-shot prompt-
ing, SCICOMPANION achieves further reductions,
outperforming both baseline and finetuned models.
Notably, the improvements persist across both for-
mal peer review datasets (ACL, ICLR) and open-
domain corpora (GoodReads), highlighting the gen-
erality of our reasoning approach.

The performance advantage becomes most pro-
nounced in the FT/RL regime. On ICLR 2017–
2024, SCICOMPANION with Qwen-14B achieves
an RMSE of 0.95, outperforming the fine-tuned
14B model (RMSE 1.19) and surpassing Peer-
Read (RMSE 1.66). Moreover, our 7B variant
of SCICOMPANION consistently outperforms the
14B prompting baseline across datasets, showcas-
ing that structured critique generation and retrieval
alignment can substitute for raw parameter scale.
These results confirm SCICOMPANION’s architec-
ture (LLMs, dynamic graph retrieval, GRPO) pro-
vides a robust foundation for faithful, interpretable,
expert-aligned scientific evaluations.
Ablation Study (Q2).

To isolate the contribution of each core compo-
nent of SCICOMPANION, we conducted an abla-
tion study on the ICLR dataset, with results shown
in Table 6. Each ablation systematically removes a
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Model RMSE
ICLR 2017-2024 ACL Soundness ACL Overall GoodReads

Zero-Shot Performance
GPT 4o-mini 1.99 ± 0.02 2.58 ± 0.02 2.05 ± 0.03 3.64 ± 0.03
Qwen2.5-7b-Instruct 2.22 ± 0.12 2.72 ± 0.04 2.97 ± 0.05 3.68 ± 0.05
Qwen2.5-14b-Instruct 2.01 ± 0.04 2.66 ± 0.03 2.07 ± 0.09 3.61 ± 0.06
SciCompanion (4o-mini) 1.90 ± 0.02 2.43 ± 0.03 1.98 ± 0.04 3.46 ± 0.02
SciCompanion (7b) 2.18 ± 0.04 2.67 ± 0.02 2.64 ± 0.05 3.71 ± 0.03
SciCompanion (14b) 1.82 ± 0.06 2.45 ± 0.02 2.03 ± 0.02 3.48 ± 0.03

Five-Shot Performance
GPT 4o-mini 1.76 ± 0.032 2.18 ± 0.02 1.83 ± 0.04 3.25 ± 0.03
Qwen2.5-7b-Instruct 1.83 ± 0.08 2.31 ± 0.04 2.20 ± 0.06 3.34 ± 0.05
Qwen2.5-14b-Instruct 1.62 ± 0.08 2.20 ± 0.02 1.75 ± 0.03 3.26 ± 0.03
SciCompanion (4o-mini) 1.60 ± 0.02 2.04 ± 0.03 1.70 ± 0.03 3.12 ± 0.02
SciCompanion (7b) 1.74 ± 0.04 2.26 ± 0.02 1.84 ± 0.01 3.22 ± 0.03
SciCompanion (14b) 1.55 ± 0.04 2.11 ± 0.02 1.67 ± 0.01 3.17 ± 0.03

Fine-tuned and Reinforcement Learning Models
Qwen2.5-7b Finetuned 1.58 ± 0.05 2.08 ± 0.04 2.13 ± 0.03 3.06 ± 0.05
Qwen2.5-14b Finetuned 1.19 ± 0.02 1.97 ± 0.03 1.83 ± 0.02 2.97 ± 0.04
PeerRead (2018) 1.66 - - -
SEA-EA (2024) 1.31 - - -
OpenReviewer 1.72 ±0.05 1.86 ±0.07 1.88 ±0.12 4.83 ±0.27
SciCompanion (7b) 1.22 ± 0.04 2.00 ± 0.03 2.05 ± 0.02 2.91± 0.04
SciCompanion (14b) 0.95 ± 0.01 1.84 ± 0.02 1.54 ± 0.01 2.78 ± 0.03

Table 2: Performance comparison across all experimental settings (RMSE) over five runs. Zero-shot describes
models prompted only with conference guidelines. Five-shot is provided conference guidelines along with five peer
review. The finetuned and reinforcement learning models are provided with the five-shot examples as well as training.

Weak Match Strong Match
Gpt-4o-mini 0.322 0.560
Qwen2.5-7B 0.094 0.254
Qwen2.5-14B 0.210 0.394
SciCompanion (7B) 0.370 0.602
SciCompanion (14B) 0.550 0.709

Table 3: Percentage of strong and weak points shared
between peer and generated reviews. Examples avail-
able in E.1.1

Retrieval Rate
RAG (Distance) 35.53%

SciCompanion (7B) 38.10%
SciCompanion (14B) 57.50%

Table 4: References Retrieval Rate. Average percent-
age of references generated matching actual references.
Based on the ACL dataset with references ablated.

key feature from the full model.
Disabling the policy-driven graph completion

module (“w/o CompGraph”) increases the RMSE
from 0.95 to 1.37. This highlights the importance
of dynamically completing the knowledge graph to
capture latent and implicit connections that are not
present in the initial retrieved results.

Next, we evaluated the impact of our train-
ing strategy by replacing GRPO with both stan-
dard supervised fine-tuning (“w/o GRPO (Fine-
tuned only)”) and a prompting-only baseline (“w/o
GRPO (Prompting only)”). The fine-tuned model’s

Retrieval Rate
RAG (Distance) 27.18%

SciCompanion (7B) 31.10%
SciCompanion (14B) 45.29%

Table 5: Abstract References Retrieval Rate. Average
percentage of references generated matching actual ref-
erences. Based on abstracts from the ACL dataset with
references ablated.

