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Introduction

We are happy to welcome you to ClimateNLP 2025, the second ACL workshop on Natural Language
Processing Meets Climate Change. The workshop takes place on the 31st of July 2025 in the wonderful
city of Vienna, Austria.

ClimateNLP aims to be the premier publication venue for research in the intersection of Natural Lan-
guage Processing (NLP) and climate change. The workshop aims to discuss how NLP methods can
be incorporated into climate change science and climate change action. This year, the program inclu-
des four keynote talks by Frida Berry Eklund (Klimatkollen), Emily Kormanyos (Bundesbank), Ruth
Schmidt (German Corporation for International Cooperation), and Naomi Oreskes (Harvard University).
Furthermore, we hold two panel discussions on the role of ClimateNLP in the industry and future re-
search directions of ClimateNLP. A group discussion, four paper presentations, and two poster sessions
round up the day.

We received 35 submissions this year, and recruited 45 active Program Committee (PC) who are distin-
guished experts in the field of NLP, climate change, or both. Every submission received at least two
reviews. When making our selections for the program, we carefully considered the reviews, and con-
ducted extensive debate and discussion among the organizing committee members. The members of the
Program Committee did an excellent job in reviewing the submitted papers, and we thank them for their
essential role in selecting the accepted papers and helping produce a high-quality program for the con-
ference. In line with our purpose of discussing and learning about the intersection of NLP and Climate
Change, our aim has been to create an inclusive program that accommodates as many favourably rated
papers as possible. We accepted 22 papers (acceptance rate 62.8

We thank our program committee members for committing their time to help us select an excellent
technical program.

We thank all the authors who submitted to the workshop and all workshop participants for making Cli-
mateNLP 2025 a success and for growing the research areas of NLP for climate change with their fine
work.

Gaku Morio, Tobias Schimanski, Jingwei Ni, and Organizing Committees
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Abstract

Environment, Social and Governance (ESG)
reporting provides a diagnostic lens for evaluat-
ing a company’s alignment with sustainability
goals and stakeholder expectations, while also
serving as an expression of its corporate iden-
tity and values. Frameworks like the Global Re-
porting Initiative (GRI) and the new European
Sustainability Reporting Standards (ESRS) aim
to standardize ESG reporting, yet generating
comprehensive reports remains challenging due
to the considerable length of ESG documents
and variability in company reporting styles.
To facilitate ESG report automation, Retrieval-
Augmented Generation (RAG) systems can be
employed, but their development is hindered
by a lack of labeled data suitable for training
retrieval models. In this paper, we leverage an
underutilized source of weak supervision—the
disclosure content index found in past ESG re-
ports—to create a comprehensive dataset, ESG-
CID, for both GRI and ESRS standards. By
extracting mappings between specific disclo-
sure requirements and corresponding report sec-
tions, and refining them using a Large Lan-
guage Model as a judge, we generate a robust
training and evaluation set. We benchmark
popular embedding models on this dataset and
show that fine-tuning BERT-based models can
outperform commercial embeddings and lead-
ing public models, even under temporal data
splits for cross-report style transfer from GRI
to ESRS!.

1 Introduction

ESG reporting serves as a diagnostic tool that en-
ables structured self-assessment of a company’s
alignment with long-term sustainability goals and
stakeholder expectations. It also is a comprehensive
narrative that articulates the company’s corporate
identity, values, and, its impact to the world. The
accelerating global climate crisis and increasing

! huggingface.co/datasets/airefinery/esg_cid_retrieval
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Figure 1: We extract content indices from GRI-
compliant sustainability PDFs to create an ESG rele-
vance dataset: ESG-CID. Each entry consists of a dis-
closure query (g), a relevant chunk (c*) from the in-
dexed page, and a randomly selected irrelevant chunk
(¢™) from the rest of the document

societal demands for corporate accountability have
made ESG reporting a critical aspect of modern
business. Natural Language Processing plays a piv-
otal role in understanding and drafting these long
documents. Recent advancements in Large Lan-
guage Models (LLMs) enable the analysis of vast
amounts of textual data related to climate policies,
sustainability reports, and environmental impact as-
sessments (Vaghefi et al., 2023; Schimanski et al.,
2024). By extracting insights from ESG reports,
LLMs enhance transparency and inform stakehold-
ers, driving data-driven decision-making in sustain-
ability practices.

Despite these advancements, generating compre-
hensive and standardized ESG reports remains a
significant challenge. ESG documents are exten-
sive—averaging 120 pages—and exhibit variability
in reporting styles and structures among organi-
zations. The lack of standardized and accessible

Proceedings of the 2nd Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2025), pages 1-16
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ESG data can lead to greenwashing, obscures true
risks, and impedes the effective allocation of re-
sources toward sustainable investments and prac-
tices. Frameworks like the Global Reporting Ini-
tiative (GRI) and the new European Sustainabil-
ity Reporting Standards (ESRS) aim to standardize
ESG reporting, but automating this process requires
effective Retrieval-Augmented Generation (RAG)
systems. The development of such systems is hin-
dered by a lack of labeled data suitable for training
and evaluating retrieval models in the ESG domain.

The scarcity of labeled data arises mainly due to
two factors: First, the considerable length of ESG
reports makes manual annotation labor-intensive
and time-consuming. Second, the lack of unifor-
mity in reporting styles across different compa-
nies presents a challenge in creating datasets that
generalize well. The combination of these factors
makes it difficult to develop robust retrieval models
needed for automating ESG reporting tasks.

In this paper, we leverage an underutilized yet
readily available source of weak supervision: the
disclosure content index found in past reports. We
observed that GRI-compliant reports often include
a content index linking specific disclosure require-
ments to corresponding sections or page numbers
within the report. By extracting these mappings, we
can generate large amounts of weakly supervised
data that associates ESG disclosure queries with
relevant text passages. To enhance the quality of
this data, we use an LLM-as-a-judge to refine and
validate the mappings. Additionally, it allows for
an in-depth analysis of the standards’ inter-relations
providing insights on effectively using abundantly
available past ESG data.

Using this dataset, we benchmark popular em-
bedding models on the ESG retrieval task and ex-
plore the impact of fine-tuning. Our findings re-
veal that finetuning smaller BERT-based embed-
ding models (gte-large-en-v1.5, bge-large-
en-v1.5, roberta-large) can outperform com-
mercial embedding models (text-embedding-
3-small, text-embedding-3-large) and top-
performing public models (gte-Qwen2-1.5B-
instruct, gte-Qwen2-7B-instruct). Notably,
our benchmark evaluates model performance under
temporal data splits and cross-report style transfer
from GRI to ESRS, demonstrating the generaliz-
ability of the fine-tuned models.

In summary, our contributions are as follows:

* We create the ESG-Content Index Dataset

Metric Value
Unique Topics 11
Unique Sections 112
Total Datapoints 1230
Avg. Sections/Topic 10
Avg. Dataponts/Section 11
Sections with GRI Overlap 99
Sections without GRI Overlap 13
Sections GRI Overlap ratio 0.88
Datapoints with GRI Overlap 648

Datapoints without GRI Overlap 582
Datapoints GRI Overlap ratio 0.53

Table 1: ESRS Statistics and Overlap with GRI. The
table presents counts for unique topics, sections, and
datapoints, along with their averages in the ESRS guide-
lines from the official GRI-ESRS interoperability data”.
Section overlap is counted if at least one datapoint in
the section overlaps with a GRI datapoint

(ESG-CID), a dataset leveraging disclosure
content indices from ESG reports to facilitate
research in the ESG domain and support the
development of retrieval models for standard-
ized ESG reporting.

* We benchmark state-of-the-art embedding
models on ESG-CID, highlighting their lim-
itations in the ESG retrieval task out of the
box and demonstrating the benefits of domain-
specific fine-tuning.

* We conduct detailed analyses of model perfor-
mance under temporal splits and cross-report
style transfer, offering insights into the chal-
lenges and solutions for automating ESG re-
port generation, particularly in the context of
the new ESRS standards.

2 Related Work

In our research, we build on the foundational work
of GRI and the European Financial Reporting Ad-
visory Group (EFRAG), which demonstrates the
interconnection between the two standards—GRI
and ESRS. Using their preliminary mapping, we
illustrate the overlap between ESRS and GRI in
Table 1. The table also presents statistics on unique
topics, sections, and data points within ESRS, with
significant overlaps highlighted in green. This over-
lap forms the basis of our approach, which is to
leverage GRI data to meet ESRS standards.

The ESG domain has abundant public sustain-
ability reports but lacks labeled data. Recent ad-

2GRI-ESRS-Mapping.xlsx
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Figure 2: Dataset characteristics and challenges: (a) Industry distribution, showcasing the diversity of reporting
sectors. (b) Report statistics (page count vs. average word count per chunk, sized by chunk count), highlighting the
variability in report length and chunk size, which pose challenges for retrieval models. (c) and (d): Dataset splits
(Train, Dev, Test GRI, Test ESRS), illustrating the chronological approach and the out-of-domain ESRS test set.

vancements in LLMs and PDF ingestion are bridg-
ing this gap. Vaghefi et al. (2023) demonstrates the
potential of LLMs to transform the ESG domain
with a Climate-change query specific chat interface
called ChatClimate powered by LLMs. More re-
cent studies, such as ChatReport (Ni et al., 2023)
and ClimRetrieve (Schimanski et al., 2024), focus
on Question Answering within this domain through
RAG. These studies, however, are limited by their
focus on a narrow set of queries and evaluations
based on only 10-20 documents. In contrast, our ap-
proach covers a broad spectrum of ESG framework
requirements and queries, supported by extensive
training and evaluation data.

Distant supervision is a key concept in low-
resource model training (Quirk and Poon, 2017; Qin
et al., 2018). Polignano et al. (2022) first proposed
using the GRI content index as distant supervision
for ESG annotations, focusing on table identifica-
tion via Optical Character Recognition and its role
in sentiment analysis. Our work extends this by
linking ESRS and GRI frameworks and advancing
representation learning through RAG-based auto-
mated content index creation.

RAG is a framework that enhances text gener-
ation by retrieving relevant external information,
improving accuracy and contextual relevance in
NLP tasks (Lewis et al., 2020; Jiang et al., 2023).

However, most works on ESG domain rely on pro-
prietary embeddings such as OpenAl, which are
difficult to adapt to specific needs and pose pri-
vacy risks for company data. We enhance retrieval
by fine-tuning on ESG-specific content indexes,
exploring whether cost-efficient fine-tuning with
high-quality data and smaller models can match
more resource-intensive methods. We fine-tune
various BERT-based models (both base and large)
(Devlin et al., 2019; Liu et al., 2019; Li et al., 2023;
Zhang et al., 2024; Xiao et al., 2023), leveraging the
Model Test Evaluation Benchmark (MTEB; Muen-
nighoff et al. (2022)) to identify the best-performing
ones. Additionally, our study also evaluates Mod-
ernBERT (Warner et al., 2024) to further under-
stand the impact of domain-specific fine-tuning on
retrieval.

3 ESG-CID: Dataset Construction

In line with our goal to enhance ESG-specific re-
trieval systems, we first collected a comprehen-
sive set of sustainability and annual reports from
companies across various industries and regions.
Utilizing a combination of automated web crawl-
ing and manual collection techniques, we gathered
over 10,000 reports from 2018 to 2023. The auto-
mated collection leveraged databases such as the
now-decommissioned GRI database and the SRN



database (Donau et al., 2023). After filtering out
duplicates and non-English reports, we retained
approximately 2,500 unique reports.

Out of these, around half adhered to the GRI stan-
dards, with a subset including the disclosure content
index in a machine-readable format. We manually
curated 73 GRI reports containing detailed content
indices to form the primary dataset for our study.
Additionally, we identified 11 reports from early
adopters of the ESRS standards, which included
ESRS content indices, enriching our dataset with
cross-standard representations. The collected re-
ports cover a diverse array of industries®, predom-
inantly from the financial, automotive, and manu-
facturing sectors (see Figure 2(a)).

3.1 Leveraging Content Indices for Weak
Labeling

The disclosure content index serves as a structured
bridge between the ESG standard requirements and
the report content, providing an opportunity to cre-
ate weakly labeled data without extensive manual
annotation. Each content index lists the standard
disclosure requirements (e.g., GRI or ESRS IDs and
descriptions), along with references to the pages in
the report where these disclosures are addressed.

As illustrated in Figure 2(b), the sustainability
reports are significantly lengthy, averaging around
120 pages each, with the longest document exceed-
ing 350 pages. Annotating such extensive docu-
ments is labor-intensive and impractical, especially
when fine-grained annotations at the chunk or sen-
tence level are considered. To address this chal-
lenge, we manually extracted only the content in-
dices from the reports focusing only on these spe-
cific but crucial sections. Two experienced anno-
tators, well-versed in ESG reporting and familiar
with both GRI and ESRS standards, undertook this
task. Their expertise ensured the accuracy and con-
sistency of the extracted content indices.

Using the extracted content indices, we align the
disclosure requirements with their corresponding
page numbers in the reports. By automatically as-
sociating each standard query ¢ (i.e., the disclosure
requirement) with the relevant sections of the report
indicated by the page numbers, we generate a set
of query-document pairs. The query is a standard
disclosure requirement, and the document is the
corresponding page content addressing that require-
ment. Leveraging this inherent structure allows

3We provide the company name and year information of
the reports of the dataset in §B

us to create a weakly labeled dataset suitable for
training and evaluating retrieval models.

3.2 Creating Triplets for Embedding Models

To train and evaluate retrieval models in a con-
trastive learning framework, we construct triplets
consisting of a query g, a positive (matched) chunk
c*, and a negative (unmatched) chunk ¢~

Positive Chunks We preprocess the PDF doc-
uments to segment them into manageable chunks
(details in §D). The positive chunks ¢ are extracted
from the pages referenced in the content index for
each disclosure requirement. This ensures that ¢
contains information pertinent to the query q.

Negative Chunks For the negative samples ¢,
we randomly sample chunks from the same report
that are not associated with the given disclosure
requirement. This assumes that these chunks are
less relevant or irrelevant to the query, providing a
contrastive signal for training.

3.3 Refining Labels with LLM Judgments

While the content indices provide page-level refer-
ences, not all text within the referenced pages may
directly address the disclosure requirement. To en-
hance the quality of our dataset, we employ Large
Language Models (LLMs) as automated judges to
assess the relevance of each chunk to the corre-
sponding query.

We define a scoring function s =
LLMScore(q, c) that assigns a relevance score
between 0 and 5 to each query-chunk pair. The
LLM evaluates whether the chunk ¢ sufficiently
addresses the disclosure requirement ¢q. By
applying a relevance threshold (e.g., s > 3), we
filter out positive chunks that are not sufficiently
relevant, thus improving the quality of the triplets.

This refinement step ensures that our dataset con-
tains high-quality, relevant query-document pairs,
enhancing the effectiveness of retrieval models
trained or evaluated on this data®.

3.4 Dataset Splitting for Real-World
Evaluation

To simulate real-world scenarios, particularly the
temporal evolution of ESG standards and the adop-
tion of new reporting requirements, we strategically
split our dataset based on report release years and
reporting standards.

*Details on the LLM prompts and scoring criteria are pro-
vided in the §C



Temporal Splitting The 73 GRI reports are or-
dered chronologically. We allocate the 10 most
recent reports released after 2020, which adhere to
the updated GRI-NEW standards, to form the test set
(TEST — GRI). The next 5 most recent reports are
designated as the development set for hyperparam-
eter tuning. The remaining 58 reports, primarily
following the older GRI-OLD standards, constitute
the training set as shown in Fig 2(d). This split em-
ulates a scenario where models trained on earlier
data are evaluated on newer standards, testing their
ability to generalize over time.

Cross-Standard Transfer The 11 ESRS reports
form a separate test set (TEST — ESRS), allowing
us to assess the models’ performance on a differ-
ent but related standard. This setup facilitates the
evaluation of cross-standard transferability and the
models’ adaptability to new reporting frameworks.

Organizing the dataset this way ensures our eval-
uations reflect the challenges faced in real-world
applications, such as adapting to evolving standards
and handling reports from different time periods.

4 Experimental Setup

4.1 Embedding Models

We benchmark the retrieval performance of several
state-of-the-art embedding models, including both
LLMs and lightweight BERT-based models (< 1B
Params). The LLLM-based embeddings comprise
open-source models such as gte-Qwen2-1.5B-
instruct and (Li et al., 2023), gte-Quwen2-7B-
instruct (Li et al., 2023), which are known for
their strong capabilities in capturing complex lan-
guage representations. We also include commercial
models from OpenAl, namely text-embedding-
3-small and text-embedding-3-large.

In addition to the LLMs, we evaluate lightweight
BERT-based models suitable for deployment in
resource-constrained environments. These include
roberta-large (Liu et al., 2019), bge-large-
en-v1.5 (Xiao et al., 2023), ModernBERT-Large
(Warner et al., 2024) and gte-large-en-v1.5
(Liet al., 2023; Zhang et al., 2024). We also com-
pare their smaller base models thus offering bal-
ance between performance and computational ef-
ficiency. By comparing these models, we aim to
understand the trade-offs between large-scale em-
beddings and more efficient alternatives in the ESG
retrieval context.

4.2 Fine-tuning on ESG-CID

To enhance the domain-specific performance of
the lightweight BERT-based models, we fine-tune
them on the training split of our constructed dataset
(ESG-CID). We utilize the standard Multiple Nega-
tives Ranking Loss (Reimers and Gurevych, 2019)
for contrastive learning using triplets consisting of
a query, a positive chunk, and a negative chunk
((g,¢™,¢7)). Each query is associated with one
relevant positive chunk and one irrelevant negative
chunk, as detailed in Section 3.

The fine-tuning process spans five epochs and we
pick the best checkpoint that achieves the lowest
evaluation loss. Further training details are pro-
vided in the Appendix. The fine-tuned models us-
ing the entire training set are referred to by adding
the suffix—FT to the model card (e.g., roberta-
large-FT, gte-large-en-v1.5-FT, etc). Fine-
tuned models trained by only using the LLMScore-
curated training data have the suffix-FT y. We
hypothesize that fine-tuning will imbue these mod-
els with ESG-specific knowledge, improving their
retrieval capabilities on domain-specific queries.

4.3 Evaluation Metrics

We evaluate the models using standard retrieval
ranking metrics to assess their ability to retrieve
relevant document chunks given a query. Since we
do not directly label the relevant chunks for the dis-
closure and some chunks within the indexed page
can be irrelevant, we slightly modify the evalua-
tion. Given that the ground-truth is provided in the
form of page numbers’, we conduct the final rank-
ing assessment based on relevant pages instead of
chunks. This involves creating the assessment in a
way that ranks page numbers using the metadata of
the retrieved chunks.

The metrics calculated using the ranx library
(Bassani, 2022) include:

Recall@10: Measures the proportion of relevant
document pages retrieved in the top 10 chunks.
We use @10’ to reflect the typical RAG use case
that retrieves 10 documents.

Mean Reciprocal Rank at 50 (MRR@50): Indi-
cates how early the first relevant document page
appears.

Mean Average Precision at 50 (MAP@50): Av-
erages precision scores at ranks where relevant
document pages are found.

Sassuming companies report their content index accurately
and comprehensively



TEST — GRI TEST — ESRS

Model Size REC MRR MAP NDCG H REC MRR MAP NDCG

@10 @50 @50 @50 @10 @50 @50 @50
gte-Qwen2-1.5B-instruct 1.5B  0.667 0.437 0.385 0.528 0.566 0.355 0.307 0.459
gte-Qwen2-7B-instruct 7B 0.713 0.469 0.412 0.551 0.597 0.403 0.347 0.495
text-embedding-3-small 0.684 0.459 0.405 0.545 0.546 0.336 0.284 0.439
text-embedding-3-large 0.730 0.540 0.471 0.602 0.617 0.439 0.379 0.524
Frozen BERT-based Models
roberta-base 125M  0.045 0.054 0.032 0.109 0.055 0.048 0.029 0.106
BAAI/bge-base-en-v1.5 109M  0.542 0.278 0.242 0.404 0.351 0.213 0.174 0.336
Alibaba-NLP/gte-base-en-v1.5 137M  0.603 0.366 0313 0.465 0.461 0.277 0.225 0.390
answerdotai/ModernBERT-Base 150M  0.112 0.078 0.056 0.165 0.157 0.103 0.072 0.194
roberta-large 355M  0.146 0.107 0.08 0.203 0.161 0.110 0.077 0.189
BAAI/bge-large-en-v1.5 335M  0.608 0.373 0.325 0.475 0.435 0.257 0.212 0.374
Alibaba-NLP/gte-large-en-v1.5 434M  0.635 0.382 0.333 0.485 0.492 0.291 0.247 0.408
answerdotai/ModernBERT-Large 396M  0.101 0.075 0.053 0.160 0.108 0.105 0.064 0.177
Fine-tuned BERT-based Models on entire data (FT)
roberta-base 0.77+.03  0.57+.02 0.51+.02 0.64+.02 || 0.59+.02 0.42+.02 0.35+.02 0.50+.02
BAAI/bge-base-en-v1.5 0.79+.01  0.61+.01  0.54+.01 0.66+.01 0.63+.01  0.45+.01 0.38+.00 0.53+.00
Alibaba-NLP/gte-base-en-v1.5 0.78+.01  0.60+.02 0.53+t.02 0.65+.02 || 0.64+.03 045+t.03 0.39+£.02 0.53+.02
answerdotai/ModernBERT-Base —"—  0.75+.01 0.54+.03 047+.02 0.61+.02 || 0.54+.02 0.37+.02 031+.02 0.46+.02
roberta-large 0.78+.02  0.59+.03 0.52+.02 0.65+.02 || 0.60+.02 043+.02 0.36+.02 0.51+.02
BAAI/bge-large-en-v1.5 0.79+.02  0.59+.03 0.53+.03 0.65+.03 || 0.63+.03 0.46+.04 0.39+.04 0.54+.03
Alibaba-NLP/gte-large-en-v1.5 0.79+.01  0.59+.02 0.52+.02 0.65+.02 || 0.64+.02 045+t.03 0.38+.03 0.53+.02
answerdotai/ModernBERT-Large 0.78+.02  0.57+.02 0.50+.02 0.63+.02 || 0.57+.03 041+.03 0.34+02 0.48+.02
Fine-tuned BERT-based Models on LLMScore filtered data (FTyiy)
roberta-base 0.79+.01  0.59+.03 0.53+.03 0.65+.02 || 0.61+.03 0.43+.03 0.36+.03 0.51+.03
BAAI/bge-base-en-v1.5 0.79+.01  0.59+.02 0.53+.02 0.65+.02 || 0.63+.01 045+.02 0.39+.02 0.53+.01
Alibaba-NLP/gte-base-en-v1.5 0.79+.01  0.62+.02 0.54+.02 0.66+.01 || 0.65+.02 0.46+.02 0.40+£.02 0.54+.02
answerdotai/ModernBERT-Base —"—  0.76+.04  0.56+.05 0.49+.05 0.62+.04 || 0.57+.06 0.39+.06 0.33+.05 0.48+.05
roberta-large 0.80+.01 0.61+.02 0.54+.03 0.66+.02 || 0.62+.03 0.45+.03 0.38+.03 0.53+.02
BAAI/bge-large-en-v1.5 0.80+.01  0.62+.02 0.55+.01 0.67+.01 || 0.65+.02 047+.03 0.40+.03 0.55+.02
Alibaba-NLP/gte-large-en-vi.5 0.80+.01 0.62+.02 0.55+.02 0.67+.01 || 0.66+.02 0.48+.02 0.41+.02 0.55+.01
answerdotai/ModernBERT-Large 0.79+.02  0.58+.04 0.52+.04 0.64+.03 0.59+.05 0.42+.05 0.35+.04 0.50+.04

Table 2: Overall effectiveness of the models on ESG-CID comparing the mean and std of the ranking metrics
for the finetuned models on 5 different runs. The row corresponding to Alibaba-NLP/gte-large-en-v1.5 is
highlighted as our best performing finetuned model, while OpenAl ’s text-embedding-3-large serves as the best
available baseline. Our best model outperforms the baseline by 7-8% on TEST — GRI and 3-4% on TEST — ESRS.

Normalized Discounted Cumulative Gain at 50
(NDCG@50): Emphasizes the ranking positions
of relevant document pages.

Performance is reported on both the GRI
test split (TEST — GRI) and the ESRS test split
(TEST — ESRS). It is noteworthy that the fine-tuned
models were trained exclusively on the GRI train-
ing data and have not been exposed to any ESRS
data, allowing us to evaluate their generalization ca-
pabilities across different ESG reporting standards.

4.4 Real-world Applicability: ESRS Content
Indexing

Beyond standard retrieval metrics, we assess the
practical utility of the models in constructing the
ESRS content index within a company’s report. Ac-
cording to ESRS, companies are required to provide
structured disclosures in a tabular format. Our ob-
jective is to automate the extraction and indexing of
relevant information from PDF reports according
to each disclosure requirement.

In this task, given a document D and a set of

ESRS disclosure queries @ = {q1,q2,...,qn}, We
aim to map each query g; to its corresponding page
numbers in D. We experiment with reports from
two companies—one in the automotive industry
and one in agriculture—to capture diversity in re-
porting styles. We report the precision, recall and
F1 of these mappings.

Each report D is segmented into chunks, and for
each disclosure query ¢;, the model retrieves the
top-10 most relevant chunks from D. The retrieved
chunks are then mapped back to their page numbers,
using the LLMScore effectively constructing the
content index. Evaluation is based on the accuracy
of these mappings, reflecting the models’ effec-
tiveness in automating the ESRS content indexing
process.

5 Results and Analysis

5.1 Benchmarking Pre-trained Embedding
Models

Table 2 presents the retrieval performance of vari-
ous state-of-the-art embedding models on the GRI
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Figure 3: Box plot of the MRR@50 results from various
fine-tuning runs (FT, FTy1y) using base and large mod-
els. Each box represents the results from 20 different
runs, comparing small and large BERT-based models in
our experiments, with and without the use of LLMScore
for filtering the training data.

and ESRS test sets. We show each finetuned
model’s aggregate performance on 5 different runs.

Firstly, we observe that most of the LLM-
based embedding models demonstrate strong per-
formance out of the box. For instance, the
1.5B parameter gte-Qwen2-1.5B-instruct em-
bedding model achieves a Recall@10 of 0.667
without any domain-specific fine-tuning. Addi-
tionally, the open-source model gte-Qwen2-7B-
instruct performs comparably to the commercial
model text-embedding-3-large, highlighting
the competitiveness of open-source solutions.

Secondly, LLM-based embedding models (listed
in the first section of the table) significantly outper-
form the BERT-based embedding models (listed in
the second section). This difference is attributed
to the higher representational power and larger pre-
training datasets of the LLM-based models, which
enable better capture of semantic relationships in
the ESG domain.

Thirdly, we note that the ESRS dataset presents a
much greater challenge compared to GRI. There is a
substantial performance degradation across models
when evaluated on ESRS, indicating that ESRS
retrieval tasks are more difficult.

5.2 Benchmarking Fine-tuned Embedding
Models

We present the performance of our fine-tuned mod-
els in the last two sections of Table 2. While the
original BERT-based models perform significantly
worse than the LLM-based embeddings in their
pre-trained state, fine-tuning on our dataset results
in substantial performance improvements. After

fine-tuning, the BERT-based models not only close
the gap but, in most cases, outperform the larger
LLM-based embeddings.

Specifically, for the GRI test set, gte-large-
en-v1.5-FT achieves improvements of over 5-6
percentage points across all ranking metrics. The
other BERT-based models, both small and large,
demonstrate consistent gains, outperforming the
LLM-based models despite having fewer param-
eters. This showcases the effectiveness of fine-
tuning on ESG-CID for enhancing model perfor-
mance.

When evaluating the transfer performance to the
ESRS test set, the fine-tuned models continue to
perform significantly better than their pre-trained
counterparts. Notably, the fine-tuned gte-large-
en-v1.5-FT model outperforms the commercial
baselines across all ranking metrics, despite not hav-
ing been trained on any ESRS data. This suggests
that fine-tuning on GRI data imparts transferable
knowledge that generalizes to ESRS retrieval tasks
to a great extent.

5.3 Impact of LLMScore Filtering

To understand the contribution of the LLMScore
filtering step and see the difference in performance
between the base and the 1arge models, we plot
the MRR@50 grouping the common runs. As shown
in Figure 3, there is a consistent overall improve-
ment when using the filtered data when compared
to finetuning with entire data. This confirms that

MRR@50

0.0 0:2 0:4 06 0.8 1.0 text-emb- |gte-large-en-vl1.5

ESRS-GRI Overlap Ratio edding-3- fine-

large Frozen tuned Gains

ESRS 2 EBII o047 |o20 o051 +22%
E1 Pl o524 o036 o051 +1s%
E2 0.52 0.19 = 0.46 +27%
E3 0.40 0.28 0.56 +28%
E4 0.43 0.29  0.48 +19%
E5 0.27 0.12  0.38 +26%
Ss1 0.44 0.33 0.51 +18%
Ss2 0.34 0.20  0.46 +26%
S3 0.21 0.15 0.35 +20%
sS4 0.23 0.19  0.39 +20%

0.63 0.46 0.61 +14%

Figure 4: ESRS-GRI overlapping datapoints grouped
by topics (top to bottom). Sections within each topic are
ordered by their overlapping ratio (left to right). The
table on the right displays ranking scores, using the
MRR@50 metric, comparing OpenAl embeddings, the
frozen and the fine-tuned gte-large-en-v1.5 model.
Scores from the better-performing model are boldened.
Positive results (with MRR > 0.5) are highlighted in

green, while negative results are highlighted in red.



the LLM filtering helps to remove noise and im-
prove the quality of the training data, leading to a
more effective retrieval model. We also observe
consistent (albeit small) improvements when using
larger counterparts justifying their higher capacity
for this GRI/ESRS retrieval task.

5.4 Interplay between ESRS and GRI

To investigate the lower baseline scores observed
in the ESRS test set, we conducted a detailed
analysis of the overlap between ESRS topics and
GRI standards. The heatmap in Figure 4 illus-
trates the overlapping sections, paired with the
MRR @50 scores achieved by our best-performing
model, gte-large-en-v1.5-FTr1y, compared to
the OpenAl baseline for each ESRS topic. We also
include scores from the frozen counterpart to eval-
uate the performance gains from fine-tuning.

Our analysis reveals that the fine-tuned model
consistently outperforms its frozen counterpart,
with the most significant improvements observed
in the E2, E3, E5, and S2 topics, achieving gains
of 26-27%. When compared to OpenAl’s text-
embedding-3-large, the fine-tuned model per-
forms better in all but the E1, E2, and G1 topics,
with the maximum improvement of 16% observed
in the E3 topic, pushing the performance over the
50% MRR threshold.

However, certain topics, such as E4 and E5 (fo-
cusing on Biodiversity and Resource Use) remain
challenging, as neither the large general-purpose
model nor the fine-tuned model surpasses the 50%
performance threshold. Similarly, topics from the
Social category (S2, S3, and S4) show significant
improvements from fine-tuning but still do not cross
the threshold. In contrast, topics such as ESRS 2
(General Disclosures), E1, E3, S1, and G1 (Gover-
nance) demonstrate strong performance, indicating
their suitability for automation. These topics ex-
hibit high overlap with GRI, highlighting the po-
tential to leverage existing GRI data to fine-tune
retrieval systems for ESRS/CSRD-compliant re-
porting.

The problematic topics, highlighted in red, un-
derscore areas where additional data collection and
methodological refinement are necessary to im-
prove mapping accuracy. Future work should focus
on enhancing the GRI-ESRS correspondence or in-
corporating additional standards into the training
set to further boost ESRS performance.

Company Model Prec Rec Fl
text-embedding-3-large 0.36 034 0.35

Auto gte-large-en-v1.5 036 027 0.31
gte-large-en-v1.5-FT  0.39 0.36 0.38
gte-large-en-v1.5-FTyyy 039 0.40 0.40
text-embedding-3-large 0.62 0.42 0.50
Agri gte-large-en-v1.5 0.67 0.40 0.50

gte-large-en-v1.5-FT  0.69 043 0.53
gte-large-en-v1.5-FTyyy  0.63  0.51 0.56

Table 3: Comparison of GTE and OpenAl models for
content index generation on an Automotive (Auto) and
an Agricultural (Agri) companies.

5.5 ESRS Content Indexing

Table 3 presents the results of ESRS content in-
dexing, comparing the performance of our fine-
tuned gte-large-en-v1.5-FT model with Ope-
nAl embeddings. Our analysis reveals that gte-
large-en-v1.5-FTr 1y outperforms OpenAl em-
beddings in both the automotive and agricultural
domains. Notably, our training set contains a sub-
stantial amount of automotive data but very few
agricultural company reports, as illustrated in Fig-
ure 2(a). Despite this imbalance, gte-large-
en-v1.5-FT1y demonstrates emergent properties,
generalizing well to the agricultural domain despite
limited training data.

Interestingly, the inclusion of LLMScore reduces
the precision of the RAG system. This suggests that
models trained with LLM filtering may introduce
hard relevant-looking false positives, thereby con-
fusing the RAG system. Future work could address
this issue through finer prompt tuning.

6 Conclusion

This paper addresses the critical need for scalable
ESG information retrieval by leveraging disclosure
content indices to align GRI and ESRS frameworks.
By using content indices as a source of weak su-
pervision, we developed a novel benchmark for
ESG retrieval finetuning and showed our ESG mod-
els outperform strong baselines, such as OpenAl.
Our results demonstrate GRI indices can effectively
bootstrap models for ESRS compliance, achiev-
ing moderate transferability despite limited ESRS-
specific data. The LLMScore filtering process fur-
ther enhanced training data quality, enabling our
models to generalize across evolving ESG stan-
dards. These findings highlight the practical bene-
fits of structured indices in automating ESG report-
ing and compliance tasks. By harmonizing the GRI
and ESRS frameworks, this research establishes a



robust foundation for future inquiries into standard-
agnostic capabilities, adaptability across regulatory
frameworks, and holistic ESG reporting solutions.

Limitations & Future Work

While our work lays a strong foundation for auto-
mated inter-framework ESG reporting and auditing,
there are several limitations and areas for future re-
search that we aim to address.

Firstly, the modest improvements between larger
and smaller models suggest that our dataset may
lack the size and diversity to fully exploit the ca-
pabilities of more complex models or the chosen
samples for finetuning could be refined further be-
ing too noisy. Future research should focus on
expanding and diversifying the dataset. This could
include the incorporation of advanced techniques in
automatic content index extraction from documents,
leveraging recent advancements in PDF parsing and
layout analysis on long documents (Saad-Falcon
et al., 2023; Morio et al., 2024; Xie et al., 2025).
Also, table reasoning through multi-agent refine-
ment (Wang et al., 2024; Yu et al., 2025) could
be explored to handle the diverse ESG reporting
standards across different companies and frame-
works more effectively. To address learning with
noise, future work could investigate iterative train-
ing methodologies, such as multi-step training with
hard negatives (Zhang et al., 2024) or using a cross-
encoder as a re-ranker (Han et al., 2020) to filter out
noise and harness a larger model’s full potential.

Secondly, while retrieval is a crucial component
of our RAG approach, it is not an endpoint. Future
work should explore the automated generation of
comprehensive sustainability reports from a wide
array of a company’s source documents. Current
research (Ni et al., 2023; Wu et al., 2024), includ-
ing ours, limits ESG analysis to a single document.
Expanding this to include multiple documents such
as financial reports, proxy statements, and annual
reports would provide a more holistic and realistic
approach to ESG reporting, reflecting the multi-
faceted nature of real-world data.

Lastly, our current work is restricted to the En-
glish language, which limits its applicability, es-
pecially given the diverse linguistic landscape of
ESG reporting, particularly in Europe (Gutierrez-
Bustamante and Espinosa-Leal, 2022). Future ef-
forts should aim to extend this work to other lan-
guages, leveraging the availability of parallel cor-
pora where companies report in multiple languages.

This would not only enhance the accessibility and
applicability of our models but also open up excit-
ing avenues for analyzing the multilingual depen-
dencies and nuances in ESG reporting.
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A Hyperparameter settings

This section provides detailed information on
the hyperparameter settings and training proce-
dures used for fine-tuning the retrieval models
(RoBERTa-large and GTE-large).

A.1 Hyperparameter Optimization

We used a combination of prior work, best practices
for transformer fine-tuning, and empirical evalua-
tion on a small validation set (carved out from the
training set) to select the hyperparameters. Specifi-
cally, we held out five documents from the training
set to form a validation set. This validation set was
used solely for checkpoint selection and is distinct
from the development set used for model evalua-
tion. The primary metric for checkpoint selection
was ‘dev_cosine accuracy‘, defined below.

A.2 Training Arguments

Table 4 summarizes the key hyperparameters used
for training. These settings were largely consistent
across both RoBERTa-large and GTE-large, with
the primary difference being the batch size due to
GPU memory constraints.

We use saving and evaluation strategy based on
the number of steps we take.

We used the ‘SentenceTransformerTrainingAr-
guments® class from the ‘sentence-transformers*
library to manage the training process. The key
parameters are as follows:
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Hyperparameter

RoBERTa-large

GTE-large

Training Epochs
Train Batch Size
Eval Batch Size
Warmup Ratio
FP16

BF16

Batch Sampler
Eval Steps

Save Steps

Save Total Limit
Logging Steps
Learning Rate
Load Best Model
Weight Decay

5
32
32

0.05
False
False

No Duplicates
50
50

5

20
Se-5
True
0.01

5

8

8
0.05
False
False

No Duplicates

50

50

5

20
Se-5
True
0.01

Metric for Best Model
DDP Find Unused Params

‘cosine accuracy®
False

‘cosine accuracy*
False

Table 4: Hyperparameter settings for fine-tuning
RoBERTa-large and GTE-large.

- ‘output_dir‘: The directory where the trained
models and checkpoints are saved. - ‘over-
write_output dir‘: If ‘“True‘, overwrites the con-
tents of the output directory. - ‘num_train_epochs*:
The number of training epochs. We chose 5
epochs based on preliminary experiments, observ-
ing that performance plateaued after this point.
- ‘per_device train_batch size‘: The batch size
per GPU during training. We used a batch size
of 32 for RoBERTa-large and 8 for GTE-large
due to GPU memory limitations. - ‘per_de-
vice eval batch size‘: The batch size per GPU
during evaluation. - ‘warmup_ratio‘: The propor-
tion of training steps used for a linear warmup of the
learning rate. - ‘fp16° and ‘bf16°‘: These were set
to false due to hardware constraints. - ‘batch_sam-
pler‘: We used the ‘NO_DUPLICATES® batch
sampler, which ensures no duplicate examples
within a batch. - ‘eval strategy* and ‘eval steps‘:
Evaluation was performed every 50 training steps.
- ‘save strategy* and ‘save steps‘: Model check-
points were saved every 50 training steps. -
‘save total limit‘: Limited to 5 checkpoints to con-
serve disk space. - ‘logging steps‘: Training statis-
tics were logged every 20 steps. - ‘learning_rate‘:
The initial learning rate for the AdamW optimizer
was set to Se-5. - ‘load_best_model at_end‘: If
‘True‘, loads the model checkpoint with the best per-
formance on the validation set at the end of training.
- ‘weight_decay‘: The weight decay parameter for
the AdamW optimizer. - ‘metric_for best model‘:
The metric used for best model checkpoint selec-
tion was ‘eval_gri-chunk-dev_cosine_accuracy‘. -
‘ddp_find unused parameters‘: Setto ‘False® since
distributed data parallel (DDP) training was not
used.
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A.3 Loss Function and Evaluation

The loss function used was ‘MultipleNegatives-
RankingLoss from the ‘sentence-transformers® li-
brary. This loss function is designed for contrastive
learning, ensuring that similar pairs (query and pos-
itive chunk) have higher similarity scores than dis-
similar pairs (query and negative chunk). Each
batch considered all other examples as negatives.

For development set evaluation, we used the
‘TripletEvaluator® from ‘sentence-transformers®.
The ‘TripletEvaluator® takes three lists as input:

- ‘anchors‘: A list of query examples. - ‘posi-
tives‘: A list of relevant chunks. - ‘negatives: A
list of irrelevant chunks.

The evaluator computes the cosine similarity be-
tween anchor-positive and anchor-negative embed-
dings and calculates the ‘cosine accuracy‘ metric.

