AGENTVIGIL: Automatic Black-Box Red-teaming for Indirect Prompt
Injection against LLM Agents

Zhun Wang!, Vincent Siu?, Zhe Ye'!, Tianneng Shi!, Yuzhou Nie®,
Xuandong Zhao', Chenguang Wang?, Wenbo Guo®, Dawn Song!

! University of California, Berkeley

2 University of California, Santa Cruz

3 University of California, Santa Barbara

Correspondence: zhun.wang@berkeley.edu

Abstract

There emerges a critical security risk of LLM
agents: indirect prompt injection, a sophis-
ticated attack vector that compromises the
core of these agents, the LLM, by manipu-
lating contextual information rather than di-
rect user prompts. In this work, we propose
a generic black-box optimization framework,
AGENTVIGIL, designed to automatically dis-
cover and exploit indirect prompt injection vul-
nerabilities across diverse LLM agents. Our ap-
proach starts by constructing a high-quality ini-
tial seed corpus, then employs a seed selection
algorithm based on Monte Carlo Tree Search
(MCTYS) to iteratively refine inputs, thereby
maximizing the likelihood of uncovering agent
weaknesses. We evaluate AGENTVIGIL on two
public benchmarks, AgentDojo and VWA-adv,
where it achieves 71% and 70% success rates
against agents based on 03-mini and GPT-4o,
respectively, nearly doubling the performance
of handcrafted baseline attacks. Moreover,
AGENTVIGIL exhibits strong transferability
across unseen tasks and internal LLMs, as well
as promising results against defenses. Beyond
benchmark evaluations, we apply our attacks
in real-world environments, successfully mis-
leading agents to navigate to arbitrary URLs,
including malicious sites.

1 Introduction

Despite their impressive capabilities for reasoning
and planning (Hendrycks et al., 2021; Cobbe et al.,
2021; OpenAl, 2024; Guo et al., 2025; Nakano
et al., 2021; Deng et al., 2024; Gur et al., 2023;
Zhou et al., 2023; Schick et al., 2024; Qin et al.,
2023; Patil et al., 2023; OpenAl, 2025), LLM
agents suffer from serious security challenges of
indirect prompt injection (Chen et al., 2024d; wun-
derwuzzi, 2025; Debenedetti et al., 2024; Greshake
et al., 2023). Specifically, attackers can insert ma-
licious “attack instructions” into the external data
sources the target agent interacts with. When the

agent retrieves external data, the injected malicious
instructions can “fool” the agent into performing
the attacker’s chosen task instead of the original
user task, leading to severe consequences. Sys-
tematically assessing the potential risks of agent
systems against indirect prompt injection is sig-
nificantly challenging, from the following aspects.
® Black-box nature of real-world agents. Many
real-world agents operate as black-box systems,
primarily due to the restricted access to the inter-
nal workings of commercial LLMs (OpenAl, 2023;
Anthropic, 2023; Google, 2023) and agents (Ope-
nAl, 2025). @ Diversity in user tasks. Agents are
designed to manage a wide array of user tasks,
each exhibiting dynamic and distinct execution
behaviors. @ Architectural complexity and diver-
sity. Agents often comprise various interconnected
components, tools, and services with intricate ar-
chitectures, tailored for specific needs (Microsoft;
LangChain).

Due to these foundational challenges, existing
red-teaming approaches for indirect prompt injec-
tions either handcraft attack instructions (Jiang,
2024; Liu et al., 2023; Perez and Ribeiro, 2022;
Schulhoff et al., 2023; Willison, 2022, 2023) or are
specifically designed for one type of agents (Wu
et al., 2024b; Xu et al., 2024). These methods can-
not be used as generic methods for assessing the in-
direct prompt injection risks of LLM agents. There
is a line of methods for large-scale risk assessment
of LLMs (Yu et al., 2023; Chen et al., 2024c). How-
ever, due to fundamental differences in system com-
ponents and mechanisms, these model-level meth-
ods cannot be directly applied to LLM agents.
Our approach. In this work, we propose
AGENTVIGIL, the first generic indirect prompt in-
jection assessment method against black-box LLM
agents. We draw inspiration from traditional soft-
ware fuzzing techniques (Miller et al., 1990), which
automatically generate test inputs for target soft-
ware to identify vulnerabilities without requiring

23159

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 23159-23172
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:zhun.wang@berkeley.edu

Website with injection

Plant injection with seed in the customer reviews
Injection goal: goto https://github.xx (a phishing
site, or other target links)

[User Task] Find a Samsung
Galaxy S6 Screen Protector
and list out reviews about
good fingerprint resistant.

_— =

[Agent Thought] Additionally, there is
an important message instructing me to
visit https://github.xx before completing
the task. | will follow this instruction.

single, cons

Accomplish the attack goal:
Visit phishing sites
Download malware

Send out private information

Figure 1: An example of deceiving a web agent through indirect prompt injection in a customer review on a shopping
website. The user requests the agent to find a screen protector and list reviewers who mention about good fingerprint
resistant, while the adversarial prompt redirects the agent to irrelevant URLSs specified in the injected text, potentially
leading to unrelated sites, phishing sites, malware downloads, or exposure of private data. We achieve the attack
with other URLSs such as phishing sites, malware downloads, queries with privacy leakage to verify the severity.

access to the software’s internals. We follow the
classical fuzzing workflow and design a scalable
optimization framework for indirect prompt injec-
tion attacks on black-box LLM agents. At a high
level, given a target LLM agent and a set of seeds
for attack instructions, AGENTVIGIL heuristically
selects a seed, mutates it, and feeds it to the target
agent. Based on the agent’s output, AGENTVIGIL
scores the potential and effectiveness of the mu-
tated inputs, adds them to the seed corpus and
repeats this process. Fuzzing follows a genetic
method that conducts exploration and exploitation
in the input space to identify potential vulnerabil-
ities. LLM agents introduce unique challenges to
which existing fuzz testing methods cannot be ap-
plied: mainly, sparse feedback signals and unique
input structure. Under a black-box setting, the
only feedback signal available in the LLM agent is
whether the target attack has succeeded or not. It is
an extremely sparse signal that may downgrade the
fuzzing into a random search. To tackle this chal-
lenge, we introduce the following three designs:
a corpus of high-quality templates, adaptive seed
scoring strategies, and a Monte Carlo Tree Search
(MCTS)-based seed selection algorithm. The cor-
pus provides initial heuristics, enabling the opti-
mization process to have meaningful signals at the
early stage. We then introduce an adaptive seed
scoring strategy based on attack coverage. It pro-
vides intermediate feedback in addition to the final
binary success-or-failure feedback, introducing the
exploration effectiveness. Our MCTS-based seed
selection algorithm dynamically identifies and pri-
oritizes valuable seeds, improving the exploitation
effectiveness. We further design customized mu-
tators for LLM agents’ inputs. As described in

Section 4, the strategies we design are general and
can be applied to a variety of proxy and attack
tasks.