Model Configuration RMSE
SCICOMPANION (Full Model) 0.95 ± 0.01
(1) w/o CompGraph 1.37 ± 0.03
(2a) w/o GRPO (Fine-tuned only) 1.17 ± 0.02
(2b) w/o GRPO (Prompting only) 1.55 ± 0.03
(3) Single-hop Reasoning Only 1.42 ± 0.04

Table 6: Ablations of SCICOMPANION (14B) on ICLR
2017-2024. We can see that each component contributes
significantly to the prediction accuracy.

RMSE rises to 1.17, while the prompting-only ver-
sion performs the worst at 1.55. This wide gap con-
firms that reinforcement learning via GRPO is criti-
cal for aligning the model with the nuanced reward
signals of a good critique, significantly outperform-
ing both standard prompting and supervised learn-
ing.

Finally, limiting the framework to a single re-
trieval step (“Single-hop Reasoning Only”) de-
grades performance significantly, with the RMSE
increasing to 1.42.
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Can you generate some really novel 
scientific hypotheses in how to 

improve the structural efficiency of 
lattice materials, which can be 

validated or falsified relatively easily 
by experiments, but are also quite 

interesting and important?

Meta-Material Task

Extract Query (To address the britt…)
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Figure 4: Metamaterial Case Study. We showcase SciCompanion’s internal KG update and query generation process
using a simple toy example from the field of meta-materials. Pictured is SciCompanion with three iterations (K=3).
Arrows represent calls to the LLM for generation. Yellow nodes in the internal knowledge graph represent retrieved
papers, red properties, blue materials, and gray methodologies. The shown generated report is a subset of the actual
report truncated for demonstration. Material structures adapted from (Yang and Ma, 2020) and (Kappe et al., 2022).

Figure 2 shows a more in-depth analysis re-
vealing that increasing retrieval steps from 1 to 4
steadily decreases RMSE for 7B and 14B models
(up to 0.5 points for 14B). Gains plateau beyond
3 steps (especially for Qwen-14B), suggesting di-
minishing returns and potential noise from exces-
sive retrieval. We recommend three retrieval steps
as an optimal trade-off between accuracy and effi-
ciency. Notably, the time elapsed increases nearly
linearly with retrieval depth, with the 14B model
requiring over 200 seconds at four steps, compared
to under 30 seconds at one step. Thus, while deeper
retrieval improves reasoning quality, it incurs sub-
stantial computational cost. The correlation be-
tween papers retrieved and lower RMSE highlights
SCICOMPANION’s adaptive querying: unlike static
RAG, it dynamically concentrates retrieval on rel-
evant, high-impact literature, improving critique
alignment without unnecessary overhead.

Collectively, these ablations demonstrate that
each component of SCICOMPANION; dynamic
graph completion, GRPO-based optimization, and
multi-hop retrieval, provides a substantial and in-
dispensable contribution to its overall performance.

Review Alignment and Interpretability (Q3).
We evaluate how well SCICOMPANION’s generated
critiques mirror expert commentary using point-
level match metrics (Table 3). Both the 7B and
14B variants outperform GPT-4o-mini and Qwen
baselines, with SCICOMPANION (14B) achieving a
70.9% strong point match rate, over 13 percentage

points higher than GPT-4o-mini. These findings
indicate that our system is not merely optimizing
numerical scores but producing reviews with high
conceptual overlap and fidelity. Furthermore, we
examine retrieval accuracy as a proxy for evidence-
grounding. As shown in Tables 4 and 5, SCI-
COMPANION retrieves significantly more ground-
truth references than RAG-based models. For in-
stance, in the abstract-only setting, the 14B vari-
ant retrieves 45.29% of actual references, nearly
doubling RAG’s 27.18%. This suggests that graph-
based iterative retrieval yields more relevant con-
text for critique.

Qualitative Illustration: Metamaterial Case
Study. To demonstrate SCICOMPANION’s real-
world utility, we include a case study on scien-
tific hypothesis generation in material science (Fig-
ure 4). The system iteratively constructs knowledge
graphs, generates targeted queries (e.g., “meta-
harmonic damping,” “topology optimization”), and
proposes plausible hypotheses grounded in re-
trieved literature. The resulting report integrates
cross-domain knowledge (e.g., bistable metamate-
rials, bio-inspired lattices) into structured, testable
propositions, mimicking the type of reasoning a
domain expert might perform. This example illus-
trates how SCICOMPANION’s architecture supports
transparent, multi-step discovery, and highlights its
potential for assisting hypothesis refinement and lit-
erature exploration. In particular, SCICOMPANION

proposes “leveraging programmable phase transi-
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tions... to create energy-absorbing lattices” which
is noted to be a feasible and “interesting” research
direction by expert evaluators in (Qi et al., 2024).
Summary of Practical Insights. Our experiments
reveal several key insights regarding the practical
utility of SCICOMPANION. First, structured rea-
soning is more critical than scale, our 7B models
outperform prompting-only 14B counterparts, high-
lighting the value of graph-guided critique genera-
tion for small models. Second, multi-hop retrieval
enhances contextual depth, with three reasoning
steps balancing performance and generation time.
Finally, reinforcement learning promotes alignment
with expert critiques, improving both accuracy and
interpretability. Together, these results affirm SCI-
COMPANION as a robust, scalable, and trustworthy
scientific assistant capable of supporting peer re-
view and domain exploration workflows.

4 Related Work

AI-assisted scientific discovery and peer review
have advanced rapidly, but most systems tackle iso-
lated subtasks (e.g., hypothesis generation, score
prediction) rather than structured, critique-aligned
evaluation. We categorize related work into scien-
tific discovery and LLM-based evaluation.