A4 Cosine Accuracy Metric

The ‘eval gri-chunk-dev cosine accuracy‘ metric
is calculated as follows:

1. Compute the cosine similarity between the
query embedding and the positive chunk embed-
ding: ‘sim_pos = cosine_similarity(M(q), M(c+))".
2. Compute the cosine similarity between the
query embedding and the negative chunk embed-
ding: ‘sim_neg = cosine_similarity(M(q), M(c-))".
3. Count the number of triplets where ‘sim_pos >
sim_neg‘. 4. Compute ‘cosine_accuracy‘ as the
percentage of triplets where the positive chunk has
a higher cosine similarity to the query than the neg-
ative chunk.

This metric reflects the model’s ability to rank
relevant chunks higher than irrelevant chunks.

A.5 Training Procedure

The models were trained using ‘MultipleNegatives-
Rankingloss‘, which is well-suited for contrastive
training. Triplets of (query, positive chunk, nega-
tive chunk) were constructed, ensuring each query
had one associated positive and one negative chunk.
No significant overfitting was observed during the
five training epochs.

B Company Information

See Table 5 for the company names and publication
years of the ESG reports used in ESG-CID.

C LLMScorePrompt Details

Below is the prompt used for ‘LLMScore‘, which
leverages a Large Language Model (LLM) to as-

Given the following [query], and a
[text chunk] from an ESG report,
please rate the relevancy of the chunk to
the disclosure on a scale of 0-5, in terms
of being able to provide evidence for the
disclosure. Provide higher rating if the
chunk has enough evidence to answer the

query.

* The output should be a single number
between 0 and 5. 0 means not relevant
at all, 5 means highly relevant.

* The output should be an integer

[queryl]

{disclosure}

[text chunk]

{chunk}

Relevancy Score (1-5): <YOUR ANSWER
HERE>

Figure 5: Prompt for LLMScore

sess the relevance of a text chunk to a given query,
both extracted from an ESG report. The LLM is
instructed to provide a numerical score on a scale
of 0 to 5, reflecting the degree of relevance. See
Figure 5 for further details.

D PDF Preprocessing

For the ingestion of long sustainability PDF doc-
uments, we adopt the popular PyMUPdfLoader li-
brary with scalability in mind. After extracting the
text from each page of the report we perform the
following steps:

1. Newline Removal: Remove newline charac-
ters to produce continuous text.

2. Chunking: Partition the text on a pagewise
basis into segments of 2048 characters.

3. Overlap: Apply an overlap of 512 charac-
ters between contiguous chunks to preserve
context.

Formally, for a given PDF document d € D, the
loader produces a set of text chunks:

C(d) = {01,62, e ,Cn},



where each chunk c; is a sequence of 2048 charac-
ters (with a 512-character overlap with ¢; and ¢;41).
These chunks serve as the basic units for further
processing in our pipeline.

E Dataset Example

In this section, we provide examples of the GRI
index and the ESRS index from the HYUNDAI
2024 sustainability report. This communicates the
complexity of the existing pdf data and why gen-
erating an ESRS report from the the GRI format
report is challenging. Additionally, once relevent
ESRS index and GRI index are identified; collating
related content is non-trivial. See Figures 6, 7, and
8 for example content indices both in ESRS and
GRI standards.
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ESRS (European Sustainability Reporting Standards)

ESRS 2. General Disclosures

Indicator No. Title Page
ESRS 2 BP-1 General basis for preparation of the sustainability statements 124
ESRS 2 BP-2 Disclosures in relation to specific circumstances ﬁff‘zgz’ 43,97, 98, 100,
ESRS 2 GOV-1 The role of the administrative, management and supervisory bodies 9,21,81-85
ESRS 2 GOV-2 L:;c::ga:::gn[;fr\]ltijd::pt:rjir;g;u;gir:sbiIity matters addressed by the undertaking’s administrative, 82,85
ESRS 2 GOV-3 Integration of sustainability-related performance in incentive schemes 9,17,20,37,59
ESRS 2 GOV-4 Statement on sustainability due diligence 50-53, 67-69
ESRS 2 GOV-5 Risk management and internal controls over sustainability reporting” -
ESRS 2 SBM-1 Market position, strategy, business model(s) and value chain 6-7,25-26
ESRS 2 SBM-2 Interests and views of stakeholders 11-13
ESRS 2 SBM-3 Material impacts, risks and opportunities and their interaction with strategy and business model(s) 15-17
ESRS 2 IRO-1 Description of the processes to identify and assess material impacts, risks and opportunities 14
ESRS 2 |IRO-2 Disclosure Requirements in ESRS covered by the undertaking’s sustainability statements 110-112

Figure 6: ESRS 2. General Disclosures Content Index of Hyundai found on page 110 of their 2024 sustainability
report. The Indicator No. represents the standard’s identifier, Title is used as the query text for our RAG system,
and Page gives us the gold standard location of the relevant pages for the query within the report.

ESRS E1.Climate Change

Indicator No. Title Page

ESRSE1-1 Transition plan for climate change mitigation 32
ESRSE1-2 Policies related to climate change mitigation and adaptation 23-32
ESRSE1-3 Actions and resources in relation to climate change policies 32,37
ESRSE1-4 Targets related to climate change mitigation and adaptation 24-26,30-32,38
ESRSE1-5 Energy consumption and mix 98
ESRSE1-6 Gross Scopes 1, 2, 3 and Total GHG emissions 36,98

GHG removals and GHG mitigation projects financed through carbon credits 16,31
ESRS E1-7

Avoided emissions of products and services 15,27
ESRSE1-8 Internal carbon pricing? -
ESRSE1-9 Potential financial effects from material physical and transition risks and potential climate-related opportunities 22,33-35

Figure 7: ESRS El. Climate Change: Content index of the climate change related topics found on page 110 of the
Hyundai 2024 sustainability report. The Indicator No. represents the standard’s identifier, Title is used as the query
text for our RAG system, and Page gives us the gold standard location of the relevant pages for the query within the
report.
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Topic Specific Standards - Environmentall

3011

301-2

301-3

302-1

302-2

302-3

302-4

3031

303-2

303-3

303-4

303-5

304-1

304-2

304-3

304-4

305-1

305-2

305-3

305-4

305-5

305-7

306-1

306-2

306-3

306-4

306-5

308-1

308-2

No.

GRI Standards
Title

Materials used by weight or volume
Recycled input materials used
Reclaimed products and their packaging materials
Energy consumption within the organization
Energy consumption outside of the organization
Energy Intensity
Reduction of energy consumption
Interactions with water as a shared resource
Management of impacts related to wastewater
Water withdrawal
Water discharge

Water consumption

Operational sites owned, leased, managed in, or adjacent to,

protected areas and areas of high biodiversity value outside protected areas

Significant impacts of activities, products and services on biodiversity

Habitats protected or restored

IUCN Red List species and national conservation list species with

habitats in areas affected by operations

GRI Standards
Title
Direct (Scope 1) GHG emissions
Energy indirect (Scope 2) GHG emissions
Other indirect (Scope 3) GHG emissions
GHG emissions intensity
Reduction of GHG emissions

Nitrogen oxides (NOX), sulfur oxides (SOx), and other significant
air emissions

Waste generation and significant waste-related impacts
Management of significant waste-related impacts
Waste generated

Waste diverted from disposal

Waste directed to disposal

New suppliers that were screened using environmental criteria

Negative environmental impacts in the supply chain and actions taken

15

Page

42,98
42,98

42

08

36

08

23-24
42-43,99
43,100
99

99

20, 42,99
46-48

46-48

46-48

48

Page

36,98
36,98
36,98
36,98

23-32
100

40-43
40-43
100
43,100
100
67-68

69

Figure 8: GRI Content Index for GRI 300: Topic Specific Standards - Environmental.



DOCUMENT NAME COMPANY YEAR | INDUSTRY_CLUSTER STANDARDS SPLIT
FORD_2024 FORD 2024 AUTOMOTIVE ESRS TEST_ESRS
HYUNDAI 2019 HYUNDAI 2019 AUTOMOTIVE GRI_OLD TRAIN
HYUNDAI 2020 HYUNDAI 2020 AUTOMOTIVE GRI_OLD TRAIN
HYUNDAI 2021 HYUNDAI 2021 AUTOMOTIVE GRI_OLD TRAIN
HYUNDAI_ 2022 HYUNDAI 2022 AUTOMOTIVE GRI_OLD DEV
HYUNDAI 2022_A HYUNDAI 2022 AUTOMOTIVE GRI_OLD TRAIN
HYUNDAI 2023 HYUNDAI 2023 AUTOMOTIVE ESRS, GRI_ NEW | TEST ESRS
HYUNDAI 2024 HYUNDAI 2024 AUTOMOTIVE ESRS, GRI_ NEW | TEST_ESRS
KIA 2024 KIA 2024 AUTOMOTIVE GRI_NEW TEST_GRI
SKODA _2023 SKODA AUTO 2023 AUTOMOTIVE ESRS TEST_ESRS
TOYOTA_2023 TOYOTA 2023 AUTOMOTIVE GRI_NEW TEST_GRI
TRAIN_18 Nissan Motor Corporation 2022 AUTOMOTIVE GRI_OLD TRAIN
TRAIN_186 Nissan Motor Corporation 2021 AUTOMOTIVE GRI_OLD TRAIN
TRAIN_25 Geely Automobile Holdings 2022 AUTOMOTIVE GRI_NEW TRAIN
TRAIN_22 Benteler Group 2022 AUTOMOTIVE GRI_NEW TRAIN
TRAIN_123 SKC 2023 CHEMICALS GRI_NEW TRAIN
TRAIN_294 NOVA Chemicals 2021 CHEMICALS GRI_OLD TRAIN
TRAIN_306 NOVA Chemicals 2022 CHEMICALS GRI_NEW TRAIN
CTP_2023 CTP 2023 CONSTRUCTION ESRS TEST_ESRS
HELVAR_2023 HELVAR OY AB 2023 CONSTRUCTION ESRS TEST_ESRS
HH_2023 H+H 2023 CONSTRUCTION ESRS TEST_ESRS
TRAIN_242 Heidelberg Materials 2022 CONSTRUCTION GRI_NEW TRAIN
TRAIN_119 NESTE 2021 ENERGY GRI_OLD TRAIN
TRAIN_218 Fortis Inc. 2022 ENERGY GRI_NEW TRAIN
TRAIN_228 FortisBC 2022 ENERGY GRI_NEW DEV
SANTADER_2023 SANTADER BANK POLSKA GROUP | 2023 FINANCIAL SERVICES ESRS TEST_ESRS
TRAIN_191 YUANTA FINANCIAL HOLDINGS 2021 FINANCIAL SERVICES GRI_OLD TRAIN
TRAIN_194 Banca Transilvania 2020 FINANCIAL SERVICES GRI_OLD TRAIN
TRAIN_239 Gulf International Bank 2022 FINANCIAL SERVICES GRI_NEW DEV
TRAIN_307 Taishin Financial Holding 2021 FINANCIAL SERVICES GRI_OLD TRAIN
TRAIN_71 Capital One 2021 FINANCIAL SERVICES GRI_NEW TRAIN
TRAIN_127 LOOMIS 2022 FINANCIAL SERVICES GRI_NEW TRAIN
TRAIN_155 Loomis 2021 FINANCIAL SERVICES GRI_OLD TRAIN
TRAIN_0 ALLY FINANCIAL 2021 FINANCIAL SERVICES GRI_OLD TRAIN
TRAIN_2 Energy Recovery 2021 TECHNOLOGY GRI_OLD TRAIN
TRAIN_77 Motorola Solutions 2021 TECHNOLOGY GRI_NEW TRAIN
TRAIN_3 Meta 2021 TECHNOLOGY GRI_OLD TRAIN
KPN_2023 KPN 2023 TELECOMMUNICATIONS GRI_NEW TEST_GRI
TRAIN_153 NTT DOCOMO 2020 TELECOMMUNICATIONS GRI_OLD TRAIN
ARLA_2023 ARLA 2023 CONSUMER PACKAGED GOODS | ESRS TEST_ESRS
TRAIN_81 Ryanair 2022 AVIATION GRI_NEW TRAIN
TRAIN_124 HITEJINRO 2023 CONSUMER PACKAGED GOODS | GRI_NEW DEV
TRAIN_212 Molson Coors Beverage Company 2022 CONSUMER PACKAGED GOODS | GRI_OLD TRAIN
TRAIN_197 Illumina 2021 BIOTECH GRI_OLD TRAIN
TRAIN_181 CWT 2022 LOGISTICS GRI_OLD TRAIN
KERRY GROUP_2023 KERRY GROUP 2023 CONSUMER PACKAGED GOODS | GRI_NEW TEST_GRI
LACTALIS_2023 LACTALIS 2023 CONSUMER PACKAGED GOODS | GRI_NEW TEST_GRI
TRAIN_138 LS ELECTRIC 2023 ELECTRONICS GRI_NEW TRAIN
TRAIN_245 TAIFLEX 2023 ELECTRONICS GRI_NEW TRAIN
TRAIN_185 KONE 2022 MANUFACTURING GRI_NEW TRAIN
TRELLEBORG_2019 Trelleborg AB 2019 MANUFACTURING GRI_OLD TRAIN
TRELLEBORG_2020 Trelleborg AB 2020 MANUFACTURING GRI_OLD TRAIN
TRELLEBORG_2021 Trelleborg AB 2021 MANUFACTURING GRI_OLD TRAIN
TRELLEBORG_2022 Trelleborg AB 2022 MANUFACTURING GRI_NEW DEV
TRELLEBORG_2023 Trelleborg AB 2023 MANUFACTURING GRI_NEW TEST_GRI
VANDEMOORTELE_ 2023 | Vandemoortele Group 2023 CONSUMER PACKAGED GOODS | ESRS TEST_ESRS
AB SKF_2023 SKF GROUP 2023 MANUFACTURING GRI_NEW TEST_GRI
TRAIN_137 UNION STEEL HOLDINGS LIMITED | 2021 MANUFACTURING GRI_OLD TRAIN
TRAIN_169 If P&C Insurance 2020 FINANCIAL SERVICES GRI_OLD TRAIN
TRAIN_65 Generali Group 2022 FINANCIAL SERVICES GRI_OLD TRAIN
TRAIN_116 SK Inc. 2022 FINANCIAL SERVICES GRI_OLD TRAIN
TRAIN_90 SK Inc. 2023 FINANCIAL SERVICES GRI_NEW TEST_GRI
TRAIN_223 Investor AB 2022 FINANCIAL SERVICES GRI_NEW TRAIN
TRAIN_302 EQT 2022 FINANCIAL SERVICES GRI_NEW TRAIN
SGL_2023 SCAN GLOBAL LOGISTICS 2023 LOGISTICS ESRS TEST_ESRS
TRAIN_187 Ferrexpo 2020 MINING GRI_OLD TRAIN
TRAIN_24 Coeur Mining 2022 MINING GRI_NEW TRAIN
TRAIN_55 The Metals Company 2021 MINING GRI_NEW TRAIN
TRAIN_9 Methanex 2021 CHEMICALS GRI_OLD TRAIN
TRAIN_1 KUMBRA IRON ORE LIMITED 2021 MINING GRI_OLD TRAIN
TRAIN_143 KUMBRA IRON ORE LIMITED 2020 MINING GRI_OLD TRAIN
TRAIN_4 Billerud 2022 MANUFACTURING GRI_NEW TRAIN
TRAIN_126 ABBOTT 2022 PHARMA GRI_NEW TRAIN
TRAIN_20 Pfizer 2021 PHARMA GRI_OLD TRAIN
TRAIN_13 VASAKRONAN 2020 FINANCIAL SERVICES GRI_OLD TRAIN
TRAIN_66 Dream Unlimited Corp. 2021 FINANCIAL SERVICES GRI_NEW TRAIN
TRAIN_225 Green Plains 2021 ENERGY GRI_OLD TRAIN
TRAIN_70 TJX Companies 2022 RETAIL GRI_OLD TRAIN
TRAIN_171 MACRONIX INTERNATIONAL 2021 ELECTRONICS GRI_OLD TRAIN
TRAIN_170 COUPA 2022 LOGISTICS GRI_OLD TRAIN
TRAIN_8 Amer Sports 2022 RETAIL GRI_NEW TRAIN
TRAIN_75 Everest Textile Co., Ltd. 2021 MANUFACTURING GRI_OLD TRAIN
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Judging It, Washing It: Scoring and Greenwashing Corporate Climate
Disclosures using Large Language Models

Marianne Chuang'*

L UC Santa Cruz

Abstract

We study the use of large language models
(LLMs) to both evaluate and greenwash cor-
porate climate disclosures. First, we investi-
gate the use of the LLM-as-a-Judge (LLMJ)
methodology for scoring company-submitted
reports on emissions reduction targets and
progress. Second, we probe the behavior of
an LLM when it is prompted to greenwash a
response subject to accuracy and length con-
straints. Finally, we test the robustness of
the LLMJ methodology against responses that
may be greenwashed using an LLM. We find
that two LLMJ scoring systems, numerical
rating and pairwise comparison, are effective
in distinguishing high-performing companies
from others, with the pairwise comparison sys-
tem showing greater robustness against LLM-
greenwashed responses.

1 Introduction

In the face of global climate change, corporations
around the world are undertaking climate action
plans, setting targets and making progress to reduce
the carbon emissions of their operations and their
supply chains. These actions are important not just
for climate change mitigation and regulatory com-
pliance, but also for the long-term sustainability
and resilience of their businesses.

Corporate climate disclosures are a critical com-
ponent of corporate climate action. They report
information on their climate-related risks, emission
reduction strategies and targets, and offer progress
updates on a regular basis. Through these dis-
closures, corporations can provide transparency
and accountability to their stakeholders, includ-
ing investors, regulators, and consumers. Various
reporting frameworks have been widely used, in-
cluding CDP (formerly Carbon Disclosure Project),
TCFD (Task Force on Climate-related Financial

* Denotes co-first authorship, ordered randomly. Co-first
authors will prioritize their names on their resumes/websites.

Gabriel Chuang?*

2 Columbia University
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Disclosures), CSRD (Corporate Sustainability Re-
porting Directive), and efforts are underway to har-
monize and standardize them. The number of re-
porting companies is growing rapidly. For example,
the number of companies voluntarily disclosing to
CDP increased from 2,600 in 2018 to 23,000 in
2023. The European Union is expecting 50,000
companies to report to CSRD in 2025.

These disclosure reports can be comprehen-
sive in scope, covering governance, strategy, risk
management, metrics and targets, and the vast
amounts of unstructured textual data make analysis
a challenging task. Natural Language Processing
(NLP) methods, including Large Language Models
(LLMs), are emerging as important tools for ana-
lysts to extract key metrics, track progress, assess
risks, and compare companies against their peers.

Unfortunately, greenwashing in corporate cli-
mate disclosures is a real and growing problem.
Greenwashing occurs when companies mislead
their stakeholders into thinking that they are more
environmentally responsible than they really are.
By using vague, inaccurate, or noncommittal lan-
guage, or by making unverifiable claims, compa-
nies can greenwash their disclosure reports, placing
more pressure on stakeholders to critically assess
their climate claims.

In this paper, we study the use of LLMs by ana-
lysts to evaluate corporate climate disclosures, as
well as the use of LLMs by companies to enhance
their disclosures, with or without the intention to
greenwash.

First, we investigate the use of the LL.M-as-a-
Judge (LLMJ) methodology (Zheng et al., 2023)
to score the responses submitted by companies on
their emission reduction targets and progress. Us-
ing a data set of 1,410 reports submitted to the
CDP, we tested different variants of LLMJ to com-
pare their performance. We find that two LLMJ
scoring systems, reference-guided numerical rat-
ing and pairwise comparison, are effective in differ-

Proceedings of the 2nd Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2025), pages 17-31
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entiating high-performing companies from others.
We also find the use of various LLM techniques,
such as in-context learning, indicative scales, and
chain-of-thought prompting (via explanation re-
quirements), can provide performance improve-
ments in different contexts.

Second, we performed a series of experiments to
learn how an LLM can be used by companies to im-
prove their responses, and to test the robustness of
the LLMJ methodology against responses that may
be greenwashed using an LLM. We find that, when
unconstrained, an LL.M is great at greenwashing,
especially for low-rated responses. It can fabricate
lengthy, plausible-sounding content with little con-
nection to the original, and it can turn proposed
plans into completed actions, or planned targets
into achieved targets. However, when accuracy re-
quirements are put in place, the LLM will shift its
focus to improve the clarity of the writing, gener-
ate longer responses to elaborate on a company’s
reported plans and progress, or add aspirational
language that are not verifiable nor tied to emis-
sions targets or progress. In this latter case, where
hallucinated, factually false content is not present
in the responses, the LLMJ, particularly the pair-
wise comparison scoring system, is able to retain
its robustness against LLM-enhanced responses.

2 Related Work

There is a quickly growing body of literature on
the use of Natural Language Processing (NLP) and
machine learning methods to contribute to tack-
ling climate change (Stede and Patz, 2021; Rolnick
etal., 2022). They include efforts to detect, analyze,
and fact-check environmental claims and stances
(Leippold et al., 2023; Luo et al., 2020; Coan et al.,
2021; Piskorski et al., 2022; Gehring and Grigo-
letto, 2023; Diggelmann et al., 2020; Stammbach
et al., 2022; Morio and Manning, 2023), identify
topics and trends over time (Yim et al., 2023; Brié
et al., 2024), improve the performance of conversa-
tional Al agents with regards to climate change re-
lated information (Webersinke et al., 2021; Vaghefi
et al., 2023; Bulian et al., 2023), and tools to sup-
port climate policymaking (Callaghan et al., 2021;
Planas et al., 2022).

There is also a number of recent works that em-
ploy LLMs to analyze environmental assessment
reports, corporate sustainability reports, and corpo-
rate climate disclosure documents. The LLMs have
proven themselves to be very versatile, capable of
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sifting through lengthy documents to detect and
extract specific items of interest, such as emission
reduction targets (Schimanski et al., 2023; Wrza-
lik et al., 2024) and sustainable development goals
(Garigliotti, 2024). Furthermore, the LLMs can
also be used to analyze entire reports to generate
overall assessments of a company’s performance
or transition plans (Ni et al., 2023; Colesanti Senni
et al., 2024).

While not yet reported in the wild, we can expect
that LLMs will soon be recruited for greenwashing
(Moodaley and Telukdarie, 2023). For example,
researchers recently used an LLM to generate fic-
tional sustainability reports, demonstrating both the
potential and current limitations of the technology
(De Villiers et al., 2024). Conversely, researchers
have shown that LLMs can be effective in detect-
ing cheap talk, cherry picking, and exaggerations
(Bingler et al., 2022; Luo et al., 2024).

The LLM-as-a-Judge (LLMJ) method has re-
cently emerged as a powerful tool to perform eval-
uation tasks across a wide range of domains in a
scalable manner (Zheng et al., 2023). LLM judges
can flexibly adjust their evaluation criteria, and
generatively produce evaluation outputs, based on
the specific contexts of the task. While the LLMJ
method inherits a number of limitations from LLMs
(e.g., hallucinations and domain-specific knowl-
edge gaps), and exhibits vulnerabilities to biases
(e.g., position bias and verbosity bias), their nega-
tive effects can be mitigated with prompt engineer-
ing and other measures. While the LLMJ method
was originally proposed for evaluating chatbot re-
sponses, it has since been applied to domains in-
cluding law (Yue et al., 2023), finance (Son et al.,
2024), medicine (Xie et al., 2024), and education
(Chiang et al., 2024; Wang et al., 2024). However,
to the best of our knowledge, this paper is the first
to use the LLMJ method in the climate and sustain-
ability domain.

3 Data

CDP was established as the ‘Carbon Disclosure
Project’ in 2000, and collects voluntary climate dis-
closures via their Climate Change Questionnaire
from companies on an annual basis. Since 2013,
CDP also compiles an annual “A-List” of compa-
nies that meet their criteria to be considered leaders
on environmental transparency and action. The
annual questionnaire includes more than a dozen
sections, covering a wide range of topics such as



governance, risks and opportunities, business strat-
egy, verification, carbon pricing, and engagement.
In this study, we focus on the first two questions in
the "Targets and Performance" section:

* 4.1a: Provide details of your absolute emis-
sions target(s) and progress made against
those target(s).

* 4.1b: Provide details of your emissions inten-
sity target(s) and progress made against those
target(s).

“Absolute emissions” refers to the total quantity
of emissions (i.e., tons of carbon), whereas “emis-
sions intensity” refers to an amount that is relative
to the size of the company. Each reflects a different
aspect of a company’s targets and progress, and
both are important for a complete assessment.

We use the CDP dataset from 2022, which con-
sists of 8385 global companies, 2398 of which are
from Europe. We focus on the 1416 European com-
panies that submitted a response to Question 4.1a
and/or 4.1b, of which 147 made the “A-List”.

4 LILM-as-a-Judge (LLMJ) for Climate
Disclosures

The premise of the LLM-as-a-Judge technique
(Zheng et al., 2023), is to use a particular prompt-
ing setup to guide an LLM in giving a score to a
piece of text. In this work, we evaluate two differ-
ent scoring systems: numerical rating (e.g., “rate
this response on a scale of 1 to 5”), and pairwise
comparison (e.g., “which of these two responses is
better?”). A labeled sample prompt for each system
is shown in Figure 1.

In both scoring types, we follow (Bulian et al.,
2023) in asking the LLM to consider accuracy,
specificity, and completeness (“‘epistemological
metrics”) and clarity (a “presentational metric”),
in addition to the actual content of the response.
We also specify factors that the LLM should not
consider, such as the raw length of the response or
irrelevant information. !

4.1 Numerical Rating

In the numerical rating scoring system, we ask the
LLM to give the response a numerical score from 1
to 5. Because language models output tokens non-
deterministically, we compute a weighted average,

'We use OpenAl’s GPT-40-mini-2024-07-18 for
our experiments, sampling with temperature pa-
rameter t = 0. Our code is publicly available at

https://github.com/mariannechuang/llm-corp-disclosure.
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weighting each potential response (1 through 5) by
the probability of outputting that response.’

4.2 Pairwise Comparison

In the pairwise comparison scoring system, we
score a response by individually comparing it to
k other uniformly selected responses, asking the
LLM to evaluate which response is “better” and
ranking the response overall in terms of its “ex-
pected win rate,” out of 100%. For example, a
response which is rated “better” in 15 comparisons
and “worse” in 5 would receive a score of 75 out
of 100.

Again, because language model outputs are non-
deterministic, each pairwise comparison yields a
probability of each outcome, rather than a direct
binary outcome.We simply compute the expected
"win percent" over all comparisons. Notably, pair-
wise comparison is much more computationally ex-
pensive than numerical rating, because it requires
k queries per response.

4.3 Variable Prompt Sections

We test three additional variables:

* Providing reference responses (i.e., in-context
learning), which we test for numerical rating;

» Using an indicative scale, which we test for
numerical rating;

* Chain-of-thought prompting (i.e., asking the
LLM to explain its answer), which we test for
both numerical rating and pairwise compari-
son.

4.3.1 In-Context Learning

It is known that LLMs are few-shot learners (Brown
et al., 2020): that is, they can perform tasks given
only a small number of examples and without addi-
tional fine-tuning or gradient updates. On the other
hand, modern LLMs like GPT-4 have been trained
on text corpora of sufficiently massive scale that
they are also often able to perform tasks given only
instructions, without any examples provided. Thus,
for the specific domain of climate disclosures, it is
not immediately obvious whether reference exam-
ples are needed or whether the pre-trained “knowl-
edge base” of the LLLM is sufficient. To explore this,
we test three configurations, providing the LLM
with:

>The OpenAl API allows users to request a distribution
over next token predictions, rather than the single sampled
next token. We find that using the weighted average rather

than simply the sampled output token improves results. For
details, see Appendix A.



Content of response

Epistemological and
presentational metrics

Factors that should
not influence the

Please act as an impartial judge and evaluate the quality of the
following response provided by a company to the following questions.
The company may answer both questions or just one.

Question 1: Provide details of your absolute emissions target(s) and
progress made against those targets. Please explain.
Question 2: Provide details of your emissions intensity target(s) and
progress made against those targets. Please explain.

Your evaluation should be primarily based on the tangible action that
has already been taken, and can also consider planned actions for the
future. Your evaluation should also consider factors such as the
specificity, clarity, completeness, and depth of their responses.

Do not allow the length of the responses to influence your evaluation.
Do not allow a missing response to influence your decision, but simply
ignore it and focus on the other response. Do not fall for greenwashing

Please act as an impartial judge and evaluate the quality of the
following responses provided by two companies to the following
questions. The companies may answer both questions or just one.

Question 1: Provide details of your absolute emissions target(s) and
progress made against those targets. Please explain.
Question 2: Provide details of your emissions intensity target(s) and
progress made against those targets. Please explain.

Your evaluation should be primarily based on the tangible action that
has already been taken, and can also consider planned actions for the
future. Your evaluation should also consider factors such as the
specificity, clarity, completeness, and depth of their responses.

Do not allow the length of the responses to influence your evaluation.
Do not allow a missing response to influence your decision, but simply
ignore it and focus on the other response. Do not fall for greenwashing

tactics.
result

Please rate this response on a scale of 1-5, based on the

considerations above.

One-shot example

: his r n reference for r ision.
response (Optlonal) Use this response as a reference for your decisiol

"In 2019 we achieved [ ... 1."

Indicative scale Here is the scale you should use to build your answer:

Following is an example of a response that should receive a score of 5.

tactics.
Do not allow the order of the responses to influence your decision.

Please decide which company gave a better response, based on the
considerations above.

Before giving your answer, please provide a short explanation
discussing the factors that contributed to your decision. Keep your
explanation to 40 words.

1. The response is very poor: it has no targets and/or plans to meet

(optional)

targets, and no progress

2. The response is poor: it has targets and/or plans to meet targets, but

has made little or no progress

Chain-of-thought

prompting (optional) and has made some small or initial progress

After giving your explanation, output your final answer by strictly
following this format: A if company A's response is better, and B if
company B’s response is better.

3. The response is average: it has targets and/or plans to meet targets,

4. The response is good: it has targets, plans to meet targets, and has

made good progress

5. The response is excellent: it has clear targets, concrete plans to

meet targets, and has made strong progress

Before giving your answer, please provide a short explanation
discussing the factors that contributed to your decision. Keep your

explanation to 40 words.

Output your answer by outputting a single number between 1 and 5.

Figure 1: Baseline LLM-as-a-Judge prompts for numerical rating (left) and pairwise comparison (right).

* No example responses (zero-shot learning);

* One example response, which should receive
a score of 5 (one-shot learning); and

* Two example responses that should receive
scores of 3 and 5 (few-shot learning).

We manually select representative examples for
each score from our dataset.

4.3.2 Indicative Scale

Numerical rating systems often feature indicative
scales, which describe what each numerical value
represents. Examples include the Likert scale (from
“Strongly Disagree” to “Agree”) and the pain scale
(which uses images to indicate levels of pain from
1 to 10). Some sources suggest that an indicative
scale can help LLM-as-a-Judge systems (Roucher,
2025). We construct a scale based on the reported
targets, plans, and progress. The scale is high-
lighted in blue in Figure 1.

4.3.3 Chain-of-Thought Prompting

Chain-of-thought prompting is a technique that
asks the language model to perform intermediate
reasoning steps before coming up with a final an-
swer. It has been shown to substantially improve
performance on reasoning-based tasks such as arith-
metic and symbolic reasoning tasks (Wei et al.,
2022). To date, there is no work in the literature on
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using chain-of-thought for LLMJ tasks; so, we test
our scoring systems both with and without chain-
of-thought prompts. We ask the LLM to produce a
short explanation before making its final decision
for each choice. To reduce computational burden,
we limit the explanations to 40 words.

4.4 Evaluation

To evaluate the scoring systems, we focus on their
ability to distinguish high-performing companies
from others, as determined by the CDP’s “A-List”.
In particular, we compare the distribution of scores
received by A-List companies against the distribu-
tion of scores received by non-A-List companies.

For the numerical rating system, we simply com-
pute the weighted score (from 1-5) for all 1,416
companies. For the more costly pairwise compari-
son system, we evaluated all 147 A-List companies
and randomly sampled 147 non-A-List companies,
and performed k& = 24 comparisons against a ran-
dom sample of the entire set. To make an apples-to-
apples comparison, we bucket the numerical rating
scores into 25 bins of equal width from 1 to 5.

In each case, we measure the distance between
the two distributions (A-List and non-A-List) using
three standard distance measures: Total Variation
Distance (TVD), the Kolmogorov-Smirnov (KS)



statistic, and the normalized Earth Mover Distance
(EMD). The TVD captures the overall overlap of
the probability mass of the two distributions. The
KS statistic captures the maximum cumulative dif-
ference, loosely corresponding to the separation
of the best threshold predictor if both distributions
occurred at equal base rates. The EMD captures
the distance between the non-overlapping probabil-
ity mass of the distributions, relative to the overall
range of possible outcomes.>

4.5 Results

The TVD, KS, and EMD values for each config-
uration, measuring the separation between A-List
and non-A-List scores, are shown in Table 1. We
also show the overall distribution of scores for two
of the configurations in Figure 2. The distributions
of scores for other configurations can be found in
Appendix B. We make the following observations:

Both scoring systems separate high-
performing and low-performing responses fairly
well, with pairwise comparison outperforming
numerical rating. The overlap between the
distributions is relatively small. In particular, we
note that we do not expect to achieve anywhere
near full separation of the two distributions: we use
A-List status as only a rough proxy for the quality
of the company’s response to these two specific
questions; in reality, A-List status is determined
based on an elaborate methodology to score the
responses to these and dozens of other questions in
the questionnaire (CDP, 2022).

The two scoring systems create very
differently-shaped score distributions. The
numerical rating system results in mostly near-
integral scores (1 through 5) - that is, the LLM
nearly always samples its answer from a distri-
bution where an overwhelming proportion of
the weight is on a single answer. On the other
hand, the pairwise comparison scores are much
more spread out: as k grows large, we expect the
distribution of all scores to converge to uniform
over the k bins.*

The two scoring systems produce consistent
results. As shown in Figure 3, the scores given by

*We normalize the EMD metric because pairwise compari-
son yields scores from 0 to 100 while numerical rating yields
scores from 1 to 5.

*Note that simply summing the red and blue bars in the
histogram in Fig. 2b will not create the uniform distribution be-
cause there are much fewer A-List companies than non-A-List
companies, i.e., summing will oversample A-List companies.
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the two systems are highly correlated, with 72 =
0.70.

Using at least one reference example is helpful.
There is a clear increase in separation when going
from zero-shot to one-shot prompting. However,
going from one reference example to two does not
clearly show any additional improvement. Using
an indicative scale does not seem to improve sep-
aration, but does change the distribution of scores.
Our particular choice of indicative scale shifted
responses away from scores near 3 and towards
scores near 2 and 4 (see Figure 7(b) versus 7(e));
this suggests that one can roughly tune the score
distribution by carefully choosing the scale. For
pairwise comparison scoring, chain-of-thought
prompting is moderately helpful, but seems detri-
mental for numerical rating.

Overall, these results are very promising. Given
that our labels (A-List versus non-A-List) are very
coarse, and that the responses we are scoring are
in reality only one part of the consideration for
A-List status, the fact that both scoring systems
can capture a very substantial amount of signal
is remarkable. Given the choice, it seems that the
pairwise comparison system produces better results.
However, the numerical rating system has its own
advantages, e.g., it is much less computationally
expensive, and it can avoid any potential moral or
legal concerns regarding the comparison of com-
panies’ responses against each other. In addition,
the pairwise comparison system may be subject
to inflation/deflation over time, since the median
score of 50 will track with the quality of the me-
dian response over time. Whether this quality is
desirable or undesirable will likely depend on the
particular goal of the assessor.

5 Greenwashing with LLMs, and LLMJ
Robustness against Greenwashing

Next, we investigate the intersection of LLM-based
systems and greenwashing. In particular, we high-
light two areas of overlap:

* First, LLMs can be used to perform green-
washing. Given the natural fit between LLMs
and text-based tasks like greenwashing, the
relevant question is not whether LLLMs can
perform greenwashing but how effectively
they can do so. In addition, there may be var-
ious constraints imposed: for example, com-
panies may want to make only surface-level
changes to their responses, rather than add ver-



Table 1: Separation between score distributions of A-List and non-A-List company responses, as measured by Total
Variation Distance, Kolmogorov-Smirnov statistic, and normalized Earth Mover Distance metrics.

Scoring System Prompt Configuration TVD KS EMD
Numerical rating zero-shot 0.4000 0.4169 0.1188
zero-shot, indicative scale 0.2738 0.3859 0.1050
one-shot 0.4423 0.4413 0.1799
one-shot, indicative scale 0.4422 0.4413 0.1842
one-shot, chain-of-thought  0.3945 0.3940 0.1346
two-shot 0.4612 0.4600 0.1715
two-shot, indicative scale 0.4401 0.4431 0.1776
Pairwise comparison no chain-of-thought 0.4724 0.4432 0.3099
chain-of-thought prompting 0.4855 0.4508 0.3145

Normalized frequency
Normalized frequency

10 15 2.0 25 3.0 35 4.0 45 5.0 20 40
Numerical ratings score

. Aclist
non-A-List

60 80
Pairwise comparison score

Numerical ratings score
w
°

¥ =0.02x+2.02
r’=0.696

0 20 40 60 80 100
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(a) Scores under numerical rating with (b) Scores under pairwise comparison

one-shot reference

Figure 2: Distribution of scores for A-List and non-A-List companies from

numerical rating (left) and pairwise comparison (right).

ifiably false information or clearly unachiev-
able targets. More benignly, there may be
limits on response length, which an LLM-
modified response would need to adhere to.

* Second, it is important to know whether
the LLM-as-a-Judge systems discussed above
will be susceptible to being “fooled” by green-
washed responses.

To begin to answer these questions, we gen-
erate a set of LLM-greenwashed responses, and
then score these responses using the LLMJ systems
from Section 4. By comparing the before-and-after
greenwashing scores, we can evaluate the effective-
ness of LLM-based greenwashing under various
constraints on accuracy and length. In addition,
by comparing the separation of greenwashed low-
performing responses against non-greenwashed
high-performing responses, we can evaluate the ro-
bustness of our LLM-based scoring systems against
greenwashing.

without chain-of-thought prompting.

Figure 3: The two scoring systems
produce consistent results: there is
high correlation between the two
scores (12 = 0.70).

5.1 Greenwashing with LLMs

We consider three types of greenwashing:

1. “Unconstrained,” imposing no limits on the
changes made by the LLM;

2. “Fixed accuracy,” requiring that the LLM not
describe fictitious actions or results; and

3. “Fixed accuracy and length,” requiring that the
LLM also preserve the length of the original
response (in addition to maintaining factual
information).

We uniformly sample a set of 100 non-A-list
companies from the CDP dataset, and prompt
GPT-40-mini to greenwash each of them, with the
prompt shown in Figure 4, resulting in three sets of
greenwashed responses. Examples of the generated
responses of each type are shown in Figure 5.

We score each set of greenwashed responses us-
ing the two scoring systems from Section 4: numer-
ical rating (with one-shot reference), and pairwise
comparison. The average scores of the original
responses, in addition to the three variations of
constrained greenwashing, are shown in Table 2.



Epistemological and The following company wants to be included on the A List of the CDP report. Rephrase the
presentational metrics company's response to enhance specificity, clarity, completeness, and depth. Ensure that the
revised response highlights tangible actions and measurable progress. If the response is nan or

Content of response empty, leave it the same. Greenwash the response by using terms that make the company seem
e ey G il more environmentally driven.
y Do not change planned actions into completed actions or planned targets into achieved results.

Length constraint Preserve the word count of the original response.

Figure 4: The prompt used to generate greenwashed responses. We generated responses with no constraints,
accuracy constraints (red), and both accuracy (red) and length (blue) constraints.

Original The target is to %25 decrease refrigation gas consumption on the cooler .The
target has been dtected to decrease scope2 C02 value.

Our objective is to achieve a 25% reduction in refrigeration gas consumption

Fixed length +
within our cooling systems. This target is strategically set to lower our Scope 2

accuracy

C02 emissions.
Fixed Our company is committed to achieving a 25% reduction in refrigeration gas
accuracy consumption within our cooling systems. This target is strategically set to

significantly lower our Scope 2 C02 emissions. We are implementing advanced
energy-efficient technologies and optimizing our operational processes to ensure
this goal is met. By doing so, we aim to contribute to a more sustainable future
and demonstrate our dedication to environmental stewardship.

Our objective is to achieve a 25% reduction in refrigeration gas consumption
within our cooling systems. This target is strategically set to significantly
lower our Scope 2 CO02 emissions. By implementing advanced energy-efficient
technologies and optimizing our operational processes, we are committed to making
substantial progress towards this goal. As of now, we have successfully reduced
our refrigeration gas consumption by 18%. We are dedicated to continuously
monitoring our performance and making necessary adjustments to ensure we meet our
target by the end of the specified timeline. Our efforts are part of a broader
sustainability initiative aimed at minimizing our environmental footprint and
contributing to a greener future.