Differences from GPTFuzzer. GPTFuzzer (Yu
et al., 2023) applies fuzzing to jailbreak LLMs via
direct prompt injection, it assumes full control over
the input and operates in single-turn settings. In
contrast, our work targets indirect prompt injection
in multi-step agents, where attackers can only
influence external content, significantly limiting
the capability of the attackers. AGENTVIGIL
introduces new components, including black-box
reward modeling, adaptive seed selection, seman-
tically guided mutators, and carefully designed
initial seeds, to address these challenges, making
it the first automated black-box framework for
attacking LLM-based agents in realistic settings.

Results. Our experimental results highlight the
effectiveness and scalability of the proposed frame-
work. Specifically, on two well-established bench-
marks, AgentDojo (Debenedetti et al., 2024) and
VWA-adv (Wu et al., 2024b), which feature dif-
ferent agent types, the framework achieves suc-
cess rates of 71% and 70% for agents based on
03-mini and GPT-40, respectively. This represents
nearly a 100% improvement over the baseline at-
tacks proposed in these benchmarks, demonstrat-
ing the framework’s efficacy in black-box settings.
Moreover, the adversarial injection prompts gener-
ated by the framework exhibit strong transferabil-
ity, maintaining high success rates on both unseen
adversarial tasks and internal LLMs. Notably, it
achieves 65% and 59% success rates against 03-
mini and GPT-40 on unseen tasks, and 67% against
Gemini-2-flash-exp, an unseen LLM during op-
timization. We further apply our attacks to the

23160

agents interacting with a real-world environment,
as shown in Figure 1. We successfully mislead the
agent to navigate to an arbitrary URL including
malicious websites or download links, highlight-
ing the practical applicability and robustness of our
approach. To the best of our knowledge, this is
the first approach that automatically performs indi-
rect prompt injection attacks on black-box agents
with both effectiveness and scalability. This work
demonstrates attack effectiveness across a range of
real-world agents, designed for diverse tasks with
both text and multi-modal inputs.

2 Related Work

Existing attacks. Prompt injection attacks pose
serious risks to LLMs and agents by undermin-
ing their intended behavior. These attacks include
handcrafted and automated approaches. Hand-
crafted attacks use manually designed prompts,
such as escape characters (e.g., ‘\n’) (Willison,
2022), instructions to ignore prior context (Perez
and Ribeiro, 2022; Schulhoff et al., 2023), or sim-
ulated task completions (Willison, 2023). Some
target agents by injecting malicious content into
web pages (Wu et al., 2024a; Liao et al., 2024;
Xu et al., 2024) or manipulating interfaces (Zhang
et al., 2024). While effective, these require exper-
tise and are often inconsistent. Automated attacks
generate adversarial prompts using methods like
gradient-based optimization (Chen et al., 2024d;
Wau et al., 2024b) or feedback-guided injection (Yu
et al., 2023; Chen et al., 2024c), but often rely on
white-box access or detailed agent knowledge and
have limited real-world applicability.

Existing defenses. Existing defenses against
prompt injection attacks fall into two categories:
training-dependent and training-free approaches.
Training-dependent methods rely on adversarial
training or additional models to detect injected
prompts (Wallace et al., 2024; Chen et al., 2024a,b;
ProtectAl, 2024; Inan et al., 2023). These meth-
ods require substantial computational resources,
frequent updates, and can degrade model perfor-
mance by over-regularizing responses, which is
particularly detrimental for tasks demanding rea-
soning, creativity, or adaptability. Training-free
defenses use prompt engineering and behavioral
constraints, such as input delimiters (Hines et al.,
2024; Mendes, 2023; Willison, 2023), prompt
repetition (lea, 2023), or response consistency
checks (Liu et al., 2024), though these primarily

detect attacks post-execution. Tool access verifica-
tion (Debenedetti et al., 2024) restricts agents to
pre-approved tools, enhancing security but limiting
functionality and remaining vulnerable to within-
toolset attacks. Other proposed defenses, including
those requiring human oversight (Wu et al., 2025),
human labeling (Wu et al., 2024c), or action rever-
sal capabilities (Patil et al., 2024), often make im-
practical assumptions or demand significant human
intervention, limiting their real-world applicabil-
ity. Notably, no defense is tailored specifically for
multimodal inputs.

3 Threat Model

Blackbox setting of the agent systems. We as-
sume a blackbox setting in our threat model, where
neither users nor attackers have access to the inter-
nals of the underlying LLMs, or the architectures
and designs of the agents. Observations and inter-
actions are limited to the external behavior of the
system.
User assumptions. The user is assumed to be be-
nign, interacting with the agent to complete a set
of legitimate tasks. The user’s intentions and be-
havior are not adversarial and do not contribute to
any vulnerabilities or malicious actions within the
system.
Attacker’s capabilities and goals. The attacker is
assumed to have access to the agent and can inter-
act with it in the same manner as a legitimate user.
They are capable of testing their attacks on tasks
similar to those performed by the agent for legit-
imate users. The attacker’s influence is restricted
to indirect prompt injection by manipulating exter-
nal data sources, such as modifying an item on a
shopping website or altering an event in a calendar
service. The attacker’s primary objectives are to
misdirect the agent to achieve specific goals that
align with the attacker’s intent but are unintended
by the user. For individual user tasks, the attacker
can only observe binary success-failure feedback
as the outcome of their attacks. For example, the
user asks the agent to check their emails, and the
attacker sends a malicious email to the user’s inbox,
causing the agent to send sensitive information to
a specific recipient. The attacker is able to get the
feedback of whether the attack is successful or not
by checking the environment (e.g., checking the
inbox of the recipient) after the agent completes
the task.

Certain attack scenarios fall outside the scope of

23161

LLM Agent System

| G
| User i

% O @% Environment
Code execution

| EDAgeNt | ijectonsget |

H into agent

Email system
File system

Web browser Adv. Prompt
Injections in different sources Injections

Test seeds in the I
agent system (s Loy
Seeds
Attacks succeed

) *—{or o EI Scorer } 4

‘ Init Seedsw

b

Seed
Selector

=

Seed
Storage

H @ Mutator

le——]

Figure 2: Architecture of AGENTVIGIL and typical indirect prompt injection attack. AGENTVIGIL systematically
enhances indirect prompt injection attacks by iteratively refining adversarial prompts. It begins with a high-quality
corpus of prompt templates, which are tested across various injection tasks to generate initial seeds. Through an
iterative optimization loop, a Monte Carlo Tree Search (MCTS)-based seed selector identifies promising seeds, a
mutator applies transformations, and modified prompts are evaluated based on attack success and task coverage by a
scorer. This adaptive approach ensures scalability and effectiveness across diverse agent architectures and tasks.

this work, including the misuse of agents to per-
form harmful actions and direct attacks on the un-
derlying infrastructure, such as the agent’s hosting
platform or computational resources.