AI for Scientific Discovery. AI for scien-
tific discovery has evolved from early expert
systems. Modern frameworks like AI Scien-
tist (Lu et al., 2024; Chen et al., 2025) and
goal-driven LLM agents (Kumbhar et al., 2025;
Zhan et al.) support hypothesis generation but
often lack robust validation (feasibility, novelty,
impact). RAG (Lewis et al., 2020) and graph-
based extensions (GraphRAG (Han et al., 2025b,a),
GraphReader (Li et al., 2024)) improve context but
can be static, with limited adaptation, and struggle
with noisy corpora, retrieval drift, or prioritizing
core literature (Barnett et al., 2024).

LLM-Based Evaluation and Peer Review As-
sistance. PeerRead (Kang et al., 2018) and PEER-
Rec (Bharti et al., 2023) paved the way for LLM-
based score prediction, but they rely heavily on
surface-level cues like sentiment or style, without
modeling deeper scientific structure. Recent inter-
ventions (e.g., ICLR 2025 review feedback agents)
offer reviewer support but act as prompting aids,
not stand-alone evaluators. Domain-specific tools
like SciQA (Lu et al., 2022) and SciBench (Wang
et al., 2023) target factuality and QA but lack align-
ment with peer-review dimensions.

Recent works improve review generation via spe-
cialized fine-tuning and data processing. For in-
stance, OpenReviewer (Idahl and Ahmadi, 2025)
fine-tunes on a large corpus of expert reviews
to produce more critical feedback, while Pa-
perSEA (Yu et al., 2024) standardizes inconsistent
review data before training. While these methods
show the power of data curation and supervised
learning, SCICOMPANION differs fundamentally
by introducing a dynamic reasoning architecture,
leveraging reinforcement learning with structured,
graph-grounded reasoning to actively guide cri-
tique generation.

Existing methods fall short on: (i) compre-
hensive claim validation; (ii) multi-hop, graph-
structured reasoning; (iii) learning-based retrieval
and critique optimization; and (iv) domain adapt-
ability. SCICOMPANION addresses these lim-
itations through dynamic graph construction,
critique-aligned reasoning, and GRPO-based self-
improvement.

5 Conclusion

We present SCICOMPANION, a critique-aligned,
graph-grounded reasoning framework for struc-
tured scientific evaluation. Motivated by the ris-
ing scale and complexity of peer review, SCICOM-
PANION combines large language models with dy-
namic knowledge graphs and reinforcement learn-
ing to perform transparent, multi-hop assessments
of scientific work. Its architecture reflects how ex-
pert reviewers navigate literature, retrieving rele-
vant prior work, reasoning over structured evidence,
and grounding judgments in contextual understand-
ing. Our experiments across four diverse datasets
demonstrate that SCICOMPANION substantially im-
proves evaluation quality, reducing RMSE by up
to 31.2% compared to prompting-only baselines.
Through structured graph construction and GRPO-
based optimization, the framework enables smaller
models (e.g., 7B) to match or exceed the perfor-
mance of larger, unstructured counterparts, offer-
ing a practical, scalable solution for review assis-
tance and domain exploration. By aligning LLM
behavior with scientific critique dimensions (feasi-
bility, novelty, impact), SCICOMPANION advances
the frontier of trustworthy, interpretable AI for sci-
ence. It offers a reproducible, extensible approach
to enhance peer review and paves the way for fu-
ture systems supporting hypothesis generation, lit-
erature synthesis, and human-AI discovery.

24231



6 Limitations

While SCICOMPANION demonstrates strong empir-
ical performance and interpretability, several limi-
tations remain. First, its reliance on curated knowl-
edge graphs and open-access corpora may restrict
coverage in underrepresented or rapidly evolving
scientific domains. As a result, evaluation qual-
ity may degrade when source graphs are sparse
or incomplete. Second, although our GRPO opti-
mization improves alignment with expert assess-
ments, it requires supervised review data that may
not be available in all disciplines. Third, our eval-
uation primarily focuses on English-language sci-
entific texts; the framework’s generalizability to
multilingual or low-resource scientific communi-
ties remains untested. Additionally, while point-
matching metrics capture surface agreement with
human reviews, they do not fully reflect deeper as-
pects of critique quality, such as originality, fair-
ness, or epistemic humility. Finally, we do not yet
evaluate the long-term effects of automated review
assistance on human decision-making or reviewer
behavior, which would be important for safe de-
ployment in academic peer review pipelines.

7 Ethics Statement

This work aims to assist scientific evaluation
through structured reasoning and knowledge-
grounded critique generation. All datasets used
are publicly available and derived from peer-
reviewed or crowd-sourced domains (e.g., ICLR,
ACL, GoodReads), and do not contain personal
or sensitive information. No human subjects were
involved in data collection, annotation, or eval-
uation. We acknowledge that automated assess-
ments may inadvertently reinforce existing biases
in peer review datasets or favor dominant scientific
paradigms. SCICOMPANION is not intended to re-
place expert judgment but to augment human re-
viewers with transparent, evidence-backed reason-
ing. We strongly recommend that any use of this
system in high-stakes review or discovery contexts
involve human oversight and be accompanied by
explanations and uncertainty estimates. Our design
emphasizes interpretability and critique alignment
to mitigate risks of overreliance on opaque model
predictions. Nonetheless, further work is needed to
ensure fairness, accountability, and inclusivity in
AI-assisted scientific evaluation.
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A Notation

Table 7: Key Symbols and Definitions

Symbol Definition
P Scientific paper evaluated

Gbase Base knowledge graph
Gt State graph at step t
Y Ground truth expert assessment vector
Ŝ Predicted assessment vector by model
πθ Agent policy (parameterized by θ)
Qt Queries generated at step t
It Information extracted at step t
Rt Intermediate reasoning at step t
Nt Notebook state at step t
r RL reward signal

JGRPO GRPO objective function

B Hyperparameters and Settings

This section details the hyperparameters and set-
tings used for the Qwen2.5 7B and 14B models, in-
cluding model loading with LoRA, inference gen-
eration, and GRPO training (Qwen et al., 2025).
Training was conducted on 4× A100 GPUs. The
total computational budget for all experiments is
estimated to be approximately 340 GPU hours on
this hardware.