Unconstrained

grammar/phrasing changes stronger action words “green” buzzwords false/hallucinated claims

Figure 5: An example CDP response, along with LLM-greenwashed variations under three sets of constraints.
Changes are loosely labeled by type.

Table 2: Changes in average LLM-as-a-Judge numerical and pairwise rating scores given to LLM-greenwashed
responses, compared to original.

Oricinal Greenwashed
& Fixed length & accuracy  Fixed length Unconstrained
Average rating score 2.963 3.202 (+0.239) 3.520 (+0.557)  3.591 (40.628)
Average pairwise score 48.2 50.8 (+2.6) 58.7 (+10.5) 61.8 (+13.6)
EMD vs. A-List (rating) 0.17 0.11 (—0.06) 0.03 (—0.14) 0.02 (—0.15)
EMD vs. A-List (pairwise) 0.24 0.18 (—0.06) 0.11 (—0.13) 0.08 (—0.16)
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We make the following observations:

First, GPT-40-mini is, unsurprisingly, quite capa-
ble at greenwashing, particularly when it is allowed
to hallucinate plans, goals, actions taken, and so
on, generating responses that score an average of
0.63 points higher on the 5-point numerical rating
scale and 14 points higher on the 100-point pair-
wise comparison scale. On the numerical rating
scale, 55% of responses saw a score increase of at
least half a point, and 17% saw a score increase of
1 point or more.

Qualitatively, we observe the LLM making sev-
eral different types of changes in its generated
responses (roughly ordered by amount of change):

1. Grammar, spelling, and wording changes;

These are particularly common among com-

panies that are not based in English-speaking

countries.

. Using stronger, action-oriented language with
the same meaning as the original (“strongly
committed,” “intensely focused,” etc.);

. Adding “green buzzwords,’such as “ensuring
a greener future” or “environmental steward-
ship,” which vaguely describe high-level ide-
als without mentioning specific plans, targets,
or actions taken;

. Adding (or alluding to) vague, unspecified
plans to meet specific stated goals;

. Adding completely false/hallucinated informa-
tion, mostly about targets met (for example,
“We reduced our Scope 2 emissions by 10%
over the last year.”). This only occurs in the
unconstrained case. In particular, we often
observe the LLM changing planned actions
(in the original response) to achieved actions
(in the modified one).

In the “fixed accuracy” case, we only observe
changes 1-4 above, resulting in smaller score in-
creases of +0.56 points in numerical rating and 11
points in pairwise comparison. In the “fixed accu-
racy and length” case, we only observe changes 1-2
above, and see score increases of +0.24 in numeri-
cal rating and +3 points in pairwise comparison.

LLMs improve low-scoring responses more
than high-scoring ones. Figure 6 shows the in-
crease in score under each set of constraints, plot-
ted against the original score. The responses with
the largest score increases (around +2 points) were
ones that began with original ratings around 1-2,
with the ceiling on improvement decreasing lin-
early. Across a wide range of initial scores, most
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Figure 6: Score improvement plotted against original
score, for the three sets of greenwashed responses. As
expected, unconstrained greenwashing results in larger
score increases than fixed-accuracy, and fixed-accuracy
dominates fixed-accuracy-and-length.

modified responses were capped at a final score of
around 4 (even with unconstrained greenwashing).
Even when given constraints, LLMs may not
follow them when greenwashing. Several of the
“fixed accuracy” responses saw many fabricated
claims, especially numerical or percentage-based
emissions reduction amounts and made-up descrip-
tions of actions taken. While worrying, this is un-
surprising given the well-documented tendency of
LLMs to hallucinate, and can be taken as a warn-
ing: such verifiable falsehoods would be caught
by a careful human reader or auditor. As we will
discuss below, this also complicates our discussion
of the robustness of our LLM-as-a-Judge system.
Finally, the LLM sometimes replaces or ob-
scures useful information with junk. We observe
multiple instances in the “fixed length and accu-
racy” set where the modified response replaces
some useful information with generic platitudes. In
several instances, the LLM re-words clear descrip-
tions into dense buzzword-heavy sentences, obscur-
ing the practical information and adding “fluff” that
makes the response harder (for a human) to read.

5.2 Robustness of LLLMJ against
Greenwashed Responses

We make an exploratory discussion of the robust-
ness of the LLM-as-a-Judge systems presented in
Section 4 against greenwashed responses. When
a greenwashed response receives a higher score,
it can either be because the LLMIJ system was
fooled by surface-level changes (a failure of the
scoring system) or because the greenwashed re-



sponse introduced false information (which would
be unreasonable to expect the LLMJ to recognize).
In the absence of expert-annotated labels of the
greenwashed responses, it is difficult to definitively
attribute score increases to one or the other.

While we attempt to control for the latter case
above by asking the LLM greenwasher to preserve
the accuracy of its modified responses, it does
not reliably follow these directions (as we note
above). We use “fixed accuracy and length” re-
sponses, which seem to hallucinate the least, as a
rough proxy for surface-level changes.

Overall, when (approximately) controlling for
truthfulness of responses, the LLLMJ system is
quite robust. When the greenwashed responses are
constrained on length and accuracy, the mean score
increases by only +2.6 out of 100 (for pairwise) and
+0.24 out of 5 (for rating). Even with unconstrained
greenwashing (i.e., allowing the LLM to make up
actions and targets), very few responses saw their
score increase by large amounts: only 7% saw in-
creases of above 40 points or higher (on pairwise)
and 1.5 points or higher (on rating). This is fairly
strong: this means, for example, that no responses
were able to be greenwashed from receiving a 1/5
to a 4/5, or from a 30/100 to 80/100.

Given that the scoring systems are meant to help
distinguish high-performing companies from low-
performing ones (and conversely, greenwashing is
meant to make low-performing companies appear
to be high-performing), we examine the separation
between the scores of the A-List companies and
the greenwashed non-A-List companies. Given that
the changes in raw scores are relatively small, we
might expect the change in separation to be corre-
spondingly small. On the contrary, we find that the
normalized EMD drops dramatically, as shown in
Table 2: that is, relatively small absolute changes
to the scores can make low-performing compa-
nies seem similar to high-performing ones.

Because the EMD decreases at approximately
the same absolute amount, the pairwise system
is more robust to greenwashing due to a higher
baseline separation. In the original score distribu-
tions (Figure 2), the pairwise scores are much more
uniformly distributed, whereas the rating scores
are concentrated among the central scores of 3 and
4; thus, the pairwise comparison system is more
robust to a small amount of improvement on low-
scoring responses.

‘We further discuss the robustness of the two scor-
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ing systems, including comparing the distribution
of score increases, examining the effect of length,
and discussing correlation between the two sys-
tems, in Appendices C and D.

6 Discussion and Conclusion

Our study finds that the LLM-as-a-Judge method-
ology can perform consistent, unbiased, and rules-
based evaluations of corporate climate disclosures,
and it does so in a performant and scalable man-
ner. Furthermore, it offers robustness against green-
washing LLMs, short of hallucinated, factually
false content.

We focus on scoring disclosures on emission
reduction targets and progress, which is arguably
the most tangible and direct way that a company’s
climate action can be tracked and evaluated. Rec-
ognizing the fact that the claims made by the com-
panies may not have been fact-checked by CDP,
our analysis shows that the LLMJ methodology
can effectively evaluate the claims when taken at
face value.

Our experiment shows that a greenwashing LLM
can readily turn planned actions into achieved ac-
tions, either when it is unconstrained, or when
it ignores accuracy requirements imposed by the
prompt. However, since the disclosure responses
ultimately have to be signed off by company offi-
cers, we should not expect the burden to fall on the
LLMIJ to distinguish between reportedly achieved
actions that are real versus hallucinated.

While the pairwise comparison scoring system
outperformed numerical rating on the EMD metric,
we must recognize that it incurs significantly higher
computational costs (by a factor of k, the number
of companies to compare against). Further, there
is the practical issue of gaining access to responses
from a representative set of companies, either from
the current year, or from a previous reference year.
This may be particularly challenging for individ-
ual companies, so an organization like CDP could
consider sponsoring a benchmark dataset.

The fact that an LLM can be used by both report-
ing companies and evaluators can lead to an overall
improvement in the quality and impact of the dis-
closures. At the same time, it can also lead to an
arms race where greenwashing companies expend
non-productive energy in using an LLM to try to
outsmart an LL.MJ scoring system. Cognizance of
this competing dynamic must drive all future work
on this important topic.



Limitations

We limited our analysis to a slice of the CDP data
corpus, focusing on corporate responses to a single
set of questions (on emission reduction targets and
progress) from a single year (2022) from a single
geographic region (Europe). It would be valuable
to test the generalizability of our findings across
other questions (such as governance structures, risk
management strategies, adoption of internal car-
bon prices), years, geographic regions, and even
other reporting frameworks. At the same time, this
points to opportunities for researchers to employ
our LLMJ methodology to analyze company per-
formance over time, and to extend it to evaluate
progress at a sectoral or industry level.

Similarly, we ran our analysis on a single LLM
(OpenATI’s ChatGPT-40-mini). Given that LLMs
continue to evolve and improve at a rapid pace, it
would be valuable to repeat the analysis on other
state-of-the-art LLMs and future generations of
LLMs, so that we can gather more data points on
the performance of the LLMJ method and its vari-
ous in-context learning, indicative scale, and chain-
of-thought techniques against different language
models. By using different LLMs to evaluate LLM-
generated greenwashed responses, one can also test
for self-enhancement biases in the LLMJ method-
ology in this context.

The CDP publishes the comprehensive scoring
methodology that they use to evaluate a company’s
response to each individual question in their an-
nual questionnaire. However, CDP only publishes
an overall "A-List" of high performing companies,
without a breakdown of how each company scores
for each individual question. Therefore, our study
can only use a company’s membership on the "A-
List" as an indirect signal for high performance
in the "targets and progress" aspect of their dis-
closure. While A-List companies are generally
high-performing with regards to emission reduc-
tion targets and progress, we expect there may be
other companies that are equally high-performing
in this regard to nonetheless fail to achieve A-List
status due to other deficiencies in their disclosures.
This may have led to a conservative underestima-
tion of the reported LLMJ performance numbers.

Our LLM]J scoring prompts simply ask the LLM
to not fall for greenwashing tactics, but do not in-
clude any explicit greenwashing detection mecha-
nisms. At the same time, our LLM greenwashing
experiment reveals distinct ways an LLM may per-
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form greenwashing. Future work can close the loop
and study how incorporating insights into the tax-
onomy and patterns of greenwashing may improve
the performance of LLMJ scoring systems.

Acknowledgments

G.C. acknowledges funding support by a U.S. Na-
tional Science Foundation Graduate Research Fel-
lowship. The authors are grateful to the anonymous
reviewers whose comments have helped improve
the paper.

References

Julia Anna Bingler, Mathias Kraus, Markus Leippold,
and Nicolas Webersinke. 2022. Cheap talk and
cherry-picking: What climatebert has to say on cor-
porate climate risk disclosures. Finance Research
Letters, 47:102776.

Bjarne Brié, Kristof Stouthuysen, and Tim Verdonck.
2024. Mandatory csr reporting in europe: A tex-
tual analysis of firms’ climate disclosure narratives.
Available at SSRN 4231567.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Jannis Bulian, Mike S Schifer, Afra Amini, Heidi Lam,
Massimiliano Ciaramita, Ben Gaiarin, Michelle Chen
Huebscher, Christian Buck, Niels Mede, Markus
Leippold, et al. 2023. Assessing large language
models on climate information. arXiv preprint
arXiv:2310.02932.

Max Callaghan, Carl-Friedrich Schleussner, Shruti Nath,
Quentin Lejeune, Thomas R Knutson, Markus Re-
ichstein, Gerrit Hansen, Emily Theokritoff, Marina
Andrijevic, Robert J Brecha, et al. 2021. Machine-
learning-based evidence and attribution mapping of
100,000 climate impact studies. Nature climate
change, 11(11):966-972.

CDP. 2022. Cdp climate change 2022 scoring methodol-
ogy. https://guidance.cdp.net/en/guidance?
cid=30&ctype=theme&idtype=ThemeID&otype=
ScoringMethodology. Accessed: 2025-01-16.

Cheng-Han Chiang, Wei-Chih Chen, Chun-Yi Kuan,
Chienchou Yang, and Hung-yi Lee. 2024. Large
language model as an assignment evaluator: Insights,
feedback, and challenges in a 1000+ student course.
arXiv preprint arXiv:2407.05216.

Travis G Coan, Constantine Boussalis, John Cook, and
Mirjam O Nanko. 2021. Computer-assisted classi-
fication of contrarian claims about climate change.
Scientific reports, 11(1):22320.


https://guidance.cdp.net/en/guidance?cid=30&ctype=theme&idtype=ThemeID&otype=ScoringMethodology
https://guidance.cdp.net/en/guidance?cid=30&ctype=theme&idtype=ThemeID&otype=ScoringMethodology
https://guidance.cdp.net/en/guidance?cid=30&ctype=theme&idtype=ThemeID&otype=ScoringMethodology

Chiara Colesanti Senni, Tobias Schimanski, Julia Bin-
gler, Jingwei Ni, and Markus Leippold. 2024. Com-
bining ai and domain expertise to assess corporate
climate transition disclosures. Available at SSRN
4826207.

Charl De Villiers, Ruth Dimes, and Matteo Molinari.
2024. How will ai text generation and processing im-
pact sustainability reporting? critical analysis, a con-
ceptual framework and avenues for future research.
Sustainability Accounting, Management and Policy

Journal, 15(1):96-118.

Thomas Diggelmann, Jordan Boyd-Graber, Jannis Bu-
lian, Massimiliano Ciaramita, and Markus Leip-
pold. 2020. Climate-fever: A dataset for verifica-
tion of real-world climate claims. arXiv preprint
arXiv:2012.00614.

Dario Garigliotti. 2024. Sdg target detection in environ-
mental reports using retrieval-augmented generation
with llms. In Proceedings of the 1st Workshop on
Natural Language Processing Meets Climate Change
(ClimateNLP 2024), pages 241-250.

Kai Gehring and Matteo Grigoletto. 2023. Analyzing
climate change policy narratives with the character-
role narrative framework.

Markus Leippold, Dominik Stammbach, Nicolas We-
bersinke, Julia Anna Bingler, and Mathias Kraus.
2023. Environmental claim detection. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics, pages 1051-1066. As-
sociation for Computational Linguistics.

Yiwei Luo, Dallas Card, and Dan Jurafsky. 2020. De-
tecting stance in media on global warming. arXiv
preprint arXiv:2010.15149.

Yunfang Luo, Tao Yang, Qingan Li, Qiang Liu, and Xil-
ing Cui. 2024. Unmasking esg exaggerations using
generative artificial intelligence.

Wayne Moodaley and Arnesh Telukdarie. 2023. Green-
washing, sustainability reporting, and artificial intelli-
gence: A systematic literature review. Sustainability,
15(2):1481.

Gaku Morio and Christopher D Manning. 2023. An nlp
benchmark dataset for assessing corporate climate
policy engagement. Advances in Neural Information
Processing Systems, 36:39678-39702.

Jingwei Ni, Julia Bingler, Chiara Colesanti-Senni, Math-
ias Kraus, Glen Gostlow, Tobias Schimanski, Do-
minik Stammbach, Saeid Ashraf Vaghefi, Qian Wang,
Nicolas Webersinke, et al. 2023. Chatreport: Democ-
ratizing sustainability disclosure analysis through
llm-based tools. arXiv preprint arXiv:2307.15770.

Jakub Piskorski, Nikolaos Nikolaidis, Nicolas Ste-
fanovitch, Bonka Kotseva, Irene Vianini, Sopho
Kharazi, Jens P Linge, et al. 2022. Exploring data
augmentation for classification of climate change de-
nial: Preliminary study. In Text2Story@ ECIR, pages
97-109.

27

Jordi Planas, Daniel Firebanks-Quevedo, Galina Nay-
denova, Ramansh Sharma, Cristina Taylor, Kathleen
Buckingham, and Rong Fang. 2022. Beyond model-
ing: Nlp pipeline for efficient environmental policy
analysis. arXiv preprint arXiv:2201.07105.

David Rolnick, Priya L Donti, Lynn H Kaack, Kelly
Kochanski, Alexandre Lacoste, Kris Sankaran, An-
drew Slavin Ross, Nikola Milojevic-Dupont, Natasha
Jaques, Anna Waldman-Brown, et al. 2022. Tack-
ling climate change with machine learning. ACM
Computing Surveys (CSUR), 55(2):1-96.

Aymeric Roucher. 2025. Using llm-as-a-judge
for an automated and versatile evaluation.
https://huggingface.co/learn/cookbook/
en/11m_judge. Accessed: 2025-01-16.

Tobias Schimanski, Julia Bingler, Camilla Hys-
lop, Mathias Kraus, and Markus Leippold. 2023.
Climatebert-netzero: Detecting and assessing net
zero and reduction targets. arXiv preprint
arXiv:2310.08096.

Guijin Son, Hyunjun Jeon, Chami Hwang, and Hanearl
Jung. 2024. Krx bench: Automating financial bench-
mark creation via large language models. In Pro-
ceedings of the Joint Workshop of the 7th Financial
Technology and Natural Language Processing, the
5Sth Knowledge Discovery from Unstructured Data
in Financial Services, and the 4th Workshop on Eco-
nomics and Natural Language Processing@ LREC-
COLING 2024, pages 10-20.

Dominik Stammbach, Nicolas Webersinke, Julia Anna
Bingler, Mathias Kraus, and Markus Leippold. 2022.
Environmental claim detection. arXiv preprint
arXiv:2209.00507.

Manfred Stede and Ronny Patz. 2021. The climate
change debate and natural language processing. In
Proceedings of the 1st Workshop on NLP for Positive
Impact, pages 8—18.

Saeid Ashraf Vaghefi, Dominik Stammbach, Veruska
Muccione, Julia Bingler, Jingwei Ni, Mathias
Kraus, Simon Allen, Chiara Colesanti-Senni, Tobias
Wekhof, Tobias Schimanski, et al. 2023. Chatcli-
mate: Grounding conversational ai in climate science.
Communications Earth & Environment, 4(1):480.

Chihang Wang, Yuxin Dong, Zhenhong Zhang, Ruo-
tong Wang, Shuo Wang, and Jiajing Chen. 2024.
Automated genre-aware article scoring and feed-
back using large language models. arXiv preprint
arXiv:2410.14165.

Nicolas Webersinke, Mathias Kraus, Julia Anna Bin-
gler, and Markus Leippold. 2021. Climatebert: A
pretrained language model for climate-related text.
arXiv preprint arXiv:2110.12010.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.


https://huggingface.co/learn/cookbook/en/llm_judge
https://huggingface.co/learn/cookbook/en/llm_judge

Marco Wrzalik, Florian Faust, Simon Sieber, and
Adrian Ulges. 2024. Netzerofacts: Two-stage emis-
sion information extraction from company reports.
In Proceedings of the Joint Workshop of the 7th Fi-
nancial Technology and Natural Language Process-
ing, the 5th Knowledge Discovery from Unstructured
Data in Financial Services, and the 4th Workshop
on Economics and Natural Language Processing @
LREC-COLING 2024, pages 70-84.

Yiqing Xie, Sheng Zhang, Hao Cheng, Pengfei Liu, Ze-
lalem Gero, Cliff Wong, Tristan Naumann, Hoifung
Poon, and Carolyn Rose. 2024. Doclens: Multi-
aspect fine-grained medical text evaluation. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 649-679.

Tik Yu Yim, Yuxuan Zhang, Wenting Tan, Tak-Wah
Lam, and Siu Ming Yiu. 2023. Meticulously ana-
lyzing esg disclosure: A data-driven approach. In
2023 IEEE International Conference on Big Data
(BigData), pages 2884-2889. IEEE.

Shengbin Yue, Wei Chen, Siyuan Wang, Bingxuan Li,
Chenchen Shen, Shujun Liu, Yuxuan Zhou, Yao Xiao,
Song Yun, Xuanjing Huang, et al. 2023. Disc-lawllm:
Fine-tuning large language models for intelligent le-
gal services. arXiv preprint arXiv:2309.11325.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595-46623.

28

A Probabilistic Weighting

The naive way to compute a score for a given re-
sponse would be to simply take the outputted token
of the LLLM as the score. However, since LLMs
sample their next tokens from a distribution of out-
comes, this naive approach can be noisy, especially
for small sample sizes (one sample for numerical
rating, for example). Instead, we take a weighted
average of the possible next tokens, weighted by
the probability of sampling that token.

For any given prompt, OpenAl makes these prob-
abilities (called “logprobs”, because they are com-
puted in log space) available via their API. We find
that using logprobs improves the separation over-
all between A-List and non-A-List companies, as
shown in Table 3.

Table 3: Weighting by lobprobs improves separation
between score distributions of A-List and non-A-List
responses.

TVD KS EMD

Sampled output 0.3874 0.3874 0.1802
Logprob-weighted 0.4413 0.4422 0.1842

Scoring System

B Score Distributions for Prompt
Variants

We show the score distributions for A-List and
non-A-List responses under each prompt variant
in Figure 7 for the numerical rating system and
Figure 8 for the pairwise comparison system.

C Further Notes on LLMJ Robustness
against Greenwashing

We present a few additional observations about
comparing the numerical rating and pairwise com-
parison scoring systems against LLM-greenwashed
responses.

The two scoring systems have similar distribu-
tions of overall score increases. Figure 9 shows
the distribution of normalized change in score for
each set of greenwashed responses. Overall, the dis-
tributions are very similar, with comparable peaks
and tails. Notably, the tendency of the numeri-
cal ratings system to give near-integral values re-
sults in two notable peaks at 0 and 1/4 in both the
“fixed accuracy” and “fixed accuracy and length”
cases (whereas the pairwise distribution only has
one peak). This likely contributes to the overall
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Figure 7: Distribution of numerical rating scores for various prompt configurations.
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Figure 9: The two scoring systems show similar score
increases under greenwashing. Numerical ratings con-
centrate around whole-number increases. Looser con-
straints result in higher score increases.

larger average score increase of the numerical rat-
ings system: a score that one might “expect” to get
a 0.6-point boost might instead get rounded up to
1.

The difference between the “fixed accuracy and
length” and “fixed accuracy” sets is notable. In
principle, the length should have little bearing on
the score of the response, especially when con-
trolling for accuracy. However, there is a fairly
noticeable jump in score increases between the two
sets. This is probably due to a combination of two
factors which are hard to disentangle: (a) many
of the so-called “fixed accuracy” greenwashed re-
sponses have inaccurate, falsified information, and
(b) the LLLM-as-a-Judge system has some as-
sociation between longer responses and higher
scores (even if the extra text contains only “fluff”).
This correlation can be seen in Figure 10: on av-
erage, a response received 0.125 more points for
each 10% increase in length.

Finally, while the ratings and pairwise scores
were quite correlated on the original un-
greenwashed dataset (see Figure 3, duplicated as
Figurella for reference), they are substantially
less correlated on the greenwashed responses (Fig-
ure 11b). In part, this is because the greenwashed
scores are much more compressed into the numer-
ical rating range of 3-4, while remaining quite
“spread out” on the pairwise scale. However, we
did not find any systematic patterns around which
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Figure 10: Responses that were lengthened more during
greenwashing tended to see a larger increase in their
scores.

greenwashed responses scored very highly on one
system but very poorly on the other. We specu-
latively note that this phenomenon seems related
to the idea of Goodhart’s Law (“When a measure
becomes a target, it ceases to be a good measure”):
optimizing towards some scoring system (that is,
greenwashing) makes the responses much more
noisy on that same scoring system, rendering it less
useful.

D Controlling for Length

Our evaluation of our scoring systems against A-
List and non-A-List sets of company responses is
a purely observational study: that is, we do not
directly measure causal effects of the content of
the response on the score. Instead, we merely es-
tablish correlation between high-scoring responses
and presence on the CDP A-List. One reasonable
objection might be that the LLMJ system picks up
only on some superficial trait(s) of the responses
(e.g., length, or some other lexical attribute) that are
highly correlated with being on the A-List without
truly contributing to it. For example, it is possible
that good responses tend to be lengthy (and hence
companies with long responses tend to be on the A-
List), and that the LLMJ system is merely scoring
the responses based on length rather than content.
In Appendix C, we observed that the “fixed ac-
curacy” set of greenwashed responses received sub-
stantially higher scores than the “fixed length and
accuracy” set. This could be an indication that the
LLMJ systems are being misled by the mere length
of the response (rather than the content involved in



Mumerical ratings score

157 xx x y=0.02x +2.02
XX
104 # r’=0.696
0 20 40 60 80 100

Pairwise comparison score

(a) On the original responses, the two scoring systems produce
highly-correlated results (72 = 0.70).

5.0 1

4.5

4.0 1

3.5 1

3.0

2.5

2.0

1.5 A

Numerical ratings score (greenwashed)

y=0.01x +2.75

1.0 4 r’=0.631

T T
0 20 40 60 80
Pairwise comparison score (greenwashed)

T
100

(b) However, on the greenwashed responses, the scores are
substantially less correlated (7“2 = 0.63).

Figure 11: Greenwashed responses receive less-
correlated scores from pairwise comparisons and nu-
merical ratings than the original responses.

the extra length).

To address the possibility of length being a con-
founding factor, we run a simple experiment in
which we control for content while varying length.
We use the same uniformly sampled set of 100 non-
A-list companies from Section 5 and double the
length of the companies’ responses by repeating
the response twice. We then use the numerical rat-
ing system (with one-shot learning) to score these
new responses. We compare the original ratings to
the new ratings in Figure 12. We see that nearly all
scores are at or below the 4y = «x line, and in fact
most of the points are below the line, indicating
that doubling the length reduced the score.

This strongly suggests that length is not a con-
founding factor, and that the increase in score of
the non-length-constrained greenwashed responses
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containing the same content received similar scores.

was due to changes in the actual content of the
response rather than length alone.
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Abstract

Large Language Models (LLMs) have demon-
strated exceptional performance in general
knowledge and reasoning tasks across various
domains. However, their effectiveness in spe-
cialized scientific fields like Chemical and Bi-
ological Engineering (CBE) remains underex-
plored. Addressing this gap requires robust
evaluation benchmarks that assess both knowl-
edge and reasoning capabilities in these niche
areas, which are currently lacking. To bridge
this divide, we present a comprehensive em-
pirical analysis of LLM reasoning capabilities
in CBE, with a focus on Ionic Liquids (ILs)
for carbon sequestration—an emerging solu-
tion for mitigating global warming. We de-
velop and release an expert-curated dataset of
5,920 examples designed to benchmark LLMs’
reasoning in this domain. The dataset incorpo-
rates varying levels of difficulty, balancing lin-
guistic complexity and domain-specific knowl-
edge. Using this dataset, we evaluate three
open-source LLMs with fewer than 10 billion
parameters. Our findings reveal that while
smaller general-purpose LLMs exhibit basic
knowledge of ILs, they lack the specialized
reasoning skills necessary for advanced appli-
cations. Building on these results, we discuss
strategies to enhance the utility of LLMs for
carbon capture research, particularly using ILs.
Given the significant carbon footprint of LLMs,
aligning their development with IL research
presents a unique opportunity to foster mu-
tual progress in both fields and advance global
efforts toward achieving carbon neutrality by
2050. Dataset link: https://github.com/
sougata-ub/11lms_for_ionic_liquids

1 Introduction

Despite notable advancements in modeling and
simulation methods (van Gunsteren and Mark,
1998; van Gunsteren et al., 2018; Frenkel and

“Both authors contributed equally to this paper.
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Smit, 2023), fundamental research in CBE con-
tinues to rely heavily on experimental results. As
computational models (Zhao et al., 2023), LLMs
are predominantly advantageous in computation-
intensive fields, making their precise role in en-
abling progress within experiment-driven domains
like CBE unclear. Nonetheless, recent break-
throughs in material discovery (Lu et al., 2023; Luu
and Buehler, 2024; Lu et al., 2024; Buehler, 2023b)
and protein engineering (Jumper et al., 2021; Liu
et al., 2022; Yu et al., 2022b,a; Hu and Buehler,
2022; Khare et al., 2022) demonstrate the potential
of Al technologies to contribute meaningfully to
such fields. To unlock the potential applications of
LLMs in CBE, it is critical to assess their knowl-
edge and reasoning capabilities. However, this
requires robust, domain-specific evaluation bench-
marks, which are currently lacking in CBE.

While evaluation frameworks exist in related
fields, they predominantly rely on cloze-style tasks
to assess LLMs’ knowledge capacity or focus on
narrow, task-specific evaluations (Zhao et al., 2024;
Murakumo et al., 2023; Zhang et al., 2024; Guo
et al., 2023; Bran et al., 2023). Such approaches
are often insufficiently general and may not ade-
quately capture the complexities of CBE. Given
that LLMs have been trained on a vast corpus of
publicly available online data (Villalobos et al.,
2022, 2024), studies (Chu et al., 2025) have shown
that these models can easily memorize and regurgi-
tate information during cloze-style factual assess-
ments. This limitation provides only a superficial
understanding of LLM capabilities across domains.
Furthermore, the concept of knowledge extends
beyond factual recall to include its application (p-
knowledge) (Fierro et al., 2024). Therefore, evalu-
ating knowledge capacity alone fails to capture rea-
soning ability, hindering the practical deployment
of LLMs, particularly in fields like CBE, where
their utility remains uncertain. To address this gap,
we introduce a reasoning evaluation test-bed de-
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signed to more effectively estimate LLMs’ applica-
bility in such domains.

Global warming caused by greenhouse gas emis-
sions remains a critical challenge (Wang et al.,
2016; Sanz-Pérez et al., 2016), necessitating accel-
erated research into effective carbon capture solu-
tions (Sheridan et al., 2018). Meeting the ambitious
carbon-neutral target of the 2015 Paris Agreement
by 2050 (Rhodes, 2016) requires not only reducing
carbon emissions but also investing in technologies
to remove CO; from the atmosphere. Among po-
tential solutions, lonic Liquids (ILs) (Zanco et al.,
2021) stand out as promising candidates for CO;
separation processes due to their non-volatile, non-
toxic nature ("green solvents"), ease of regenera-
tion, and high CO, absorption efficiency. However,
experimentation with ILs and achieving industrial
scalability are resource-intensive and costly, a chal-
lenge that Al technologies like LLMs could help
address. In this paper, we take a foundational step
toward exploring the role of LLMs in supporting
carbon capture research using ILs. Specifically, we
assess the potential of general-purpose LLMs in
domain-specific scenarios by constructing a test
bed of 5,920 expert-curated examples, spanning
varying levels of difficulty, to evaluate the factual
knowledge and reasoning capabilities of these mod-
els in the context of ILs. We benchmark three open-
weight LLMs—I lama 3.1-8B (Dubey et al., 2024),
Mistral-7B (Jiang et al., 2023), and Gemma-9B
(Team et al., 2024)—on this dataset. Given the ab-
sence of prior research in this area, our work repre-
sents a critical step toward identifying the potential
applications of LLMs in IL research. Furthermore,
leveraging LLMs for CO, capture research offers
an opportunity to indirectly address concerns about
their environmental impact (Patterson et al., 2021;
Strubell et al., 2019; Faiz et al., 2024; Li et al.,
2023; Rillig et al., 2023) by aligning their use with
climate solutions. Our contributions are as follows:

* Dataset Creation: Using ILs for carbon cap-
ture as a use case, we construct and publicly
share' a textual entailment test bed contain-
ing 5,920 expert-curated samples designed to
evaluate LLM reasoning capabilities in CBE.

Benchmarking: We systematically bench-
mark three open-weight LLMs—ILlama 3.1-
8B, Mistral-7B, and Gemma-9B—on the test
bed and share the resulting insights.

'Dataset  available  at: https://github.com/
sougata-ub/llms_for_ionic_liquids
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* Analysis: We discuss the implications of our
results and the broader potential for LLMs to
advance IL research and CO, capture tech-
nologies.

2 Related Work

2.1 Ionic Liquids for Carbon Capture

COP21 showed that amongst 196 participating
countries, China, the United States, and India
comprise the top three nations by share of world-
wide CO, emissions. While the United States has
pledged to reach “net-zero” by 2050, the deadlines
set by China and India (the two most populous
countries) are 2060 and 2070 respectively (Rhodes,
2016; Guiot and Cramer, 2016; Dimitrov, 2016;
Robbins, 2016). In an attempt to offset the rising
atmospheric carbon dioxide levels, carbon seques-
tration has emerged as an effective field of research
and the timely development of materials and meth-
ods is pivotal for the efficient capture of CO, (Wang
et al., 2016; Sanz-Pérez et al., 2016). Ionic Liquids
have presented themselves as an excellent solu-
tion for CO; capture due to their environmentally
friendly nature (Blanchard et al., 1999, 2001; Pérez-
Salado Kamps et al., 2003; Anthony et al., 2002;
Zeng et al., 2017; Husson-Borg et al., 2003; Aghaie
et al., 2018; Ramdin et al., 2012). Thorough experi-
mentation, with ILs, to provide a practical solution
is time-conducive and entails high cost (Sheridan
et al., 2018; Maginn, 2009). In that regard, various
machine learning methods have found use to alle-
viate dependence on experiments (Cao et al., 2018;
Baskin et al., 2022; Dhakal and Shah, 2022; Feng
et al., 2022; Paduszynski, 2016).

2.2 LLMs for Scientific Research

Recently, LLMs (Brown, 2020; Chowdhery et al.,
2023; Taylor et al., 2022; OpenAl et al., 2024) have
gained significant popularity with a wide range
of possibilities (Ge et al., 2024; Bubeck et al.,
2023; Nadkarni et al., 2021; Beltagy et al., 2019;
Schick et al., 2024; Buehler, 2023a; Luu et al.,
2023; Mialon et al., 2023; Wei et al., 2023), and
the integration of these transformer-based mod-
els into the fields of materials science and dis-
covery has yielded tremendous results. Leverag-
ing the abilities of LLMs has been beneficial in
various downstream tasks such as protein design
and folding (Jumper et al., 2021; Liu et al., 2022;
Yu et al., 2022b,a; Hu and Buehler, 2022; Khare
et al., 2022), material discovery (Lu et al., 2023;
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Luu and Buehler, 2024; Lu et al., 2024; Buehler,
2023b), educational tasks (Lim et al., 2023; Milano
et al., 2023; Inguva et al., 2021) and chemistry-
related tasks (Castro Nascimento and Pimentel,
2023; White, 2023; Jablonka et al., 2023). The
reliability of LLMs is still a massive topic of dis-
cussion, and their accuracy is often determined by
the size and complexity of the model. Despite their
promises, present pitfalls include the issues of hal-
lucinations and fact recall, which warrants a careful
validation of the model’s output and its eventual
ramifications (Hu and Buehler, 2023; Azamfirei
et al., 2023; Kandpal et al., 2023; Varshney et al.,
2023; Ji et al., 2023; McKenna et al., 2023; Har-
rer, 2023). Invariably, training and using such net-
works comes at a huge environmental cost, largely
in terms of carbon emissions (Li et al., 2023; Pat-
terson et al., 2021; Strubell et al., 2019; Faiz et al.,
2024; Rillig et al., 2023).

The power of LLMs can aid carbon capture by
helping researchers with their advances to address
the growing problem of global warming and offset
the model’s carbon footprint to reach the end goal
of ’net-zero’ carbon emissions.

3 A Practical Test for Knowledge

Although there are several standard definitions of
knowledge in Philosophy (Sartwell, 1992; Nozick,
2016; Williamson, 2005; Zagzebski, 2017; Austin,
1961), the most prevalent ones for non-human enti-
ties like LL.Ms are tb and p-knowledge (Fierro et al.,
2024). Most knowledge probing tasks test for tb-
knowledge, where the model passes the test if it can
recall an answer. For example, probing for factual
questions like "What is the capital of Germany?"
Such tests are weak estimates of knowledge and
hold little pragmatic significance, especially in do-
mains like CBE, where the intended use of LLMs
is still unclear. LLMs as reasoners can be of bet-
ter practical use in such domains. Although some
methods estimate the model’s uncertainty (Huang
et al., 2024, 2023; Ye et al., 2024; Geng et al.,
2023), they still pertain to th-knowledge. How-
ever, a more complete measure of knowledge is p-
knowledge, which tests a model’s capability to use
knowledge in practical tasks. For example, sociode-
mographic prompting (Saha et al., 2025; Pandey
et al., 2025; Li et al., 2024b; AlKhamissi et al.,
2024; Nadeem et al., 2021; Nangia et al., 2020;
Wan et al., 2023; Jha et al., 2023; Li et al., 2024a;
Cao et al., 2023; Tanmay et al., 2023; Rao et al.,
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2023) such as "What would a German find difficult
to understand from a text X?" necessitates a model
to reason from a group’s perspective, which re-
quires prerequisite knowledge. Motivated to create
stronger test beds, we set up an entailment task to
benchmark LLMs’ factual capacity in CBE, where
the model is provided a claim and a list of propo-
sitions and is tasked with determining all proposi-
tions that entail the claim or none. Thus, testing the
model’s reasoning capabilities in a practical setting
is warranted.

3.1 Argument Structures

A claim constitutes one or more facts (proposi-
tions), where some are evident (explicit) from
the text, and some are assumed (implicit) to be
known by the reader (enthymemes) (Walton, 1996;
Besnard and Hunter, 2008; Walton et al., 2008;
Bitzer, 2020). Within a field (such as CBE), the
degree of knowledge of the assumed propositions
is subjective and varies by person, which impacts
the understanding of the claim. For example, the
claim "Ionic Liquids are low-melting, non-volatile
salts which categorize them within the green sol-
vents category" explicitly informs that (i) Ionic Lig-
uids are low-melting, non-volatile salts. (ii) Ionic
Liquids are categorized as green solvents. It also
entails that low-melting and non-volatile salts are
green solvents, which might be unknown (or par-
tially known) to someone from CBE?. The degree
of knowledge about the implicit assumption is sub-
jective and varies within the domain®. We aim to
test this domain-specific knowledge in LLMs via
an entailment task.

3.2 The Entailment Task

Hypothesizing that knowledgeable agents should
perform consistently, irrespective of the adver-
saries, we create an entailment task with the fol-
lowing setups to benchmark LLMs’ reasoning ca-
pacity, where the model is provided a claim and
a list of propositions and tasked to determine all
propositions that entail the claim, if applicable.
1. Change the number of adversaries: (i) Keep-
ing the number of entailing propositions constant
for a claim, the number of non-entailing propo-
sitions should not affect the model’s entailment
“This is different from general knowledge. For example,
understanding the claim also requires knowledge of "low-
melting, non-volatile salts" and "green solvents", which is an
assumed prerequisite for a domain expert.

3We are only interested in domain-specific knowledge. An
outsider might not possess such knowledge.



performance. (ii) When provided with only non-
entailing options and an additional "none of the
above" option, a consistent agent should always
choose the "none"” option. A drop in performance
indicates a lack of knowledge and supposedly more
reliance on linguistic cues for entailment.

2. Introduce linguistic perturbations: A knowl-
edgeable agent should be invariant to paraphrased
options. Failure to do so indicates reliance on lin-
guistic cues instead of factual cues for entailment.
2. Apply common sense: Knowledgeable agents
should not be derailed by incorrect facts that can
be discerned by common sense.

3.3 Dataset Creation

The dataset is created in multiple phases, employ-
ing two expert annotators, one with a background
in CBE and another from Computer Science and
Linguistics (CSL). The CBE expert has domain
knowledge of ILs for carbon capture, while the
CSL expert is generally unaware of the domain.
Figure 1 illustrates the data creation pipeline with
an actual example. We detail the pipeline below:
Phase 1 encompassed knowledge creation, where
the CBE expert constructed paragraphs capturing
the different aspects of carbon capture using ionic
liquids. The aspects encompassed the need for car-
bon capture, ionic liquids, their physical and chem-
ical characteristics, and their advantages. Next,
the annotator extracted claims from the paragraphs,
which are sentences containing salient knowledge
pertaining to ionic liquids for carbon capture, yield-
ing 74 in total.

Phase 2 encompassed identifying the explicit and
implicit propositions from each claim and imple-
mented in two stages: (i) LLM-based annotation:
We prompted Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023) to identify the explicit and implicit proposi-
tions from a claim. As depicted in Figure 5 (Ap-
pendix A), the prompt comprised a short task de-
scription and three examples of how to perform
the task, followed by the actual claim for annota-
tion. (ii) Expert evaluations: The CBE expert
extensively evaluated the model response by edit-
ing, deleting, or unchanging each model-identified
proposition. Additionally, for each claim, the ex-
pert added propositions that were missed by the
model (if any). Overall, 48 (65%) of the 74 LLM-
based annotations were deemed correct by the ex-
pert and were unmodified, yielding 164 proposi-
tions across 74 claims.