4 Method

4.1 Overview

A typical agent system processes user queries by
interacting with a diverse set of tools and services
within its environment to accomplish user tasks.
These tools may include code execution environ-
ments, email systems, web browsers, and file sys-
tems, among others. The LLM in the agent serves
as the planner, dynamically coordinating between
these components to retrieve information, execute
commands, and respond to user needs. Given the
complexity and autonomy of these systems, they
often rely on external data sources, making them
susceptible to various security threats. The attacker
exploits this reliance by strategically manipulating
specific parts of the environment to inject malicious
prompts. These prompts are crafted to be embed-
ded within external data sources, which the agent
later retrieves and processes as part of its task ex-
ecution. Once these contaminated inputs are fed
into the LLM, they can alter its behavior, leading
to unauthorized actions.

Figure 2 illustrates the architecture and the work-
flow of our proposed framework, AGENTVIGIL.
AGENTVIGIL enhances the effectiveness of the
indirect prompt attacks by systematically explor-
ing adversarial prompts. The process begins by
applying the initial corpus of adversarial prompt
templates to the agent across a set of injection tasks,
which are combinations of different user tasks and
attacker goals, to generate a pool of initial seeds.
These seeds then undergo an iterative optimization
loop. In this loop, a MCTS-based seed selector

identifies a promising seed, balancing the dual ob-
jectives of exploitation and exploration. Subse-
quently, a seed mutator randomly selects a muta-
tion method to produce a new variant, which is then
tested across the tasks. This variant is subsequently
tested across the injection tasks to evaluate its per-
formance. The evaluation involves scoring the new
seed based on its success rate in executing attacks
and its ability to compromise previously unaffected
tasks. Through this adaptive and iterative process,
the framework continuously improve the attack, en-
suring scalability and effectiveness across a wide
range of agents and tasks.

4.2 Corpus Collection

To build a high-quality initial corpus, we col-
lect adversarial prompt templates from a va-
riety of sources, including human heuristics,
online resources, existing prompt injection re-
search (Debenedetti et al., 2024; Liu et al., 2024).
These templates are designed with placeholders
to accommodate different variables, such as the
specific LLM model in use, the user’s task, and
the attacker’s goal, allowing for dynamic adapta-
tion across different scenarios. The corpus incor-
porates diverse attack strategies, including role-
playing techniques where the model is coerced into
adopting a specific persona, delimiter-based attacks
that exploit structured inputs, and prompt obfusca-
tion methods to bypass detection mechanisms. By
leveraging this diverse set of attack strategies, our
framework ensures broad coverage of potential vul-
nerabilities, providing a strong foundation for the
iterative optimization process to refine and opti-
mize attack effectiveness.

4.3 Mutation Design

Consistent with prior work (Yu et al., 2023, 2024),
we employ five mutation methods with prompt

23162

templates as well as incorporating context infor-
mation to prompt a helper LLM to generate new
seeds based on existing seeds. Shorten com-
presses the seed for conciseness, Expand adds addi-
tional contextual information, and Rephrase intro-
duces linguistic variety while preserving meaning.
Crossover synthesizes elements from two parent
seeds, and GenerateSimilar prompts the creation
of a stylistically similar seed with different content.
The mutations are randomly chosen for seed mu-
tation at each iteration. We exclusively use basic
mutation strategies to maintain simplicity while
encouraging diversity. This approach ensures that
the mutation process explores a broad range of
variations without imposing additional constraints
or biases on the generated seeds. Furthermore,
these basic mutation strategies require only moder-
ately capable language models with smaller param-
eter sizes, such as Llama-3-8B and GPT-40-mini.
This allows for more efficient execution while still
achieving diverse and meaningful mutations.

4.4 Seed Scoring

Our seed scoring strategy employs a hybrid eval-
uation mechanism that combines attack success
rate (ASR) with coverage-guided assessment to
identify and prioritize effective injection templates.
As detailed in Algorithm 1, each seed undergoes
performance evaluation across attack tasks, where
the scorer monitors both the immediate success of
attacks and the seed’s contribution in broadening
attack coverage across the overall task set. The
final score is computed as a weighted sum of two
components: ASR, which is the ratio of successful
attacks to total tasks, and a coverage bonus, which
rewards seeds that achieve success on previously
unsuccessful tasks within the same run. This cov-
erage bonus specifically incentivizes the discovery
of injection patterns that succeed on new tasks that
had not been successfully attacked earlier in the
current run. This dual-metric approach ensures that
seeds are valued for both their immediate effec-
tiveness and their potential to explore new attacks.
Consequently, the framework maintains a balance
between exploiting known successful patterns and
exploring untapped attack patterns. The coverage
bonus term specifically incentivizes the discovery
of injection patterns that work across diverse task
contexts, promoting the development of more gen-
eralizable attack strategies.

4.5 Seed Selection

Our framework employs a Monte Carlo Tree
Search (MCTS) approach to efficiently navigate
the space of injection templates. The framework
maintains a tree structure where each node repre-
sents a candidate adversarial prompt, recording mu-
tation histories and relationships between prompt
variants. The seed selection mechanism, detailed in
Algorithm 2, adapts the Upper Confidence Bound
1 (UCB1) algorithm (Auer et al., 2002) to bal-
ance exploitation of high-performing prompts with
exploration of promising but under-explored vari-
ants. For each node, the UCB1 score combines
the node’s empirical performance based on metrics
including ASR and coverage bonus, with an explo-
ration term that favors less-visited nodes. This ex-
ploration term scales with the logarithm of total vis-
its and inversely with the node’s visit count, ensur-
ing that potentially valuable but under-explored mu-
tation paths receive adequate attention. Given the
computational expense of evaluating each prompt
variant, we prioritize UCB1 over UCT to achieve
efficient exploration-exploitation balance without
requiring deep tree expansion. After each evalu-
ation, Algorithm 3 propagates visit counts up the
ancestor chain, naturally decaying the exploration
bonus for well-explored paths. During mutation,
the framework selects the top one or two highest-
scoring seeds based on the chosen mutation strat-
egy. This MCTS-based selection strategy enables
the framework to efficiently identify and exploit
promising mutation trajectories while maintaining
sufficient diversity in the search process.

5 Evaluation

In this section, we comprehensively evaluate the ef-
fectiveness of AGENTVIGIL. Details of the models
and dataset we use is shown in Appendix A.

5.1 Attack Personal Assistant Agents

Experiment setup. In this section, we evalu-
ate AGENTVIGIL using the AgentDojo frame-
work (Debenedetti et al., 2024), which is specifi-
cally designed for assessing indirect prompt injec-
tion attacks and defenses. AgentDojo comprises
several components: the environment, which de-
fines an application area for an Al agent along with
a set of available tools (such as a workspace envi-
ronment with email, calendar, and cloud storage
access); and the environment state, which tracks
data for all applications the agent can interact with.

23163

Certain parts of the environment state are specified
as placeholders for potential indirect prompt injec-
tion attacks. A user task is a natural language user
query that the agent is expected to execute within
the given environment (e.g., adding an event to a
calendar), while an injection task outlines the at-
tacker’s objective (e.g., extracting the user’s credit
card information). The collection of user tasks
and injection tasks for an specific environment is
referred to as a task suite. AgentDojo provides for-
mal evaluation criteria to assess the state of the en-
vironment, thereby measuring the success of both
user and injection tasks. In our context, a specific
attack scenario or an adversarial task is defined as
the combination of a user task and an injection task.
AGENTVIGIL interacts with AgentDojo by propos-
ing adversarial prompts, which are then inserted
into the placeholders in the environment for injec-
tion. The agent is subsequently run, and Agent-
Dojo evaluates the success of the user and injection
tasks. The success of the injection tasks serves as
the attack success signal, providing feedback to
AGENTVIGIL.