B.1 Model Loading and LoRA Configuration
(Qwen2.5 7B & 14B)

The Qwen2.5 7B and 14B models were loaded
using the Unsloth library’s FastLanguageModel.
Key settings for loading the base model and config-
uring PEFT (LoRA) are listed below.

B.1.1 Base Model Loading
(FastLanguageModel.from_pretrained)

• model_name: "unsloth/Qwen2.5-7B-Instruct"
or "unsloth/Qwen2.5-14B-Instruct"

• dtype: torch.bfloat16
• load_in_4bit: True
• fast_inference: True
• gpu_memory_utilization: 0.4
• max_seq_length: 24000
• max_lora_rank: 128 (matches lora_rank)

B.1.2 PEFT Model Configuration
(FastLanguageModel.get_peft_model)

• LoRA Rank (r): 128
• Target Modules (target_modules):

– "q_proj"

– "k_proj"

– "v_proj"

– "o_proj"
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– "gate_proj"

– "up_proj"

– "down_proj"

• LoRA Alpha (lora_alpha): 256 (calculated
as 2× lora_rank)

B.2 Generation Hyperparameters (Inference)
The following settings from GenerationConfig
were used during inference:

• num_return_sequences: 1
• max_new_tokens: 4800
• temperature: 0.6
• top_p: 0.95
• top_k: 20
• do_sample: True

B.3 GRPO (Group Relative Policy
Optimization) Settings

The GRPOConfig was used for training with the
following parameters:

• use_vllm: True
• learning_rate: 1e-5
• adam_beta1: 0.9
• adam_beta2: 0.99
• weight_decay: 0.1
• warmup_ratio: 0.1
• temperature (for GRPO policy sampling):
1.0

• lr_scheduler_type: "cosine"
• optim: "adamw_8bit"
• bf16: True
• gradient_accumulation_steps: 1
• num_generations (for GRPO): 8
• max_prompt_length: 12000
• max_completion_length: 2048
• num_train_epochs: 30
• max_steps: 300
• save_steps: 300
• max_grad_norm: 0.2

C Algorithms

C.1 GRPO Reinforcement
This algorithm trains a retrieval and reasoning pol-
icy πθ using Group Relative Policy Optimization
(GRPO) to align model-generated evaluations with
expert judgments. The policy parameters are initial-
ized as θ = θ0. In each training iteration, a batch of
hypotheses {Hj} is sampled, and the current policy
πθ generates reasoning trajectories over them. Re-
wards are computed based on evaluation accuracy,
typically reflecting alignment with expert-assigned
scores. The policy is then updated using the GRPO
objective via gradient ascent: θ ← θ + α∇θJ(θ).
This iterative process enables the policy to learn
adaptive retrieval and critique behaviors that gener-
alize across domains. The optimized policy πθ is
returned upon completion.

Algorithm 2 Retrieval Policy Optimization

Require: Training dataset of hypotheses and ex-
pert

Ensure: Optimized policy πθ
1: Initialize policy parameters θ = θ0
2: for each training iteration do
3: Sample batch of hypotheses {Hj}
4: Collect trajectories using current policy
5: Compute rewards based on evaluation accu-

racy
6: Update policy using GRPO:
7: θ ← θ + α∇θJ(θ)
8: end for
9: return πθ

D Licensing and Intended Use

This research adheres to the licensing terms of all
artifacts used and created.

D.1 SciCompanion Artifact
The open-source implementation of SCICOMPAN-
ION, including all code associated with this paper,
is released under the MIT License.

D.2 Datasets
Our use of the following datasets for academic
research and model training is consistent with their
intended purpose and licensing terms:

• The ICLR dataset (González-Márquez and
Kobak, 2024) is provided under an MIT li-
cense.
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• The ACL Soundness & Overall dataset (Dy-
cke et al., 2025-02) is provided under a
CC-BY-NC-4.0 license, which permits non-
commercial research use. Our work fully com-
plies with this non-commercial stipulation.

• The GoodReads dataset is available under a
CC0: Public Domain license.

Our framework is intended for research purposes
to assist in scientific evaluation and is not deployed
for commercial use.

E Point Matching

E.1 Points Matches

Weak Match Strong Match

Gpt-4o-mini 0.322 0.560
Qwen2.5-7B 0.094 0.254
Qwen2.5-14B 0.210 0.394
SciCompanion (7B) 0.370 0.602
SciCompanion (14B) 0.550 0.709

Table 8: Percentage of strong and weak points shared
between peer and generated reviews. Calculated as the
number of common points over the total number of weak
and strong comments in the peer review, respectively.

Table 8 reports the percentage of weak and
strong review points generated by each model that
align with corresponding peer reviewer comments.
SciCompanion significantly outperforms all base-
lines across both weak and strong point matches.
Notably, the 14B variant achieves a strong match
rate of 70.9% and a weak match rate of 55.0%,
indicating high fidelity to expert evaluations. Even
the 7B version surpasses GPT-4o-mini, achieving
higher alignment despite using fewer parameters.
In contrast, standard models like Qwen2.5-7B and
Qwen2.5-14B exhibit considerably lower match
rates, particularly on weak points, suggesting less
interpretive depth and alignment. These results
demonstrate that SCICOMPANION produces cri-
tiques that are not only accurate in score but also
substantively consistent with human reviewers in
terms of both strengths and weaknesses.