Phase 3 encompassed data standardization. The
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propositions, being fundamental pieces of knowl-
edge, are universal. Hence, in this phase, we stan-
dardized the propositions across all claims. Us-
ing sentence transformers (Reimers and Gurevych,
2019), we clustered the propositions by their em-
bedding cosine-similarity* and computationally
marked propositions belonging to the same cluster
as equivalent. The CBE expert evaluated the clus-
tering results, which were accurate in only 28% of
cases. The expert annotated and rectified the in-
correct cluster assignments, yielding 125 universal
propositions across all 74 claims.

Phase 4 involved constructing false variants of the
propositions at three difficulty levels: (i) Low: In-
valid version of a proposition, and can be discerned
using common sense reasoning. For example, the
proposition "lonic liquids can be categorized as
conventional or task-specific” was augmented to
"lonic liquids can be categorized as conventional
or task-specific only while recharging batteries."
(i) Medium: Invalid version of a proposition that
might need a mix of common sense and knowl-
edge of science for discerning. For example, "Ionic
liquids can be categorized as conventional or task-
specific due to specific environmental conditions
and chemical habitability." (iii) High: Determining
invalidity requires considerable knowledge about
ILs. For example, "lonic liquids can be categorized
as conventional or task-specific based on molecu-
lar weight, isotope atom count, and hydrogen bond-
ing capabilities.” All variants were manually con-
structed by the CBE expert and evaluated by the
CSL expert, who does not know ILs. The CSL ex-
pert evaluated 60 random propositions (15 original
and 15 from each level of difficulty) by determining
if the proposition was correct or assigning a level
of difficulty if they thought it was incorrect. Com-
paring their response with the original labels, the
expert attained an F1 score of 67% in discerning
factual correctness. For the incorrect propositions,
the expert attained F1 scores of 80%, 15%, and
42% for levels 1, 2, and 3, indicating the difficulty
of the options for a non-expert.

In phase 5, we introduced linguistic variations
in the original and all three incorrect variants of
each proposition by paraphrasing. We prompted
the Llama-3.1-8B instruction-tuned variant (Dubey
et al., 2024) using the prompt "Paraphrase the fol-
lowing text without changing the meaning of the

*We used the ’all-MiniLM-L6-v2’ model for computing
embeddings.
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Group | Description | Id Experiment Correct options Incorrect options Median F1 Std Dev F1
Present Para- Difficulty Para- Gemma | Llama | Mistral | Gemma | Llama | Mistral
phrased phrased
. 1 | orig+random No 49.0 66.0 55.0 21.7 16.1 18.9
0 | Baselines 2 | paratrandom Yes Yes | Random | No 795 | 630 | 570 218 | 140 | 185
3 | none+levell Level 1 9.0 30.0 1.5 55 6.8 31
Only 4 | none+level2 Level 2 No 2.0 29.0 0.0 4.9 12.3 1.0
1 providing 5 | none+level3 No No Level 3 3.0 21.5 0.0 43 8.6 0.5
incorrect 6 | none+levell-para Level 1 3.0 17.5 0.0 1.7 73 0.5
options 7 | none+level2-para Level 2 Yes 0.0 17.5 0.0 2.0 6.4 0.5
8 | none+level3-para Level 3 1.0 18.5 0.0 5.3 2.4 0.0
Difficulty le- | 9 | orig+levell Level 1 35.0 73.5 62.5 26.6 14.6 19.6
2 vel of incor- | 10 | orig+level2 Yes No Level 2 No 32.0 68.5 60.5 19.9 12.3 18.7
rectoptions | 11 | orig+level3 Level 3 29.5 67.5 58.0 18.0 12.1 16.9
Paraphrasing | 12 | para+levell Level 1 40.5 66.5 62.0 24.1 144 20.1
3 the correct 13 | para+level2 Yes Yes Level 2 No 34.5 66.0 60.0 233 13.5 18.1
options 14 | para+level3 Level 3 31.5 64.0 60.0 18.8 13.0 17.0
Paraphrasing | 15 | orig+levell-para Level 1 39.5 66.0 57.0 22.1 11.7 17.3
4 the incorrect | 16 | orig+level2-para Yes No Level 2 Yes 35.5 64.5 57.5 17.0 11.1 17.1
options 17 | orig+level3-para Level 3 34.0 63.0 58.5 13.5 10.5 16.6
Paraphrasing 18 | para+levell-para Level 1 335 63.5 58.0 10.7 11.2 16.9
5 all options 19 | para+level2-para Yes Yes Level 2 Yes 35.5 64.5 59.5 15.6 11.8 17.6
20 | para+level3-para Level 3 36.5 60.5 58.5 11.9 10.8 17.8

Table 1: Definitions
experiments with 5, 7, 10, and 15 options

text. Text: <text>"and resorted to greedy decoding
for paraphrasing.

Using the 74 claims, the 125 original propositions,
and their incorrect and paraphrased variants, we
constructed the test set for the entailment task in
phase 6. For each claim, we created variants with
5,7, 10, and 15 propositions as options. Listed in
Table 1, we constructed 20 experiments using dif-
ferent permutations of the original and paraphrased
versions of the correct and incorrect propositions,
yielding a dataset of 5,920 examples. On average,
the claims contain 14 words, the original propo-
sitions contain 12, and the incorrect propositions
contain 17.
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of experiments and aggregated model results (median F1 and standard deviation) across
. The best scores are highlighted in bold.

3.4 Experiments

Listed in Table 1, we group the 20 experiments into
five groups and test our three hypotheses in Section
3.2. Comprising two experiments, Group O serves
as the baseline. By only providing incorrect propo-
sitions with their difficulty and stylistic variations,
the experiments in Group 1 test the model’s knowl-
edgeability by measuring the propensity of select-
ing the "none" option. Group 2 quantifies the ef-
fect of varying the difficulty levels of the incorrect
options while keeping the original propositions un-
changed. Group 3 perturbs the original proposition
by paraphrasing and measures the impact of chang-
ing the incorrect option difficulty levels. Groups
4 and 5 measure a model’s invariance to linguistic



variations and the difficulty levels of the incorrect
options. For all groups, we experiment with 5, 7,
10, and 15 propositions as options to test for the
model’s capability of being invariant to additional
incorrect options. Except for group 1, the number
of correct options varies from 1 to 5. As depicted
in Figure 1 (Phase 6), we construct prompts from
each example and probe the Llama-3.1-8B-Instruct,
Mistral-7B-Instruct-v0.3, and gemma-2-9b-it, set-
ting the temperature to 0. We process each model
response and use Llama-3.1-8B-Instruct to rectify
ill-formatted outputs. Figures 6 and 7 (Appendix
A) illustrate the prompts for the entailment task and
correcting the ill-formatted LLM responses.

4 Results and Observations

Table 1 shares the model-wise median F1 score and
the standard deviation across all options (5, 7, 10,
and 15). Figures 2, 3, and 4 plot the precision and
recall scores for all groups of experiments. The
baseline results (Group 0) in Table 1 indicate that
LLMs are knowledgeable about ionic liquids and
carbon capture. Llama performs the best, followed
by Mistral and Gemma. However, paraphrasing the
original propositions (Id 2) reduces Llama’s perfor-
mance, which contrasts with Mistral and Gemma,
where the performance increases. This effect of
stylistic perturbations on the model results shows a
tendency to rely on linguistic cues.

Effect of the number of incorrect options

We observe a correlation between model perfor-
mance and the number of incorrect options in Fig-
ures 2, 3, and 4. The precision scores for all models
drop with more incorrect options, indicating an ad-
verse effect of the number of adversaries on their
reasoning capabilities. For Llama and Mistral, the
recall scores remain mostly consistent, but drop for
Gemma. Nonetheless, as depicted in Table 1, the
standard deviation of Llama is the lowest, followed
by Mistral and Gemma. For Llama and Mistral,
this decline in precision but constant recall scores
indicates a propensity to make more predictions
as the number of options increases without chang-
ing the prediction for the correct propositions. On
the contrary, increasing the number of adversaries
causes Gemma to change the prediction for the
correct propositions, indicating an unreliability of
utilizing facts for reasoning.

Effect of the difficulty of incorrect options
Comparing experiment Id 1 with Group 2 and
Id 2 with Group 3 in Table 1 and Figure 2,
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we observe that increasing the difficulty level of
the adversarial facts hampers the model perfor-
mance for Llama and Mistra, which is the oppo-
site for Gemma. The comparisons indicate that
the experiments comprising random adversaries
(Orig/parat+random) are more challenging test
beds than the difficulty-controlled adversaries, es-
pecially for Llama and Mistral. We hypothesize
that since we gradually balance between common
sense and domain-specific knowledge across three
difficulty levels, higher performance in level 1
can be due to the model’s capability of common
sense reasoning, which decreases as the difficulty
increases, requiring more domain-specific knowl-
edge. However, using random adversaries presents
less scope for common-sense reasoning and re-
quires domain-knowledge-based reasoning for en-
tailment resolution. Gemma, on the other hand,
is more reliant on syntactic cues than reasoning.
Hence, it falters when provided with factually incor-
rect yet syntactically similar options to the claim.
This is also evident from Gemma’s decreasing re-
call scores in Figure 2, compared to Llama and
Mistral, which are more consistent.

Effect of only incorrect propositions as options
Compared to the baseline (Group 0) in Table 1, in
Group 1, the performance of all models drastically
reduces when presented with only incorrect facts
and a "none" option to choose from. Mistral and
Gemma perform worse than Llama, with median
F1 scores < 10 for all experiments and near zero for
some. All models perform worse with paraphrased
incorrect options. Figure 4 plots the precision,
recall, and f1 scores for Group 1 experiments. In-
terestingly, for all three models, sometimes the
precision increases with higher options in some
experiments. For Gemma, the precision scores in-
crease while the recall decreases with an increase
in incorrect choices. On the contrary, for Llama
and Mistral, the precision and recall scores increase
for some experiments. For Llama, presenting 7 and
10 options yields higher F1 scores for most experi-
ments compared to 5 options. Mistral yields higher
F1 scores when prompted with 7 choices compared
to other options. We hypothesize that for Llama
and Mistral, increasing the choices provides more
inter-option reasoning opportunities, resulting in
higher F1 scores. We also think the position of
the "none" option in the prompt might be a con-
founding variable, which we leave for future work.
Nonetheless, when only presented with incorrect
facts and a "none" option, the drastic reduction in
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Figure 3: Model-wise precision and recall for experiments in Group 4 (left) and Group 5 (right).

performance for all models indicates that although
LLMs contain facts about ionic liquids, they can’t
reliably utilize and reason with them for complex
tasks.

Effect of paraphrasing

Comparing Groups 2 and 3 in Table 1, although
paraphrasing the correct options reduces the F1
score across all difficulty levels for Llama and Mis-
tral, paraphrasing the incorrect options in Group 4
has a higher diminishing effect on the model per-
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formance than Group 2, which is the opposite for
Gemma. We hypothesize that this might be due to
Gemma’s reliance on linguistic cues for entailment
compared to Llama and Mistral, where Gemma
relies more on syntactic similarity than semantics.

Comparing Groups 3 and 5, paraphrasing the
incorrect options reduces the F1 score across all
difficulty levels for Llama and Mistral, which is
the opposite for Gemma, except for experiment 15.
Comparing Groups 4 and 5, paraphrasing the cor-
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rect options reduces the F1 score for Llama across
all difficulty levels. On the contrary, the F1 score
increases or remains the same for Gemma and Mis-
tral, except for experiment 18. We hypothesize that
since the correct and incorrect options share syntac-
tic similarities, they get equally transformed while
paraphrasing, causing their paraphrased versions
to maintain syntactic similarity, which weaker rea-
soning models like Gemma exploit. We leave the
testing out of this hypothesis as future work.

Overall, Llama performs best across all ex-
periments, followed by Mistral and Gemma.
Our results indicate that although LLMs possess
knowledge of ionic liquids and carbon capture,
their domain-specific reasoning capabilities are
limited. The performance drop in Group 1 experi-
ments is drastic for all models and sometimes near
zero for Mistral and Gemma, which questions their
reasoning capabilities.

5 Discussion

Our experiments indicate that smaller LLMs strug-
gle to coherently reason within the domain-specific
constraints and choose non-probable options in the
entailment task. This is likely because LLMs are
general-purpose and not geared to niche domains
such as ILs. We propose that LLMs should be fine-
tuned for CBE using curated datasets. Pre-training
the models on domain-specific data, fine-tuning us-
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ing PEFT (Mangrulkar et al., 2022) methods like
LoRA (Hu et al., 2021), or in-context learning and
efficient methods such as RAG (Lewis et al., 2020;
Gao et al., 2024) should help impart the domain-
specific knowledge and constraints, which requires
collaborative advancements in the intersection of
LLMs and CBE. Such domain-specific LLMs can
scale IL research by assisting researchers in the bot-
tlenecked areas of data analysis, experiment design,
and property predictions. Furthermore, they can
serve as educational guides to researchers willing
to gain familiarity with the field. This work should
be a valuable resource for researchers eager to eval-
uvate LLMs for varied fields and collaboratively
help attain the sustainability goals of the UN>.

6 Conclusion

Global warming remains a pressing challenge, ne-
cessitating scalable and interdisciplinary solutions
such as carbon capture. To address this need, we
propose leveraging LLLMs to support research on
Ionic Liquids, a promising avenue for carbon cap-
ture. As a foundational step, we construct and
publicly share an expert-curated dataset designed
to evaluate LL.Ms’ knowledge and reasoning ca-
pabilities within the specialized domain of Ionic
Liquids. Our benchmarking of three open-weight

>https://sdgs.un.org/goals



LLMs—Llama, Gemma, and Mistral—reveals that
while general-purpose models, particularly Llama,
demonstrate a strong grasp of Ionic Liquid-related
knowledge, they fall short in domain-specific rea-
soning tasks. Building on these findings, we out-
line potential pathways for LLMs to advance Ionic
Liquid research, including their use as agents in
simulations, reasoners for material discovery and
design, and educational tools to help researchers
familiarize themselves with the field. Moreover,
optimizing LLMs for climate research not only ad-
vances carbon capture efforts but also offers a dual
benefit by mitigating the models’ own carbon foot-
print. This alignment between Al innovation and
environmental goals supports the broader aim of
achieving carbon neutrality by 2050.

Limitations

This study has some notable limitations. Firstly,
we only evaluate three open-weight models with
less than 10B parameters for their knowledge and
reasoning ability with ILs. Although extraneous
experiments with larger and open-API models in-
dicate a similar trend, they are not quantified and
non-generalizable. Secondly, our entailment test
set is not an exhaustive resource for IL research.
It contains limited facts and only tests reasoning
capabilities through entailment. We need more
diverse datasets that probe the reasoning capabil-
ities of LLMs from multiple aspects. Thirdly, we
do not experiment with fine-tuning the models on
our dataset and measure their impact on reasoning,
which we intend as future work. Also, our work is
limited to two expert evaluators and might benefit
from multiple experts. Despite these limitations,
our research takes a foundational step in the inter-
disciplinary field of LLMs for ionic liquid research,
which is very nascent.

Ethics Statement

We confirm that all conducted experiments are
solely for academic purposes and adhere to eth-
ical standards. The expert evaluators were appro-
priately compensated for their tasks, following all
administrative and regulatory policies. The shared
dataset strictly pertains to ionic liquids. It does
not contain potentially explicit and sensitive con-
tent that might exhibit bias, be hurtful, or offend
anyone.
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[INST] ## Example 2

Below is another example of extracting the assumptions from a claim. The assumptions are ordered from the basic level to more complex.
Claim: Most ionic liquids tend to be costlier than ... and hence effective regeneration of ... ionic liquid batches. [[INST]

Assumptions:

1. lenic liquids used for carbon dioxide capture can be regenerated.

2. lonic liguids tend to be costlier than traditional solvents for carbon dioxide capture.

3. Effective regeneration of ionic liquids is important ... batches.

[INST] ## Example 3

Below is another example of extracting assumptions from claim. Note that the claim is a fact. Hence it does not contain any assumptions.
_< Claim: lonic liquids can be termed as conventional. [/INST]

Assumptions:

\.| 1. No assumptions as the claim is a fact.

[INST] Identify the assumption from the following claim. Order them from the basic level to more complex ones. Respond with none if the
claim is a fact.

Claim: Task-s ic_ionic liquids absorb carbon dioxide. [/INST]

Assumptions:

1. lonic liquids exist in various task-specific forms.

2. Carbon dioxide is a gas species that can interact with ionic liquids.

3-shot Examples

Prompt

Response”

Figure 5: Mistral 3-shot prompt to automatically extract and generate the missing assumptions from claims.

{"1": {'entails": False, 'confidence': 5}, '2": {'entails" True, 'confidence": 5}, '3": {'entails" True, 'confidence": 5}, '4" {'entails": False,
‘confidence”: 5}, 5" {entails": True, 'confidence": 5}, '6" {'entails" False, 'confidence" 5} Response

Figure 6: Sample prompt for the entailment task.

{1": {entails": False, 'confidence": 1}, '2" {'entails': False, 'confidence’: 5}, '3" {'entails": False, 'confidence’: 5}, '4": {'entails': False,
‘vonfidence”: 5}, '5": {'entails": False, ‘confidence": 5}, 6: {'entails": True, "confidence’: 5} Response

Figure 7: Sample prompt for correcting the LLM response using Llama.
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Abstract

Communication aiming to persuade an audi-
ence uses strategies to frame certain entities in
‘character roles’ such as hero, villain, victim,
or beneficiary, and to build narratives around
these ascriptions. The Character-Role Frame-
work is an approach to model these narrative
strategies, which has been used extensively in
the Social Sciences and is just beginning to
get attention in Natural Language Processing
(NLP). This work extends the framework to sci-
entific editorials and social media texts within
the domains of ecology and climate change.
We identify characters’ roles across expanded
categories (human, natural, instrumental) at the
entity level, and present two annotated datasets:
1,559 tweets from the Ecoverse dataset and
2,150 editorial paragraphs from Nature & Sci-
ence. Using manually annotated test sets, we
evaluate four state-of-the-art Large Language
Models (LLMs) (GPT-40, GPT-4, GPT-4-turbo,
LLaMA-3.1-8B) for character-role detection
and categorization, with GPT-4 achieving the
highest agreement with human annotators. We
then apply the best-performing model to auto-
matically annotate the full datasets, introducing
a novel entity-level resource for character-role
analysis in the environmental domain.

1 Introduction

There is a long history in the literature demonstrat-
ing how stories are central to how humans under-
stand and communicate about the world, with lan-
guage playing a key role in constructing and deliv-
ering specific messages (Armstrong and Ferguson,
2010; Polkinghorne, 1988). This is particularly
important when examining linguistic representa-
tions of climate change (CC) and environmental
issues (Wolters et al., 2021; Stibbe, 2015, 2021;
Jones et al., 2022). Studies from various disci-
plines, such as ecolinguistics (Fill and Muhlhausler,
2006; Alexander and Stibbe, 2014), political and
social sciences (Nerlich et al., 2010; Grundmann
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and Krishnamurthy, 2010), have demonstrated how
environmental and CC narratives are crucial in un-
derstanding how individuals and entities like gov-
ernments and media interpret and relate to eco-
logical issues and the natural world and as a con-
sequence, how they behave towards them (Flgt-
tum and Gjerstad, 2017). The linguistic construc-
tion of entities as social actors in these ’stories’
can reveal the author’s framing choices and com-
municative intent (Hulme, 2015). For instance,
“Expanding oil drilling operations will boost eco-
nomic growth and create thousands of jobs in strug-
gling communities” frames oil drilling positively,
emphasizing economic benefits while downplay-
ing environmental concerns. The Character-Role
Framework — introduced by Gehring and Grigoletto
(2023) and drawing on the Narrative Policy Frame-
work (NPF) (Jones and McBeth, 2010; Jones, 2018)
— is based on the premise that framing entities in
specific roles (hero, villain, victim, beneficiary) is
key to understanding a narrative’s intent and poten-
tial effects. While prior work using this framework
has primarily appeared in social and political sci-
ences (Bergstrand and Jasper, 2018; Wolters et al.,
2021), its adaptation to Natural Language Process-
ing (NLP) tasks remains limited. Existing studies
have either focused on policy narratives (Gehring
and Grigoletto, 2023) or explored related tasks like
character-role extraction (Stammbach et al., 2022)
focusing on a higher-level analyses (e.g. at the
paragraph-level). Moreover, Frermann et al. (2023)
extended framing analysis to the document-level
by integrating narrative media framing with en-
tity roles. In this paper, we extend and adapt the
Character-Role Framework to investigate CC and
environmental narratives. Specifically, we focus on
identifying characters across three categories (hu-
man, instrumental, natural) and four roles (hero, vil-
lain, victim, beneficiary) at the entity level, apply-
ing the framework to both scientific editorials and
social media. To achieve this, we first created two
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manually annotated test sets: (i) 150 CC-related
scientific editorial paragraphs from Nature and Sci-
ence (Stede et al. (2023)) and (ii) 300 tweets from
the Ecoverse dataset (Grasso et al., 2024a), cover-
ing a wide range of environmental topics. Char-
acters were identified and roles assigned based on
linguistic cues, subsequently categorized as human,
instrumental, or natural - a category newly intro-
duced in this work. We evaluated four Large Lan-
guage Models (LLMs) (GPT-40, GPT-4, GPT-4-
turbo, and Llama-3.1-8B) as additional annotators
to measure alignment with human annotations. We
subsequently applied the best-performing models
to larger datasets, resulting in 1,559 tweets and
2,150 editorial paragraphs annotated for further
analysis. Our contributions are fivefold: (i) We of-
fer a novel approach for analyzing CC and environ-
mental texts using the Character-Role Framework
across social media and scientific editorials. (ii)
We extend the framework by adopting a bottom-up
entity-level approach and introducing the “natu-
ral” character category. (iii) We release two new
annotated datasets for narrative analysis in this do-
main. (iv) We evaluate LLMs on the entity-level
character-role detection and categorization tasks,
marking a significant advancement for this frame-
work in NLP!. (v) We conduct a qualitative error
analysis of model misclassifications and provide
preliminary insights into emerging narrative pat-
terns.

2 Theoretical Background

The Character-Role Framework, introduced by
Gehring and Grigoletto (2023), builds on founda-
tional work in climate change (CC) narratives, such
as those by Flgttum and Gjerstad (2017, 2013)2.
Their theoretical and methodological framework
applies the concept of policy narrative from the Nar-
rative Policy Framework (NPF) (Jones, 2018) to
CC discourse, recognizing the role of ’stories’ used
to communicate and discuss CC issues in shaping
opinions and behaviors. This aligns with tradi-
tions in ecolinguistics and ecocriticism, which em-
phasize the importance of studying how language

shapes perceptions, behaviors, and actions regard-

'The code, the complete set of prompts and
the anonymized datasets are available in this
repository: https://github.com/stefanolocci/
Character-Role-Narrative-Framework-LLMs.

We are aware of the huge body of literary-science-oriented
research on narratology, in the tradition of Propp and Bakhtin,
but for reasons of space we do not make a comparison here
but limit ourselves to the more social-science-related view.
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ing environmental issues (Stibbe, 2015, 2021; Fill
and Muhlhausler, 2006). The NPF adopts a struc-
turalist approach to narrative and posits that they
can be generalizable and have an identifiable struc-
ture and measurable elements (e.g., characters, set-
ting) (Jones et al., 2022). Among the narrative
components, “characters” play a prominent role
in that they determine and are determined by the
“plot”. Key character roles include: (i) victims, who
are harmed or at risk of harm; (ii) villains, respon-
sible for causing harm; (iii) heroes, who work to
resolve the harm; and (iv) beneficiaries, who gain
from the events described. Gehring and Grigoletto
(2023) further distinguish characters as either hu-
man (individuals or entities made up of people)
or instrumental (abstract entities like policies or
laws). Narratives are categorized as either simple
(involving a single character) or complex (involv-
ing multiple characters). This framework theory
and the assumption on which it is based can be
easily extended and applied to other communica-
tive units, such as social media and scientific com-
munication, as each communicative act entails a
rather specific (more or less overt) communicative
intention. In environmental narratives, any entity
can take on the role of a character (Gehring and
Grigoletto, 2023): framing institutions, natural en-
tities, or even concrete objects in specific roles can
influence perceptions, preferences, and actions to-
wards these entities or events. For example, Kuha
(2017) highlights the crucial role of linguistic cues
in shaping how language users represent both them-
selves and other social actors, especially in terms
of agency and responsibility.

3 Related Work

Character Roles, Narratives, and Related Tasks
The study of environmental narratives has tradition-
ally been rooted in the Humanities, for instance
in fields such as Ecolinguistics and Ecocriticism
(Alexander and Stibbe, 2014; Stibbe, 2015, 2021).
Much research specifically on climate change (CC)
narratives has been situated in the Political and
Social Sciences, sometimes using the Narrative
Policy Framework (NPF) to analyze topics like
the political discourse on environment (Peterson,
2021), COVID-19 narratives (Peterson et al., 2021)
or economy reports (Goldberg-Miller and Skaggs,
2022). There is only little work in the NLP field
on ecology-oriented corpora so far (Grasso et al.,
2024a; Bosco et al., 2023), but CC-related topics
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have recently gained traction within the NLP com-
munity (Stede and Patz, 2021; Grasso et al., 2024b;
Stammbach et al., 2024). Recent work has explored
character-role extraction in NLP, such as identify-
ing villain roles using rule-based approaches and
BERT (Klenner et al., 2021) or extracting character
roles via zero-shot question-answering (Stamm-
bach et al., 2022). In the context of CC narra-
tives, Gehring and Grigoletto (2023) applied the
character-role framework to US policy discourse
on Twitter, focusing on economic narratives and
a narrow character set at the tweet level. Beyond
social-media and short-text analysis, Zhou et al.
(2024) used LLMs to analyze CC narratives ex-
tracting latent moral messaging from North Ameri-
can and Chinese news. Our work extends this line
of research by introducing entity-level annotations
across multiple roles and categories, thus offering
a broader and more fine-grained analysis of envi-
ronmental narratives. The character-role task bears
similarities to the field of entity-level sentiment de-
tection (Rgnningstad et al., 2023), where linguistic
indicators like polarity-inducing verbs or modifiers
are used to determine whether a certain entity is
being portrayed positively or negatively.

LLMs and the CC/Environment Domain In
the wider field of applying NLP to the CC and envi-
ronment domain, notable contributions include Bu-
lian et al. (2023) and Zhu and Tiwari (2023), who
propose evaluation frameworks for analyzing LLM
responses to CC topics. Koldunov and Jung (2024)
developed a prototype tool using LLMs to provide
localized climate-related data, while Leippold et al.
(2024) created an Al tool for fact-checking CC
claims utilizing LLLMs. Thulke et al. (2024) in-
troduced a family of domain-specific LLMs de-
signed to synthesize interdisciplinary research on
CC. Grasso and Locci (2024) assessed the perfor-
mance and self-evaluation capabilities of different
LLMs in classification tasks within the CC and
environmental domain, while Grasso et al. (2025)
proposed a novel framework for assessing anthro-
pocentric bias in LLM-generated texts. Fore et al.
(2024) experimented with LL.Ms for CC topics,
finding that, while effective with fine-tuning, to
ensure accuracy they require safeguards against
misinformation.

4 Dataset Creation and Annotation

This section outlines how we applied, adapted, and
extended the Character-Role Framework by adopt-
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ing a novel bottom-up approach. We focus on build-
ing two manually annotated datasets for character-
role detection within CC and environmental nar-
ratives. These datasets will serve as test sets for
evaluating the performance of the LLMs before
expanding to create the final, larger datasets.

4.1 NatSciEdCC and Ecoverse

We did not aim to restrict the scope of our inves-
tigation to a specific (sub)domain or a limited set
of possible entities (which we refer to as a top-
down approach), as we believe that relying on key-
words or predefined lists could limit the diversity of
characters discovered in a broader environmental
domain. Instead, our goal was to capture a more
heterogeneous and comprehensive set of character-
roles, even if it might increase the complexity of
the task and pose challenges to both human anno-
tation and models’ performance. To still ensure
domain consistency while maintaining diversity,
we used two datasets that cover various subtopics
and discussions related to CC and environmental
issues:

(i) The NatSciEdCC corpus (Stede et al., 2023)
consists of 490 plain text files from Nature and Sci-
ence editorials related to climate change. The texts
are segmented into single paragraphs of varying
lengths and annotated with multiple dimensions,
including topicality (CC relevance) and frame cod-
ing.

(i1) Ecoverse (Grasso et al., 2024a) is a dataset of
3,023 tweets covering various environmental top-
ics, including CC. It is annotated for eco-relevance,
environmental impact, and the author’s stance to-
ward environmental causes (supportive, neutral, or
skeptical/opposing). The dataset is openly avail-
able under a CC BY-SA 4.0 license.

4.2 Data Cleaning and Dataset Creation

Our goal was to create two datasets that contain
rich and diverse narratives, focusing on texts with
well-defined narrative elements while minimizing
overly vague or noisy content. Given the heteroge-
neous nature of the language in Ecoverse tweets,
ranging from formal news sources to informal user
posts, and the structured language of scientific edi-
torials, we applied tailored filtering steps to ensure
meaningful and balanced content for analysis.
Filtering Ecoverse To maximize narrative diver-
sity and reduce noise, we applied the following
filtering steps: (i) Tweets unrelated to environmen-
tal or climate change (CC) topics were excluded,



based on pre-existing eco-relevance annotations.
(i) To minimize the inclusion of overly hashtag-
heavy tweets, which tend to lack substantial con-
tent, we removed tweets containing more than three
hashtags. From the resulting set, we selected 300
tweets for manual annotation. To ensure diversity,
we randomly sampled: (i) 180 tweets from environ-
mental publications and news outlets (e.g., National
Geographic, New York Times); (ii) 120 tweets from
individual users, equally divided into 60 support-
ive tweets and 60 skeptical/opposing tweets. After
combining these selections, we shuffled them to
create a diverse dataset for manual annotation.
Filtering NatSciEdCC Similarly, for scientific
editorials, we applied the following steps to ensure
meaningful and balanced content: (i) We excluded
extremely short paragraphs (fewer than 24 tokens)
to focus on texts with sufficient narrative structure
for analysis. (ii) We selected paragraphs with the
highest topicality scores related to CC, based on ex-
isting annotations. (iii) To capture a broad spectrum
of narrative tones, we performed sentiment anal-
ysis (Hutto and Gilbert, 2014) on the paragraphs
and selected the 50 most positive, 50 most nega-
tive paragraphs, and 50 with mid-range sentiment.
This ensured a balanced dataset of 150 paragraphs.
Given that paragraphs are significantly longer than
tweets—often two to four times the length—we
determined that a dataset of 150 paragraphs would
be sufficient for manual annotation and analysis.

4.3 Dataset Annotation

4.3.1 Character Definition

As Gehring and Grigoletto (2023) note, any entity
can be a character in a narrative, making it useful to
distinguish broader categories. To adapt our analy-
sis to different text types (social media and editori-
als) and a wider range of ecological topics beyond
climate change policy discussions, we expanded
previous definitions of characters. In addition to
“human” and “instrumental” characters, we intro-
duced a novel third category—natural characters.
This decision is informed by ecolinguistics (Stibbe,
2015, 2021; Fill and Muhlhausler, 2006), which
shows how natural elements are often personified
or attributed with agency in everyday language.
Language use frequently constructs natural en-
tities as sentient or volitional, as seen in expres-
sions in our datasets such as “nature destroys” “the
forest heals”, “the land is threatened™, “rivers are
stressed”. These strategies also hide the true human
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agents behind these processes (Kuha, 2017). Rec-
ognizing this, the inclusion of natural characters
enriches our analysis and opens possibilities for
future ecocritical discourse analysis, where the use
of such verbs and agency can be further examined.

Thus, our final character categories include:

e Human Characters: Individuals or groups (e.g.,
corporations, governments, organizations) whose
actions, inactions, or beliefs significantly influence
the narrative.

o Instrumental Characters: More abstract enti-
ties (e.g., policies, laws, technologies) or human-
driven processes (e.g., “urbanization”, “deforesta-
tion”) that play key roles in the narrative and are
produced or initiated by human characters.

e Natural Characters: Non-human entities (e.g.,
soil, oceans, animals) and natural phenomena (e.g.,
“climate change”, “pandemics”) when they are por-
trayed as playing an active or passive role in the
narrative.

4.3.2 Task Description and Guidelines

The task and guidelines were consistent across both
tweets and editorial paragraphs, with slight adjust-
ments made during the annotation process to ac-
commodate the differences in text types. Unlike
Gehring and Grigoletto (2023), who annotated at
the tweet level, we opted for a finer granularity by
annotating at the entity level.

Guidelines Annotators received detailed guide-
lines?, which mirrored the prompts later used for
LLMs. These were based on the character-role def-
initions from Gehring and Grigoletto (2023) but
tailored to the different text types. Annotators were
tasked with identifying prominent characters by
assigning them one of four roles: Hero, Villain,
Victim, or Beneficiary. Linguistic indicators such
as polarized or action-driven words — modifiers,
verbs — (e.g., “heal”, “save”) helped determine
roles. For editorials, where language can be more
subtle, annotators also considered the ’overall sen-
timent’ towards an entity when linguistic cues were
not directly adjacent. Annotation proceeded sen-
tence by sentence, and annotators paid attention to
role shifts, where a character’s role could evolve
within a sentence or paragraph. They were in-
structed to focus on the author’s communicative in-
tent and avoid assumptions based on external world
knowledge. Only nouns or noun phrases were el-
igible for labeling, including pronouns like “we”,

3Guidelines of both character-role and character catego-
rization tasks are provided in Appendix A.3.



which often reflect social actors portraying them-
selves. This was particularly relevant in tweets,
where first-person pronouns are frequently used
to express personal ideas. Below are examples of
tweets (1)-(2) and editorials (3) with expected an-
notations, following the guidelines, with villains in
burgundy red, heroes in green, victims in orange,
and beneficiaries in blue.
() Jace existential threats from
climate change and overfishing—but also from
habitat theft, as the penguins use guano for nesting
while humans covet it for fertilizer.
(2) With #climate change impacting ,
offer promising solu-

tions, including reducing greenhouse gas emissions.
However, the focus on profit over #sustainability
risks livelihoods & the .
(3) US President Donald Trump is promoting a
retrograde energy agenda and has vowed to pull
the out of the . Still,
despite their efforts, Trump’s allies have been un-
successful in stopping the rise of

, while local communities are benefiting
from this.

4.3.3 Annotation Process

The annotation process consisted of two consec-
utive phases: (i) character-role annotation for the
datasets of 300 tweets and 150 editorial paragraphs,
and (ii) character categorization for a subset of
these annotations. In the second phase, 50 tweets
and 50 editorial paragraphs were selected for cate-
gorizing entities into three categories: human, in-
strumental, and natural. Both annotation tasks were
carried out using the Label Studio open-source data
labeling tool*, with a NER template and a tailored
labeling setup.

Character-Role Annotation The primary
character-role annotation task was conducted by
two annotators, both part of the same research team.
One is an author of this paper. One annotator self-
identified as a male social scientist, and the other
as a female linguist. To ensure consistency and a
shared understanding of the guidelines, an iterative
two-step training process was undertaken. Initially,
the two annotators performed a pilot annotation on
a secondary dataset of 20 tweets and 15 editorial
paragraphs (with the same distribution as in the
main datasets). After completing the annotation,
the annotators compared their results, discussed
disagreements and differing interpretations, and

*https://labelstud.io
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worked together to refine the guidelines where nec-
essary. This process was repeated until both an-
notators were confident in applying the guidelines
consistently. Following the pilot phase, the annota-
tors began work on the main datasets, annotating
two initial batches of 50 tweets and 20 paragraphs
respectively. After these batches, we monitored
the Inter-Annotator Agreement (IAA) to measure
consistency. Annotators discussed any problematic
cases and further refined the guidelines accordingly.
Once most issues were addressed, the annotation
of the remaining tweets and paragraphs continued
without the need for further discussion sessions.

Categorization Task The second annotation
task involved assigning one of the three character
types - human, instrumental, natural - to previously
labeled entities. A third annotator, a student mem-
ber of our research group who self-identified as
non-binary, was provided with task-specific guide-
lines. This annotator worked on a subset of 50
tweets and 50 paragraphs previously annotated for
character/roles, containing respectively 101 and
373 labeled entities. This subset was chosen based
on agreement between the two annotators in the
first task to ensure higher consistency. The deci-
sion to use only a subset was made because, despite
the reduced number of texts, each paragraph and
tweet contained a significant number of annotated
entities. Moreover, this task was deemed relatively
objective, so only one annotator was used. Table 8
in Appendix A.1 reports the label distribution for
this task. Both character-role annotated datasets
and character categorization subsets were then used
to instruct the LL.Ms for automatic character-role
detection and categorization, as discussed in Sec-
tion 5.

4.4 TAA and Datasets Statistics

To measure the agreement between the two annota-
tors, we treated the character-role task as a Named
Entity Recognition (NER) task, taking into account
two elements: the text spans of each annotated
entity within the text unit (either a paragraph or
a tweet) and the label assigned to that text span.
Agreement was achieved if the two annotators an-
notated the same entity with either an identical text
span or overlapping text spans (e.g., “the Presi-
dent” vs. “President’”). We used Precision, Recall,
and F1-score to calculate the agreement, as these
metrics account for both span overlap and label
consistency (Brandsen et al., 2020; Hripcsak and
Rothschild, 2005).
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* TAA Tweets (300): Precision = 0.80, Recall =
0.73, F1-score = 0.76.

* IAA Editorial Paragraphs (150): Precision:
0.81, Recall: 0.87, Fl-score: 0.84

Detailed comments and insights on disagree-
ments are reported in Section 6. Table 1 reports the
label distribution among annotators throughout the
datasets. Table 7 in Appendix A.1 report datasets
statistics.

Tweets Editorials
Label
Al A2 GPT4 Al A2 GPT4

Hero 187 216 273 311 285 256
Beneficiary 199 175 177 163 73 55
Villain 112 166 210 285 290 280
Victim 82 87 179 135 143 172
Total labels 580 644 839 894 791 763

Table 1: Label Distribution for Tweets and Editorials
test sets for A1, A2 and best model (Al: Annotator 1,
A2: Annotator 2).

5 Experiments with LLMs: Methodology
5.1

We aimed to evaluate the performance of large
language models (LLMs) on the previously unex-
plored tasks of entity-level character-role detec-
tion and character categorization. The main advan-
tage of using LLMs is their ability to perform well
with less task-specific training data, as they are
pretrained on vast amounts of text. Additionally,
LLMs have performed well in similar tasks such
as NER (Wang et al., 2023; Villena et al., 2024).
However, they are also susceptible to hallucina-
tions, where they generate outputs not grounded
in the input data (Mittal et al., 2024). Therefore,
we employed careful prompt engineering and iter-
ative testing to optimize their performance in this
highly subjective and complex task. We experi-
mented with the following LLMs, covering both
closed and open models: GPT-40°; GPT-4-turbo;
GPT-4 (ct al., 2024); Llama-3.1-8B°.

Our methodology for the models’ classification
experiments proceeded in three phases: (i) an Ex-
ploratory Phase to refine prompt design and model
setup, (ii) an Exploitation Phase to assess model
performance against human annotators, and (iii)
Classification Phase to apply the best-performing

Motivation and Models Employed

5https ://openai.com/index/hello-gpt-40/
®https://1lama.meta.com/
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model and optimal setting across larger datasets of
tweets and editorials.

5.2 Exploratory Phase: Prompt Design

The clarity of prompts is crucial for generating
accurate outputs in classification tasks (Deldjoo,
2023). Given that small adjustments in prompts
or model settings (e.g., temperature) can signifi-
cantly impact results, we conducted exploratory
experiments to refine both the prompts and model
setup. Character-role Task We tested a zero-shot
setting on a small sample of 5-7 textual units for
each text type (paragraphs and tweets), iterating
through different prompt strategies across models
(GPT-4, GPT-40, GPT-4-turbo, and Llama-3.1-8B-
Instruct)’. This allowed us to monitor output vari-
ations and refine the prompts accordingly. The
prompts closely mirrored the guidelines provided
to human annotators, and we also experimented
with different output formats. By the end of this
phase, we finalized the best prompt format for each
model. To ensure consistency with human annota-
tions, we used an in-line tag annotation format.