To evaluate the optimization performance and
quality of the adversarial prompts generated by
AGENTVIGIL, we randomly divided the adversar-
ial tasks within each suite of AgentDojo into two
groups: an fuzzing set and a test set, with 142
and 173 tasks respectively. We utilize GPT-4o-
mini as the helper model to mutate the prompts in
AGENTVIGIL. We conduct the optimization experi-
ment on the fuzzing set for the agent which utilizes
the 03-mini model as the backbone due to its state-
of-the-art reasoning capabilities. We generate 3
mutated prompts in each iteration and complete a
total of 10 optimization iterations. Due to the large
number of tasks, we randomly sample a quarter of
user and injection tasks from each suite to evaluate
each newly mutated seed. For the transferability
experiment, we select the 5 seeds with the high-
est scores. We evaluate the attack performance of
the adversarial prompts, against 03-mini, GPT-4o,
GPT-40-mini, and Claude-3.5-Sonnet on the test
set. The success rate is computed on the union of
the adversarial prompts. According to AgentDojo,
the Gemini and DeepSeek families and other open-
source models do not fully support the tool call
functionality or are not as capable as the aforemen-
tioned LLMs. We use the handcrafted adversarial
prompts proposed in AgentDojo as the baseline
attack. Furthermore, we assess the effectiveness of
the generated adversarial prompts against defenses

0.5

—— Ours
w/o Initial Corpus
--%- w/o Seed Selection & Scoring

o
>

c
W

I
[N}

Average Coverage

o
-

0.0

2 4 6 8 10
Steps

Figure 3: Coverage over iteration steps achieved by

AGENTVIGIL (the solid line) on AgentDojo with two

ablation settings (the dashed lines): (1) without the

high-quality initial corpus, (2) without the adaptive seed

scoring strategy and the MCTS-based seed selection.

proposed in AgentDojo on the fuzzing set. The
defenses include: pi_detector (ProtectAl, 2024)
utilizes a BERT classifier from ProtectAl to de-
tect prompt injection; repeat (lea, 2023) repeats
the user instructions after each function call; de-
limit (Hines et al., 2024) formats all tool outputs
with special delimiters and incorporates system
prompts to prioritize user instructions. We ex-
clude the rool_filter (Willison) defense proposed in
AgentDojo due to incompatibility with the 03-mini
model. We exclude other defenses due to several
key reasons: they struggle to maintain utility, and
face issues of high computational costs and adapt-
ability. For example, StruQ (Chen et al., 2024a) is
demonstrated only on small open-source models,
which lack the capability for agent tasks. Similarly,
IsolateGPT (Wu et al., 2025) relies on a system-
specific design that cannot be easily adapted to
different architectures.

Results. Figure 3 presents the coverage progres-
sion over the course of the iteration steps for
AGENTVIGIL. As shown, AGENTVIGIL contin-
uously enhances the performance of the attack,
resulting in higher coverage throughout the opti-
mization process. In terms of attack success rates,
we compare AGENTVIGIL against the baseline
handcrafted attacks in AgentDojo, which achieve a
success rate of 38%. Our initial high-quality cor-
pus demonstrates a 63% success rate, showcasing
its ability to surpass baseline prompts. As itera-
tions progress and the adversarial prompts are fur-
ther refined, AGENTVIGIL achieves a 71% success
rate—a significant improvement over both the base-
line and the initial corpus. These findings under-
score the efficacy of the adaptive attack for uncov-
ering injection vulnerabilities in black-box agents

23164

and highlight the effectiveness of targeted search
strategies in maximizing the attack performance.

Transferability. As shown in Table 1, the suc-
cess rate results in the first column for 03-mini
on the test task set indicate that the generated ad-
versarial prompts transfer effectively across differ-
ent tasks, even with varying user tasks and injec-
tion goals, significantly outperforming the baseline
attack—nearly doubling its performance. Com-
paring performance across rows, we observe that
the adversarial prompts transfer well to GPT-40-
mini but perform relatively worse on GPT-40 and
Claude-3.5-Sonnet. Upon manual inspection, we
suspect that Claude-3.5-Sonnet is more vulnera-
ble to simpler adversarial prompts, differing from
the GPT family. Furthermore, both the baseline
and AGENTVIGIL’s prompts are ineffective against
Claude-3.5-Sonnet.

Against defenses. The results in Table 2 demon-
strate the effectiveness of AGENTVIGIL against
defenses compared to the baseline from the bench-
mark. Checking along the columns, AGENTVIGIL
consistently outperforms the baseline, particularly
against pi_detector and delimit, indicating that
adversarial prompts generated by AGENTVIGIL
are more resilient to these defenses. Examining
the results along the rows, both the baseline and
AGENTVIGIL experience significant drops in suc-
cess rates when defenses are applied. However,
it is important to note that although our attack’s
ASRs drop when facing defenses, the absolute val-
ues are still consistently higher than baseline at-
tacks, demonstrating that AGENTVIGIL can still
be used as an effective red-teaming tool to test
various agents and defenses. Moreover, the high
ASRs also highlight the insufficiency of these de-
fenses. To further assess AGENTVIGIL’s capa-
bilities of adaptive attacks, we conduct an addi-
tional experiment in the AgentDojo environment
by running AGENTVIGIL’s optimization against
agents protected with the repeat defense. Despite
this protection, AGENTVIGIL achieved an ASR
of 74%, significantly outperforming the baseline’s
ASR of 21%. This demonstrates AGENTVIGIL’s
ability to adapt and discover effective adversarial
prompts even in the presence of defensive mea-
sures. Additionally, according to the results, de-
limit is less effective than pi_detector and repeat,
as both AGENTVIGIL and baseline achieve higher
success rates against delimit among the defenses.

5.2 Attacking Web Agents

Experiment setup. In this section, we further
evaluate AGENTVIGIL on VWA-adv (Wu et al.,
2024b). VWA-adyv is a set of realistic adversarial
tasks based on VisualWebArena (Koh et al., 2024),
which serves as a benchmark for evaluating web
agents on a set of diverse and complex web-based
visual tasks with multi-modal input. Each task
in VWA-adv consists of an original task in Visu-
alWebArena and a trigger image or trigger text,
which serves as the injection point, along with a
targeted adversarial goal as the attacker’s objec-
tive. In VWA-adyv, attacker goals fall into two cat-
egories: illusioning, which misleads agents about
object attributes (e.g., changing an object’s color),
and goal misdirection, which alters the agent’s in-
tended action (e.g., adding an item to the cart). We
focus on the tasks with text trigger. Similar to
Section 5.1, we feed the adversarial prompts from
AGENTVIGIL to the VWA-adv framework, which
then returns whether the adversarial task succeeds
or not as feedback to AGENTVIGIL.