E.1.1 Examples
Figures 5–10 present qualitative comparisons be-
tween peer reviews and generated reviews for three
representative papers. Across samples, we observe
that SCICOMPANION not only replicates key strong
points, such as addressing bias in healthcare (Fig-
ure 5) or identifying the novelty of a method (Fig-
ure 7), but often provides more comprehensive jus-

tifications. Similarly, in weak point comparisons
(Figures 6, 8, 10), the model highlights limitations
related to dataset scope, technical clarity, and gen-
eralizability that closely mirror expert concerns. In
several cases, the generated critiques go further
by suggesting concrete improvements or clarify-
ing implications. These examples underscore the
model’s ability to emulate expert reasoning at a
fine-grained level, reinforcing the point-level match
metrics with substantive evidence of interpretive
depth and contextual relevance.
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Figure 5: Sample 15 Strong Points. Both the peer review and generated review note the tackling of bias in the
healthcare domain as a significant strong point. To a lesser extent, both reviews mention demographic context as a
strong point.
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Figure 6: Sample 15 Weak Points. Both reviews question the real-world relevance of the study’s findings. Both
reviews also point out that the observed bias could be from the source of the questions rather than the model itself.
Both reviews recommend widening the dataset to enhance generalizability.
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Figure 7: Sample 18 Strong Points. In this sample, we see that the generated review is far more comprehensive in
its coverage than the corresponding peer review. Both reviews identify the source of novelty in the paper as well as
the core contribution of the method.

Figure 8: Sample 18 Weak Points. Both reviews highlight the need for more challenging QA datasets. Both
reviews question how applicable the method is to knowledge graphs not evaluated in the paper. Both reviews ask for
clarification of technical details.
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Figure 9: Sample 23 Strong Points. We again see that the generated review is longer and more comprehensive than
the peer review. Both reviews mention the empirical results as a strong point of the paper.

Figure 10: Sample 23 Weak Points. Both reviews touch on the complexity of the method as a weak point. Both
reviews question the validation of the method on a wider range of tasks. Both reviews request a more rigorous
comparison between the insights produced by both methods in the paper.
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E.2 References Recreation

E.2.1 From Paper

Retrieval Rate
RAG (Distance) 35.53%

SciCompanion (7B) 38.10%
SciCompanion (14B) 57.50%

Table 9: References Retrieval Rate. Calculated as the av-
erage number of references generated out of ten match-
ing actual references. Results based on papers from the
ACL ARR dataset with references removed.

Table 9 compares the reference retrieval ac-
curacy of SCICOMPANION against a standard
distance-based RAG baseline. The 14B variant of
SCICOMPANION achieves a retrieval rate of 57.5%,
substantially outperforming both the RAG baseline
(35.53%) and its 7B counterpart (38.10%). This in-
dicates that the model’s graph-guided, multi-hop
retrieval mechanism is more effective at surfacing
contextually relevant citations from the scientific
literature. The improvement is particularly notable
given that the ACL ARR dataset used in this evalu-
ation has references ablated, making the task more
challenging. These results highlight the frame-
work’s ability to reconstruct meaningful scholarly
context, which is essential for producing grounded
and trustworthy scientific evaluations.

E.2.2 Example Reasoning Trace:

[[ ## reasoning ## ]]
The review focuses on the paper's contributions to

causal interpretability in multimodal models,
its methodological rigor, and alignment with
existing literature. The related papers list
emphasizes works on causal mediation,
adversarial learning, and multimodal
benchmarks, which are central to the paper's
claims. The review evaluates the paper's
novelty, methodology, and potential impact
while addressing concerns about scalability,
dataset bias, and causal validity.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

[[ ## related_papers ## ]]
[
"CausaLM: Causal Model Explanation Through

Counterfactual Language Models",↪→
"Amnesic Probing: Removing Specific Information

for Model Interpretability",↪→
"NLX-GPT: Adversarial Learning for Text

Generation Attribution",↪→
"Causal Inference with Deep Causal Graphs",
"Explaining the Behavior of Black-Box Prediction

Algorithms with Causal Learning",↪→
"Deep Structural Causal Models for Tractable

Counterfactual Inference",↪→
"Interpreting Deep Models through the Lens of

Data",↪→
"Causal Inference in Natural Language

Processing: Estimation, Prediction,
Interpretation and Beyond",

↪→
↪→
"Generative causal explanations of black-box

classifiers",↪→
"Learning Latent Causal Structures with a

Redundant Input Neural Network"↪→
]

[[ ## review ## ]]
**Paper Summary**
This paper introduces a causal framework for

interpreting VisualBERT predictions in
offensive meme detection, leveraging
structural causal models (SCMs),
de-confounding, adversarial learning, and
dynamic routing. It addresses limitations of
input attribution methods (e.g., Integrated
Gradients, Saliency) by emphasizing causal
reasoning and evaluates model trustworthiness
through ablation studies. The framework is
tested on the Facebook Hateful Meme Dataset, a
benchmark for multimodal content moderation.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

**Summary of Strengths**
1. **Novel Methodology**: Proposes a causal

framework integrating SCMs with multimodal
models (VisualBERT), addressing non-causal
attributions and implicit content in
offensive memes.

↪→
↪→
↪→
↪→
2. **Empirical Rigor**: Quantitatively evaluates

causality through ablation studies and
compares with prior methods (e.g., CausaLM,
Amnesic Probing).