Character Categorization Task Given the sim-
pler nature of the character categorization task,
we directly applied a few-shot setting, leveraging
insights from the main task’s exploratory phase.
The output format remained consistent with the
character-role detection task, using in-line tagging
for the category names.

Some examples of the prompts used are pro-
vided in Appendix A.4, while the complete set of
prompts, including all versions for all the LLMs,
can be found in the GitHub repository linked ear-
lier.

5.3 Experimental Setup

We conducted the experiments on the Paperspace
platform®, utilizing a configuration that includes
an NVIDIA P6000 24GB GPU, 30GB of RAM,
and a 8-core CPU. We employed the Hugging-
face Pipeline abstraction® to load the Meta-Llama-
3.1-8B-Instruct. For the GPT models, we utilized
OpenAT’s APIs'?. After conducting a qualitative
manual analysis of responses generated at various
temperature settings (ranging from 0.1 to 0.9), we

"We also experimented with Llama-2-13B, but it frequently
hallucinated, so we excluded it from further testing.

8https ://www.paperspace.com/

*https://huggingface.co/docs/transformers/
main_classes/pipelines

10https: //openai.com/blog/openai-api
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determined that a value of 0.2 provided the best
balance between coherence and adherence to the
prompts.

5.4 Exploitation Phase

After the prompts and parameters optimization, we
conducted the main experiment to compare the per-
formance of the LLMs against human annotators.
Character-role task We tested three prompt set-
tings: (i) zero-shot, (ii) one-shot, and (iii) few-shot.
Each model’s performance was evaluated on the
300-tweet and 150-editorial test sets, measuring
agreement with the two human annotators using
Precision, Recall, and F1-score. The best F1-scores
were achieved by GPT-4 with the few-shot setting
for tweets (0.65) and the one-shot setting for edito-
rials (0.70). Full agreement results for all settings
and models are presented in Tables 2 and 3.

Tables 1 and 7 provide a comparison of GPT-4
label distribution and statistics against human an-
notations. Section 6 discusses the results and offers
insights into the models’ classification errors.
Character Categorization Task We tested the
models in a few-shot setting on 50 tweets and
50 paragraphs manually annotated by Annotator 3.
The task was to predict the correct character cate-
gory (human, instrumental, or natural) for each pre-
viously labeled entity. The best-performing model
was GPT-4o for tweets (F1: 0.88), and GPT-40 and
GPT-4-turbo for paragraphs (F1: 0.78). Full per-
formance metrics for all models (Precision, Recall,
and F1-score) can be found in Table 4.

5.5 Classification Phase

In the final phase, we applied the best-performing
model, GPT-4, in a few-shot configuration for
character-role classification to automatically label
two larger datasets: the 1,259 eco-related tweets
from the Ecoverse dataset and an additional 2,000
editorial paragraphs from NatSciEdCC. The selec-
tion of these 2k paragraphs followed the same cri-
teria used for the creation of the 150-paragraph
test set, as detailed in Section 4.2. The aim was
to scale the character-role detection process and
create two fully annotated datasets. After merg-
ing the test sets with these new annotations, we
obtained: (i) a 1,559-tweet dataset and (ii) a 2,150-
editorial paragraph dataset. Finally, we applied
the best-performing model for character catego-
rization, GPT-4o, to label all characters in both
datasets, assigning them one of three categories:
human, instrumental, or natural. Table 5 shows the
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role distribution among these categories, and Table
6 provides the dataset statistics.

6 Results and Discussion

As shown in Tables 2 and 3, GPT-4 generally out-
performed the other models, while Llama-3.1-8B
showed the lowest agreement, particularly strug-
gling with longer paragraphs, where it tended to
hallucinate. GPT-40 delivered strong results for ed-
itorial paragraphs. For tweets, the few-shot setting
yielded the best results (F1: 0.60 for Annotator 1
and F1: 0.65 for Annotator 2), while editorials saw
the highest score in the one-shot setting (F1: 0.70).
GPT-40 also showed high precision in zero-shot
settings for editorials. Interestingly, in GPT-40 ex-
periments, the one-shot setup performed slightly
better the few-shot one in both editorial and tweet
tasks (F1: 0.70 vs. F1: 0.66 for editorials, F1: 0.59
vs. F1: 0.52 for tweets). This may indicate that
providing fewer examples helps the model general-
ize better, avoiding overfitting and inconsistencies.
Models consistently aligned more with Annotator
2 for tweets, with minimal differences in editori-
als. Interestingly, GPT-40 aligned more closely
with Annotator 1 in editorials. Overall, models
performed better in recognizing character-roles in
editorials, likely due to their structured and homo-
geneous nature.

6.1 Disagreements Analysis

To better understand the areas of disagreement, we
have to distinguish two levels: (i) disagreement
on text spans, where one annotator recognized a
character and the other did not (i.e., presence/ab-
sence), and (i1) disagreement on labels for the same
text span, where both annotators agreed on the en-
tity but assigned different roles. For instance, in
tweets, more than half of the disagreements be-
tween GPT-4 and Annotator 2 (522 instances) re-
sulted from mismatched labels, while fewer dis-
agreements (452) stemmed from mismatched text
spans. This indicates that while role assignment
may be subjective, the model effectively identified
prominent characters. Importantly, we observed
that disagreements between human annotators and
between humans and models often arose from sim-
ilar challenges. Reliance on world knowledge:
Both models and annotators sometimes relied on
external world knowledge rather than strictly fol-
lowing the author’s intent. For example, GPT-4
and Annotator 1 labeled “fossil fuel companies”



Model Setting Annotatorl Annotator2
Precision Recall Fl-score Precision Recall F1-score
one-shot 0.52 0.64 0.57 0.57 0.68 0.62
GPT-4 zero-shot 0.48 0.61 0.54 0.54 0.66 0.59
few-shot 0.52 0.72 0.60 0.57 0.76 0.65
one-shot 0.48 0.62 0.54 0.53 0.67 0.59
GPT-40 zero-shot 0.44 0.58 0.50 0.50 0.65 0.56
few-shot 0.47 0.59 0.52 0.53 0.65 0.58
one-shot 0.53 0.55 0.54 0.57 0.57 0.57
GPT-4-Turbo zero-shot 0.46 0.34 0.39 0.51 0.37 0.43
few-shot 0.52 0.63 0.57 0.55 0.65 0.60
one-shot 0.41 0.44 0.42 0.45 0.46 0.45
Llama3.1 zero-shot 0.37 0.27 0.31 0.44 0.32 0.37
few-shot 0.37 0.65 0.47 0.40 0.68 0.51

Table 2: Models Performance on Tweets test set in terms of IAA with human annotators.

Model Setting Annotatorl Annotator2
Precision Recall F1-score Precision Recall F1-score
one-shot 0.73 0.54 0.62 0.85 0.59 0.70
GPT-4 zero-shot 0.75 0.49 0.59 0.88 0.55 0.68
few-shot 0.72 0.61 0.66 0.78 0.59 0.67
one-shot 0.71 0.55 0.62 0.86 0.58 0.69
GPT-40 zero-shot 0.79 0.42 0.55 0.89 0.53 0.66
few-shot 0.73 0.61 0.67 0.82 0.55 0.66
one-shot 0.66 0.51 0.58 0.80 0.49 0.61
GPT-4-Turbo zero-shot 0.69 0.37 0.48 0.85 0.38 0.53
few-shot 0.66 0.67 0.66 0.72 0.62 0.67
one-shot 0.61 0.52 0.56 0.68 0.33 0.44
Llama3.1 zero-shot 0.64 0.25 0.36 0.76 0.42 0.54
few-shot 0.56 0.64 0.60 0.65 0.57 0.61

Table 3: Models Performance on Paragraphs test set in terms of IAA with human annotators.

Model Precision Recall F1-score
Tweets 50 test set

GPT4 0.86 0.89 0.87
GPT-40 0.86 0.90 0.88
GPT-4-Turbo 0.77 0.79 0.78
LLama3.1 0.63 0.75 0.68
Editorials 50 test set

GPT-4 0.76 0.76 0.76
GPT-40 0.76 0.79 0.78
GPT-4-Turbo 0.77 0.79 0.78
LLama3.1 0.65 0.65 0.65

Table 4: Model performance on the categorization task
for the 50-tweet and 50-editorial paragraph datasets
(few-shot setting).

as villains, likely due to their general environmen-
tal impact, and “poor countries” as victims, possi-
bly influenced by the linguistic cue “poor”, even
when the narrative did not explicitly frame them
as such. Subtle framing of characters: Some en-
tities played subtle yet important roles, making it
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difficult to decide whether to annotate them. Mod-
els, especially in tweets, tended to over-annotate
compared to humans (as seen in Tables 1 and 7),
though this over-annotation followed consistent pat-
terns. For instance, in a tweet calling Croatia a “re-
markable biodiversity hot spot”, the model labeled
Croatia as a beneficiary, or in “we can develop
#green habits”, it labeled “green habits” as a hero.
However, model and human alignment was much
closer in editorials, with GPT-4’s label distribution
closely matching Annotator 1 and 2. Role ambigu-
ity: Some entities played multiple roles within the
same text. For example, “endangered species” in a
tweet could be labeled as victims of habitat destruc-
tion but also as beneficiaries of conservation efforts.
Finally, calculation strategy also influenced dis-
agreement rates. Partial overlap of text spans (e.g.,
"the president” vs. “president of the USA") was not
counted as an agreement, though they referred to
the same entity.



Tweets Editorials
Label
Tot Human Instr. Natural Tot Human Instr. Natural
Hero 722 295 271 156 3906 2013 1596 297
Victim 989 301 223 465 1974 931 511 532
Villain 693 275 259 159 2599 843 1192 564
Beneficiary 898 340 168 335 876 520 245 111

Table 5: Label distribution among categories for Final Tweets and Editorials datasets

Statistic Tweets Editorials
Mean tags per text 224 4.39
Mean words per text 35.08 89.22
Texts with only 1 entity 313 137
Texts with more than 1 entity 1021 1972
Texts with no entities 225 41
Total number of texts 1559 2150

Table 6: Statistics for both the Tweets and Editorials
final datasets.

6.2 Preliminary Datasets Insights

To gain an initial understanding of the narrative
structure across the datasets, we (i) calculated the
co-occurrence of <category-role> pairs within the
texts and (ii) observed the most frequently occur-
ring character/role combinations by category (af-
ter lemmatizing the labeled entities). Figure 1 in
Appendix A.2 presents the co-occurrence matri-
ces of label pairs, showing how frequently each
<category-role> pair occurs together within the
same text. In the Paragraph-matrix, Instrumental-
Hero is the most frequent pair, often co-occurring
with Human-Hero and Human-Villain. This sug-
gests that policies, technologies, or interventions
are portrayed as solutions to problems driven by
human actions or institutions. Human-Victim
is another prominent category, frequently paired
with Human-Villain and Instrumental-Villain,
reflecting that humans are often depicted as suf-
fering due to harmful policies or corporate ac-
tions. The frequent pairing of Natural-Victim
with Instrumental-Villain reinforces the idea of
natural entities (e.g., animals, biodiversity) be-
ing victims of human or institutional harm. In
the Tweets-matrix, Human-Victim and Human-
Villain frequently co-occur, indicating a strong
narrative of communities suffering from human-
made harm. Natural-Victim also appears fre-
quently, especially alongside Human-Villain and
Instrumental-Villain, reflecting the recurrent
theme of environmental damage due to human-
driven actions. Both matrices highlight the central

role of Instrumental-Hero in environmental nar-
ratives, emphasizing the importance of policy mea-
sures and technologies as solutions. Meanwhile,
Natural-Victim and Human-Villain are strongly
linked in both datasets, underscoring a consistent
framing of human-driven environmental harm.
Cross-referencing character roles with the stance of
tweets reveals further nuances. In tweets with a sup-
portive stance, “greenwashing”, “fossil fuel com-
panies” and “plastic” are frequent villains, while
heroes include “Inflation Reduction Act”, “climate
movements”, “scientists”. In contrast, in skep-
tical/opposing tweets, entities like “government”
and “climate scientists” are often framed as vil-
lains, with abstract concepts like “freedom” and
“societal values” portrayed as victims. Editorials
reflect similar patterns but within a more formal,
structured narrative, with “scientists”, “developing
countries”, and “biodiversity” frequently appear-
ing as victims, and “climate change," “coal” and
“Trump” as villains.

7 Conclusion

In this paper, we introduced a novel approach to
analyzing climate change (CC) and environmen-
tal narratives using the Character-Role Framework
across social media (from the Ecoverse dataset
(Grasso et al., 2024a)) and scientific editorials
(from the NatSciEdCC corpus (Stede et al., 2023)).
We extended the framework by adopting a bottom-
up approach and performing fine-grained entity-
level analysis. After manually annotating two test
sets of editorial paragraphs and tweets for charac-
ters in four roles (villain, hero, beneficiary, victim)
and three categories (natural, human, instrumental),
we evaluated four Large Language Models (LLMs)
(GPT-4, GPT-40, GPT-4-turbo, Llama-3.1-8B) on
character-role detection and categorization tasks.
GPT-4, the best-performing model, was then ap-
plied to create two fully annotated datasets: 1,559
tweets and 2,150 editorial paragraphs. Finally, we
conducted a qualitative error analysis and explored
the narrative patterns emerging from the datasets.
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8 Limitations

Some limitations of our work include the follow-
ing:

1. Our approach does not incorporate co-
reference resolution, which may result in dif-
ferent mentions of the same entity (e.g., “he”,
“the president”) being treated as separate char-
acters, or conversely, labeled multiple times.
As we detailed in Section 4.3.2, our analy-
sis and annotation guidelines include personal
pronouns, which leads to this limitation.

. The datasets used (scientific editorials and
tweets) are primarily from English-speaking
regions, which might not capture the full
range of CC and environmental narratives
across different cultures. This limits the gen-
eralizability of our findings to other linguistic
or cultural contexts.

. A broader range of open models, differing in
type and size, would offer a stronger basis for
evaluating their performance. This highlights
a limitation of our work, as it does not fully
capture the diversity of available open mod-
els. While we acknowledge that comparing
LLaMA-3.1-8B to much larger GPT models
is inherently imbalanced, it provides an initial
perspective on how their performance differs
for these tasks.

. Expanding the dataset with LLM-generated
annotations carries inherent risks, as these
models can reflect biases or limitations in
their training data, including outdated or in-
complete world knowledge (Blodgett et al.,
2020). However, as discussed, we observed
that LLM biases remarkably often aligned
with those of human annotators, resulting in
similar disagreement patterns. This suggests
that the models can perform reliably on such
a subjective and complex task as character-
role detection. For example, in the first batch
of 100 tweets, agreement between Annota-
tor 2 and GPT-4 (F1: 0.77) exceeded the
inter-annotator agreement between humans
(F1: 0.72). While encouraging, we recognize
that LLMs are not perfect substitutes for hu-
man annotation. Future work should include
further validation, such as cross-checking ex-
panded datasets with smaller manually labeled
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subsets or assessing their robustness in down-
stream tasks to ensure reliability in practical
scenarios.

. The preliminary dataset insights presented in
Section 6.2 primarily focus on category-level
trends (i.e., distributions of human, instru-
mental, and natural entities across character
roles and their co-occurrence). While this
provides an important first look into broader
framing patterns, a more fine-grained analysis
of the most frequent entities within each cate-
gory and the specific narrative structures they
form (e.g., recurring villain-victim or hero-
beneficiary pairings) remains an open area
for future work. Investigating these patterns
could offer a deeper understanding of how
environmental narratives are constructed, re-
vealing more nuanced "plot” dynamics among
characters.
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A Appendix

A.1 Datasets Statistics

Tweets Editorials
Al A2 GPT4 Al A2 GPT4

Statistic

Avg. label/txt 193 215 280 596 7.00 5.09

texts w/1 label 32 42 41 8 2 0
texts w/>1 labels 176 182 257 138 145 150
texts w/no labels 92 76 2 5 3 0

Table 7: Statistics for Tweets and Editorials Test sets
for A1, A2, and best model (Al: Annotator 1, A2:
Annotator 2.)

Label Editorials (50) Tweets (50)
Natural 94 40
Human 125 42
Instrumental 154 19

Table 8: Character Categorization Label Distribution
for 50 Editorial Paragraphs and 50 Tweets.
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A.2  Co-occurrences Matrices

Figure 1 shows the co-occurrence matrices of
category-role pairs.

A.3 Annotation Guidelines

Annotation Guidelines for Character-Role and
Character categorization tasks.
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Figure 1: Co-occurrence matrices.
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Character Roles: Annotation Guidelines

Introduction The aim is to leverage and adapt the Character-Role Narrative Framework (Gehring
& Grigoletto 2023) which in turn stems from the so-called Policy Narrative Framework (e.g.
Jones et al. 2022), to analyze the narratives underlying two different textual contexts: (i) A set of
tweets (from the EcoVerse Dataset), all linked to ecology/environment-related themes; (ii) A set
of editorials (from Nature & Science), all linked to the climate change topic.

Task Overview The goal of this annotation is to identify the entities that contribute to the text’s
narrative, i.e., to the core message being conveyed. We identify these entities as characters bearing
specific roles from a small inventory. Crucially, we analyze the author’s narrative, so we must
always keep in mind to rely on the perception of its communicative intention and limit access to
our world knowledge.

Character Roles: Definitions

Typically, characters can assume one of three (in our project, four) fundamental roles in the
“drama triangle”: hero, villain, victim, or beneficiary. Heroes actively contribute to, endorse,
or are portrayed as having the potential to determine positive actions or events. Importantly, the
hero is also assigned a determinant role within the narrative; they are provided with the potential
to do something, regardless of whether they actually pursue their mission. Villains contribute
to, endorse, favor, or determine negative actions or events. Victims are harmed, endangered,
potentially harmed, or suffer from the consequences of events or actions, typically playing a
passive role in the narrative. Beneficiaries play a passive role and benefit or potentially benefit
from events or actions being described.

Types of Characters: Definitions

Characters are entities that play an identifiable role within the narrative and determine its essence.
Characters can be:

Human Characters: These include humans or entities made up of people, such as corporations,
governments, organizations of any type (e.g., religious), and political movements, whose actions,
inactions, or beliefs are crucial for the narrative and message of the text. Instrumental Characters:
These are more abstract entities such as policies, laws, technologies, measures, or objects that
(i) have been produced by human characters, (ii) are important for the narrative and message of
the text, and (iii) can be assigned a character role, as they are determining for the narrative being
told. Natural Characters: These comprise non-human entities such as natural elements (e.g., soil,
oceans), animals, nature itself, the planet, and so on. They can also be processes (‘“city growth™)
and phenomena (“climate change,” “pandemic”) on the condition that they clearly have inherited
some agentive role within the narrative.

Annotation Procedure

Before starting the annotation, read the entire text to understand the core message. Then, proceed
with the annotations from beginning to end, sentence by sentence. For each sentence: (i) Decide
whether there are significant characters with prominent roles within the text that can be assigned the
type human, instrumental, or natural. (ii) Do not label if no particular narrative (and subsequently
no characters/roles) can be identified, and/or if the text is too vague or lacks the author’s perspective.
(iii) Assign the character role based on contextual information (villain, hero, beneficiary, victim).
(iv) Once completed, click on “submit.”

Notes on Annotation: Borderline Cases for Editorials

In editorials, the narrative is often spread across larger portions of text. Annotators should consider
the entire paragraph to understand the overall perception and narrative conveyed. The assignment
of roles to characters by the author is often subtle and implicit. Annotators may need to infer roles
based on the overall narrative, allowing for reasonable implications or assumptions, especially
when strong linguistic indicators are absent. Abstract concepts, such as “decision,” cannot be
annotated as characters. However, instrumental characters like “measures,” “reports,” “laws,” or
“policies” should be annotated. When both an instrumental character (e.g., the name of a report)
and the human character responsible for it (e.g., the government) are mentioned, annotate BOTH.

63



Character Categorization: Annotation Guidelines

Introduction The goal of this annotation task is to categorize each entity labeled with a character
role—hero, villain, victim, or beneficiary—into one of three predefined supercategories: human,
instrumental, or natural. This categorization helps identify the broader nature of entities
contributing to the text’s narrative.

Task Overview For each entity previously annotated with a character role, you will assign one of
the following categories: Human; Instrumental; Natural.

This categorization does not depend on the entity’s role in the text but solely on the entity’s type
based on the definitions provided below.

Category Definitions

1. Human Characters: Humans or entities representing humans or groups of humans. They
include:

» o« » o«

e Individuals: e.g., “scientists”, “activists”, “farmers”.

* Organizations, governments, corporations, or institutions: e.g., “United Nations”, “fossil
fuel companies”, “NGOs”.

* Groups of people: e.g., “communities”, “developing countries”.
Example:
» The government decided to implement new measures. — Human

2. Instrumental Characters: More abstract entities that are human-made or human-driven, such
as:

* Policies, laws, reports, measures: e.g., “climate policies”, “30x30 report”.

FERYS FERNYs

* Technologies or objects: e.g., “dams”, “wind turbines”, “plastic”.

* Processes initiated or controlled by humans: e.g., “urbanization”, “deforestation”, “city
growth”.

3. Natural Characters: Non-human entities from the natural world or natural phenomena, such
as:

* Animals, plants, natural elements: e.g., “biodiversity”, “oceans”, “forests”.

» o«

* The environment as a whole: e.g., “the planet”, “nature”.

» Natural processes or phenomena: e.g., “climate change”, “pandemics”, “wildfires”.
Annotation Procedure

1. Review the entity: For each entity already labeled with a role, identify its type (human,
instrumental, or natural) based on the provided definitions.

2. Assign a category: Use the definitions and examples to determine the appropriate category.

3. Handle borderline cases:

* If an entity fits more than one category, prioritize the most contextually relevant type.

* For processes (e.g., “city growth”), determine if it is human-driven (Instrumental) or
naturally occurring (Natural).

Notes for Annotators If the type remains unclear, discuss it with the coordinators to ensure
consistency.
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A.4 Prompts for LLMs

Prompt GPT family for character-role detection task - one shot

Task Overview: You are given a text. Your task is to identify and label characters within the
narrative. Characters are entities playing a clear role in the story, contributing to its core message.
Label each identified character with one of the following roles: Hero: Actively contributes to
or endorses positive actions/events. Villain: Responsible for negative actions or harm. Victim:
Suffers from or is endangered by actions/events, typically playing a passive role. Beneficiary:
Passively benefits from actions/events. Character Types: Human Characters: Humans or
entities made up of people (e.g., corporations, governments, organizations). Instrumental
Characters: Abstract entities (e.g., policies, laws, technologies) produced by human characters
that play a crucial role in the narrative. Natural Characters: Non-human entities (e.g., animals,
nature, natural processes) given agentive or passive roles within the narrative.

Instructions: (i) Identify Characters: Assess each sentence, sentence by sentence, to identify
characters (there can be 0 to N characters per sentence).

(ii) Assign Roles: Label identified characters with the appropriate role based on how the narrative
portrays them. Do not infer or imply any roles based on common knowledge or assumptions.
Only label characters if the text explicitly describes them in a way that fits a specific role (Hero,
Villain, Victim, Beneficiary). Rely strictly on what is explicitly stated in the text—avoid making
interpretations or assumptions.

(iii) Use Linguistic Indicators: Pay close attention to linguistic cues such as “heal," “save," “suffer
from," “endangered by," “protect," and other similar phrases. These indicators will help determine
the role of a character. If the text does not explicitly use such indicators or similar language, do
not assign a role based on presumed implications.

(iv) Be Aware of Role Shifts: A character’s role can change as the sentence or paragraph pro-
gresses. Even if a character starts neutral, it might take on a role later in the sentence. Similarly, a
character can switch roles within the same sentence or paragraph. Assign roles based on how the
character is portrayed at each point in the text.

(v)Focus on Narrative Perspective: Use linguistic indicators and context within the text to de-
termine roles, strictly reflecting the author’s intended perspective. Avoid relying on external
knowledge or common narratives—only label characters based on the explicit narrative context
provided.

(vi) Label Nouns Only: Only label nouns or noun phrases, excluding articles (e.g., “the” in “the
President”) and other parts of speech. Personal pronouns (e.g., “we,” “they’’) can be labeled too.
(vii) Multiword Expressions: For multiword expressions (e.g., “President of the United States”),
label the entire phrase, but avoid including unnecessary extensions.

(viii) Avoid Labeling Abstract Entities: Do not label overly abstract entities such as “decision”.
No Labeling If: No clear narrative or characters/roles are identifiable. The text is too short, vague,
or the narrative is too implicit. The text does not express the author’s perspective (e.g., reporting
someone else’s perspective).

Output format: You must return the input text with each character labeled using in-line tag
annotations (<start_token>text<end_token>), where the tag corresponds to a role name.
The only available tags are: Hero: <HER>text</HER> Villain: <VIL>text</VIL> Victim:
<VIC>text</VIC> Beneficiary: <BEN>text</BEN>

For example, if the input text is “The Government saved the environment." the output text should
be: “The <HER>Government</HER> saved the <BEN>environment</BEN>."

IMPORTANT: DO NOT CHANGE THE INPUT TEXT, ONLY ADD THE TAGS.

Note: Be attentive to the linguistic cues and specific wording used by the author, as they will
guide you in assigning the correct roles. Avoid inferring roles based on outside knowledge or
assumptions.

Here is the text to annotate:

" o<

([N73
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Prompt Llama for character-role detection task - zero shot

Task Overview: You are given a text. Your task is to identify and label characters within the
narrative. Characters are entities playing a clear role in the story, contributing to its core message.
Label each identified character with one of the following roles:

Hero: Actively contributes to or endorses positive actions/events.

Villain: Responsible for negative actions or harm.

Victim: Suffers from or is endangered by actions/events, typically playing a passive role.
Beneficiary: Passively benefits from actions/events.

Here’s how you should do it:

Look at each sentence: Go through the text sentence by sentence to find any characters. There can
be no characters, one character, or many characters in a sentence.

Label the characters: When you find a character, give them the correct label (Hero, Villain,
Victim, or Beneficiary) based only on what the text says. Do not guess or assume anything. Only
label a character if the text clearly shows their role.

" < " e

Pay attention to words: Words like “heal," “save," “suffer,” “endangered," “protect," or similar
words can help you decide the character’s role. If these or similar words are not there, do not label
based on your assumptions.

Roles can change: A character’s role might change in the same sentence. Label them based on
how they are described at that moment.

Use tags in the text: When you label a character, use the following tags directly in the text:
Hero: <HER>text</HER>

Villain: <VIL>text</VIL>

Victim: <VIC>text</VIC>

Beneficiary: <BEN>text</BEN>

IMPORTANT: Rewrite the entire text with these tags included. Do not change the original
text—just add the tags around the characters.

Remember, only label characters based on what is clearly stated in the text. Do not use your own
knowledge or assumptions.

Here is the text to annotate:
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Prompt for GPT family and Llama for character categorization task - few-shot

Task Overview: You are given a text. Each text represents a unique entity, and your task is to
categorize the entity based on one of three categories: Human, Instrumental, or Natural. Below
are the definitions for each category, along with relevant examples.

Categories:

Human Characters: These include humans or entities made up of people, such as corporations,
governments, organizations of any type (e.g., religious), and political movements. Examples:
“QOil and gas industry” (categorized as Human because it refers to a group of businesses).
“World” (categorized as Human when referring to governments, organizations, or companies).
Instrumental Characters: These are more abstract entities such as policies, laws, technolo-
gies, measures, objects, or human-driven processes (e.g., “urbanization," “deforestation," “city
growth”). They can also be artifacts or processes that have been produced or initiated by human
characters. Examples:
“Pesticides and fertilizers” (categorized as Instrumental because they are human-made technolo-
gies).

“Carbon emissions” (categorized as Instrumental because they result from human processes).
Natural Characters: These comprise non-human entities such as natural elements (e.g., soil,
oceans), animals, nature itself, and the planet. They can also include natural processes or phenom-
ena (e.g., “biodiversity loss,” “climate change,” “pandemic”). Examples:

“Europe” (categorized as Natural when referring to the geographical region and its natural elements,
rather than its people).

“Smoke” (categorized as Natural when referring to poor air quality from smoke, assuming it is not
human-caused).

Output Format: You must return the input text with each entity labeled using in-line tag
annotations (<start_token>text<end_token>), where the tag corresponds to a category name.
The only available tags are:

Human: <HUM>text</HUM>

Instrumental: <INS>text</INS>

Natural: <NAT>text</NAT>

Examples:

<HUM>0il and gas industry</HUM>

<HUM>low-income communities</HUM>

<INS>30x30 policy</INS>

<INS>pesticides and fertilizers</INS>

<NAT>climate change</NAT>

<NAT>the ocean</NAT>

Here is the text to annotate:
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Abstract

We address the detection of emission reduction
goals in corporate reports, an important task for
monitoring companies’ progress in addressing
climate change. Specifically, we focus on the
issue of integrating expert feedback in the form
of labeled example passages into LLM-based
pipelines, and compare the two strategies of (1)
a dynamic selection of few-shot examples and
(2) the automatic optimization of the prompt by
the LLM itself.

Our findings on a public dataset of 769 climate-
related passages from real-world business re-
ports indicate that automatic prompt optimiza-
tion is the superior approach, while combin-
ing both methods provides only limited bene-
fit. Qualitative results indicate that optimized
prompts do indeed capture many intricacies of
the targeted emission goal extraction task.

1 Introduction

The urgency of the climate crisis necessitates im-
mediate action across various sectors of the global
economy. These efforts are targeted at Net Zero, i.e.
achieving a balance between emitted and removed
greenhouse gases, particularly COs. Policies such
as the European Union’s Green Taxonomy aim to
redirect financial investment flows toward sustain-
able businesses, setting incentives for companies
committing to concrete emission reduction goals.
To evaluate and monitor these commitments,
analysts must review extensive corporate docu-
mentation, including annual reports, sustainability
reports, and stewardship disclosures. This man-
ual process of locating and extracting relevant
data, often referred to as carbon accounting, is
labor-intensive and time-consuming. Identifying
such climate goals is a surprisingly intricate task,
as analysts have to distinguish concrete, binding,
self-imposed and quantitative emission goals from
vague statements, greenwashing, externally man-
dated requirements, goals related to climate change
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(such as "moving out of coal"), etc. Overall, the
task not only requires high precision but also poses
unique challenges due to the nuanced language and
diverse reporting styles used by companies.

To increase the efficiency of carbon accounting,
Large Language Models (LLMs) have emerged as
powerful tools. Given a prompt consisting of task-
specific instructions and a text passage to analyze,
the LLM outputs whether the passage contains an
emission goal. When integrating such LLMs into
practical workflows, their outputs are inspected
and — in case of errors — corrected by analysts,
resulting in a set of labeled "challenge samples"
that grows over time. These examples offer an
interesting option for in-context learning (ICL), i.e.
to improve the LLM’s accuracy by utilizing the
examples to improve the prompt, without applying
fine-tuning to the model.

In this paper, we investigate ICL strategies to
improve LLMs with expert knowledge in form of
labeled examples, focusing on the task of emis-
sion goal detection. Particularly, we compare two
approaches: (1) Example selection, which incorpo-
rates a limited number of few-shot examples into
the prompt. These exemplify the desired behav-
ior, and are selected dynamically to resemble the
input passage. (2) Automatic Prompt Design, in
which the LLM adjusts its own instructions. This
approach applies an iterative optimization process
in which erroneous challenge cases are inspected,
reflected, and new, refined instructions are gener-
ated and evaluated.

While both techniques hold promise, their ef-
fectiveness in real-world applications has not been
compared extensively. We hope to fill this gap with
the following contributions:

1. We conduct a comprehensive comparison of
example selection and automatic prompt de-
sign on the task of emission goal classification,
using 769 passages from the public NetZero-
Facts dataset (Wrzalik et al., 2024).

Proceedings of the 2nd Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2025), pages 68—75
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2. We highlight the strengths and limitations of
each prompting strategy, guiding practition-
ers applying LLMs to sustainability classifi-
cation tasks. Specifically: (1) example selec-
tion improves results, especially with weak
prompts; (2) auto-prompting yields greater
overall gains; and (3) in automatic prompt
design, few-shot examples provide limited ad-
ditional benefits.

2 Related Work

This section reviews existing literature on prompt-
ing strategies that make use of labeled data, focus-
ing on example selection for few-shot learning and
automatic prompt design.

2.1 Example Selection for Few-Shot Learning

Liu et al. (2022) investigated the selection of good
in-context examples for GPT-3 and found that se-
mantically similar examples, chosen based on prox-
imity in embedding space, significantly improve
model performance. Rubin et al. (2022) proposed
a contrastive learning-based method that learns to
retrieve task-specific examples, showing signifi-
cant performance improvements by optimizing the
input-output pairs for correct predictions. Su et al.
(2023) introduced a selective annotation framework
that enhances few-shot learning by strategically se-
lecting diverse and representative examples from a
small annotated pool. Their graph-based approach
demonstrates that such careful example selection
can lead to significant performance improvements
across various natural language processing tasks.
Zhang et al. (2022) framed example selection as
a reinforcement learning problem, proposing a Q-
learning-based approach to actively select exam-
ples. This method shifts from similarity-based re-
trieval to learning a policy that optimizes example
selection for few-shot learning, demonstrating mod-
erate improvements on downstream tasks. In this
work, we focus on the selection of semantically
similar examples as motivated by Liu et al. (2022).

2.2 Automatic Prompt Design

The task of optimizing prompts for LLMs has
received increasing attention, with several ap-
proaches leveraging the model’s ability to self-
improve: Shin et al. (2020) introduced AutoPrompt
uses a gradient-guided search to iteratively re-
fine trigger tokens, resulting in competitive per-
formance compared to manually designed prompts
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for tasks like natural language inference. Zhou
et al. (2023) proposed Automatic Prompt Engineer
(APE), which iterates over LLM-generated candi-
date prompts, selecting and refining those that lead
to the best performance based on task-specific score
functions, often outperforming human-generated
prompts. Similarly, Pryzant et al. (2023) intro-
duced ProTeGi, a method that optimizes prompts
based on LLM-generated rasonings over erroneous
examples. The performance of these reasonings is
estimated and stears a beam search that explores
multiple candidate options. Yang et al. (2024) uti-
lize the LLM itself as a general-purpose optimizer
capable of refining prompts and solving various
tasks. Their method, OPRO, iteratively generates
and evaluates prompts based on the history of previ-
ous attempts, framing prompt optimization as a gen-
eral meta-optimization task. Finally, Intent-based
Prompt Calibration (IPC) by Levi et al. (2024) in-
troduces the auto-generation of synthetic challenge
cases to calibrate prompts, which are then labeled
by the expert. Our work explores automatic prompt
design — as outlined above — from a practitioners
perspective. Specifically, we follow a simplified
variant of Pryzant et al. (2023)’s ProTeGi, which
(instead of beam search) performs a greedy search.

2.3 Emission Information Extraction

The detection and extraction of SDG (Sustainable
Development Goals) related information has re-
cently gained traction as a research field: Spokoyny
et al. (2023) bridge the gap between structured re-
porting (in form of questionnaires) and unstruc-
tured reporting in form of text: Their ClimaBench
benchmark challenges NLP models to extract
climate-related information from company reports
and thus auto-fill questionnaires. Schimanski et al.
(2024) pretrain specific BERT models for environ-
mental, social and governance aspects on 13.8 mil-
lion corporate disclosures and curate three balanced
2k-document test collections for the E, S and G di-
mensions. Their textual ESG scores explain a sub-
stantial share of the variance in leading commercial
ratings, demonstrating that domain-tuned NLP can
markedly narrow the long-standing "rating gap"
in ESG measurement. These two works do not
address recent large-scale LLMs, and thus focus
on task-specific fine-tuning instead of in-context-
learning (as investigated in this work).

Other, more recent approaches tackle SDG
information extraction with LLMs: Garigliotti



Table 1: Results of Few-shot Prompting (%, including example selection in Row 4 ("Similar")).

simple instructions

expert instructions

EXAMPLES Acc Prec Rec F1 ‘ Acc  Prec Rec F1

Zero-shot 56.2 522 1000 68.6 | 81.2 77.1 86.1 814
Static 723 638 97.0 77.0 | 82.0 90.8 694 78.7
Random 66.2 589 98.6 737 | 80.5 757 895 815
Similar 69.8 623 929 746 | 87.0 872 854 863

(2024) investigate an LLM-based RAG pipeline,
which — similar to our approach — addresses
the task of detecting textual passages contain-
ing Sustainable Developmental Goal (SDG) tar-
gets. Thulke et al. (2024) introduce ClimateGPT,
a 7B-70B-parameter, climate-specialised LLM
family pretrained on 4.2B domain tokens and
instruction-tuned with expert tasks, matching
Llama-2-70B on bespoke climate benchmarks
while reducing hallucinations through retrieval aug-
mentation. While both approaches are based on
LLMs, they use manual prompt tuning and do not
address in-context learning from user feedback,
which is the focus of our work.

3 Approach

Given a text passage from a sustainability report,
we classify whether this passage contains a rele-
vant emission goal. To achieve this, we prompt an
instruction fine-tuned LLM, specifically OpenAl’s
GPT-40 mini. The prompt includes both a set of
task-specific instructions and — optionally — a small
number of few-shot examples, i.e. input/output
pairs that demonstrate the desired behavior. For a
passage containing a relevant emission goal, the
LLM’s answer is expected to be "True," while irrel-
evant passages should be classified "False." Within
this framework, we investigate two methods to in-
clude expert knowledge in form of labeled exam-
ples: Few-Shot Example Selection and Automatic
Prompt Design.

3.1 Few-shot Example Selection

Here, we add labeled few-shot examples to the
prompt, which are selected to be semantically simi-
lar to the target passage. For example, the sentence
“Our goal is to reduce paper waste in our admin-
istrative departments by 35% by 2027” might be
misclassified as a relevant goal. However, injecting
a similar example with the correct label such as “By
2028, we aim to reduce paper usage in our offices
by 50% through digitalization” into the prompt
arguably improves the chance of a correct result.
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We embed passages using Sentence Trans-
former (Reimers and Gurevych, 2019), specifically
all-MiniLM-L6-v2, which balances efficiency and
performance in MTEB (Muennighoff et al., 2023).
This model is fine-tuned on 1.17 billion sentence
pairs (Reimers, 2024) using contrastive learning.
We retrieve similar passages via cosine similarity
in the embedding space.

Since class distribution affects the LLM’s de-
cision, we select up to three examples per class,
prioritizing the most similar ones to form five few-
shot demonstrations.

3.2 Automatic Prompt Design

Given the training set of labeled passages, we ap-
ply an approach similar to ProTeGi (Pryzant et al.
(2023)): Starting from an initial prompt, the LLM
iterates through the training set of labeled text pas-
sages in random order. Given a text passage p,
the current prompt — consisting of instructions Z
and optionally some static few-shot demonstrations
— is used to predict whether p contains a relevant
emission goal. If the model’s prediction contradicts
the ground truth, we prompt the LLM to analyze
possible root causes of the error. This step is in-
spired by the Chain-of-Thought method proposed
by Wei et al. (2022). We then feed the LLM’s ra-
tionale back to the LLM, prompting it to modify
7 to correct the error so that the desired label is
generated in future predictions. We obtain a new
prompt candidate, comprising of new instructions
7’ (and optionally the same few-shot examples).
The accuracy of this new prompt with instruc-
tions Z' is assessed by computing its F1 score on
the training set. Should this exceed the score of the
previous instructions Z by at least a small margin e,
the new prompt is accepted and the iteration is con-
tinued with Z’. The margin € ensures an observed
improvement to be statistically significant, and also
limits the instruction complexity (we found most
modifications made by the LLM to add new clauses
and/or sentences to the instruction). In contrast to
the work by Pryzant et al. (2023), we do not em-



ploy beam search but a simple greedy search. This
is to limit the computational cost associated with
high numbers of evaluations.

4 [Experiments

We compare the effectiveness of the above ap-
proaches for example selection and automatic in-
struction design in improving emission goal detec-
tion with LLM prompting.

Dataset We use the NetZeroFact-BIG Dataset
(Wrzalik et al., 2024), which contains passages
from 16 business reports labeled by analysts. A
passage is relevant (true) if it yields a correct fact;
otherwise, it is false.

The data has been split into a test set (on which
we estimate performance metrics) and a training
set (from which we draw few-shot examples in ex-
ample selection, and which the automatic prompt
design iterates over). To prevent data leakage be-
tween the splits due to duplicate statements within
the same report, we split along the reports: Four
reports have been chosen whose 207 passages form
the test set, while 562 passages from the remaining
12 reports form the training set. 36%/48% of labels
in the training/test split are positive.