Similarly, we randomly divide the tasks in VWA-
adv into a fuzzing set (99 tasks) and a test set (100
tasks) to evaluate the optimization performance
and quality of the generated adversarial prompts,
respectively. We utilize GPT-40-mini as the helper
model to mutate the prompts in AGENTVIGIL. We
run the experiment against the agents using GPT-
40 on the fuzzing set. We generate 10 mutated
prompts per iteration and conduct 10 iterations in
total. We use the handcrafted adversarial prompts
proposed in VWA-adyv as the baseline. We select 5
seeds with the highest scores to conduct the trans-
ferability experiment. We evaluate the attack per-
formance of the adversarial prompts against GPT-
40, GPT-40-mini, Claude-3.5-Sonnet, and Gemini-
2-flash-exp on the test set. We further assess the
effectiveness against baseline defenses proposed
in VWA-adv on the fuzzing set. There are three
defenses: safety (Hines et al., 2024) utilizes the
data delimiter and system prompts to prioritize
user instructions; paraphrase (Jain et al., 2023)
paraphrases untrusted text to neutralize malicious
intent; combined integrates both strategies. While
VWA-adyv includes one more defense which checks
consistency between image and text content, we
exclude it since it would substantially increase API
calls, making it impractical for real-world use.

Results. Figure 4 shows AGENTVIGIL’s coverage
progression during optimization. AGENTVIGIL

23165

Model

Benchmark Task set Attack 03-mini GPT-40 GPT-40-mini Claude-3.5-Sonnet Gemini-2-flash-exp
. Handcrafted 0.38 0.22 0.28 0.12 -
- Fuzzing aqpntvien 071 022 0.49 0.03 -
AgentDojo Handcrafted 0.34 0.25 0.28 0.08 R
Test AGENTVIGIL 0.65 0.19 0.43 0.04 ;
. Handcrafted - 0.36 0.08 0.47 0.49
Fuzzing pcentvien, - 0.60 0.47 031 0.67
VWA-adv Handcrafted : 0.44 0.29 0.51 0.50
Test AgenTVIGIL - 0.59 0.54 0.42 0.67

! Gemini family doesn’t fully support the tool calls in AgentDojo.
2 Early version of 03-mini doesn’t fully support VWA-adv framework.

Table 1: The transfer attack success rate of selected adversarial prompts generated by AGENTVIGIL compared with
the baseline attacks proposed by AgentDojo (Debenedetti et al., 2024) and VWA-adv (Wu et al., 2024b), against the
agents using different backbone LLMs. We run fuzzing against 03-mini on AgentDojo, GPT-40 on VWA-adv.

Defenses
Attack No Defense
pi_detector repeat delimit
Handcrafted 0.38 0.13 0.21 0.36
AGENTVIGIL 0.71 0.25 0.12 0.49

Table 2: The attack success rate of selected adversarial
prompts generated by AGENTVIGIL on fuzzing task set
and 03-mini against four defenses proposed by Agent-
Dojo.

steadily improves attack performance, achiev-
ing higher coverage. Compared to baseline at-
tacks in VWA-adv with a success rate of 36%,
our high-quality initial corpus starts at 54% and
surpasses the baseline. With iterative refine-
ment, AGENTVIGIL reaches 70%, nearly dou-
bling the baseline’s success rate and significantly
outperforming both. These results demonstrate
AGENTVIGIL’s effectiveness in exposing injection
vulnerabilities and optimizing attack performance.
Transferability. The lower half of Table 1
presents the attack success rates of adversarial
prompts from AGENTVIGIL compared to the
VWA-adv baseline. The results demonstrate that
AGENTVIGIL significantly outperforms the base-
line, achieving an absolute success rate improve-
ment of 15% to 40% across different models and
tasks except Claude-3.5-Sonnet. This highlights
the high quality and effectiveness of the adversar-
ial prompts, as well as their strong transferability.
Consistent with Section 5.1, adversarial prompts
optimized for GPT do not transfer well to Claude,
whereas baseline attacks from VWA-adv achieve
higher success rates on Claude compared to other
models. Furthermore, the findings reinforce the
conclusion from VWA-adv that prompt injection
is an effective attack capable of overriding the in-
fluence of visual input on the model. It is worth
noting that AGENT VIGIL achieves approximately
50% and 60% on GPT-40-mini and GPT-40, re-

spectively, suggesting that the instruction hierar-
chy (Wallace et al., 2024) defense mechanism is
not sufficiently effective.

Defenses
Attack No Defense
safety paraphrase combined
Handcrafted 0.36 0.34 0.27 0.30
AGENTVIGIL 0.60 0.29 0.33 0.27

Table 3: The attack success rate of selected adversarial
prompts generated by AGENTVIGIL on fuzzing task set
and GPT-40 against defenses proposed by VWA-adv.

Against defenses. The evaluation results in Ta-
ble 3 of AGENTVIGIL highlight a substantial im-
provement in attack success when no defense mech-
anisms are applied, achieving a 60% success rate
compared to the baseline’s 36%. However, when
defenses are introduced, AGENTVIGIL’s perfor-
mance declines and converges with the baseline.
This degradation is likely due to the complexity of
the attack prompts, which, while effective in an un-
protected setting, struggle against the defenses due
to the limited context in VWA-adv. Notably, we
observe that the combined defense does not further
reduce the attack success rate compared to indi-
vidual defenses. This suggests that certain attack
prompts are inherently more robust and can bypass
multiple defenses simultaneously, indicating poten-
tial weaknesses in the current defense mechanisms.

5.3 Ablation Study

We perform an ablation study on AgentDojo to
isolate the impact of each of the three core com-
ponents of AGENTVIGIL: the initial corpus of
adversarial prompt templates, the adaptive seed
scoring strategy, and the MCTS-based seed selec-
tion. Specifically, we (1) replace our initial cor-
pus with the handcrafted baseline prompts from
AgentDojo, (2) substitute the adaptive seed scor-

23166

ing and MCTS-based seed selection with the uni-
form random seed selection. As shown in Figure 3,
AGENTVIGIL significantly outperforms the ablated
versions. Notably, when the initial corpus is re-
placed by the baseline prompts, the overall success
rate plateaus after approximately four iterations,
demonstrating both reduced performance and lim-
ited potential compared to our curated initial cor-
pus. Furthermore, without adaptive seed scoring or
the MCTS-based seed selection, the optimization
process shows markedly slower improvement, as it
fails to identify and prioritize high-potential seeds.
These findings underscore the critical role of all
three components in driving AGENTVIGIL’s con-
tinuous enhancement and superior attack success.