↪→
↪→
↪→
3. **Relevance to Safety-Critical Applications**:

Highlights the importance of causal
reasoning in deploying trustworthy AI for
content moderation, aligning with trends in
explainable AI (e.g., "Explainable Deep
Learning: A Field Guide for the Uninitiated").

↪→
↪→
↪→
↪→
↪→
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4. **Technical Contribution**: Introduces
de-confounding and dynamic routing as
scalable solutions for local causal
interpretability, building on prior work
like "Deep Structural Causal Models for
Tractable Counterfactual Inference."

↪→
↪→
↪→
↪→
↪→

**Summary of Weaknesses**
1. **Limited Dataset Scope**: Relies on the

Facebook Hateful Meme Dataset, which may not
generalize to other domains or languages.

↪→
↪→
2. **Causal Validity Concerns**: The framework

assumes linear relationships between
concepts and latent representations, which
may oversimplify complex interactions (e.g.,
"Causal Inference in Natural Language
Processing" critiques such assumptions).

↪→
↪→
↪→
↪→
↪→
3. **Scalability**: Dynamic routing and

adversarial learning may increase
computational costs, limiting practical
deployment (similar to challenges noted in
"Iterative Nullspace Projection" for
large-scale models).

↪→
↪→
↪→
↪→
↪→
4. **Bias in Concept Annotation**: The annotated

concept set (e.g., "racism," "holocaust")
introduces potential subjectivity, as
discussed in "Interpreting Deep Models
through the Lens of Data."

↪→
↪→
↪→
↪→

**Comments/Suggestions/Typos**
- Clarify how the framework handles concept

overlaps (e.g., "Holocaust" and "Nazism" in
Table 1).

↪→
↪→
- Expand evaluation to other datasets (e.g.,

Multimodal Sentiment Analysis benchmarks) to
demonstrate robustness.

↪→
↪→
- Address potential biases in concept annotation

by incorporating inter-annotator agreement
metrics.

↪→
↪→

**Reviewer Confidence**
4 = Quite sure: The paper’s contributions are

well-defined, and methodology aligns with
existing literature on causal
interpretability.

↪→
↪→
↪→

**Soundness**
4 = Strong: The framework is technically sound,

with clear claims supported by ablation
studies. However, the assumption of linearity
in concept-latent interactions warrants
further validation.

↪→
↪→
↪→
↪→

**Excitement**
3.5 = Interesting: The work is relevant to

safety-critical AI and advances causal
interpretability, but its impact may be
domain-specific.

↪→
↪→
↪→

**Overall Assessment**
4 = Conference: The paper makes a clear

contribution to causal interpretability in
multimodal models and is suitable for
publication in a selective *ACL venue.

↪→
↪→
↪→

**Best Paper Justification**
N/A (Overall assessment is "Conference," not

"Consider for Award").↪→

[[ ## overall_score ## ]]

4.0
[[ ## completed ## ]]

F Prompts

F.1 ACL Prompt for Final Score Generation:

Your input fields are:
1. `paper` (str): Computer science paper to review

Your output fields are:
1. `review` (str):

Review Form
Paper Summary
Describe what this paper is about. This should help action

editors and area chairs to understand the topic of the
work and highlight any possible misunderstandings.

↪→
↪→

Summary of Strengths
What are the major reasons to publish this paper at a

selective *ACL venue? These could include novel and
useful methodology, insightful empirical results or
theoretical analysis, clear organization of related
literature, or any other reason why interested
readers of *ACL papers may find the paper useful.

↪→
↪→
↪→
↪→
↪→

Summary of Weaknesses
What are the concerns that you have about the paper that

would cause you to favor prioritizing other
high-quality papers that are also under consideration
for publication? These could include concerns about
correctness of the results or argumentation, limited
perceived impact of the methods or findings (note
that impact can be significant both in broad or in
narrow sub-fields), lack of clarity in exposition, or
any other reason why interested readers of *ACL
papers may gain less from this paper than they would
from other papers under consideration. Where
possible, please number your concerns so authors may
respond to them individually.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Comments/Suggestions/Typos
If you have any comments to the authors about how they may

improve their paper, other than addressing the
concerns above, please list them here.

↪→
↪→

Reviewer Confidence
5 = Positive that my evaluation is correct. I read the paper

very carefully and am familiar with related work.↪→
4 = Quite sure. I tried to check the important points

carefully. It's unlikely, though conceivable, that I
missed something that should affect my ratings.

↪→
↪→
3 = Pretty sure, but there's a chance I missed something.

Although I have a good feel for this area in general,
I did not carefully check the paper's details, e.g.,
the math or experimental design.

↪→
↪→
↪→

2 = Willing to defend my evaluation, but it is fairly likely that
I missed some details, didn't understand some central
points, or can't be sure about the novelty of the work.

↪→
↪→
1 = Not my area, or paper is very hard to understand. My

evaluation is just an educated guess.↪→
Soundness

Given that this is a long paper, is it sufficiently sound and
thorough? Does it clearly state scientific claims and
provide adequate support for them? For experimental
papers: consider the depth and/or breadth of the
research questions investigated, technical soundness
of experiments, methodological validity of evaluation.
For position papers, surveys: consider whether the
current state of the field is adequately represented
and main counter-arguments acknowledged. For resource
papers: consider the data collection methodology,
resulting data & the difference from existing
resources are described in sufficient detail.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

5 = Excellent: This study is one of the most thorough I
have seen, given its type.↪→

4.5
4 = Strong: This study provides sufficient support for all

of its claims. Some extra experiments could be nice,
but not essential.