Setup and Technical Details We have run all
experiments for two versions of the starting instruc-
tions Z' : (1) A simple ad-hoc version, and (2)
an expert version, which resulted from a manual
process of iterative optimization and result inspec-
tion prior to the experiments presented in this pa-
per. As few-shot examples, we either use none
("Zero-shot"), 5 random ones from the training set
("Random"), a fixed set of 5 examples, which were
expert-selected to be particularly informative prior
to our experiments ("Static"), or example selection
as described above ("Similar").

We report well-known quality metrics, namely
classification accuracy, precision, recall and the
F1 score. Our experiments were run with GPT-
40 mini® through the OpenAI API (OpenAl, 2024)
with Python’s LangChain framework.

We set the margin to e=0.01, which corresponds
approximately to two times the standard devia-
tion observed in many of our experiments (despite
greedy generation, we found OpenAlI’s output to
be non-deterministic, which is why we repeated

'All instructions and examples can be found in the ap-
pendix.
’The version used is gpt-40-mini-2024-07-18
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evaluation 7 times and report the average). With
this margin, we found the prompt tuning process to
converge in less than one epoch.

Few-Shot Example Selection Table 1 displays
test results for simple (left) and expert (right)
prompts with the different few-shot example selec-
tion strategies. Note that only few-shot examples
(and not the prompt) are varied in this experiment.
We see that adding few-shot examples consistently
improves results for the simple prompt, with expert-
selected examples ("Static") complementing this
prompt best. For the expert prompt, however, only
the similarity-based example selection yields an
improvement by ~ 5%. We hypothesize that this
complements the — already quite elaborate — prompt
best. Also, note that few-shot prompting improves
precision rather than recall (likely because exam-
ples emphasize intricacies of the extraction task).

Automatic Prompt Design Table 2 illustrates re-
sults for automatic prompt design. First, and most
importantly, we observe strong improvements over
the manual prompts in the zero-shot case (Rows
1+2), from 68.6% to 88.2% for the simple prompt
and from 81.4% to 86.9% for the expert prompt
(note that — surprisingly — starting the optimiza-
tion process from the simple prompt works even
better). In both cases, automatic prompt design out-
performs example selection. The Appendix gives
a qualitative impression of the evolution of the
prompt, outlining which aspects were added in the
optimization process, and that — indeed — the result-
ing prompt reflects on some key intricacies of the
extraction task.

Few-shot examples in this setting deteriorates
results consistently when no examples were used in
prompt tuning (Row 2 vs. Rows 3-5). It seems that
these examples confuse the model with its highly
specific instructions. When using static examples
in training’, we observe improvements in some
cases but not with example selection (last row).

5 Conclusion

Overall, our results suggest that — particularly with
ad-hoc prompts, in which little explicit knowl-
edge of the extraction task is encoded — automatic
prompt design is more effective compared to ex-
ample selection. A surprising finding is that, when

3For efficiency reasons, we stick with static examples,
since fixed prompts during prompt tuning allow for batching.



Table 2: Results of Automatic Prompt Design (%).

EXAMPLES DURING...

simple start instruction

expert start instruction

Tuning Testing Acc  Prec  Rec F1 ‘ Acc  Prec Rec Fl
(no tuning, zero-shot) 56.2 522 100.0 68.6 \ 812 77.1 86.1 814
Zero-shot  Zero-shot 88.1 842 925 882 | 869 833 90.8 869
Zero-shot  Static 832 804 89 830|870 922 797 854
Zero-shot  Random 823 757 939 83.6 | 849 831 859 843
Zero-shot  Similar 83.1 803 8.7 829 | 849 87.0 804 83.6
Static Zero-shot 874 90.1 827 862 | 89.9 882 909 895
Static Static 8909 887 905 896 | 8.1 935 83.0 879
Static Random 81.7 760 913 82.8 | 8.0 880 899 88.6
Static Similar 84.1 842 823 832 | 874 905 824 863

applying automatic prompt design, we found few-
shot samples, particularly when drawn with differ-
ent strategies compared to prompt tuning, to be
harmful in some cases.

Future research on the issue may include ex-
periments with other LLMs (particularly open-
source or open-weight ones), the extension to other
sustainability-oriented information extraction tasks
(such as reported de-facto emissions, which of-
ten come in tables), and methods for interactive
prompt-codesign by expert and LLM.

Limitations

One key limitation of our study is that we only fo-
cus on OpenAI’s 04-mini model, such that — also
due to the rapid advancement of large language
models (LLMs) — our findings merely represent
a snapshot at the time of our experiments. While
we conducted initial evaluations with more recent
LLaMA-3 models (Grattafiori et al., 2024) and
observed similar performance trends as for the
OpenAl-based experiments in this paper, findings
may differ for newer models with enhanced reason-
ing capabilities such as DeepSeek-R1 (DeepSeek-
Al et al., 2025). Specifically, these latest models
have been claimed to offer improved performance
on tasks requiring long reasoning chains. It should
be, however, that our specific task (emission goal
detection) relies more on the precise assessment of
edge cases rather than extended reasoning, suggest-
ing that our core findings remain relevant despite
these developments. Future work should systemati-
cally evaluate newer models to assess their poten-
tial impact on this task.

Another limitation of our study is the focus on
company reports as the only — and inherently non-
objective — source of information. While our extrac-
tion methods focus on identifying verifiable facts,
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the lack of external validation poses a risk of bias
in the results. Here, a valuable direction for future
research would be to cross-match extracted facts
with independent sources, such as social media
discussions, reports from non-governmental orga-
nizations (NGOs), or investigative journalism. This
could provide a more comprehensive and balanced
assessment of corporate emissions goals.
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Appendix
A Prompts

A.1 Simple Instruction

System: Determine if the text describes
a commitment to reducing carbon
emissions or achieving net zero;

return "True"” if it does, otherwise
return "False”.
Human: <example input>

Al: <example output>

Human : <input passage>
AI: <output prediction>

A.2 Expert Instruction

System: You are an information
extraction tool for climate goals
that classifies whether a given text

contains a statement about the
commitment to a goal regarding
carbon emissions. I will present you
with passages from asset managers'
reports. You will determine whether
the given text contains a commitment
to either a specific relative
reduction in carbon emissions or to
achieving net zero or carbon
neutrality. Ignore any vague
statements; a target is only a
target if it states by when the
target is to be achieved. For
relative emission reductions, a
specific percentage reduction must
be stated. Ignore goals of third
parties. Your answer is 'True' if
the statement contains such a
climate target of the asset manager
and 'False' if it does not.

Human: <example input>

Al: <example output>

Human : <input passage>
Al: <output prediction>
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A.3 Static Few-Shot Examples

System: <Instruction>

Human: A standout feature of the
GreenTech Solutions Factory is its
pledge to function entirely on
renewable energy sources, aiming for
net-zero emissions across its
operations.

Al: False
Human: We are participating in the UN-
backed Net-Zero Asset Owner Alliance
(AOA) where a large number of the
worlds biggest investors commit
themselves to being net carbon
neutral in their investments by no
later than 2050 and to continually
make five-year sub-targets for C02
footprints.
AI: True
Human: Net zero emissions means
achieving a balance between
greenhouse gas (GHG) emissions
produced and the amount removed from
the atmosphere, consistent with
limiting global warming to 1.5C and
neutralising the impact of any
residual emissions by permanently
removing an equivalent amount of
carbon dioxide (C02). For BTPS this
will mean reducing the portfolio's
emissions through changing
investments and investing in
technologies which reduce emissions.
AI: False
Human: We have also emphasised our green
ambitions by announcing that, from
2019-2025, we will reduce the carbon
footprints of our investments by 29
per cent.
AI: True
Human: In our climate targets published
in 2019, we are committed to exiting
from investments in thermal coal by
2025. We are also committed to
excluding oil exploration from our
investments by 2030.
AIl: False
Human: <input passage>
Al: <output prediction>

A4 Automatic Prompt Tuning: Prompt for
Instruction Modification

<instruction>
Human: <example input>
AI: <example output>

Human: <input passage>

Al: <output prediction>

Human: Your prediction is wrong, we
expect the answer to be "<target
label>". Analyze the error in your
previous prediction and identify
which part of the instruction may
have led to the incorrect result.

Al: <output reasoning>

Human: Modify the instruction to improve

understanding of the expected

behavior for the next prediction.

Ensure the modification corrects the

mistake without reversing the

labels. Provide only the modified

instruction in your response.

<output instruction>

System:

Al:
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A.5 Interaction Example from Automatic
Prompt Engineering

The following is a dialogue from the Automatic
Prompt Engineering process, starting with the sim-
ple instruction and not including the few-shot ex-
amples during optimization.

System: Determine if the text describes
a commitment to reducing carbon
emissions, achieving net zero, or
setting specific emission reduction
targets; return "True” if it does,
otherwise return "False”.

Human: 2 Guide for Identifying
Sustainable Financing. 3 Identified
Staff is made up of directors,
senior managers or employees whose
professional activities have a
significant impact on the risk
profile of an entity. An
environmental and climate strategy
that aims to contribute to the
sustainable tran- sition, addressing

the challenge of accelerating the
transition to a carbon neutral
economy, taking into account the
natural capital.

AIl: True

Human: Your prediction is wrong, we

expect the answer to be "False”.

Analyze the error in your previous

prediction and identify which part

of the instruction may have led to
the incorrect result.

Upon reevaluating the text, it does

not explicitly mention a commitment

to reducing carbon emissions,
achieving net zero, or setting
specific emission reduction targets.
Instead, it discusses an
environmental and climate strategy

aimed at contributing to a

sustainable transition towards a

carbon-neutral economy, which is

more about the broader goal rather
than specific commitments or targets

.An\nThe error in my previous

prediction stemmed from interpreting

the phrase "contribute to the

sustainable transition” as a

commitment, when it does not specify

concrete actions or targets related
to emission reductions. The
instruction to identify specific
commitments or targets was not
adequately applied in this case.\n\
nTherefore, the correct answer
should indeed be "False.” Thank you
for your feedback.'

Human: Modify the instruction to improve

understanding of the expected
behavior for the next prediction.

Ensure the modification corrects the

mistake without reversing the
labels. Provide only the modified
instruction in your response.

Determine if the text explicitly

describes a commitment to reducing

carbon emissions, achieving net zero

, or setting specific, measurable

emission reduction targets. Return

True” if it does, otherwise return

False."” Focus on clear statements of

intent or quantifiable goals rather
than general strategies or
aspirations.

Al:

Al:

n

n



B Automatic Prompt Tuning: Instruction
Evolution

B.1 Initial Prompt: Simple Instruction -
Zero-Shot

Initial Instruction: Determine if the text describes
a commitment to reducing carbon emissions or achiev-
ing net zero; return "True" if it does, otherwise return "False".

Summarized Instruction Evolution:

1. Emphasizes specific emission reduction targets.

2. Focus on explicit statements of intent or measurable
targets.

. Excludes vague or general strategies.

. Adds requirement for numerical values or timelines in
commitments.

. Stresses actionable targets with clear timelines.

. Focuses on specific commitments, not just data or ambi-
tions.

. Clarifies that numerical values alone are insufficient.

. Emphasizes intent to achieve targets within a timeframe.
. Notes need for long-term commitment or endpoint.

10.

Recognizes specific phrasing like "reduce to zero by
2050."

Tuned Instruction: Determine if the text explicitly describes
a commitment to reducing carbon emissions, achieving net
zero, or setting specific, measurable emission reduction tar-
gets with clear numerical values or timelines. Return "True" if
it does, otherwise return "False." Focus on clear, quantifiable
statements of intent or goals, ensuring that any mentioned tar-
gets are specific, actionable, and include a defined timeline or
endpoint. Emphasize that a commitment must include a direct
statement of intent to achieve a specific target within a spec-
ified timeframe, rather than general goals or investments in
technology without clear emission reduction outcomes. Note
that numerical data or reduction ambitions alone, without a
clear long-term commitment or endpoint, do not qualify as a
commitment. Additionally, ensure to recognize that phrases
indicating intent to achieve specific targets by a certain year
(e.g., "reduce to zero by 2050") are valid commitments.

B.2 Initial Prompt: Manually Tuned
Instruction - Zero-Shot

Initial Instruction: You are an information extraction tool
for climate goals that classifies whether a given text contains
a statement about the commitment to a goal regarding carbon
emissions. I will present you with passages from asset
managers’ reports. You will determine whether the given text
contains a commitment to either a specific relative reduction
in carbon emissions or to achieving net zero or carbon
neutrality. Ignore any vague statements; a target is only a
target if it states by when the target is to be achieved. For
relative emission reductions, a specific percentage reduction
must be stated. Ignore goals of third parties. Your answer is
"True’ if the statement contains such a climate target of the
asset manager and 'False’ if it does not.

Summarized Instruction Evolution:
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. Adds emphasis on the need for both a clearly stated
percentage and a target year for relative reductions, and
a target year for net zero/carbon neutrality.

Stresses the validity of the target only if it explicitly
states the target year for both relative reductions and net
zero/carbon neutrality. Includes checks to ensure the
presence of a target year for all goals.

Refines further by requiring that net zero or carbon
neutrality commitments specify a particular year (e.g.,
2030), not just a vague timeframe. Reinforced the need
for specific target years and percentages for all commit-
ments.

Tuned Instruction: You are an information extraction tool
for climate goals that classifies whether a given text contains
a statement about the commitment to a goal regarding car-
bon emissions. I will present you with passages from asset
managers’ reports. You will determine whether the given text
contains a commitment to either a specific relative reduction
in carbon emissions (with a clearly stated percentage and a
target year) or to achieving net zero or carbon neutrality (with
a specified target year). A target is only valid if it explicitly
states by when the target is to be achieved, including a specific
year (e.g., 2030) for net zero or carbon neutrality commit-
ments. For relative emission reductions, a specific percentage
reduction must be stated along with a target year. Ignore
goals of third parties and any vague statements. Your answer
is 'True’ if the statement contains such a climate target of the
asset manager and 'False’ if it does not. Ensure to check for
the presence of a clearly specified target year for both relative
reductions and net zero or carbon neutrality commitments.
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Abstract

The rapid growth of climate science liter-
ature necessitates advanced information ex-
traction (IE) systems to structure knowledge
for researchers and policymakers. We intro-
duce ClimatelE, a novel framework combin-
ing taxonomy-guided large language model
(LLM) annotation with expert validation to
address three core tasks: climate-specific
named entity recognition, relationship extrac-
tion, and entity linking. Our contributions
include: (1) the ClimateIE-Corpus—500
climate publications annotated via a hybrid
human-AlI pipeline with mappings to the ex-
tended GCMD+ taxonomy; (2) systematic eval-
uation showing L1ama-3. 3-70B achieves state-
of-the-art performance (strict F;: 0.378 NER,
0.367 EL), outperforming larger commercial
models (GPT-40) and domain-adapted base-
lines (ClimateGPT) by 11-58%; and (3) anal-
ysis revealing critical challenges in technical
relationship extraction (MountedOn: 0.000 F;)
and emerging concept linking (26.4% unlink-
able entities). Upon acceptance, we will release
the corpus, toolkit, and guidelines to advance
climate informatics, establishing benchmarks
for NLP in Earth system science and underscor-
ing the need for dynamic taxonomy governance
and implicit relationship modeling. The Cli-
matelE dataset, including expert annotations
and taxonomy-aligned outputs, is available at:
https://github.com/Jo-Pan/ClimatelE.

1 Introduction

Climate science literature has grown exponen-
tially, with over 1.3M publications indexed in
the Google Scholar since 2020, which is already
11% more than previous decade. This deluge of
knowledge, while critical for addressing plane-
tary crises, overwhelms researchers and policy-
makers who must manually reconcile unstructured
findings across disciplines. For instance, link-
ing CMIP6 climate projections (e.g., Temperature
changes under ssp2.45) to policy-relevant targets

76

like the Paris Agreement’s 1.5°C threshold requires
labor-intensive cross-document synthesis. Simi-
larly, tracking emerging geoengineering proposals
(e.g., stratospheric aerosol injection) or validating
observational datasets (e.g., CRU, ERA INTERIM)
against model projections becomes intractable with-
out structured representations. Information extrac-
tion (IE) systems could automate these tasks, en-
abling systematic reviews, model intercomparisons,
and Sustainable Development Goal (SDG) moni-
toring. Yet, current solutions remain ill-equipped
to handle climate science’s technical complexity.

We formalize ClimatelE, a unified framework for
structuring climate literature through three interde-
pendent tasks. 1. Climate-Specific NER: Disam-
biguating domain entities (e.g., “AR6” as an IPCC
report vs. its gene notation counterpart). 2. Rela-
tionship Extraction: Identifying causal and pro-
cedural links (e.g., “CMIP6 prescribes SSP2-4.5
emissions Scenarios”). 3. Taxonomy-Anchored
Entity Linking: Mapping entities to an expanded
climate ontology (e.g., “Pacific Decadal Oscilla-
tion” — Ocean Circulation/Teleconnections). Un-
like generic IE tasks that focus on commonsense
entities, ClimatelE targets modeling-critical con-
structs—experimental protocols, variables, and in-
tercomparison projects—whose precise interpreta-
tion requires domain expertise.

Three critical barriers hinder progress in climate
information extraction. First, existing controlled
vocabularies such as NASA’s GCMD show limita-
tions for named entity recognition, missing approx-
imately 43% of relevant terms such as “blue
carbon governance” and “attribution-aware model-
ing”— as revealed by our analysis of 100 recent
climate-related papers. Compounding this issue
are prohibitive annotation costs: manual curation
of climate entities requires 1 hour per document,
as observed in our pilot study, a rate unsustainable
against the field’s output of 1,500+ publications
monthly. Even when annotations exist, model gen-
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eralization remains problematic: state-of-the-art
systems like GLINER (Zaratiana et al., 2024) suffer
a 29% performance drop (0.339 vs. 0.478 F) on
climate texts, faltering on domain-specific terminol-
ogy (e.g., “paleoclimate proxies”) and contextual
ambiguity—such as disambiguating “mitigation”
in carbon sequestration versus flood control con-
texts. These limitations obstruct scalable, accurate
knowledge extraction from climate literature.

To overcome these challenges, we introduce the
ClimatelE Corpus—a domain-specific resource
combining three synergistic components. First, our
GCMD+ Taxonomy extends NASA’s framework
with novel categories (e.g., experiments, climate
variables) and 2,520 entity aliases from CMIP6CV
and domain repositories, addressing coverage gaps
for emerging concepts. Second, we propose a Hy-
brid Human-AI Pipeline that enables scalable
annotation through LLM-based weak supervision
(Llama-3.3 on 500 papers), followed by expert vali-
dation with a three-stage protocol (NER — Linking
— RE) applied to 25 papers. Third, our Evaluation
Framework systematically benchmarks 7 state-of-
the-art models, exposing critical failure modes like
semantic drift in LLM-generated labels and catas-
trophic performance cliffs (e.g., 0.04 F; on “Plat-
form” entities). This triad of innovations balances
domain specificity with practical scalability.

Our work delivers three principal contributions:

* First Comprehensive Climate IE Corpus:

Open-access resource supporting NER (12 en-
tity types), relationship extraction (9 relation-
ship types), and entity linking, with unique
coverage of climate modeling workflows.
Taxonomy-Guided Methodology: Hybrid
approach combining LLM scalability with
expert precision, reducing annotation costs
while preserving domain semantics.
LLM Failure Mode Analysis: Systematic
evaluation reveals critical gaps in state-of-the-
art models, including poor handling of im-
plicit relationships (“ValidatedBy”: 0.02 Fy)
and domain entities extraction (0.08 F; on
“ocean circulation”).

ClimatelE bridges the gap between unstructured
climate literature and computable knowledge repre-
sentations, enabling systematic organization of do-
main insights. By resolving semantic inconsisten-
cies while maintaining scalability, this resource es-
tablishes a foundation for climate knowledge graph
construction, evidence synthesis, and downstream
decision-support systems.
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2 Related Work

2.1 Climate Science IE Datasets

Existing structured resources for climate knowl-
edge predominantly target policy analysis and im-
pact documentation. The CPo-CD Dataset (Singh
et al.,, 2024) exemplifies this trend, annotating
13,728 short text segments (2-250 words) with
policy elements such as Target, Action, Policy,
and Plan. Similarly, CLIMATELI (Zhou et al.,
2024), the first manually annotated dataset for cli-
mate entity linking, maps 3,087 entity spans to
Wikipedia across genres like IPCC reports and
news articles, though its scope remains constrained
to broadly recognized concepts. Efforts to system-
atize climate impacts (Li et al., 2024), who employ
LLMs to extract 300 records of extreme events
(e.g., Event, Location, Deaths) from Wikipedia and
Artemis, prioritizing societal consequences over
scientific processes. In the corporate sustainability
domain, Usmanova and Usbeck (Usmanova and
Usbeck, 2024) transform 124 reports into a knowl-
edge graph with ontology classes like Organiza-
tion and Risks, alongside relations such as hasDe-
scription, while Garigliotti (Garigliotti, 2024) com-
bines LLMs with retrieval-augmented generation
(RAG) to classify sustainability targets in 33 re-
ports. Though these resources advance policy track-
ing and corporate disclosures, they overlook techni-
cal climate science entities fundamental to climate
moodeling workflows—experiments, observational
variables, and weather events. Our work bridges
this gap by centering on computational research
artifacts and cross-document entity linking tailored
to climate modeling interoperability.

2.2 Resources of Scientific Text Annotated
with NER

The broader scientific NLP community has made
substantial progress in structuring domain-specific
texts through annotated corpora, though climate
science remains underrepresented. Recent ef-
forts span disciplines such as biomedicine (Med-
NER (Ullah Miah et al., 2023) for disease men-
tions), computer science (SciDMT (Pan et al.,
2024), DMDD (Pan et al., 2023) and SciER (Zhang
et al., 2024) for dataset and method entities), and
clinical text (Bose et al., 2021). Despite this di-
versity, existing corpora systematically exclude
climate-specific constructs critical for modeling
workflows—experimental protocols (e.g., CMIP6
emmission scenarios), observational variables (e.g.,



aerosol optical depth), and teleconnection pat-
terns such as PDO. This omission persists even
in domain-agnostic benchmarks, which prioritize
generic entities (e.g., datasets, locations) over cli-
mate science’s technical lexicon.

2.3 LLMs for Information Extraction

LLMs excel at scientific information extraction
on tasks like chemical entity recognition (Viviane
et al., 2024) and biomedical relation extraction
(Gabriel et al., 2024). Their ability to generalize
across diverse syntactic structures makes them par-
ticularly promising for processing scientific dis-
course, where entity semantics often depend on
implicit domain knowledge (e.g., “CMIP6” im-
plies a modeling framework rather than a generic
acronym). However, three critical limitations hin-
der their application to climate science. First, hal-
lucination—the generation of factually inconsis-
tent outputs—is exacerbated in climate contexts
where precise terminology is paramount. For in-
stance, models may conflate distinct concepts like
“RCP8.5” with “SSP5-8.5”. Techniques like con-
trastive decoding (Derong et al., 2024) mitigate
this by suppressing implausible token sequences,
but they struggle with climate science’s long-tail
concepts absent from general pretraining corpora.
Second, domain mismatch persists even in adapted
models like SciLitLLM (Sihang et al., 2024), which
focuses on broad scientific literature rather than
climate-specific discourse. This results in categor-
ical errors, such as misclassifying observational
platforms (e.g., “Argo floats™ as geographic loca-
tions) or mislinking abbreviations (e.g., “ENSO”
to entertainment entities). Third, limited grounding
in climate taxonomies undermines entity linking
consistency across studies. While RAG partially
addresses this (Garigliotti, 2024), current imple-
mentations prioritize policy targets over technical
modeling artifacts. ClimatelE addresses these gaps
via structured annotations and hybrid human-LLM
curation pipeline, enabling robust grounding of cli-
mate entities while minimizing hallucination risks.

3 GCMD+ Taxonomy Development

The ClimatelE framework (Figure 1) builds
a domain-specific semantic backbone via the
GCMD+ taxonomy, constructed through multi-
source aggregation and cross-domain linking. This
structured vocabulary resolves entity ambiguities
across heterogeneous climate literature while main-
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Figure 1: Climate Knowledge Extraction Pipeline

taining interoperability with legacy systems.

3.1 Multi-Source Taxonomy Aggregation

GCMD+ extends NASA’s Global Change Mas-
ter Directory (GCMD v4/2024) (Nagendra et al.,
2001)—a foundational resource with 13,840 enti-
ties across 14 categories like Earth Science and
Projects—through systematic integration of three
specialized climate resources. First, CMIP6 Con-
trolled Vocabularies (Taylor et al., 2018) contribute
standardized modeling terms for experiments, vari-
ables, and grids, such as the “HighResMIP” pro-
tocol. Second, 0obs4MIPs Observational Datasets
(Waliser et al., 2020) provide instrument-specific
metadata from field campaigns like NASA’s SMAP
mission. Third, the CMIP Publication Hub' sup-
plies peer-reviewed terms for model intercompar-
ison protocols, including emerging concepts like
“attribution-aware ensemble design.”

New climate-specific categories (e.g., Experi-
ments, Realms) were introduced while harmoniz-
ing overlaps through consensus alignment—for in-
stance, mapping CMIP6’s “activities” to GCMD’s
“Projects” hierarchy. Lexical duplicates like
SSP5-8.5 versus ScenarioMIP-SSP5-8.5 were
resolved via expert-guided reconciliation, preserv-
ing source taxonomies’ hierarchical integrity. The
aggregated taxonomy contains 16,360 entities (18%
more than the base GCMD). Each entity has a
unique hierarchical path and identifier.

"https://cmip-publications.1lnl.gov
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3.2 Cross-Domain Linking via Wikidata

To bridge climate science with open knowledge
ecosystems, GCMD+ establishes bidirectional
mappings to Wikidata through a two-phase pro-
tocol. First, entity matching leverages Wikidata’s
search API to generate 10 candidate matches per
GCMD+ entity, filtered by fuzzy string similarity
(Levenshtein distance < 30%) and manual vali-
dation, yielding 5,098 high-confidence mappings
from 10,623 initial candidates. Second, metadata
integration enriches matched entities with Wiki-
data QIDs (e.g., Q18046802 for CMIP) and crowd-
sourced definitions while preserving GCMD+’s hi-
erarchical structure. This process enhanced 31%
of GCMD+ entities with cross-domain relation-
ships like located in water body and funded by,
enabling federated queries across climate-specific
and general knowledge graphs without compromis-
ing backward compatibility.

3.3 Specialization Over Generality

While general-purpose taxonomies like Wiki-
data offer broad coverage, they prove inadequate
for climate science due to three inherent ten-
sions. Excessive granularity fragments related con-
cepts—distinguishing Cyclone-1920 from Cyclone-
1930 adds no scientific value—while irrelevant cat-
egories (e.g., musical genres) dilute conceptual co-
hesion. More critically, they lack mechanisms for
expert-driven validation, often omitting niche es-
sentials like CMIP6 diagnostic variables or mis-
representing hierarchical relationships (e.g., con-
flating aerosol optical depth with generic atmo-
spheric metrics). GCMD+ circumvents these is-
sues through climate-specific curation: prioritizing
domain-critical constructs like El Nifio—Southern
Oscillation (ENSO) and dynamically integrating
emerging concepts (e.g., Arctic amplification) via
structured community feedback. This specializa-
tion ensures semantic precision where general tax-
onomies propagate errors, making GCMD+ indis-
pensable for constructing actionable climate knowl-
edge graphs with terminological accuracy.

4 Corpus Construction

We constructed the ClimatelE corpus from
the Semantic Scholar Open Research Corpus
(S20RC) (Lo et al., 2020), initially retrieving 2.5
million papers through using the search terms “en-
vironment” and “climate”. To ensure scholarly
impact and methodological rigor, we applied dual
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filters: a citation threshold retaining only publica-
tions with >10 citations, and open access require-
ments mandating machine-readable PDF availabil-
ity. This yielded 17,423 climate-focused docu-
ments with complete metadata (DOIs, authorship
chains) and full-text accessibility. PDFs were pro-
cessed using the SciPDF Parser?, which extracts
structured text while preserving section hierarchies.

From the processed corpus, we sampled 500
papers for weak supervision via LLM-assisted an-
notation (Section 5). A gold-standard subset of
25 papers underwent expert validation (Section 6),
establishing a gold-standard benchmark for climate
information extraction tasks.

5 Taxonomy-Guided LLLM Annotation

Unconstrained LLM deployment for scientific
annotation risks semantic drift and hallucina-
tion—for instance, generating fictitious model vari-
ants like “CMIP7 EC-Earth4 model” or misclas-
sifying CMIP6 scenarios as generic SSP experi-
ments. Our methodology counteracts these issues
through taxonomy-anchored generation, enforcing
consistency with climate domain semantics while
preserving contextual nuance.

The framework employs three core mechanisms:
1) Task Specification restricts extraction to 12 en-
tity types and 9 relationship classes, suppressing
off-taxonomy predictions through constrained de-
coding; 2) Terminology Grounding aligns entity
definitions with GCMD+ semantics; 3) Few-Shot
Demonstration provides 10 domain-annotated ex-
amples covering all entity and relation types.

We implement this approach using Llama-3-70B-
Instruct with a 600-token sliding window (100-
token stride). This chunking strategy, adapted from
GraphRAG (Edge et al., 2024), preserves local doc-
ument structure while minimizing boundary arti-
facts. Full prompt architecture is detailed in Ap-
pendix A.1. Due to the high computational cost
and inefficiency of fine-tuning large models like
Llama-3.3-70B for domain-specific tasks, we opt
for few-shot in-context learning instead, achieving
competitive performance with far fewer resources.

Entity linking proceeds through a three-phase
pipeline: First, we embed both extracted entities
(with contextual descriptions) and GCMD+ taxon-
omy nodes into a 4096-dimensional space using
NVIDIA NV-Embed-v2 (Lee et al., 2024)—the
top-performing model on MTEB'’s retrieval bench-

Zhttps://github.com/titipata/scipdf_parser
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mark (Muennighoff et al., 2022). Second, pair-
wise cosine similarity identifies candidate map-
pings. Finally, a similarity threshold of 0.6 (val-
idated through ROC analysis on manual annota-
tions) achieves optimal precision-recall tradeoff.
The taxonomy-constrained pipeline processed
500 climate science publications, extracting
133,709 entities and 95,309 relationships. Of these,
46,848 entities (35%) and 23,246 relations (24%)
were successfully mapped to GCMD+ taxonomies,
yielding two critical resources: 1) a curated set of
validated entities and relations for expert refine-
ment (Section 6), and 2) weakly labeled training
data for future domain-specific model fine-tuning.

6 Expert-Driven Annotation Protocol

Our 3-stage annotation process systematically iden-
tifies, links, and validates climate domain entities
and their relationships, prioritizing domain fidelity.
Four climate science experts iteratively annotated
25 publications using a cascade approach where
outputs from each stage informed subsequent re-
finements, balancing efficiency with precision. Pre-
annotations from Llama-3.3 predictions were man-
ually corrected to resolve omissions and errors,
ensuring alignment with GCMD+ taxonomy. To
maintain consistency, annotators followed a clear
guideline document (Appendix A.3) and partici-
pated in regular meetings to address concerns, clar-
ify ambiguities, and ensure a comprehensive under-
standing of the annotation process.

6.1 Three-stage annotation process

Stage 1: Named Entity Recognition Annotators
validated and refined Llama-3.3’s entity predictions
against 12 categories (Appendix A.l), guided by
GCMD+ definitions. Key actions included remov-
ing spurious predictions (e.g., misclassified geo-
graphic terms as climate models), adding omitted
entities (e.g., boreal spring predictability barrier),
and resolving boundary disputes (e.g., distinguish-
ing SSP5-8.5 from standalone SSP). The stage
achieved moderate inter-annotator agreement (Co-
hen’ k = 0.77), reflecting challenges in classifying
nuanced constructs like orbital period (variable)
and RCP scenarios (experiment).

Stage 2: Entity Linking Recognized entities
were mapped to GCMD+ identifiers, leveraging
pre-linked suggestions for efficiency. Key tasks
included correcting alignment errors (e.g., linking
Argo floats to platform nodes rather than instrument
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classes), flagging ambiguities such as ENSO < El
Nifio—Southern Oscillation versus regional impacts,
and retaining 14.3% of unlinked entities for tax-
onomy expansion. High agreement (x = 0.89)
underscored the taxonomy’s disambiguation utility.

Stage 3: Relationship Extraction Annotators
categorized relationships between validated entities
according to nine expert-defined types (e.g., Mea-
suredAt, ComparedTo), verifying contextual plau-
sibility and taxonomic consistency. Taking a sen-
tence like "GFDL model over estimates mean pre-
cipitation across India" as an example, annotators at
this stage must first detect the entities "GFDL" and
"Precipitation" and the relationship between them
which is Target location. Annotators must identify
entities that have not been pre-annotators, anno-
tate and the link them to GCMD. The moderate
inter-annotator agreement (x = 0.82) highlighted
persistent challenges in relationship extraction.

6.2 Annotation Statistics

The 25-paper corpus contains 13,773 entity men-
tions (877 unique), with 10,174 (73.8%) success-
fully linked to GCMD-+. Relationship extraction
yielded 3,618 validated pairs. Figure 1 visual-
izes the annotations, excluding linked entities for
clarity. Dominant entity types include Variables
(3,953 mentions, e.g., sea surface salinity), Loca-
tions (2,767 mentions, e.g., Arctic amplification re-
gions), and Models (1,500 mentions, e.g., CESM2-
WACCM), with distributions detailed in Table 2.

6.3 Challenges and Lessons Learned

Key challenges included entity disambiguation,
such as differentiating variables (e.g., aerosol op-
tical depth) from weather events (e.g., thunder-
storms) in dense methodological text. Another is-
sue was relationship contextualization for under-
specified interactions (e.g., Access Model, Usedln,
CESM Model) lacking sentence-level grounding.
Additionally, 14.3% of entities remained unlinked
to GCMD+ due to emerging concepts like Al-
driven parameterizations. Iterative dual annota-
tion cut error propagation by 41% compared to
single-stage methods, with annotation guidelines
codifying these insights for reproducibility.

7 Experiments

We evaluate model performance across three core
climate IE tasks: Named Entity Recognition (NER),



Relationship Extraction, and Taxonomy-Based En-
tity Linking, employing metrics that balance tech-
nical rigor with domain-specific consistency.

7.1 Evaluation Protocol

NER Evaluation adopts dual criteria: 1) Strict
evaluation requiring exact matches of both entity
spans and types (e.g., Model: “CESM2” vs. misclas-
sified Platform: “CESM2” counts as incorrect), and
2) Relaxed evaluation permitting type-agnostic sub-
string overlaps while prioritizing the longest non-
overlapping spans (e.g., keeping “CMIP6 Scenari-
oMIP SSP5-8.5” and removing “SSP5-8.5” within
the same context ). This dual approach accomo-
dates scientific writing variations.

Relationship Extraction is assessed through two
paradigms: strict triplet alignment requiring exact
matches of source entity, target entity, and relation
type (e.g., (CESM2, Outputs, SSP5-8)), and re-
laxed directional pair matching that ignores relation
types (e.g., (CESM2, -, SSP5-8.5)).

Entity Linking precision is measured by check-
ing if the system’s predicted GCMD+ identifiers
(e.g., GCMD+-CMIP6:ScenarioMIP.SSP5-8.5) ex-
actly match human annotations. Manual adjudica-
tion addresses synonym conflicts (e.g., “AMOC”
vs. “Atlantic Meridional Overturning Circulation”).
Performance metrics—precision (P), recall (R),
and F;—are reported at two levels: fotal aggre-
gates correctness across all test samples to mea-
sure global capability, while per-paper averages as-
sess cross-document consistency. We also provide
prediction counts (#PD) and ground truth counts
(#GT). Total metrics are default unless specified.

7.2 State-of-the-Art Model Comparison

Our evaluation framework examines four critical
dimensions of modern language models through
systematic comparisons. First, we quantify scal-
ing effects by contrasting L1ama-3. 3-8B with its
70B-parameter counterpart (Grattafiori et al., 2024),
isolating performance gains attributable to model
size. Second, we establish accuracy ceilings using
proprietary APIs GPT-40 (OpenAl et al., 2024) and
DeepSeek-V3 (DeepSeek-Al et al., 2024), reveal-
ing tradeoffs between commercial systems’ capabil-
ities and operational costs. Third, we assess domain
specialization through ClimateGPT (Thulke et al.,
2024)—a Llama-2 derivative fine-tuned on 4.2B
climate tokens—testing whether targeted adapta-
tion outperforms general architectures. Finally, we
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benchmark against generalist NER systems GLiNER
(Zaratiana et al., 2024) and NuNER (Bogdanov et al.,
2024), which rely solely on textual patterns and
entity type lexicons. All open-source models were
evaluated on dual NVIDIA A100 80GB GPUs us-
ing 16-bit precision, ensuring consistent hardware
baselines across experiments.

8 Results

Our evaluation of modern language models re-
veals three principal findings for climate infor-
mation extraction across Named Entity Recog-
nition, Relationship Extraction, and Taxonomy-
Based Entity Linking tasks. As summarized in Ta-
ble 1, L1ama-3.3-70B demonstrates superior over-
all performance compared to both larger commer-
cial systems (GPT-40, DeepSeek-V3) and domain-
specialized alternatives (ClimateGPT), achieving
the highest aggregated scores while maintaining
computational efficiency. Critically, this advan-
tage holds across both total-level metrics (full cor-
pus evaluation) and per-paper averages, indicating
consistent performance whether processing indi-
vidual documents or cross-study corpora. These
results position L1ama-3.3-70B as the most effec-
tive general-purpose architecture for climate IE
tasks, balancing scale with domain-aware process-
ing without requiring proprietary infrastructure.

8.1 Named Entity Recognition Results

As detailed in Table 1, L1ama-3.3-70B establishes
state-of-the-art performance for climate NER with
strict F1=0.378 and relaxed F;=0.501, surpassing
both commercial models (DeepSeek-V3: 0.331
strict F1) and specialized systems (GLiNER: 0.461
relaxed F;). Three critical patterns emerge from
the analysis. First, model scaling proves deci-
sive—the 70B variant outperforms its 8B counter-
part by 44% in strict F; (0.378 vs. 0.262) despite
being 2x smaller than GPT-40’s estimated 200B
parameters. Second, domain specialization shows
diminishing returns: ClimateGPT’s strict F1=0.062
lags 6x behind general-purpose Llama-3. 3, sug-
gesting current adaptation methods poorly capture
climate semantics. Third, precision-recall trade-
offs expose fundamental limitations—while NUNER
achieves relaxed precision=0.727, its recall=0.307
trails L1ama-3. 3 by 53%, unable to handle climate
entities’ variable boundaries.

Entity-type performance varies dramatically ac-
cording to Table 2. Standardized concepts like



NER RE EL
Relaxed Strict Relaxed Strict Strict
Model #Params P R F P R F P R F P R F P R F, #PD
Total
DeepSeek-V3 671B | .572 350 435 472 255 .331|.075 .072 .073 .034 .032 .033 | 457 272 341 3,365
GPT 40 200B | .602 .323 420 455 214 .291 | .096 .066 .079 .060 .041 .049 | 497 246 330 2,779
Llama-3.3 70B | 536 471 501 432 337 378 | .066 .096 .078 .045 .066 .053 | .440 315 .367 4,051
Llama-3.1 8B | .385 346 .364 291 .239 .262|.026 .042 .032 .016 .027 .020 | .396 .247 304 3,540
ClimateGPT 70B | 494 062 .110 .305 .034 .062 |.009 .001 .001 .000 .000 .000 | .478 .108 .176 828
NuNER 0.35B | .727 307 431 512 .196 .284 - - - - - - - - - -
GLIiNER 0.3B | .591 .378 461 458 269 .339 - - - - - - - - - -
Per-Paper Average
DeepSeek-V3 671B | 454 397 410 401 .330 .348|.066 .070 .059 .031 .036 .027 | .402 .252 .301 135
GPT 40 200B | .478 375 403 384 299 .319 | .078 .060 .060 .047 .038 .037 | .431 224 .286 111
Llama-3.3 70B | 441 .532 458 370 .437 .377 | .064 .073 .063 .044 .048 .043 | .386 .283 .321 162
Llama-3.1 8B | 311 470 .353 248 370 .278 |.027 .036 .028 .017 .023 .018 | .342 .227 .264 141
ClimateGPT 70B | 443 107 .168 .255 .062 .097 | .008 .000 .001 .000 .000 .000 |.392 .085 .139 33
NuNER 0.35B | .620 .341 438 464 .253 .326 - - - - - - - - - -
GLiNER 03B | 490 445 465 .391 .334 359 - - - - - - - - - -

Table 1: LLM performance on ClimatelE. Best scores per column are underlined.
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Figure 2: Example of entity extraction results from a climate science publication.