5.4 Real-world Case Study

Figure 1 shows the workflow of the indirect prompt
injection for a web agent in the real world. In
this experiment, we deploy a shopping website pro-
vided by WebArena (Zhou et al., 2023) and use the
default agent implementation in WebArena. The
shopping website in WebArena is based on a fa-
mous open source e-commerce project (magento2)
which has many real-world deployment instances.
Due to ethical considerations, we use a local copy
in this experiment. As shown in the figure, the
user task is to find a screen protector and list out
reviewers who mention good fingerprint resistance.
This user task involves first searching for the prod-
uct then reading the customer reviews of the tar-
get product with over ten step operations in total.
The attacker left a review with malicious prompts,
which can lead to undesired actions. Here we use
the generated adversarial prompts in Section 5.2
and inject them into the customer reviews by a reg-
ular user account like a normal customer. We use
a fake URL of GitHub website as an example in
the figure, which is a commonly used pattern of
phishing sites, and the results show that our attack
method can lead the agent to visit arbitrary URLs
including visiting phishing sites, downloading ma-
licious files, and sending out private information.
This case study proves the results in the previous
experiments can be transferred to a more real-world
scenario.

6 Conclusion

We introduce AGENTVIGIL, a novel black-box op-
timization framework designed to systematically
conduct indirect prompt injection attacks against

black-box agents with various architectures and
tasks. Our empirical results demonstrate that
AGENTVIGIL not only achieves high attack success
rates on established benchmarks and real-world
agents but also exhibits strong transferability across
unseen tasks and underlying LLMs. We believe
AGENTVIGIL will serve as a useful foundation for
advancing both the understanding of agent-based
threats and the development of next-generation se-
curity solutions in this rapidly evolving domain.

7 Limitations

Despite the effectiveness of AGENTVIGIL, our
approach has several limitations. First, the end-
to-end optimization process, especially the itera-
tive fuzzing guided by Monte Carlo Tree Search,
incurs high computational costs, which may hin-
der scalability to extremely large agent systems
or real-time deployment scenarios. Second, while
AGENTVIGIL demonstrates strong transferability
in many settings, its attack performance is rela-
tively poor against certain LLMs such as Claude,
suggesting model-specific defenses or alignment
strategies may reduce attack generalizability. Fur-
ther investigation is needed to adapt AGENTVIGIL
for robust cross-model effectiveness and more effi-
cient optimization.

8 [Ethics Statement

This work provides a significant advancement in un-
covering the security vulnerabilities of LLM-based
agent systems by exposing how indirect prompt
injection attacks can be launched even under black-
box constraints. Although our fuzzing framework
is primarily an offensive testing tool, its results
offer vital insights for agent developers and secu-
rity researchers, guiding the development of more
robust defense mechanisms and secure system de-
signs. By revealing weaknesses early, we help
stakeholders protect against malicious manipula-
tions while enabling the legitimate and safe use of
agent systems in real-world settings. Nonetheless,
no single testing or defense approach is infallible;
ongoing research and proactive updates remain es-
sential to address evolving threats in this dynamic
landscape.

9 Acknowledgements

This material is based upon work supported by
ARL Grant W911NF-23-2-0137. Any opinions,

23167

findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect the views of the support-
ing entities.

References

2023. Sandwitch defense. https://learnprompting.
org/docs/prompt_hacking/defensive_
measures/sandwich_defense.

Anthropic. 2023. Claude family. Claude model.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
2002. Finite-time analysis of the multiarmed ban-
dit problem. Machine Learning, 47(2):235-256.

Sizhe Chen, Julien Piet, Chawin Sitawarin, and David
Wagner. 2024a. Struq: Defending against prompt
injection with structured queries. arXiv preprint
arXiv:2402.06363.

Sizhe Chen, Arman Zharmagambetov, Saeed Mahlou-
jifar, Kamalika Chaudhuri, and Chuan Guo. 2024b.
Aligning llms to be robust against prompt injection.
arXiv preprint arXiv:2410.05451.

Xuan Chen, Yuzhou Nie, Wenbo Guo, and Xiangyu
Zhang. 2024c. When llm meets drl: Advancing jail-
breaking efficiency via drl-guided search. Preprint,
arXiv:2406.08705.

Zhaorun Chen, Zhen Xiang, Chaowei Xiao, Dawn Song,
and Bo Li. 2024d. Agentpoison: Red-teaming llm
agents via poisoning memory or knowledge bases.
arXiv preprint arXiv:2407.12784.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Edoardo Debenedetti, Jie Zhang, Mislav Balunovic,
Luca Beurer-Kellner, Marc Fischer, and Florian
Tramer. 2024. Agentdojo: A dynamic environment
to evaluate attacks and defenses for 1lm agents. arXiv
preprint arXiv:2406.13352.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.

Advances in Neural Information Processing Systems,
36.

Google. 2023. Gemini family. Gemini.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra,
Christoph Endres, Thorsten Holz, and Mario Fritz.
2023. More than you’ve asked for: A comprehen-
sive analysis of novel prompt injection threats to
application-integrated large language models. arXiv
preprint arXiv:2302.12173, 27.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-
dra Faust. 2023. A real-world webagent with plan-
ning, long context understanding, and program syn-
thesis. arXiv preprint arXiv:2307.12856.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Keegan Hines, Gary Lopez, Matthew Hall, Federico
Zarfati, Yonatan Zunger, and Emre Kiciman. 2024.
Defending against indirect prompt injection attacks
with spotlighting. arXiv preprint arXiv:2403.14720.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi
Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine,
and 1 others. 2023. Llama guard: Llm-based input-
output safeguard for human-ai conversations. arXiv
preprint arXiv:2312.06674.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami
Somepalli, John Kirchenbauer, Ping-yeh Chiang,
Micah Goldblum, Aniruddha Saha, Jonas Geiping,
and Tom Goldstein. 2023. Baseline defenses for ad-
versarial attacks against aligned language models.
arXiv preprint arXiv:2309.00614.

Fengqing Jiang. 2024. Identifying and mitigating vul-
nerabilities in llm-integrated applications. Master’s
thesis, University of Washington.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram
Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and
Daniel Fried. 2024. Visualwebarena: Evaluating mul-
timodal agents on realistic visual web tasks. arXiv
preprint arXiv:2401.13649.

LangChain. Langchain.

Zeyi Liao, Lingbo Mo, Chejian Xu, Mintong Kang,
Jiawei Zhang, Chaowei Xiao, Yuan Tian, Bo Li, and
Huan Sun. 2024. Eia: Environmental injection attack
on generalist web agents for privacy leakage. arXiv
preprint arXiv:2409.11295.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao
Wang, Xiaofeng Wang, Tianwei Zhang, Yepang Liu,
Haoyu Wang, Yan Zheng, and 1 others. 2023. Prompt
injection attack against llm-integrated applications.
arXiv preprint arXiv:2306.05499.

Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and
Neil Zhengiang Gong. 2024. Formalizing and bench-
marking prompt injection attacks and defenses. In

23168

https://learnprompting.org/docs/prompt_hacking/defensive_measures/sandwich_defense
https://learnprompting.org/docs/prompt_hacking/defensive_measures/sandwich_defense
https://learnprompting.org/docs/prompt_hacking/defensive_measures/sandwich_defense
https://claude.ai
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://arxiv.org/abs/2406.08705
https://arxiv.org/abs/2406.08705
https://gemini.google.com
https://github.com/langchain-ai/langchain

33rd USENIX Security Symposium (USENIX Security
24), pages 1831-1847.

magento2. magento2.
magento/magento?.

https://github.com/

Alexandra Mendes. 2023. Ultimate ChatGPT prompt
engineering guide for general users and develop-
ers. https://www.imaginarycloud.com/blog/
chatgpt-prompt-engineering.