↪→
↪→
3.5
3 = Acceptable: This study provides sufficient support for

its main claims. Some minor points may need extra
support or details.

↪→
↪→
2.5

2 = Poor: Some of the main claims are not sufficiently supported.
There are major technical/methodological problems.↪→

1.5
1 = Major Issues: This study is not yet sufficiently thorough

to warrant publication or is not relevant to ACL.↪→
Excitement
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How exciting is this paper for you? Excitement is
subjective, and does not necessarily follow what is
popular in the field. We may perceive papers as
transformational/innovative/surprising, e.g. because
they present conceptual breakthroughs or evidence
challenging common
assumptions/methods/datasets/metrics. We may be
excited about the possible impact of the paper on
some community (not necessarily large or our own),
e.g. lowering barriers, reducing costs, enabling new
applications. We may be excited for papers that are
relevant, inspiring, or useful for our own research.
These factors may combine in different ways for
different reviewers.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

5 = Highly Exciting: I would recommend this paper to others
and/or attend its presentation in a conference.↪→

4.5
4 = Exciting: I would mention this paper to others and/or make

an effort to attend its presentation in a conference.↪→
3.5
3 = Interesting: I might mention some points of this paper

to others and/or attend its presentation in a
conference if there's time.

↪→
↪→
2.5

2 = Potentially Interesting: this paper does not resonate with
me, but it might with others in the *ACL community.↪→

1.5
1 = Not Exciting: this paper does not resonate with me,

and I don't think it would with others in the *ACL
community (e.g. it is in no way related to
computational processing of language).

↪→
↪→
↪→
Overall Assessment
If this paper was committed to an *ACL conference, do you

believe it should be accepted? If you recommend
conference, Findings and or even award consideration,
you can still suggest minor revisions (e.g. typos,
non-core missing refs, etc.).

↪→
↪→
↪→
↪→

Outstanding papers should be either fascinating,
controversial, surprising, impressive, or potentially
field-changing. Awards will be decided based on the
camera-ready version of the paper.

↪→
↪→
↪→
We define "Best" as work that is particularly fascinating,

controversial, surprising, impressive, and/or
potentially field-changing.

↪→
↪→

Main vs Findings papers: the main criteria for Findings
are soundness and reproducibility. Conference
recommendations may also consider novelty, impact and
other factors.

↪→
↪→
↪→

5 = Consider for Award: I think this paper could be
considered for an outstanding paper award at an *ACL
conference (up to top 2.5% papers).

↪→
↪→
4.5 = Borderline Award
4 = Conference: I think this paper could be accepted to an

*ACL conference.↪→
3.5 = Borderline Conference
3 = Findings: I think this paper could be accepted to the

Findings of the ACL.↪→
2.5 = Borderline Findings

2 = Resubmit next cycle: I think this paper needs substantial
revisions that can be completed by the next ARR cycle.↪→

1.5 = Resubmit after next cycle: I think this paper needs
substantial revisions that cannot be completed by the
next ARR cycle.

↪→
↪→

1 = Do not resubmit: This paper has to be fully redone, or it
is not relevant to the *ACL community (e.g. it is in no
way related to computational processing of language).

↪→
↪→
Best paper justification
If your overall assessment for this paper is either

'Consider for award' or 'Borderline award', please
briefly describe why.

↪→
↪→

2. `overall/soundness_score` (float): Just the overall/soundness
score as described in the ACL guidelines as a float.↪→

All interactions will be structured in the following way, with the
appropriate values filled in.↪→

[[ ## paper ## ]]
{paper}

[[ ## review ## ]]
{review}

[[ ## overall/soundness_score ## ]]
{overall/soundness_score} # note: the value you produce

must be a single float value↪→

[[ ## completed ## ]]

In adhering to this structure, your objective is:
Given an computer science research paper, generate a

review of the paper↪→
and a numerical score approximating what you believe a

peer reviewer would give the paper. Do not sugarcoat
the review, honestly assess the proposed solution.

↪→
↪→

F.2 ICLR Prompt for Final Score Generation:

Your input fields are:
1. `paper` (str): Computer science paper to review

Your output fields are:
1. `review` (str):

Reviewing a submission: step-by-step
Summarized in one sentence, a review aims to determine whether a

submission will bring sufficient value to the community and
contribute new knowledge. The process can be broken down into
the following main reviewer tasks:

↪→
↪→
↪→

Read the paper: It's important to carefully read through the
entire paper, and to look up any related work and citations
that will help you comprehensively evaluate it. Be sure to
give yourself sufficient time for this step.

↪→
↪→
↪→
While reading, consider the following:
Objective of the work: What is the goal of the paper? Is it to

better address a known application or problem, draw attention
to a new application or problem, or to introduce and/or
explain a new theoretical finding? A combination of these?
Different objectives will require different considerations as
to potential value and impact.

↪→
↪→
↪→
↪→
↪→
Strong points: is the submission clear, technically correct,

experimentally rigorous, reproducible, does it present novel
findings (e.g. theoretically, algorithmically, etc.)?

↪→
↪→
Weak points: is it weak in any of the aspects listed in b.?
Be mindful of potential biases and try to be open-minded about the

value and interest a paper can hold for the entire ICLR
community, even if it may not be very interesting for you.

↪→
↪→
Answer four key questions for yourself, to make a recommendation

to Accept or Reject:↪→
What is the specific question and/or problem tackled by the paper?
Is the approach well motivated, including being well-placed in the

literature?↪→
Does the paper support the claims? This includes determining if

results, whether theoretical or empirical, are correct and if
they are scientifically rigorous.