Relax Strict
label #GT P R F P R Fy
teleconnection 231 | .751 .576 .652 | .728 .530 .614
model 1335 | .739 470 575 | .722 419 .530
location 2485 | .764 .441 559 | .734 388 .507
experiment 280 | 457 .529 490 | 450 .482 465
variable 3404 | 463 295 .360 | 456 255 .327
project 237 | .231 .527 321 | .215 478 .296
weather event 170 | 207 .259 .230 | .209 .247 227
provider 234 | .132 573 214 | .123 .531 .200
natural hazard 324 | 355 .133 .193 | .339 .115 .171
instrument 69 | .072 232 .110 | .063 .200 .096
ocean circulation 20 | .060 .250 .096 | .047 .200 .076
platform 34 1.024 .088 .038 | .024 .088 .038

Table 2: NER performance from Llama-3.3-70B by
different entity types.

teleconnections (e.g., ENSO, NAO) peak at strict
F;=0.614, while platform recognition collapses to
F;=0.038 due to sparse annotations (34 #GT) and
definitional ambiguity (e.g., distinguishing Argo
floats from generic sensors). Surprisingly, frequent
entities like variables (3,404 #GT) underperform
(strict F1=0.327), struggling with compound terms
(e.g., “sea surface height anomaly”).

Error analysis reveals two persistent challenges:
inconsistent acronym resolution (extracting “SAM”
while ignoring contextual “Southern Annular
Mode”) and term variant instability (retaining “an-
thropogenic climate change” but omitting synony-
mous “climate change impacts”™). These patterns,
visualized in Figure 2 and Appendix A.2, under-
score the need for climate-aware contextualization
beyond surface patterns.
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Relaxed (Partial) Relaxed Strict
label #GT P R Fy P R F P R Fy
ComparedTo 922 | .149 .104 .122 | .107 .075 .088 | .107 .075 .088
MeasuredAt 263 | .094 285 .141 | .045 .137 .068 | .045 .137 .068
TargetsLocation 1842 | .163 .137 .149 | .064 .054 .058 | .064 .054 .058
Outputs 465 | .137 .095 .112|.056 .039 .046 | .056 .039 .046
UsedIn 242 | .036 .140 .057 | .020 .079 .032 |.020 .079 .032
RunBy 35|.014 .057 .022|.014 .057 .022|.014 .057 .022
ProvidedBy 31 |.012 226 .023|.010 .194 .020 | .010 .194 .020
ValidatedBy 14 | .010 .143 .018 | .010 .143 .018 | .010 .143 .018
MountedOn 2 |.000 .000 .000 |.000 .000 .000 |.000 .000 .000

Table 3: Relationship Detection performance from Llama-3.3-70B by different relationship types.

8.2 Relationship Extraction Results

RE proves more challenging than NER, with state-
of-the-art models achieving only 0.079 relaxed F;
(GPT-40) and 0.053 strict F; (L1ama-3.3-70B) in
Table 1. Mirroring NER trends, scaling and com-
mercial model tradeoffs persist: L1ama-3.3-70B
outperforms smaller variants by 37% in strict recall
despite GPT-40’s larger parameters. However, three
domain-specific patterns dominate RE outcomes:
First, relationship types exhibit extreme perfor-
mance stratification (Table 3). Explicit compar-
isons signaled by discourse markers (ComparedTo:
strict F1=0.088) outperform implicit infrastructure
relationships like ValidatedBy (F1=0.018), where
teleological ambiguity (e.g., distinguishing vali-
dation protocols from incidental co-occurrences)
confuses models. Second, partial entity match-
ing inflates scores significantly—MeasuredAt re-
call nearly doubles (0.137—0.285) but with preci-
sion below 0.10, reflecting rampant geospatial con-
flations (e.g., “northern Sweden” with “Sweden”).
Third, Low-frequency relations like MountedOn
(#GT=2) remain unrecoverable (F;=0.000), as mod-
els miss implicit dependencies (e.g., “sensor pack-
age deployment”) without explicit mounting terms.
These results underscore limitations in model-
ing physical and procedural relationships, where
even state-of-the-art LLMs lack the mechanistic
understanding required for climate system seman-
tics. Unlike NER’s reliance on surface patterns,
RE demands causal and functional reasoning that
current architectures cannot reliably sustain.

8.3 Entity Linking Results

Entity linking proves challenging in climate sci-
ence, with top-performing L1ama-3.3-70B achiev-
ing only strict F1=0.367 and failing to link 60% of
entities (4,051/10,174 #GT)—a gap exacerbated by
14.3% of annotated concepts lacking GCMD+ map-
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pings (e.g., emerging terms like blue carbon gover-
nance). Mirroring NER/RE trends, scale improves
disambiguation (70B vs. 8B: dF;=+0.063) but can-
not compensate for missing taxonomy coverage,
as even GPT-40 underperforms L1ama-3.3-70B by
11% despite 1.85x more parameters. The results
underscore the necessity of hybrid solutions com-
bining model scale with dynamic taxonomy gover-
nance to address persistent linking failures like dis-
tinguishing Argo floats (unmapped) from generic
ocean sensors.

9 Conclusion

We formalize Climate Information Extraction as a
critical NLP task, introducing the ClimatelE Cor-
pus—a domain-specific resource with 500 LLM-
annotated and 25 expert-validated publications
mapped to the GCMD+ taxonomy. Paired with our
modular toolkit for taxonomy-guided extraction,
this work establishes: standardized benchmarks
for evaluating climate IE systems, pretraining data
for domain adaptation, and interoperable schema
templates for cross-study knowledge federation.

Our comprehensive evaluation reveals two key
insights. First, model scale improves recall (70B
vs 8B Llama: 0R +41%) but insufficiently ad-
dresses domain-specific ambiguities, as shown by
ClimateGPT’s failure despite climate-focused pre-
training. Second, relationship extraction remains
a fundamental challenge, with technical dependen-
cies like MountedOn (0.000 F) exposing critical
gaps in LLMs’ physical system understanding.

ClimatelE links climate science and Al for prac-
tical uses: automating CMIP model tracking, ac-
celerating attribution study reviews, and validating
SDG-aligned policy claims. By releasing annota-
tions, taxonomies, and tools, we encourage collab-
oration to align NLP advances with the complexity
of climate science.



10 Limitations

While ClimatelE advances climate informatics,
four constraints merit attention for future iterations.

Taxonomy Coverage Gaps : Despite extend-
ing GCMD with novel categories, our schema can-
not fully encapsulate rapidly emerging concepts
like climate justice methodologies or stratospheric
aerosol injection governance. For instance, 17% of
annotated geoengineering entities lack mappings,
reflecting a lag between literature emergence and
taxonomy updates.

Entity Linking Precision-Throughput Trade-
offs : Our fuzzy string matching for Wikidata
integration (Levenshtein <30%) prioritizes broad
coverage over precision, yielding false positives
for polysemous terms—e.g., linking AMOC (At-
lantic Meridional Overturning Circulation) to Wiki-
data’s Q733115 (Amazon Mechanical Turk) due
to acronym collisions. While threshold tuning
(0.6 similarity) mitigates errors, it excludes valid
matches for underspecified terms like feedback (cli-
mate vs. control systems).

Language and Geographic Bias : By focusing
on English-language publications, we overlook crit-
ical climate knowledge in non-English texts—e.g.,
Spanish-language studies on Andean glacier re-
treat or Mandarin analyses of Yangtze River basin
droughts. This skews entity distributions toward
Eurocentric institutions.

Static Relationship Schema : Our predefined
relationship types (e.g., ComparedTo, ValidatedBy)
inadequately capture interdisciplinary interactions
like social-climate system couplings (e.g., urban
heat islands exacerbate energy poverty”) or eco-
evolutionary dynamics (e.g., ocean acidification
drives coral transcriptomic shifts”). This rigidity
also precludes modeling causal chains essential for
attribution studies.

Addressing these limitations requires: (1) Multi-
lingual NLP Pipelines leveraging low-resource lan-
guage models for Spanish, Mandarin, and Swahili
climate texts; (2) Context-Aware Entity Linking
combining embedding similarity with knowledge
graph walks; (3) Continuous Taxonomy Integra-
tion via automated discovery of emerging terms
from preprints and conference proceedings; (4) Hy-
brid Human-Al Annotation Pipelines for real-time
expert validation of contested concepts; and (5)
Robust Label Refinement using techniques such as
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DynClean (Zhang et al., 2025) to improve annota-
tion quality.
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A Appendix

A.1 Prompt

Table 4 shows the prompt being used for Climate
Science Entity and Relationship Extraction from
the climate science literature.

A.2 Entity extraction prediction

We employ regular expressions to align predicted
entity names with the input text, enabling pre-
cise boundary matching. Figures 3, and 4 vi-
sualize raw(Yellow: PD_all) and PostRAG(Blue:
PD_post) predictions from Llama-3.3-70B, show-
casing examples from evaluation documents.
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-Goal-

Given a text document with a preliminary list of potential entities, verify, and identify all entities of the specified types within the
text. Note that the initial list may contain missing or incorrect entities. Additionally, determine and label the relationships among
the verified entities.

-Entity Types-

A project refers to the scientific program, field campaign, or project from which the data were collected.

A location is a place on Earth, a location within Earth, a vertical location, or a location outside of the Earth.

A model is a sophisticated computer simulation that integrate physical, chemical, biological, and dynamical processes to
represent and predict Earth’s climate system.

An experiment is a structured simulation designed to test specific hypotheses, investigate climate processes, or assess the impact
of various forcings on the climate system.

A platform refers to a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for
further study of its characteristics.

A instrument is a device used to measure, observe, or calculate.

A provider is an organization, an academic institution or a commercial company.

A variable is a quantity or a characteristic that can be measured or observed in climate experiments.

A weather event is a meteorological occurrence that impacts Earth’s atmosphere and surface over short timescales.

A natural hazard is a phenomenon with the potential to cause significant harm to life, property, and the environment.

A teleconnection is a large-scale pattern of climate variability that links weather and climate phenomena across vast distances.
An ocean circulation is the large-scale movement of water masses in Earth’s oceans, driven by wind, density differences, and the
Coriolis effect, which regulates Earth’s climate.

-Relationship Types and Definitions-

ComparedTo: The source entity is compared to the target entity. Outputs: A climate model, experiment, or project (source entity)
outputs data (target entity).

RunBy: Experiments or scenarios (source entity) are run by a climate model (target entity).

ProvidedBy: A dataset, instrument, or model (source entity) is created or managed by an organization (target entity).
ValidatedBy: The accuracy or reliability of model simulations (source entity) is confirmed by datasets or analyses (target entity).
UsedIn: An entity, such as a model, simulation tool, experiment, or instrument (source entity), is utilized within a project (target
entity).

MeasuredAt: A variable or parameter (source entity) is quantified or recorded at a geographic location (target entity).
MountedOn: An instrument or measurement device (source entity) is physically attached or installed on a platform (target
entity).

TargetsLocation: An experiment, project, model, weather event, natural hazard, teleconnection, or ocean circulation (source
entity) is designed to study, simulate, or focus on a specific geographic location (target entity).

-Steps-

1. Identify all entities. For each identified entity, extract the following information:

- entity name: Name of the entity

- entity type: One of the following types: [project, location, model, experiment, platform, instrument, provider, variable]
Format each entity as ("entity"<I><entity name><|><entity type><I><entity description>)

2. From the entities identified from step 1, identify all pairs of (source entity, target entity) that are *clearly related* to each other.
For each pair of related entities, extract the following information:

- source entity: name of the source entity

- target entity: name of the target entity

- relationship type: One of the following relationship types: ComparedTo, Outputs, RunBy, ProvidedBy, ValidatedBy, UsedIn,
MeasuredAt, MountedOn, TargetsLocation

Format each relationship as ("relationship"<I><source entity><I><target entity><I><relationship type>)

3. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **** as the list
delimiter. Do not output any code or steps for solving the question.

4. When finished, output <ICOMPLETEI>

ITRTRTRTRTR IR TR TR IR TR IR TN TR TR IR TR TR IR TR TR IR
HHHHHHHH AR

-Examples-
{formatted examples}

ITRTRTN TR IR IR TR IR IR IR IR IR TR IR IR TR IR IR TR IR INT]
LR LR LR T IR R IR RN IR R IRIRIRIRIR L]

-Real Data-

ITRTRTNTR IR IR TR IR IR TR IR IR TR IR IR TR IR IR TR IR INT]
LR LR RN R R AR R IR IR IR IRIRIRIRIR L]

Text: {input text}
Potential Entities: {potential entities}

ITRTRTRTRTRINTRTR TN TR TR IR TR TR IR TRTRIRINTRINT]
HHHH R

Output:

Table 4: Prompt Template for Climate Science Entity and Relationship Extraction
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the likelihood of the southern annular mode ( SAM ) forcing Indian Ocean dipole ( 10D ) events and the possible impact of the 10D on El Nifi o - Southern

GT 6T GT GT GT GT
PD_all PD_all PD_all PD_all
PD_post

Oscillation ( ENSO ) events . Several conclusions emerge from statistics based on multimodel outputs . First , ENSO signals project strongly onto the SAM ,

6T PD_all 6T
PD_all PD_post PD_all
PD_post T

although ENSO - forced signals tend to peak before ENSO . This feature is similar to the situation associated with the 10D . The 10D - induced signal over

PD_all 6T ot eT
PD_post PD_all PD_all pD_all
6T PD_post

southern Australia , through stationary equivalent Rossby barotropic wave trains , peak before the 10D itself . Second , there is no control by the SAM on the

GT GT GT GT
PD_all PD_all PD_all
PD_post

10D, in contrast to what has been suggested previously . Indeed , no model produces a SAM - 10D relationship that supports a positive ( negative ) SAM driving a
GT GT GT GT

PD_all PD_all  PD_all PD_all

positive ( negative ) 10D event . This is the case even in models that do not simulate a statistically significant relationship between ENSO and the 10D . Third , the

6T

GT GT
PD_all PD_all PD_all
PD_post

10D does have an impact on ENSO . The relationship between ENSO and the 10D in the majority of models is far weaker than the observed . However , the ENSO 's

GT GT GT GT GT
PD_all PD_all PD_all PD_all PD_all
PD_post PD_post PD_post

influence on the 10D is boosted by a spurious oceanic teleconnection , whereby ENSO discharge - recharge signals transmit to the Sumatra - Java coast ,

GT GT 6T GT
PD_all PD_all PD_all PD_all
PD_post PD_post PD_post

Figure 3: Example 2 of entity extraction results from a climate science publication.

large differences in the quantifiable risk . The implications for policy are discussed in Section 4 and conclusions summarised in Section 5 . < heading > The science of probabilistic event attribution in an
o1

african context</heading > The majority of event attribution studies employ the BACE~-method ( Attribution of Climaterelated Extremes, e.g., Christidis et al . 2012 ): model simulations representing

or PD_all ot
PD_all PD_all

PD_post

present - day weather statistics are contrasted with simulations of a so - called counterfactual world , a Bworld that might have been” , had anthropogenic GHG emissions not altered the climate system .
or
Po_all

These simulations are achieved by running the same climate model but with the anthropogenic forcing removed . Any differences in the statistics of extreme weather events obtained can then be attributed
ot o1 ot
PD_all
PD_post
to anthropogenic GHG forcing . This methodology requires the availability of large climate model ensembles to simulate the statistics of extreme events , which are by definition rare . So far there have

ot PD_all ot
PD_post
5 o

Figure 4: Example 3 of entity extraction results from a climate science publication.
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Given the following metadata about an entity in a climate science ontology, which may include the entity’s name, ontology path,
and a definition (which may be missing), please develop an edited definition suitable for a named entity recognition (NER)
task in climate science literature. The definition should be concise, clear, and limited to 150 tokens. Ensure it is precise and
emphasizes the entity’s unique aspects, avoiding overly general descriptions that could apply to multiple entities. Do not explain;
only provide the edited definition.

Metadata: {}

Edited Definition:

Table 5: Prompt Template for Refining Definitions

A.3 Annotation Guidelines

Annotation guidelines are attached at the end.
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Annotation Guideline

STAGE ONE: Named Entity Recognition

1. Introduction

Purpose of the Manual:
This manual provides detailed instructions for annotating climate-related text or terms extracted from
scientific literature. It aims to ensure consistency and accuracy in labelling climate entities, data, and
models.
Intended Audience:
The guidelines are designed for annotators, including researchers, climate analysts, scientists, and
students, who are familiar with climate science terminology and concepts.
Scope of Annotations:
The annotations focus on specific climate entities, including but not limited to:

o Earth Systems: Land, ocean, atmosphere, and biosphere entities.

e Climate Data: Specific datasets and measurements.

e Climate Models: Global and regional climate models.

2. Definitions and Examples of Key Climate Entities

2.1 Earth Systems

Land:

Refers to a specific region or unit of land that can be described and modeled geographically within

the framework of a climate model. Examples:

e Continents/Regions: Africa, Ethiopia, United Kingdom (UK), high/mid-latitudes, tropics (tropical
regions).

e Land Features: Groundwater, river flow, runoff, streamflow, land cover, land use.

e Specific Landmarks: Amazon Rainforest, Himalayas, United States Midwest (Corn Belt),
Antarctica.

Atmosphere:

Refers to the layer of gases surrounding the Earth, which plays a vital role in shaping climate and

weather patterns and can be modeled geographically within the framework of a climate model.

Examples:

e Atmospheric Layers: Troposphere, mesosphere.

e Climate Phenomena: Temperature, precipitation, wind, evapotranspiration, clouds.

e Weather Systems: Hadley Cells, Ferrel Cells, Trade Winds, Jet Streams, Monsoons, Intertropical
Convergence Zone (ITCZ), El Nifio-Southern Oscillation (ENSO), Tornadoes, Thunderstorms.

Oceans:

Refers to the large bodies of saltwater that cover about 71% of the Earth's surface and can be modeled

geographically within the framework of a climate model. Examples:

e QOceans/Seas: Pacific Ocean, Indian Ocean, Atlantic Ocean.

e QOceanic Features: Gulf Stream, Kuroshio Current, Thermohaline Circulation.

e Climate-Related Ocean Phenomena: Ocean acidification, marine heatwaves, coral reefs, upwelling
zones, sea ice, continental shelves.

2.2 Climate Data

Refers to detailed, quantitative measurements or simulations of variables that describe various

components of the Earth's climate system. Examples:

e Datasets: CRU (Climate Research Unit), GPCC (Global Precipitation Climatology Centre), ERA5
(ECMWEF Reanalysis 5th Generation).

e Climate Indices: HadCRUT, MERRA-2, GSMP3.
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2.3 Climate Models

Refers to computational models used to simulate the Earth's climate system. Examples:
2.4 Global Climate Models (GCMs): CCSM4, CNRM-CMb5, Had GEM2-ES.

2.5 Regional Climate Models (RCMs): MICRO, ACCESS-ESM1.5.

3. Key Tags or Labels

Guidelines for Tagging:
e Ensure the correct spelling and usage of tags. For example, use "Variables" consistently, not
"Variable>" or other variations.

e Review definitions carefully and apply tags or values strictly based on the provided examples
and their accurate definitions.

e If uncertain about the definition of an entity, verify its classification (e.g., variable,
teleconnection) before tagging.

Tag

Definition and examples

Variable

represents a specific measurable element or attribute of the climate system that is
studied or monitored (e.g., cloud cover,

temperature (i.e., surface air, ocean, or groundwater), precipitation, wind speed,
vapor pressure, geopotential height, humidity (relative, specific) etc.

Project

refers to a coordinated effort or initiative aimed at investigating specific aspects of
climate. Projects often involve multiple stakeholders and produce datasets, models,
or assessments (e.g., Coupled Model Intercomparison Project Phase 6 (CMIP6))

Location

refers to the geographic region or coordinates being studied or monitored. This can
be global, regional, or local. Examples includes West Africa, Central Africa, East
Africa, or Southern Africa; tropics or polar regions; high or mid latitudes regions,
specific sites (such as the Amazon, Congo Rainforest or Sahara Desert etc).

Model

refers to computational tool used to simulate and predict climate processes and
interactions in the Earth system (e.g., HadGEM3, WREF etc)

Provider

refers to the organization or agency responsible for creating, maintaining, or
distributing climate data or tools (e.g., NASA (e.g., GISS for climate models,
MERRA datasets); ECMWEF (e.g., ERA5 reanalysis datasets); NOAA (e.g., NCEP
datasets and climate services).

Instrument

refers to the device or tool used to measure climate variables. Instruments can be
ground-based, airborne, or spaceborne. Examples includes Radiosondes (balloons
for atmospheric measurements); Satellites (e.g., MODIS, GOES, or Sentinel); Rain
gauges and anemometers for ground-level data.

Event

An event is an occurrence or phenomenon in the Earth’s system that varies in
temporal scale, ranging from short-term weather events lasting minutes to days to
long-term climate events spanning decades or more. Examples include remote
teleconnection such as ENSO, IOD, etc, droughts, floods, etc

Weather event

Weather events are meteorological occurrences that impact Earth's atmosphere and
surface over short timescales (hours to days).

Common Weather Events; Rainfall (e.g., Drizzle, showers, or steady rain), Snowfall
(e.g., Light, or heavy ); Thunderstorms (e.g., storms with lightning, thunder, heavy
rain, and hail), Wind Events (e.g., breezes, gusts, and strong winds), Cloud Cover
(e.g., Clear skies, partly cloudy, overcast), Temperature Changes (Heatwaves or
cold snaps), Fog and Mist, Frost, Dew etc.
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Natural
Hazard

Natural hazards are phenomena with the potential to cause significant harm to life,
property, and the environment. Teleconnection refers to large-scale patterns of
climate variability that link weather and climate phenomena across vast geographic
areas, influencing atmospheric conditions over long distances. Typical examples of
hazards can be broadly classified into geophysical (e.g., earthquakes, volcanic
eruptions, tsunamis, landslides), meteorological (e.g., cyclones or hurricanes or
typhons, tornadoes, heatwaves), hydrological (e.g., floods, flash floods, drought,
avalanches), biological (pandemics, plagues, animal borne diseases), and
climatological (e.g., wildfires, frost, cold wave) categories.

Ocean
circulation

Ocean circulation is the large-scale movement of water masses in the Earth's
oceans, driven by wind, density differences, and the Coriolis effect, regulating
Earth's climate. Key examples of ocean circulation, categorized into surface
currents (Gulf Stream, Kuroshio Current, California Current, Canary Current,
Equatorial Currents), deep ocean currents (North Atlantic Deep Water (NADW),
Antarctic Bottom Water (AABW), Mediterranean Outflow Water, Indian Ocean
Overturning), Global Ocean Circulation Systems (the Global Conveyor Belt, the
Atlantic Meridional Overturning Circulation (AMOC).

Teleconnection

Teleconnection is a large-scale patterns of climate variability that link weather and
climate phenomena across vast distances. Examples includes El Nifio-Southern
Oscillation (ENSO; (El Nifio or La Nina), North Atlantic Oscillation (NAO), Arctic
Oscillation (AO), Pacific Decadal Oscillation (PDO), Indian Ocean Dipole (I0D),
Madden-Julian Oscillation (MJO), Atlantic Multi-Decadal Oscillation (AMO),
Southern Annular Mode (SAM), Rossby Waves, Walker Circulation, Monsoonal
Systems (i.e., Asian Monsoon and West African Monsoon)

4. Example

Example: “This annotation manual aims to provide consistent methods for annotating climate data. Our primary
focus is 09bdb7d909ed6615760571a6aa14051133179aee.xmi”

Task one: see the scientific literature with serial number above.

Role of the annotator: The annotator is expected is to read each sentence carefully. Then, you are

required to perform these tasks concurrently.

/a7

1. Verify specific pre-annotated climate entries of interest in line 22: (E.g., “clouds”, “precipitation”,

“ENSO”) and other scientific terms such as “mid-latitude continents”. (see details below for more
information).

Delete pre-annotated test that involves a “process” or “methods”, “tools”, frameworks,
“instrument of measurements”, “units of measurement”, “temporal, threshold or range of values”
(e.g., convective parameterisation, diurnal, monsoon (see details below for more information).
Annotate missing but relevant “un-annotated” text of interest (E.g., Westerly Winds) (see details

below on how to annotate).

The strength of the westerly winds, and therefore the Ekman transport, varies with latitude-the maximum northward surface

transport occurs at about 50° S and decreases south of that.

Water must be drawn up from below in order to balance the difference between the larger northward transport at 50° S, say,

compared with the smaller northward transport at 60° S.

The broad ring of upwelling shown in figure 2a starts close to the Antarctic continent and extends all the way to roughly 50° S.
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clouds precipitation
clouds M]0

It is noteworthy fhat some of fhese new developments havp already been implemented in models, indicpting a speeding of the model
development prdcess.

Inthe if ization: at the process scale, major model| ENSO

I large-scale biases still remain in
relation with an both in the mean

pte (e.g., the double ITCZ artifact, warm bia: ts of mid-latitude continen

Furthermore, much less attention has been paid to the Houds that accompany moist convection, even though shallow cumulus +————clouds

represent the largest source of uncertainty in cloud feedback in the current generation of global climate models [113] and the anvils

associated with deep convective cloud systems are a largely unconstrained contributor to climate change besides their well-documented
increase in height with warming [221].

The persistence of endemic model biases, combined with the inevitable trend toward higher model resolution, has led part of the

to abandon iti convective izati in favor of new approaches made possible by the increase of
=) =
computing power, based on models resolving convection and m at the kilometer scale (cloud-resolving models; CRMs).
clouds

AN 1041 ic a huhrid annraach that renlaree & i hva 20 CRM ar aven a 3N larns-addy cimaulatian
=)
[160,199] is a hybrid approach that replaces a c ization by a 2D CRM, or even a 3D large-eddy simulation

( LES ) model
[63] in each atmospheric column.

utti the goal of ization efforts is to give way to global cloud-resolving models that operate on
scales that do not require any cumulus parameterization at all [134].

More recently, first attempts to develop a novel class of convective parameterizations based on machine learning, using a

deep neural network trained by explicit simulations, have been tried with some skill to reproduce convective tendencies and [cloud}
[56,145,183).

Other Scientific Terms: You may find other climate variables such as temperature, wind speed or
wind, sea surface temperature or SST; rainfall, cyclones, aerosols, etc

Delete wrongly pre-annotated climate entities. These may include but not limited to methods,
materials, processes, units of measurements, threshold, or range of values, etc

Units of Measurement: (e.g., Celsius for temperature, mm for rainfall, km/h for wind speed).
Thresholds and Ranges: Values or thresholds or ranges. E.g., 10°C for temperature or mm for
precipitation."

Standardization: standardizing annotations across climate entities. For example, temperature (delete
prefix “minimum or min”, “maximum or max”, “nighttime”, “daytime” for temperature annotations
to ensure consistency (e.g. minimum temperature to temperature).

Other Scientific Terms: Phrases that are a scientific term but do not fall into any of the above classes
E.g. diurnal, interannual,
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22 In the meantime, even iflconvective parameterizations gre improved at the process scale, major model large-scale biases still remain in
() (==}

relation with clouds and brecipitatioﬁ, both in the mean state (e.g., the double ITCZ artifact, warm biases of mid-latitude continents and

the eastern tropical oceans), and in variability from the interannual timescales (|

23 Furthermore, much less attention has been paid to the clouds that accompany moist convection, even though shallow cumulus clouds

MJO , ENSO , etc.).

represent the largest source of uncertainty in cloud feedback in the current generation of global climate models [113] and the anvils

associated with deep convective cloud systems are a largely unconstrained contributor to climate change besides their well-documented
increase in height with warming [221].

24 The persistence of endemic model pi - bined-with-the-neyitable trend toward higher model resolution, has led part of the
community to abandon traditionalconvective parameterization flevelopment in favor of new approaches made possible by the increase of

computing power, based on models resolving convection and clouds at the kilometer scale (cloud-resolving models; CRMs).

25 The super-parameterization or multiscale modeling framework

26/[160,199] is a hybrid approach that replaces a conventional convective parameterization by a 2D CRM, or even a 3D large-eddy simulation
(LES) model

STAGE TWO: Entity Linking

1. Tag Selection Guidelines
e Allowed Tags: Only the following values should be selected as tags. Do not type any tags
manually; only select from the provided list: project, location, model, experiment, platform,
instrument, provider, variable, weather event, natural hazard, teleconnection, ocean circulation
e Spelling and Formatting:
o Ensure all tags are in lowercase.
o Do not use uppercase letters or modify the spellings in any way.
o If you encounter any foreign or unrecognized tags, do not use them.
2. Annotation Setup
Open two tables simultaneously:

1. Annotation Table: The document or interface where you are performing the annotations.
2. Knowledge Base Table: A reference table or database containing entity identifiers and
their corresponding information.
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Use the knowledge base to search for and verify the correct identifiers for each entity. Make sure
to check if the definitions and the path match the semantic meaning.

3. Task Description

Objective: Link each entity in the text to its corresponding identifier in the knowledge base.
Steps:

1. Identify the entity in the text.

2. Double check the tag from the allowed list (e.g., location, variable, etc.).
3. Search the knowledge base to find the correct identifier for the entity.
4. Link the entity to its identifier in the annotation table.

4. Quality Assurance

Double-check the spelling and formatting of tags.

Ensure that all entities are linked to the correct identifiers in the knowledge base.

If an entity cannot be found in the knowledge base, flag it for review rather than making an
assumption.

STAGE THREE: Relationship
1. Relationship Types and Definitions

Below are the relationship types to be annotated, along with their definitions and examples. Ensure
that you correctly identify the source entity and target entity for each relationship.

1. ComparedTo
e Definition: The source entity is compared to the target entity.
e Example: A climate model, experiment, or project (source entity) outputs data (target entity).
e Template: [Source Entity] ComparedTo [Target Entity]

2. RunBy
e Definition: Experiments or scenarios (source entity) are run by a climate model (target
entity).

e Example: An experiment (source entity) is executed by a climate model (target entity).
e Template: [Source Entity] RunBy [Target Entity]
3. ProvidedBy

e Definition: A dataset, instrument, or model (source entity) is created or managed by an
organization (target entity).
e Example: A dataset (source entity) is provided by a research organization (target entity).
e Template: [Source Entity] ProvidedBy [Target Entity]
4. ValidatedBy

e Definition: The accuracy or reliability of model simulations (source entity) is confirmed by

datasets or analyses (target entity).
e Example: A climate model simulation (source entity) is validated by observational data

(target entity).
e Template: [Source Entity] ValidatedBy [Target Entity]
5. UsedIn

e Definition: An entity, such as a model, simulation tool, experiment, or instrument (source
entity), is utilized within a project (target entity).
e Example: A climate model (source entity) is used in a research project (target entity).
e Template: [Source Entity] UsedIn [Target Entity]
6. MeasuredAt
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e Definition: A variable or parameter (source entity) is quantified or recorded at a geographic
location (target entity).
e Example: Temperature data (source entity) is measured at a specific weather station (target

entity).
e Template: [Source Entity] Measured At [Target Entity]
MountedOn

e Definition: An instrument or measurement device (source entity) is physically attached or
installed on a platform (target entity).

e Example: A weather sensor (source entity) is mounted on a satellite (target entity).

e Template: [Source Entity] MountedOn [Target Entity]

TargetsLocation

e Definition: An experiment, project, model, weather event, natural hazard, teleconnection, or
ocean circulation (source entity) is designed to study, simulate, or focus on a specific
geographic location (target entity).

e Example: A climate model (source entity) targets the Amazon Rainforest (target entity).

e Template: [Source Entity] TargetsLocation [Target Entity]

2. Annotation Instructions

1.

Identify Entities:

e (learly identify the source entity and target entity in the text.

e Ensure that both entities are correctly tagged (e.g., model, location, variable, etc.) before
annotating the relationship.

Select Relationship Type:

e Choose the most appropriate relationship type from the list above based on the context.
o Refer to the definitions and examples to ensure accuracy.
Annotate the Relationship:

e Use the provided templates to annotate the relationship between the source and target
entities.

e Double-check that the relationship type aligns with the context of the text.

Verify Consistency:

e Ensure that the relationship annotation is consistent with the definitions and examples
provided.
e If unsure, consult the knowledge base or flag the relationship for review.
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Abstract

The Kunming-Montreal Global
Biodiversity Framework (GBF) has 23
action-oriented global targets for urgent
action over the decade to 2030. Parties
committing themselves to thetargetsset by
the GBF are required to share their national
targets and biodiversity plans. In a case
study on the GBF target to reduce pollution
risks, we analyze the commitments of 110
different Parties, in 6 different languages.
Obtaining satisfactory results for this target,
we argue that using Generative Al can be
very helpful under certain conditions, and it
is arelatively small step to scaleup suchan
analysis for other GBF targets.

1 Introduction

The Global Biodiversity Framework (GBF),
adopted at COP15 of the Convention on
Biological Diversity (CBD) in 2022, represents a
landmark international agreement focused on
addressing the unprecedented decline in species
and ecosystem health worldwide (Convention on
Biological Diversity, 2022a). The framework
consists of 4 overarching goals for 2050 and 23
supporting targets for 2030. Additionally, the
framework is supported by a monitoring
framework (Convention on Biological Diversity,
2022b). The GBF is a global framework, and its
implementation depends on the Parties of the
CBD. Parties must submit a new or updated
National Biodiversity Strategy and Action Plan
(NBSAP) and/or submit national targets to the
Online Reporting Tool (ORT), which indicates
the ambition a Party has regarding its contribution
to implementation of the GBF. In a later stage
National Reports will be submitted, reporting on
the implementation of these ambitions. At
COP17, in 2026, progress in implementation of

the GBF will be reviewed (Convention on
Biological Diversity, 2024; Convention on
Biological Diversity, 2025).

Still, several challenges impede effective and
efficient assessment of progress towards the
GBF’s goals and targets. One of the key
challenges that occur is the absence of a
comprehensive analysis methodology to establish
baseline conditions, evaluate country-level
commitments, and identify additional measures
needed to reach the global goals. This analytical
deficit is further complicated by the large amount
of data that needs to be assessed, as the GBF
consists of 23 targets that will be translated to
national policy by the 196 CBD Parties. National
policy that is created up until this point has
different formats which can be difficult to
compare, not solely due to differences between
NBSAPsand ORT data; the way in which national
commitments are structured within those formats
also looks different per country. Language
differences add another layer of complexity, as the
national commitments can be uploaded in any of
the six official UN languages. Finally, analyses of
country commitments are complicated by the risk
of inconsistent interpretation when humans
review these documents.

To address these challenges, we propose a novel
approach leveraging a multi-lingual Retrieval-
Augmented Generation (RAG) framework. This
methodology enables automated analysis of
country commitments at scale. The system can
process multilingual documents, standardize
terminologies, and generate = comparable
assessment metrics across different national
contexts. Similar RAG frameworks have been
used previously to assess SDG claims (Garigliotti,
2024) and sustainability reports (Bronzini et al.,
2024). However, to the authors knowledge, it has
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not been utilized to assess the GBF. We use GBF
target 7 on pollution reduction as a case study. The
aim is to create an aggregate view of the country
commitments for the GBF target. This target
refers to multiple sources of pollution to be
reduced by 2030. The fact that Parties have
uploaded National Targets that are aligned with
this GBF target, does not necessarily mean that all
sources of pollution are addressed, with similar
ambition levels. We establish a framework of
creating classes to identify differences and
similarities in focus and ambition levels by
analyzing national targets that are uploaded by
Parties in the ORT. This way, we get a better
understanding what pollution sources are
prioritized by Parties when translating the GBF to
the national level.

2 Biodiversity ambitions

2.1 National level biodiversity ambitions

The GBF goals and targets are created aiming to
reduce threats to biodiversity, to meet people’s
needs through sustainable use and benefit-sharing,
and on tools and solutions for implementation
(Convention on Biological Diversity, 2022a). To
make it easier for CBD Parties to upload their
national targets under the GBF according to the
requested reporting template, the ORT was created.
This tool should also make it easier for the CBD’s
Secretariat, and other stakeholders, to analyze
national ambitions and implementation.

2.2 Prioritization in target translation

A previous analysis by Kok et al. (2024) concludes
that big differences can be observed between
Parties regarding the type and amount of
information uploaded to the ORT. Based on an
analysis of 61 Parties and 6 GBF targets, it was
found that not many national targets are specific
and quantified. Regarding GBF target 7, on
reducing pollution to levels not harmful to
biodiversity (see Appendix A for the entire target
text), around one third of the national commitments
included some type of quantification, which was
more than most of the other analyzed targets.
However, GBF target 7 refers to all pollution
sources that are harmful to biodiversity and Parties
are not obligated to create national targets for all
sources individually. This results in differences in
prioritization within national targets as some
Parties focus on the concept of pollution more

generally and others focus on specific pollution
sources.

This paper aims to gain an insight into the
number of Parties that specify types of pollution in
their national target creation, in the degree to which
these targets are quantified, and in the ambition
levels Parties show regarding cutting back on these
pollution sources.

3 Using a Large Language Model as an
assistant

Large Language Models (LLMs) are known for
their versatility. Many applications have emerged
since OpenAl released ChatGPT in 2022. In the
scientific research area, one of the more popular
ideas is to use LLMs for document analysis.
However, when using LLMs for this purpose, the
most important drawback is the temporary
character of the data the LLM was trained with: the
specific document may not have been used for
training of the LLM. Mainly for this reason, the
RAG framework (Lewis et al., 2020) has become
popular for document analysis.

3.1 The RAG framework

The RAG framework that was used in this study
(ChatPBL, 2024) was set up as a research project,
with a focus on evaluation of the complete pipeline
on several custom-made document-question-
answer test sets.

Text Processing Embedding
origival raw text raw text
docaments documents chunks
o chunk
> > embeddings
Embedding
0.
0.3
0.4 Vector
promp J] 'mabase
LO.
”%
A ~
context ~ ~ 4
Prompt + tracted
LLm | — extracte:
[‘:l]] ks
LLM Retrieval

Figure 1: RAG question-answer pipeline

This means that most of the steps in the RAG
pipeline (see Figure 1) have been parameterized:
swapping between different choices for the
components in the pipeline, whether it is for
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splitting text into text chunks, embedding of the
resulting text chunks, retrieval of relevant chunks
from the vector database or the LLM itself, is
simply a matter of changing parameters. We refer
to Appendix E for the parameter settings used for
this analysis.

Figure 1 shows the core question-answer
functionality of the application. Our RAG
framework also provides a “review” module that
allows to ask multiple documents predefined
questions  sequentially, using this core
functionality. All the answers and input that was
used are stored for reproducibility purposes. The
module has an option to summarize the answers to
each of the questions into a synthesis. It is the
review module that was used for this case study.

4 Experiments

4.1 Data processing

The ORT data was downloaded from
https://ort.cbd.int/#0.4/0/0. For each submitted
national target, the country must indicate at least
one GBF target to which the national target is
aligned. As this research is focused on GBF target
7, we only used the national targets that Parties
aligned to this GBF target. The data was
downloaded on January 29, 2025. At that time, 110
Parties submitted national targets aligned with
GBEF target 7 (see Appendix B).

After choosing the relevant columns (Government,
National target title, Description, Main policy
measures and Aspects of the goal or target are
covered, see Figure 2), the texts were then merged
together with their column titles and line breaks in
between. If the country did not fill in the column
‘nan’ was added instead. After the merging we
obtained a text file for each Party that couldbe used
for further analysis.

The text of GBF target 7 mentions three sources of
pollution in particular:

1. Excess nutrients

2. Pesticides and other hazardous chemicals

3. Plastics

For the first two types of pollution, GBF Target 7
specifically states a reduction of “at least half” by
2030. This is not the case for pollution caused by
plastics, however for comparison purposes we
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Figure 2: ORT data processing

defined the following classes for each of the three
types of pollution:

Class 1: the type of pollution is not mentioned
in the country commitment

Class 2: the type of pollution is mentioned, but
there is no quantified reduction target

Class 3: the type of pollution is mentioned and
quantified, but the target is below the GBF
target of at least 50% reduction

Class 4: the type of pollution is mentioned and
quantified, and the target is at or above the
GBEF target of at least 50% reduction

4.2 Prompting

For each pollution type, prompting the
commitments was set up in 2 ways:

A Question-Answer (QA) prompt was used to
ask the Parties’ documents (e.g. Algeriatxt)
whether the specific pollution type was
mentioned and if quantifiedtargets were set for
the type mentioned.