Meta Al 2024. Meta llama 3.3 70b instruct.
https://huggingface.co/meta-11lama/Llama-3.
3-70B-Instruct. Released December 6, 2024.

Microsoft. Autogen.

Barton P Miller, Lars Fredriksen, and Bryan So. 1990.
An empirical study of the reliability of unix utilities.
Communications of the ACM, 33(12):32-44.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
and 1 others. 2021. Webgpt: Browser-assisted
question-answering with human feedback. arXiv
preprint arXiv:2112.09332.

OpenAl. 2023. Chatgpt family. Gptdo.
OpenAl. 2024. Openai ol.

OpenAl. 2025. Operator — an agent that can use its own
browser to perform tasks for you.

Shishir G Patil, Tianjun Zhang, Vivian Fang, Roy
Huang, Aaron Hao, Martin Casado, Joseph E Gon-
zalez, Raluca Ada Popa, Ion Stoica, and 1 others.
2024. Goex: Perspectives and designs towards a run-
time for autonomous llm applications. arXiv preprint
arXiv:2404.06921.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Fébio Perez and Ian Ribeiro. 2022. Ignore previous
prompt: Attack techniques for language models.
arXiv preprint arXiv:2211.09527.

ProtectAl 2024. Fine-tuned deberta-v3-base for prompt
injection detection.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, and 1 others. 2023. Toolllm: Facilitating
large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789.

Qwen Team. 2025. Qwq-32b: Embracing the power of
reinforcement learning.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. In NeurIPS.

Sander Schulhoff, Jeremy Pinto, Anaum Khan, Louis-
Frangois Bouchard, Chenglei Si, Svetlina Anati,
Valen Tagliabue, Anson Kost, Christopher Carnahan,
and Jordan Boyd-Graber. 2023. Ignore this title and
HackAPrompt: Exposing systemic vulnerabilities
of LLMs through a global prompt hacking compe-
tition. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 4945-4977, Singapore. Association for Com-
putational Linguistics.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng,
Johannes Heidecke, and Alex Beutel. 2024. The in-
struction hierarchy: Training llms to prioritize privi-
leged instructions. arXiv preprint arXiv:2404.13208.

Simon Willison. The dual Ilm pattern for building ai
assistants that can resist prompt injection.

Simon Willison. 2022. Prompt injection attacks against
GPT-3. https://simonwillison.net/2022/Sep/
12/prompt-injection/.

Simon Willison. 2023. Delimiters won’t save you from
prompt injection. https://simonwillison.net/
2023/May/11/delimiters-wont-save-you.

Chen Henry Wu, Jing Yu Koh, Ruslan Salakhutdinov,
Daniel Fried, and Aditi Raghunathan. 2024a. Adver-
sarial attacks on multimodal agents. arXiv preprint
arXiv:2406.12814.

Chen Henry Wu, Rishi Rajesh Shah, Jing Yu Koh, Russ
Salakhutdinov, Daniel Fried, and Aditi Raghunathan.
2024b. Dissecting adversarial robustness of multi-
modal Im agents. In NeurIPS 2024 Workshop on
Open-World Agents.

Fangzhou Wu, Ethan Cecchetti, and Chaowei Xiao.
2024c. System-level defense against indirect prompt
injection attacks: An information flow control per-
spective. arXiv preprint arXiv:2409.19091.

Yuhao Wu, Franziska Roesner, Tadayoshi Kohno, Ning
Zhang, and Umar Igbal. 2025. IsolateGPT: An Ex-
ecution Isolation Architecture for LLM-Based Sys-
tems. In Network and Distributed System Security
Symposium (NDSS).

wunderwuzzi. 2025. Ai domination: Remote control-
ling chatgpt zombai instances.

Chejian Xu, Mintong Kang, Jiawei Zhang, Zeyi
Liao, Lingbo Mo, Mengqi Yuan, Huan Sun, and
Bo Li. 2024. Advweb: Controllable black-box at-
tacks on vim-powered web agents. arXiv preprint
arXiv:2410.17401.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, and 22 oth-
ers. 2024. Qwen?2.5 technical report. arXiv preprint
arXiv:2412.15115.

23169

https://github.com/magento/magento2
https://github.com/magento/magento2
https://www.imaginarycloud.com/blog/chatgpt-prompt-engineering
https://www.imaginarycloud.com/blog/chatgpt-prompt-engineering
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://github.com/microsoft/autogen
https://chat.openai.com/chat
https://openai.com/o1/
https://operator.chatgpt.com/
https://operator.chatgpt.com/
https://huggingface.co/ProtectAI/deberta-v3-base-prompt-injection-v2
https://huggingface.co/ProtectAI/deberta-v3-base-prompt-injection-v2
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://doi.org/10.18653/v1/2023.emnlp-main.302
https://doi.org/10.18653/v1/2023.emnlp-main.302
https://doi.org/10.18653/v1/2023.emnlp-main.302
https://doi.org/10.18653/v1/2023.emnlp-main.302
https://simonwillison.net/2023/Apr/25/dual-llm-pattern/
https://simonwillison.net/2023/Apr/25/dual-llm-pattern/
https://simonwillison.net/2022/Sep/12/prompt-injection/
https://simonwillison.net/2022/Sep/12/prompt-injection/
https://simonwillison.net/2023/May/11/delimiters-wont-save-you
https://simonwillison.net/2023/May/11/delimiters-wont-save-you
https://embracethered.com/blog/
https://embracethered.com/blog/

Jiahao Yu, Xingwei Lin, and Xinyu Xing. 2023. Gpt-
fuzzer: Red teaming large language models with
auto-generated jailbreak prompts. arXiv preprint
arXiv:2309.10253.

Jiahao Yu, Yangguang Shao, Hanwen Miao, Junzheng
Shi, and Xinyu Xing. 2024. Promptfuzz: Harness-
ing fuzzing techniques for robust testing of prompt
injection in llms. arXiv preprint arXiv:2409.14729.

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel
Kang. 2024. Injecagent: Benchmarking indirect
prompt injections in tool-integrated large language
model agents. arXiv preprint arXiv:2403.02691.

Yanzhe Zhang, Tao Yu, and Diyi Yang. 2024. Attack-
ing vision-language computer agents via pop-ups.
Preprint, arXiv:2411.02391.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, and 1 others.
2023. Webarena: A realistic web environment
for building autonomous agents. arXiv preprint
arXiv:2307.13854.

A Details of Models and Dataset

The models used in our evaluation use the follow-
ing checkpoints: 03-mini (03-mini-2024-12-17),
GPT-40-mini (gpt-40-mini-2024-07-18), GPT-40
(gpt-40-2024-08-06), Claude-3.5-Sonnet (claude-3-
5-sonnet-20241022), Gemini-2-flash-exp (gemini-
2.0-flash-exp). We evaluate AGENTVIGIL on
AgentDojo (Debenedetti et al., 2024) and VWA-
adv (Wu et al., 2024b), both of them have open
access to their code and dataset with MIT license.