↪→
↪→
What is the significance of the work? Does it contribute new

knowledge and sufficient value to the community? Note, this
does not necessarily require state-of-the-art results.
Submissions bring value to the ICLR community when they
convincingly demonstrate new, relevant, impactful knowledge
(incl., empirical, theoretical, for practitioners, etc).

↪→
↪→
↪→
↪→
↪→
Write and submit your initial review, organizing it as follows:
Summarize what the paper claims to contribute. Be positive and

constructive.↪→
List strong and weak points of the paper. Be as comprehensive as

possible.↪→
Clearly state your initial recommendation (accept or reject) with

one or two key reasons for this choice.↪→
Provide supporting arguments for your recommendation.
Ask questions you would like answered by the authors to help you

clarify your understanding of the paper and provide the
additional evidence you need to be confident in your assessment.

↪→
↪→
Provide additional feedback with the aim to improve the paper.

Make it clear that these points are here to help, and not
necessarily part of your decision assessment.

↪→
↪→
Complete the CoE report: ICLR has adopted the following Code of

Ethics (CoE). When submitting your review, you'll be asked to
complete a CoE report for the paper. The report is a simple
form with two questions. The first asks whether there is a
potential violation of the CoE. The second is relevant only
if there is a potential violation and asks the reviewer to
explain why there may be a potential violation. In order to
answer these questions, it is therefore important that you
read the CoE before starting your reviews.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Engage in discussion: The discussion phase at ICLR is different from
most conferences in the AI/ML community. During this phase,
reviewers, authors and area chairs engage in asynchronous
discussion and authors are allowed to revise their
submissions to address concerns that arise. It is crucial
that you are actively engaged during this phase. Maintain a
spirit of openness to changing your initial recommendation
(either to a more positive or more negative) rating.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
Borderline paper meeting: Similarly to last year, the ACs are

encouraged to (virtually) meet and discuss with reviewers
only for borderline cases. ACs will reach out to schedule
this meeting. This is to ensure active discussions among
reviewers, and well-thought-out decisions. ACs will schedule
the meeting and facilitate the discussion. For a productive
discussion, it is important to familiarize yourself with
other reviewers' feedback prior to the meeting. Please note
that we will be leveraging information for reviewers who
failed to attend this meeting (excluding emergencies).

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
Provide final recommendation: Update your review, taking into

account the new information collected during the discussion
phase, and any revisions to the submission. (Note that
reviewers can change their reviews after the author response
period.) State your reasoning and what did/didn't change
your recommendation throughout the discussion phase.

↪→
↪→
↪→
↪→
↪→

2. `overall_score` (float): Just the overall score as described in
the ICLR guidelines as a float.↪→
10: Strong Accept: Often indicates the paper should be highlighted

at the conference (e.g., oral presentation). Represents truly
groundbreaking work or an excellent, top-tier paper.

↪→
↪→
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8: Accept: Represents a good, solid paper that clearly meets the
acceptance criteria.↪→

6: Weak Accept / Marginally Above Threshold: Indicates the paper is
likely acceptable, but perhaps less impactful or polished than
higher-rated papers. The reviewer leans towards acceptance.

↪→
↪→
5: Weak Reject / Marginally Below Threshold: Indicates the paper

has merits but falls slightly short of the acceptance bar.
The reviewer leans towards rejection but might be swayed
during discussion.

↪→
↪→
↪→
3: Reject: Indicates the paper is not considered good enough for

acceptance due to significant flaws, lack of novelty, or
other issues.

↪→
↪→
1: Strong Reject: Indicates the paper has major flaws, is clearly

unsuitable for the conference, or perhaps should not have
been submitted in its current state.

↪→
↪→

All interactions will be structured in the following way, with the
appropriate values filled in.↪→

[[ ## paper ## ]]
{paper}

[[ ## review ## ]]
{review}

[[ ## overall_score ## ]]
{overall_score} # note: the value you produce must be a single

float value↪→

[[ ## completed ## ]]

In adhering to this structure, your objective is:
Given an computer science research paper, generate a review of

the paper↪→
and a numerical score approximating what you believe a peer

reviewer would give the paper. Do not sugarcoat the
review, honestly assess the proposed solution.

↪→
↪→

F.3 GoodReads Prompt for Final Score
Generation:

Your input fields are:
1. `book_summary` (str): Book summary to review

Your output fields are:
1. `review` (str):

Review Form
Book Summary

Provide a brief summary of the book's plot and main themes.

Strengths
What are the major strengths of this book? Consider

elements like:↪→
- Writing style and prose
- Character development
- Plot structure and pacing
- World-building (for fiction)
- Research and accuracy (for non-fiction)
- Originality and creativity
- Emotional impact
- Themes and messages

Weaknesses
What aspects of the book could be improved? Consider:
- Plot holes or inconsistencies
- Weak character development
- Pacing issues
- Writing style problems
- Research gaps (for non-fiction)
- Unoriginal elements
- Unresolved plot threads
- Unclear themes or messages

Recommendation
Who would enjoy this book? What type of reader would find

it most appealing?↪→

2. `overall_score` (float): Rate the book on a scale of 1-5 stars,
where:↪→
5.0 = It was amazing
4.0 = Really liked it
3.0 = Liked it
2.0 = It was ok
1.0 = Did not like it

All interactions will be structured in the following way, with the
appropriate values filled in.↪→

[[ ## book_summary ## ]]
{book_summary}

[[ ## review ## ]]
{review}

[[ ## overall_score ## ]]
{overall_score} # note: the value you produce must be a

single float value↪→

[[ ## completed ## ]]

In adhering to this structure, your objective is:
Given a book, generate a review and rating that reflects

your honest assessment of its quality.↪→
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