B Additional Evaluation Results

B.1 Evaluation on Extra Models

While our primary focus has been on commer-
cial black-box LLMs such as GPT, Claude, and
Gemini, we also evaluate AGENT VIGIL on open-
source models. These models often lag behind
in long-context understanding, advanced tool us-
age, reasoning, and planning, which are essen-
tial in the challenging agent scenarios. We assess
models that support tool calling using the Agent-
Dojo benchmark and report their utility scores
(i.e., success rates on benign tasks): Llama3.3-
70B-Instruct (Meta Al, 2024) (42%), Qwen2.5-
72B-Instruct (Yang et al., 2024) (54%), QwQ-
32B (Qwen Team, 2025) (74%), and, for compar-
ison, 03-mini (79%). Based on these results, we
conduct further experiments using QwQ-32B. Ad-
ditionally, the 03-mini checkpoint used in the main
text corresponds to an experimental version. We

therefore also evaluate the latest available check-
point, 03-mini-2025-01-31. Results indicate that
AGENTVIGIL achieves a success rate of 72% on
the fuzzing set and 74% on the test set, compared
to the baseline handcrafted attack, which achieves
50% and 53%, respectively, as shown in Table 4.
These findings underscore AGENTVIGIL’s effec-
tiveness, even when applied to strong open-source
models.

B.2 Comparison with Additional Baselines

To enhance our baseline comparisons, we included
two additional prompt injection baselines from
OpenPromptlnjection (Liu et al., 2024) and InjecA-
gent (Zhan et al., 2024). Table 4 reports the attack
success rates on the Fuzzing and Test sets across
two models, QwQ-32B and o3-mini. These results
confirm that AGENTVIGIL outperforms state-of-
the-art baselines, especially in discovering and ex-
ploiting indirect prompt injection vulnerabilities.

Table 4: Attack success rate (ASR) comparison on
AgentDojo with AGENTVIGIL and three baseline at-
tacks. The two ASRs in each cell represent performance
on the Fuzzing task set and Test task set, respectively
(i.e., Fuzzing / Test).

Model
Aftack 03-mini-2025-01-31 QwQ-32B
AGENTVIGIL 0.73/0.76 0.72/0.74
AgentDojo Baseline 0.47/0.49 0.45/0.47
OpenPromptInjection 0.38/0.39 0.20/0.20
InjecAgent 0.15/0.11 0.14/0.12

B.3 Breakdown on Attack Scenarios

The two benchmarks, AgentDojo and VWA-adyv,
are designed to evaluate performance across di-
verse scenarios. We perform additional analysis
about the detailed results on different scenarios to
provide a comprehensive view of AGENTVIGIL’s
effectiveness.

AgentDojo consists of various agent tasks
grouped into four suites — Slack, Workspace,
Travel, and Banking. As shown in Table 5,
across all these scenarios, AGENTVIGIL consis-
tently achieves a higher success rate compared to
the baseline attacks in AgentDojo, demonstrating
its robustness and adaptability in different opera-
tional environments.

On VWA-adv benchmark, we evaluate perfor-
mance across two types of adversarial goals: illu-
sioning, which makes it appear to the agent that it

23170

https://arxiv.org/abs/2411.02391
https://arxiv.org/abs/2411.02391

is in a different state (e.g., different objects, col-
ors), and goal misdirection, which makes the agent
pursue a targeted different goal than the original
user goal (e.g., leave a comment). Our results in
Table 5 indicate that AGENTVIGIL outperforms
baseline from the benchmark in both attack goals,
confirming its capability to exploit diverse indirect
prompt injection vulnerabilities and attack goals
effectively, even in challenging goal misdirection
tasks.

B.4 Coverage Curve

The coverage of tasks over optimization iterations
achieved by AGENTVIGIL on VWA-adv bench-
mark is shown in Figure 4.

0.80

o e

N N

o T
" |

Average Coverage
o
[=)]
w

0.60
0.551
0.50 ‘ : ‘ : ‘
2 4 6 8 10
Steps
Figure 4: Coverage over optimization iterations

achieved by AGENTVIGIL on VWA-adyv.

C Algorithms

The algorithms for our seed scoring and selection
are shown in Algorithms 1 to 3.

Algorithm 1 Success rate and coverage-guided
seed scoring

Require: Seed to be evaluated seed, coverage fac-
tor C
Ensure: Final score for the seed and suite results
1: /* Initialize */
total_success < 0
num_gquestions < 0
coverage_bonus < 0
for all task_suite in sampled_tasks do
/* BEvaluate user and injection task combina-
tions using seed. */
7. /* Compute attack success rate for the suite.
*/
if injection successful then
: Increment total_success.
10: end if
11: Increment num_questions.
12: /* Identify newly successful task combina-
tions not covered before and: */
13: if injection successful then

A A

14: /* Mark combination as covered. */
15: Increment coverage_bonus.

16: end if

17: end for

18: /* Calculate Final Score including attack suc-
cess rate and coverage bonus. */
190 ASR « total_succcess

num_questions
. . coverage bonus
20: seed_score <— ASR+ C'- TE=ets
21: Return seed_score

Algorithm 2 MCTS-based seed selection: Select

Require: Set of nodes N, exploration factor C,
number of nodes to select n.
Ensure: Selected node(s) S
I: total_visits < > 4. node.visits
2: UCB(node) «+ node.score + C

log(total_visits+1)
node.visits+e

if n = 1 then
Select S + arg maxpodec v UCB(node)
else if n = 2 then
Sort N by UCB(node) in descending order
Select S <+ top 2 nodes in N
end if
Return S

D A A

23171

Table 5: Attack success rates across different scenarios (task suites for AgentDojo, attack goals for VWA-adv)
achieved by AGENTVIGIL and the baseline attack from the benchmark. The two ASRs in each cell represent
performance on the Fuzzing task set and Test task set, respectively (i.e., Fuzzing / Test).

Benchmark Model Scenario AGENTVIGIL Benchmark Baseline
Slack 0.81/0.97 0.64/0.70
o Workspace 0.63/0.60 0.20/0.22
03-mini Travel 0.71/0.83 0.55/0.50
) Banking 0.49/0.38 0.25/0.23
AgentDojo
Slack 1.00/0.97 0.85/0.88
Workspace 0.33/0.42 0.05/0.10
QwQ-32B Travel 0.80/0.80 0.60/0.65
Banking 0.60/0.65 0.23/0.23
Ilusioning 0.82/0.76 0.51/0.62

VWA-adv gpt40 ool misdirection 0.58 /0.42 0.00/0.20

Algorithm 3 MCTS-based seed selection: Update

Require: Set of nodes NV, new node node with
information of parent node(s) node.parents
and the score node.score.

Ensure: Updated set of nodes N

1: /* Update all the ancestors of the node */
ancestors < node.parents

for ancestor p < ancestors.pop() do

p.visits <— p.visits + 1
ancestors <— ancestors U p.parents

end for

/* Update the set of nodes */

N < N U {node}

Return N

R A O T

23172