This QA prompt was accompanied by a QA
prompt template that instructs he LLM with the
task to assign the commitment to one of the
four distinguished classes



4.3 Results

Experiments were executed with several different
prompts and prompt templates until satisfactory
results were obtained on a sample of Parties (the
first 20 alphabetically). An analysis of the Parties’
commitments learned that the texts had a length
short enough for our LLM, gpt-4o, to include them
whole in the context. The commitment texts in the
sample were manually reviewed by 2 reviewers
and assigned to 1 ofthe 4 classes (see Appendix D).
There were some cases where the manual reviews
differed, which were discussed by both reviewers.
In general, a consensus was quickly reached on
these cases, but it is interesting to note that there
were also cases where the language used was
particularly difficult to interpret. For example, the
following commitment description was found in
the commitment text of Bangladesh and difficult to
assign to a class: “By 2026, highly hazardous
pesticides and chemicals will be identified. By
2030, identified highly hazardous pesticides and
chemicals will be phased out. ” Depending on how
one would read the last part, the phasing out can be
interpreted to have ended in 2030 or to start in
2030.

After reaching consensuses for all cases where
the manual reviews differed, the manual class
assignments were compared with the RAG results.
In 4 out of 60 reviews, the RAG results differed
from the manual results, see Appendix D.
Interestingly, in 3 out of those 4 cases, the manual
reviewers also did not agree on a classification.

It was believed by the authors that the sample
results were good enough to use the prompts on the
complete set of commitments, keeping in mind that
we are looking for the overall picture and not so
much at the level of individual Parties. To test
robustness of the results, the system was run 11
times, with the same settings. simple majority vote
was taken for each country, meaning that the most
occurring class was taken as the final class
assignment.

When the prompts were applied to the full
dataset, this resulted in the scores below:

Target

excess | pesticides | plastics

nutrients | and other

hazardous

chemicals
Class 1 45.5% 39.1% | 49.1%
Class 2 31.8% 37.3% | 35.5%
Class 3 1.8% 1.8% 2.7%
Class 4 20.9% 21.8% 12.7%

F

5

Table 1: Class assignments for all Parties

rom the table, we can observe that:

The majority of the commitments either don’t
mention the pollution type, or don’t quantify a
target when they do mention them. This goes
for all pollution types in this case-study. It
should be emphasized however that
commitments could have been given by
Parties, using other terms and/or for other types
of pollution which are out of scope of this case
study (e.g. solid waste, light and noise
pollution).

Looking at the three distinguished types of
pollution, pollution from pesticides and other
hazardous chemicals scores best in terms of
ambition levels. In 24 cases (21.8%),
commitments to reducing this type of pollution
were at or above the 50% reduction GBF
target. This is slightly better than the score for
excess nutrients and a lot better than the score
for plastics, but still a relatively small number.

Conclusions

We have learned from this case-study that:
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Formulating satisfactory prompts is not
straightforward: several attempts were
necessary to produce the prompts in Appendix
C.

Interpretation of the wording in the texts can be
difficult, not only for the RAG system but also
when reviewing manually. Domain knowledge
is important.

Although RAG classes differed from the
manual classes in some cases in the sample of
20 countries, we feel that the method is robust
enough for our goal to look at the overall
picture regarding Parties’ pollution reduction
commitments.

Since we now have established satisfactory
prompts, it is very easy to update the analysis



as soon as
commitments.

more Parties upload their

6 Further research

This analysis is based on a limited set of data and
for illustrative purposes. It will be updated once all
Parties have submitted commitments to the ORT.
Available NBSAPs will also be analyzed in a
similar way. Furthermore, this methodology will be
used to analyze other GBF targets. Apart from
analyzing if Parties include quantifications in their
national target-setting, a similar method will be
used to look deeper into the policy strategies Parties
use to eventually implement their commitments.
Together, this research helps in identifying
implementation gaps and facilitating more
informed policy adjustments at both national and
international levels in a way that is feasible and
standardized.

Limitations

Language-related challenges persist as biodiversity
commitments contain specialized terminology that
varies across languages and regulatory contexts.
Even advanced multilingual models may struggle
with nuanced ecological terms or region-specific
biodiversity concepts, potentially missing critical
details in commitments.

The non-deterministic nature of LLMs presents
another challenge. This variability can complicate
efforts to establish standardized assessment metrics
and could potentially lead to fluctuating
evaluations of national progress. In this case study
we see that results between two consecutive runs
can differ; however, the overall conclusions are not
affected. We’ve shown the results of 11 runs in this
paper, applying a mechanism of majority voting, in
a way like it is used in Random Forest algorithm!
for each Party.

This analysis focuses on two main aspects of
national commitments related to the GBF’s
pollution target: if specific pollution types are
mentioned and if commitments related to those
types are quantified. The class assignment exercise
as described in this paper therefore doesn’t show
the depth of policy behind the commitments. A
manual analysis of the data showed that in some
cases goals are not quantified but are backed up by
specific measures to cut back on pollution, while
there are also cases where highly ambitious

Uhttps://en.wikipedia.org/wiki/Random_forest
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quantifications are given which are not supported
by any measures (yet).

Another limitation is that this analysis depends
on self-assessment of Parties of what national
targets are linked to GBF target 7. It could be that
national targets aligned with other GBF targets are
also directly relevant to this pollution target,
without this connection made in the ORT.

These limitations necessitate human oversight in
any LLM-based biodiversity analysis system, with
domain experts validating model outputs and
methodology to ensure accurate representation of
global conservation efforts.


https://en.wikipedia.org/wiki/Random_forest
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Appendix A: GBF TARGET 7 full text

“Reduce pollution risks and the negative impact of

pollution from all sources by 2030, to levels that
are not harmful to biodiversity and ecosystem
functions and services, considering cumulative
effects, including: (a) by reducing excess nutrients
lost to the environment by at least half, including
through more efficient nutrient cycling and use; (b)
by reducing the overall visk from pesticides and
highly hazardous chemicals by at least half
including through integrated pest management,
based on science, taking into account food security
and livelihoods; and (c) by preventing, reducing,
and working towards eliminating plastic
pollution.”

Appendix B: ORT data

The following 110 Parties uploaded their
commitments to the ORT by January 29, 2025,
related to GBF target 7, in alphabetical order:

Algeria, Angola, Australia, Austria, Azerbaijan,
Bangladesh, Benin, Bhutan, Bolivia, Botswana,
Burkina Faso, Burundi, Cambodia, Cameroon,
Canada, Cape Verde, Central African Republic,
Chad, Chile, China, Comoros, Cook Islands, Costa
Rica, Cote d'Ivoire, Croatia, Cuba, Cyprus,
Democratic Republic of Congo, Djibouti,
Dominican Republic, Egypt, Equatorial Guinea,
Eritrea, Eswatini, Ethiopia, European Union (27),
Fiji, Finland, France, Gabon, Ghana, Honduras,
Hungary, India, Indonesia, Iran, Iraq, Ireland,
Israel, Japan, Jordan, Kazakhstan, Kenya, Laos,
Lebanon, Lesotho, Liberia, Luxembourg,
Madagascar, Malawi, Malaysia, Mali, Malta,
Marshall Islands, Mexico, Moldova, Mongolia,
Morocco, Mozambique, Nauru, Nepal, New
Zealand, Niger, Nigeria, Pakistan, Palau, Panama,
Papua New Guinea, Paraguay, Peru, Philippines,
Qatar, Russia, Rwanda, Samoa, Saudi Arabia,
Senegal, Sierra Leone, Slovenia, Somalia, South
Africa, South Korea, South Sudan, Spain, Sudan,
Suriname, Sweden, Tanzania, Togo, Tunisia,
Turkey, Uganda, United Arab Emirates, United
Kingdom, Uruguay, Uzbekistan, Vanuatu,
Venezuela, Yemen, Zimbabwe

The majority of Parties use English as language for
the commitment texts. The other two widely used

languages are Spanish and French. Only 4% of the
texts are in the other languages as depicted in
Figure 3 below.

Languages
1%1% 29,
17% W ar

‘ Men
‘ es

fr
= ru
66% B zh-cn

Figure 3: languages used, ar = Arabic, en = English,
es = Spanish, fr = French, ru = Russian, zh-cn =
Chinese

13%

Appendix C: Prompts

1. Question-Answer (QA) prompt for pollution
from excess nutrients: “Does the text mention
any targets specifically for reducing excess
nutrients  pollution?  Excess  nutrients
pollution is defined as nutrients lost to the
environment. Some examples of nutrients are
nitrogen, phosphorus and fertilizer. If yes, is
the target quantified? A quantified target is
defined by a reduction in terms of a
percentage, in terms of an absolute value or
in terms of "reduce by half" or "phase out"”

2. Question-Answer (QA) prompt for pollution
from pesticides and other hazardous
chemicals: “Does the text mention any targets
specifically for reducing pesticides and highly
hazardous chemicals pollution? If yes, is the
target quantified? A quantified target is
defined by a reduction in terms of a
percentage, in terms of an absolute value or
in terms of "reduce by half" or "phase out" "

3. Question-Answer (QA) prompt for pollution
from plastics: “Does the text mention any
targets specifically for reducing plastics
pollution? Plastics pollution is defined as the
use of plastic, single use plastic, or the
amount of plastic ending up in the
environment. If yes, is the target quantified? A
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quantified target is defined by a reduction in
terms of a percentage, in terms of an absolute
value or in terms of "reduce by half” or "phase
out"*

The QA prompt template:

“You are an Al assistant for a document
analysis system. Analyze the retrieved
document context and return a response based
on the User Query below.

Context: {context}

User Query: {question}

Assign each country to one and only one of the
following classes:

class 1: the context doesn't mention pollution
from <pollution>

class 2: the context mentions pollution from
<pollution> but has no quantified target to
reduce that type of pollution

class 3: the context mentions pollution from
<pollution> but the quantified target is lower
than 50% reduction

class 4: the context mentions pollution from
<pollution> AND also the quantified target is
at least 50% reduction.

Just return output in the format country: class
number

Examples:

- if country X mentions pollution from
<pollution> but has no quantified target to
reduce that type of pollution, the output would
be X: 2

- if country Y mentions pollution from
<pollution> but the quantified target is lower
than 50% reduction, the output would be Y:
3

Above, <pollution> is either “excess
nutrients”, “pesticides and chemicals”, or
“plastics”.

Appendix D: ORT commitment reviews

Manually assigned classes of the sample of 20
Parties’ commitments, compared with the RAG
system results (majority vote of 11 runs for excess
nutrients pollution (Table 2), pesticides and other

hazardous chemicals (Table 3), and plastics (Table
4)

C1 = pollution type not mentioned

C2 = pollution type mentioned, but no quantified
reduction target

C3 = pollution type mentioned, but target below
GBF target of at least 50% reduction

C4 = pollution type mentioned, and target at or
above GBEF target of at least 50% reduction

Rev1 = class assigned by reviewer 1

Rev2 = class assigned by reviewer 2
Rev12 = final consensus of manual review
RAG = class assigned by RAG system

Revl Rev2 | Revl2 | RAG
Algeria C2 C2 C2 C2
Angola Cl Cl Cl Cl
Australia C1 Cl Cl Cl
Austria C4 C4 C4 C4
Azerbaijan | C4 C4 C4 C4
Bangladesh | C2 C2 C2 C2
Benin Cl Cl Cl C2
Bhutan C1 Cl C1 Cl
Bolivia Cl Cl Cl Cl
Botswana | C2 C2 C2 C2
Burkina Cl Cl Cl Cl
Faso
Burundi C2 C2 C2 C2
Cambodia | Cl1 Cl Cl Cl
Cameroon | C2 C2 C2 C2
Canada C4 C4 C4 C4
Cape Verde | C1 Cl Cl Cl
Central Cl Cl Cl Cl
African
Republic
Chad C2 C2 C2 C2
Chile C2 C2 C2 C2
China C2 C2 C2 C2
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Revl [ Rev2 [ Revl2 | RAG Revl [ Rev2 [ Revl2 | RAG
Algeria C2 C2 C2 C2 Algeria C2 C2 C2 C2
Angola Cl Cl Cl Cl Angola Cl C2 C2 C2
Australia Cl Cl Cl Cl Australia C2 C2 C2 C2
Austria C4 C4 C4 C4 Austria Cl Cl C1 Cl
Azerbaijan | C2 Cl C2 C2 Azerbaijan | C4 C4 C4 C4
Bangladesh | C4 C3 C4 C2 Bangladesh | C3 C3 C3 C3
Benin C2 2 C2 C2 Benin Cl Cl Cl1 Cl
Bhutan Cl Cl1 C1 Cl Bhutan Cl1 Cl1 Cl C1
Bolivia Cl Cl Cl Cl Bolivia C1 Cl1 Cl Cl1
Botswana C2 C2 C2 C2 Botswana C4 C2 C2 C4
Burkina C1 C1 Cl C1 Burkina Cl Cl C1 Cl
Faso Faso
Burundi C2 C2 C2 C2 Burundi C2 C2 C2 C2
Cambodia Cl Cl Cl1 Cl Cambodia Cl1 Cl C1 Cl1
Cameroon C2 C2 C2 C2 Cameroon C2 C2 C2 C2
Canada C4 C4 C4 C4 Canada C2 C2 C2 C2
Cape Verde | C2 Cl C2 C2 Cape Verde | Cl Cl Cl Cl
Central C1 Cl Cl Cl Central Cl Cl C1 Cl
African African
Republic Republic
Chad Cl Cl1 Cl Cl1 Chad Cl Cl Cl1 Cl
Chile Cl Cl Cl Cl Chile Cl Cl Cl Cl
China C4 C3 C3 C2 China C2 C2 C2 C2

Table 3: pesticides and other hazardous chemicals

pollution reviews
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Table 4: plastics pollution reviews

Appendix E: ChatPBL parameter settings

Text chunking:

NLTKTextSplitter, chunk size of 126000
characters
Chunk embedding:

OpenAl “text-embedding-ada-002”
Retrieval:

Vectorstore retrieval based on similarity search
LLM:

OpenAl “gpt-40”, model version 2024-08-06

Appendix F: Examples country files

Example Ireland:

Government: Ireland




National target title: By 2024, the Environmental
Impact Assessment (EIA) (Agriculture)
Regulations will be reviewed

Description: nan

Main policy measures: DAFM will review the
EIA (Agriculture) Regulations

Aspects of the goal or target are covered: nan

Government: [reland

National target title: By 2030, address key issues
in relation to the Management of Deer in Ireland

Description: nan

Main policy measures: NPWS will continue to
work with DAFM and all relevant stakeholders
to develop recommendations with the aim of
improving the effectiveness of managing wild
deer in Ireland.

Aspects of the goal or target are covered: nan

Government: [reland

National target title: By 2025, Ireland takes
enhanced measures to safeguard against the risk
of fraud and other indirect effects of its
renewable transport fuels policy and targets for
the use of biofuels, considering the potential high
ILUC-risk and detrimental impact to global
biodiversity.

Description: nan
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Main policy measures: nan

Aspects of the goal or target are covered: nan

Government: Ireland

National target title: By 2030, the objectives of
the NBAP, where relevant, are aligned with and
integrated, within the statutory landuse plans of
the Regional Assemblies and Planning
Authorities and within LBAPs

Description: nan

Main policy measures: All Regional Spatial and
Economic Strategies, City and County
Development Plans, Local Area Plans and Local
Biodiversity Action Plans shall be aligned with
the objectives of the National

Aspects of the goal or target are covered: nan

Government: Ireland

National target title: By 2030, shared
responsibility for the conservation of biodiversity
acted on

Description: nan

Main policy measures: All Public Authorities
and private sector bodies move towards no net
loss of biodiversity through strategies, planning,
mitigation measures, appropriate offsetting
and/or investment in Blue-Green infrastructure



Aspects of the goal or target are covered: nan

Government: Ireland

National target title: By 2024, the Industrial
Development Agency (IDA) has delivered on the
biodiversity measures in its 2021-2024 strategy
Driving Recovery and Sustainable Growth

Description.: nan

Main policy measures: DETE will work with IDA
Ireland to develop biodiversity measures across
their property programme, in line with the
commitment to biodiversity measures outlined in
IDA’s 2021-2024 strategy, Driving Recovery and
Sustainable Growth

Aspects of the goal or target are covered: nan

Government: Ireland

National target title: By 2024, OPW is working
to enhance biodiversity at National Historic
Property sites

Description: nan

Main policy measures: OPW will conduct
biodiversity audits at multiple sites, implement
enhancements and recommendations, and share
the data gathered

Aspects of the goal or target are covered: nan

Government: [reland

National target title: By 2027, implementation of
the National Restoration Plan is monitored

Description: nan

Main policy measures: DHLGH and all
stakeholders across Government, will monitor
implementation of the National Restoration Plan.

Aspects of the goal or target are covered: nan

Government: Ireland

National target title: By 2027, implementation of
a National Restoration Plan has begun

Description: nan

Main policy measures: DHLGH and all
stakeholders across Government, will put in
place restoration measures as described in the
National Restoration Plan, within the
appropriate timeframes.

Aspects of the goal or target are covered.: nan

Government: I[reland

National target title: By 2026, a National
Restoration Plan is published

Description: nan

Main policy measures: NPWS and DAFM and
other relevant stakeholders will work to align
existing indicators and/or establish new ones for
monitoring restoration of ecosystems. DHLGH,
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in collaboration with DAFM, OPW and DECC,
and other relevant bodies, will identify synergies
between nature restoration and climate change
mitigation/adaptation and disaster prevention,
and prioritise these measures. DHLGH, in
collaboration with DAFM, OPW and DECC will
engage with stakeholders and the public during
the development of a National Restoration Plan.
DHLGH, in collaboration with DAFM, OPW and
DECC, will develop a National Restoration Plan

Aspects of the goal or target are covered: nan

Government: [reland

National target title: By 2026, Ireland has
actively enabled and contributed to the ongoing
achievement of OSPAR ’s North-East Atlantic
Environment Strategy 2030 (NEAES)

Description: nan

Main policy measures: DHLGH will continue to
work nationally, internationally with OSPAR
contracting parties, and with external
organisations and bodies to support and ensure
effective delivery of the 12 strategic objectives
and 54 operational objectives set out in OSPAR’s
North-East Atlantic Environment Strategy 2030

Aspects of the goal or target are covered: nan

Government: Ireland

National target title: By 2030, address key issues
in relation to fire management and emerging
wildfire issues in Ireland

Description: nan

Main policy measures: DAFM, NPWS and
NEDM will continue to work with all relevant
stakeholders to develop a national fire
management strategy.

Aspects of the goal or target are covered: nan

Government: Ireland

National target title: By 2024, Enhanced
implementation of the Habitats and Birds
Directives

Description: nan

Main policy measures: NPWS will complete the
selection and notification of sites for the
protection of Annex habitats and species listed
on the EU Habitats and Birds Directives. NPWS
will publish detailed site-specific conservation
objectives, along with the approach used, for all
existing SACs and SPAs .

Aspects of the goal or target are covered.: nan

Government: Ireland

National target title: By 2024, the Management
of National Parks are underpinned by
Management Plans

Description: nan

Main policy measures: Approve Management
Plans for National Parks by 2024 in line with the
NPWS Strategic Action Plan
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Aspects of the goal or target are covered: nan

Government: Ireland

National target title: By 2027, the revised

legislation arising from the NPWS review of the
Wildlife Acts is in place

Description.: nan

Main policy measures: NPWS will complete a
review of Wildlife legislation; NPWS to publish
legislation to provide a legal basis for National
Parks.

Aspects of the goal or target are covered: nan

Government: [reland

National target title: By 2025, the Strategic
Action Plan resulting from the review of the
NPWS is implemented

Description.: nan

Main policy measures: NPWS will implement the
Strategic Action Plan resulting from the NPWS
Review

Aspects of the goal or target are covered: nan

Example China:

Government: China

National target title: 7. &5 55 [HIRY

Description: {11E[E 1-ZE/H 77 & FIHRI# i,
TG Z LRI [H] 1 55 H G 1 72
A2 PEFAIRILIL, WL IR AL
LNF TGN ETE, FREE IR ARY Ik 2
LY, BEIEAE A B WX L Z
PRI LG X AT R i B HEH i A8
TIFEIX 1% Jij» T2 H g A2 D) g X P B
o ILHHFIFAES LI, T3 [FETETE
FUELTTR BRI PEF b H S FLE IR
HFEH A ZR . 7557 7 L 55 IE A
GIXRIHIE B FER, 52 w4
BHIE X EIE R, B ZZR T ES T
BEEA TG o JETEA S TR EF-F 200
AL G ) A IR .
LY ZFFEPEZITF PN TFEE R F
IRAR T EIH ) EFEZR, - H HiH
TR B 22030 4, HEEAELRT
J7EEN G AR, H AL RN SRR
TEBNEFR LURIF, B R GBI RWLE
1 7E KA B TE AL o

Main policy measures: nan

Aspects of the goal or target are covered: nan

Government: China

National target title: 1. LY ZFF 1EIEF5 AN
F

Description: JIRAEZFEVERY 70 E K
W GBS s, FFEETE A S )
RAWLEHRY L e EYFEIEAF
BRI ALY T I G H i 70 A
BIRYLLE HARR LR HIR
HMEH VAT P T L A ) G 15
U LIFE, WIS Z NS G kTR
RITFNY, TEHI RN R E TR E P
f#o TEAEYZFFIERY AR GE R,
2L R PG, (L)Y F
VT FIEL MR, A A I 70 I



BEFIE, 31T i B S0 T 57 5
, TET BRI Bk TR A B, 2
LS KT 2504, ([P B ()
JEo FE AR G P 2
PRI 7 PE I . #2030 4E, L%
FEPELRT R 1] FF 5L 7 FEI 7 [

Mo
Main policy measures: nan

Aspects of the goal or target are covered: nan
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Abstract

Large Language Models (LLMs) are increas-
ingly used in applications that shape public
discourse, yet little is known about whether
they reflect distinct opinions on global issues
like climate change. This study compares
climate change-related responses from mul-
tiple LLMs with human opinions collected
through the People’s Climate Vote 2024 sur-
vey (UNDP — United Nations Development
Programme and Oxford, 2024). We compare
country and LLM’s answer probability distri-
butions and apply Exploratory Factor Analysis
(EFA) to identify latent opinion dimensions.
Our findings reveal that while LLM responses
do not exhibit significant biases toward spe-
cific demographic groups, they encompass a
wide range of opinions, sometimes diverging
markedly from the majority human perspective.

1 Introduction

Climate change is one of the most pressing global
challenges of our time, shaping policy decisions,
influencing public behavior, and driving scientific
inquiry (Lahsen and Ribot, 2022). Public opin-
ion plays a critical role in guiding both govern-
mental decisions and societal responses, making
its assessment indispensable for understanding the
support and resistance that can influence policy
effectiveness and climate action. In this context,
surveys serve as fundamental tools, providing valu-
able insights into the diverse perspectives shaping
climate discourse and enabling policymakers to
craft more responsive and effective climate strate-
gies (Shi et al., 2015). With major summits like
G20 and COP30 approaching in 2025, where sus-
tainability and climate change will be central top-
ics (Wonneberger et al., 2020; Lochner et al., 2024),
gauging public sentiment is crucial to inform dis-
cussions, anticipate challenges, and align policies
with public expectations.

Recently, as artificial intelligence technologies

advance, LLMs become key players in public opin-
ion formation and information dissemination, as
their integration to major search engines — such as
Google and Bing — continues to expand (Costello
et al., 2024). Al-generated responses frequently
precede traditional search results, many of which
are also algorithmically curated (Dai et al., 2023).
By shaping public discourse, reflecting societal per-
spectives, and anticipating emerging trends (Yakura
et al., 2024; Faruk, 2024), LLMs play a crucial
role in how information is accessed and interpreted.
Given their widespread reach, critically examining
the biases they introduce and reinforce is essential.

Understanding how these models portray criti-
cal topics is not merely a technical concern, but a
critical factor in assessing their impact on public
perception and societal narratives (Wan et al., 2023;
Motoki et al., 2024). Researchers caution that, due
to LLMs being predominantly trained on data from
Western and high-income countries, these models
may inherently amplify the perspectives of these
regions while also reflecting and perpetuating bi-
ases related to race and gender. This can lead to an
oversimplification of complex societal issues (Atari
et al., 2023; Cheng et al., 2023).

Therefore, assessing the alignment of LLMs in
climate-related contexts is crucial. Evaluating their
tendencies and biases helps determine their influ-
ence on climate narratives and broader societal and
political discourses. Comparing their outputs with
human opinions across different countries can pro-
vide valuable insights into how these models en-
gage with climate discourse (Lee et al., 2024a).

In this study, we aim to examine the perspectives
that large language models adopt when generating
climate change-related responses. In particular, we
assess which opinions their outputs reflect. Since
different LLMs are trained on diverse datasets, rely
on different algorithms, and are subject to distinct
biases (Feng et al., 2023), discrepancies in the in-
formation they provide are expected. To address
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these concerns, we define the following research
questions:

RQ1: To what extent do LLM responses align with
different countries and geopolitical groups in
climate change surveys?

RQ2: How does prompting LLMs to adopt a given
citizenship influence their alignment with hu-
man responses?

RQ3: How do LLMs respond to climate-related
questions, and what factors influence these
responses?

We use responses from the People’s Climate
Vote 2024 survey (UNDP — United Nations De-
velopment Programme and Oxford, 2024), cover-
ing 77 countries, as a benchmark to evaluate eight
LLMs, including both open-source and proprietary
models from diverse companies and regions. The
survey consists of closed-ended questions with pre-
defined choices, which we present to the LLMs,
instructing them to select the corresponding alter-
natives. This approach enables us to analyze token
probability distributions and measure how closely
their outputs align with human responses. Figure
1 illustrates the process of obtaining and evaluat-
ing LLM and human responses, highlighting the
comparison and analysis framework.

Our findings reveal that, while LLMs do not
exhibit systematic biases toward specific geopolit-
ical or demographic groups, their responses often
diverge significantly from majority human opin-
ions. In particular, we found that LLMs generally
express greater concern about climate change, es-
pecially regarding future risks and long-term policy
commitments, than the average human respondent.
However, their alignment with human perspectives
on immediate climate actions varies, with some
models displaying notable discrepancies. Addition-
ally, prompting LLMs to adopt a national identity
sometimes reduces divergence, but the effect is
inconsistent across countries and models. These
results highlight the distinct role that LLMs play in
shaping climate discourse and underscore the need
for careful evaluation of their potential biases and
influence on public narratives.

2 Related Work

Understanding the opinions held by large language
models (LLMs) has become a key area of study.
Santurkar et al. (2023) proposes a framework to

evaluate LLM alignment with public opinion, find-
ing significant misalignment with U.S. views, es-
pecially in models fine-tuned with human feed-
back. Similarly, Durmus et al. (2024) compares
LLM-generated survey responses with data from
the World Values and the PEW Surveys, reveal-
ing stronger alignment with opinions in Western
and South American countries. They also note that
LLMs tend to assign disproportionately high prob-
abilities to single responses, in contrast to the more
diverse distributions seen in human responses.

Numerous studies have examined LLM biases
across critical topics, like gender (Kotek et al.,
2023), cultural perspectives (Naous et al., 2024),
standardized tests (Locatelli et al., 2024), and po-
litical alignment (Motoki et al., 2024). Recent re-
search has focused on how LLMs simulate public
opinion on climate change, with studies like Wan
et al. (2023) highlighting misrepresentation of de-
mographic diversity and potential harms such as
identity essentialization. Jansen et al. (2023) and
Demszky et al. (2023) emphasize that LL.Ms are not
yet reliable substitutes for human survey respon-
dents, often misrepresenting demographic diversity.
Additionally, Lee et al. (2024b) investigates social
desirability response bias (SDR) in LL.Ms, finding
limited bias with models maintaining consistent
responses across varying demographic prompts.

Regarding climate change, Lee et al. (2024a)
finds that GPT-based models reflect liberal, higher-
income, and highly educated views, but struggle to
represent beliefs of non-Hispanic Black Americans.
Expanding beyond the U.S., Qu and Wang (2024)
identifies regional disparities and biases based on
demographic factors and ideological stances.

Our work extends on prior research by analyzing
a broader set of LLMs and expanding the geograph-
ical scope of climate change simulations. We assess
how these models align with human opinions and
uncover which point of view they are propagating.

3 Survey Dataset

The survey used in this study is the Peoples’ Cli-
mate Vote 2024 (UNDP — United Nations Develop-
ment Programme and Oxford, 2024), the world’s
largest standalone public opinion survey on climate
change. This edition introduced 15 questions orga-
nized into three main themes: (1) the direct effects
of climate change on daily life, (2) how climate
change is being addressed in the participant’s coun-
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Figure 1: Diagram summarizing the proposed methodology for obtaining and evaluating responses.

try, and (3) preferences for future policy actions'.

Administered by GeoPoll using Computer As-
sisted Telephone Interviewing (CATI) and Random
Digit Dialing (RDD) methodologies, the survey
was conducted in 87 languages, enabling the partic-
ipation of a broad spectrum of demographic groups.
Sample sizes per country typically ranged from
900 to 1,500 respondents, yielding in a total of
73,765 completed interviews from 1.9 million calls
across 77 different countries. However, responses
from only 72 countries and a global summary were
available in the survey dataset.

The dataset provides a structured representation
of survey responses, including the distribution of
human responses for each alternative across all
questions. Each entry contains the full question
text, multiple-choice options, and respondents’ de-
mographic attributes, like age and education level.

4 Methodology

We evaluate LLM responses by submitting each
survey question and its predefined answer choices,
prompting the model to select a single-letter re-
sponse. This allows us to extract log probabili-
ties for each option, which we normalize into a
probability distribution for comparison with human
responses. Our analysis includes three key com-
ponents: (i) measuring distributional distance us-
ing Jensen-Shannon divergence to compare model
outputs with public opinion across countries; (ii)
conducting Exploratory Factor Analysis to iden-
tify underlying factors influencing responses; and
(ii1) performing sentence embedding analysis to
examine whether LLMs favor answer choices se-
mantically closer to the question in the embedding
space.

"https://peoplesclimate.vote/about

4.1 Selection of Large Language Models

To ensure a representative analysis, we selected
both open-source and proprietary LLMs from di-
verse companies and countries to assess their align-
ment with human opinions across different regions.
We included GPT-40 as a state-of-the-art LLM,
DeepSeek and Qwen as Asian models, LLaMA,
Phi, and Grok as U.S.A. representatives, and Mis-
tral as a European counterpart. Open-source mod-
els were executed in local machines, while propri-
etary models were accessed via APL.

4.2 Prompts for Multiple-Choice Questions

The prompting strategies in this study simulate
real-world scenarios. We employed a zero-shot
approach, allowing models to leverage their natu-
ral language and contextual understanding to han-
dle unfamiliar questions. Each prompt consists of
an instruction explicitly requesting the model to
respond with a single letter corresponding to the
selected answer, followed by the question and its
predefined answer choices. All prompts were writ-
ten in English, matching the language used in the
survey. The prompt used in this study can be found
in the Appendix C.

Consistent with current literature (Argyle et al.,
2023), we set the models temperature to 0.7 to bal-
ance deterministic responses with moderate vari-
ability. Additionally, we imposed a strict token
limit of 1 to ensure that only a single token—the
model’s answer — was generated. This setup en-
abled us to extract log probabilities or logits for the
predicted token directly.

To obtain the probability distribution of the
model’s responses, we first extract the logits for
all tokens in the vocabulary, which represent the
unnormalized scores assigned to each token. From
the logits, we select only those corresponding to
the predefined answer choices (“A”, “B”, “C”, “D”,
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etc.). Additionally, we apply a strip process to
remove leading and trailing whitespace from to-
kens, ensuring that variations like “ A” and “A” are
treated identically.

To convert the selected logits into probabilities,
we apply the softmax function, which normalizes
the values into a probability distribution where all
probabilities range between 0 and 1 and sum to 1.
The softmax function is defined as:

e

P (yz) = Z N 0%
Jj=1
where z; represents the logit for answer choice ¢,
and N is the total number of answer choices.

4.3 Measuring Distances Between Human
And LLM Responses

Following prior literature (Locatelli et al., 2024),
we use Jensen-Shannon distance as the primary
metric to quantify the differences between human
responses and those generated by LLMs. Applying
a base-2 logarithm, this metric is bounded within
the interval [0, 1], enhancing its interpretability.

Let @ be a set of size N representing a collec-
tion of survey questions, and let A, denote the set
of possible answers for each question ¢q. Since
we extract the log probabilities for the tokens cor-
responding to the answer choices, we define the
following for LLMs:

P, (alq),Va € Aj,qc Qo me M

where m refers to a specific model in our study, and
P,,(alq) is the probability of model m answering
question g with alternative a.

Analogously, for human responses, we also have
the probability for each possible answer, which is
available in the survey data. Thus, we define:

Pr(alq),Ya € Ag,q € Q

where Ppy(al|q) represents the probability of hu-
mans answering question ¢ with alternative a, and
this probability distribution is available for each
country in the survey.

The distance between human responses and a
model m is then calculated as the mean of the
Jensen-Shannon distances across all questions:

N
Distance(m, H) Z m(Aqlq), Pr(Aqlq))

A larger distance indicates a greater divergence
between the model and human distributions, while
smaller values suggest stronger alignment.

4.4 Evaluating Question-Level Contributions
to Global Alignment

To assess the structure of alignment between LLM-
generated responses and human opinions at a more
granular level, we applied the DISTATIS method
(Abdi et al., 2005) to the distance matrix derived
from each individual survey question. This ap-
proach allows us to combine multiple distance ma-
trices into a shared structure, assigning a weight
to each question based on its contribution to the
global similarity pattern. Higher weights indicate
that a question’s distance matrix not only aligns
more closely with the overall trend, but also con-
tributes more significantly to shaping the shared
structure. In contrast, lower weights suggest that a
question’s distance relationships deviate more from
the common pattern, exerting a smaller influence
on the global alignment. We leverage this analy-
sis to evaluate the extent to which each individual
question influenced the overall alignment between
LLM-generated responses and human opinions, al-
lowing us to identify which questions deviate from
the global behavior.

4.5 Exploring Latent Factors in Climate
Change Opinions

To understand the underlying structure of climate
change opinions, we employ Exploratory Factor
Analysis (EFA), a widely used statistical technique
in social sciences (Teo, 2014). EFA identifies latent
factors that explain patterns of correlation among
observed variables, assuming that responses to in-
dividual items are influenced by these underlying
dimensions. By analyzing response patterns, EFA
reveals the structure of opinions in a dataset, reduc-
ing complexity while preserving key relationships.

In the context of a climate change survey, these
latent factors group countries with similar response
distributions on related questions. By interpreting
these factors, we gain insights into the values of
citizens of different countries and the opinions that
large language models might generate.

For the EFA, we first construct a matrix based on
our observations. Since most survey questions have
ordinal answers, we assigned a value to each alter-
native ranging from 1 to |A4| denotes
the number of alternatives for question q. Next,
we calculated the weighted average score for each
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version including all countries is available in Appendix B.

observation (country or LLM) across question al-
ternatives. This results in an 81x14 matrix, where
each row represents a country or LLLM, and each
column corresponds to the average score for a given
question. To simplify the process, we exclude one
question whose alternatives were not ordinal. Ap-
plying EFA to this matrix reveals latent factors that
capture climate-related opinion patterns, provid-
ing a more interpretable representation of potential
alignments or divergences between LL.Ms and hu-
man respondents across regions.

We use the Factor software (Lorenzo-Seva
and Ferrando, 2006), applying unweighted least
squares as the optimization method and promin ro-
tation to maximize factor simplicity. To determine
the optimal number of factors, we use parallel anal-
ysis, comparing eigenvalues from our observations
with those from Monte-Carlo simulated random
data (Allen, 2017).

5 Results

In this section, we present the results of our pro-
posed methodology, addressing the research ques-
tions (RQs) posed earlier. The results are organized
as follows: Section 5.1 analyzes the distances be-
tween probabilities distributions of LLM and hu-
man responses, Section 5.2 investigates the effect
of conditioning the LLM to be more similar to spe-
cific countries, Section 5.3 delves into the character-
istics of individual questions, and, finally, Section
5.4 explores the alignment between LLM-generates
opinions and human values.

5.1 Assessing LLM Alignment with Regional
and Geopolitical Groups

To assess how closely LLM responses align with
different human populations, we analyze the dis-
tances between models, geopolitical groups, and
individual countries. Figure 2 presents these dis-
tances, where the probability distribution for each
geopolitical organization group is obtained by av-
eraging the distributions of all countries within
that group, excluding the country of interest. This
grouping approach enhances visualization and in-
terpretability. For instance, when calculating the
distance between G7 and the United States, U.S.
responses are excluded from the G7 distribution,
allowing us to assess whether LLMs align more
closely with specific regions or geopolitical groups.

We selected the G7?, BRICS®, OPEC*, and
ASEAN’ as representative geopolitical groups,
given their diverse economic and political perspec-
tives. These groups provide a broader context for
evaluating alignment patterns. The distributions for
each group were obtained by averaging the answers
from each of its members.

When comparing LLMs responses to human re-
sponses, we find no clear evidence of alignment
with any specific group. If LLMs strongly aligned
with a group, we would expect significantly lower
distances compared to the average for countries in
that group. Instead, the distances remain relatively
high, suggesting that LLMs do not show a sys-

2Canada, France, Germany, Italy, Japan, the United King-
dom and the United States.

3Brazil, Russia, India, China and South Africa.

4Algeria, Ecuador, Iran, Iraq, Nigeria and Saudi Arabia.

>Cambodia, Indonesia, Laos, Myanmar and Philippines.
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Figure 3: Variation in the distance between each surveyed country and GPT-4o/LLaMa 3.1 8B when prompting the
model to respond as a citizen of that country. Positive values (red) indicate greater divergence, while negative values
(green) suggest improved alignment with human responses.

tematic preference for any geopolitical or regional
group.

This is further corroborated by the fact that the
standard deviation in similarity between LLM and
human responses across individual survey ques-
tions is relatively high (o > 0.12 for the distance
between LLMs and their closest country responses),
indicating inconsistency in model predictions when
compared to human populations. Additionally, the
minimum distance between an LLM and its closest
country is higher than the distance between two ge-
ographically or culturally similar countries (median
for LLMs = 0.34, median for countries = 0.13).

These findings challenge the assumption that
LLMs may be biased towards certain populations,
such as Western or developed countries. In the
context of climate change, our analysis provide
no strong evidence of such biases. Instead, the
results suggest LLM-generated response distribu-
tions do not closely resemble human distributions
in general. Nevertheless, some models generate
responses that significantly diverge from those of
the populations they might be expected to represent.
For example, the responses generated by Chinese
LLM Qwen2.5 differ notably from those provided
by Chinese citizens.

5.2 LLMs as Virtual Citizens: Can LLMs
Adapt to Country-Specific Beliefs?

Since large language models do not inherently
produce responses that align with the answer dis-
tributions of any specific country, we explored
whether prompting techniques could encourage
more human-like responses. To test this, we in-
struct the LLM to act as that countries’ (country X)
citizen (see Appendix C).

We then measure the impact of this intervention
by comparing the distance between the model’s

new responses and those of country X. Figure 3
shows the change in distance before and after ap-
plying this prompt, referred to as distance variation.
This variation is computed as:

Adist(m7 Hx) = diSt(Hx, mx) — diSt(Hx, m),

where H x represents the human response distribu-
tion for country X, m denotes the default LLM
response distribution, and mx corresponds the
LLM’s response when prompted to act as a citi-
zen of country X.

A positive Agist(m, Hx ) means the customized
prompt increased the distance to human responses,
whereas a negative value suggests better alignment.
This analysis is limited to GPT-40 and LLaMa 3.1
8B Instruct for brevity.

Our findings reveal that, for both models — par-
ticularly GPT-40 — assigning a national identity
for the LLM to mimic often reduced the distance
to the target country. However, in certain cases
(e.g. Pakistan), the intervention failed to bring the
model’s responses closer to human distributions.
In some instances, it even increased the divergence,
suggesting that the effectiveness of this approach
varies depending on the model and the country.

Moreover, LLaMa 3.1 8B failed to reduce its dis-
tance to several African, Middle Eastern, and South
Asian countries. This may derive from biases in
the model’s training data, as well as its relatively
small number of parameters. The representation
of multilingual content in the training corpus, esti-
mated at around 8% (Grattafiori et al., 2024), could
have contributed to weaker alignment with regional
human responses. Additionally, its reduced model
capacity may limit its ability to capture complex
cultural nuances.

These results suggest that prompting LLMs to
mimic a nation’s citizen can sometimes improve
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using the DISTATIS method.

alignment with human responses, but the effect
is inconsistent across models and regions. Differ-
ences in model architecture, training data, and pa-
rameter count likely contribute to variations, while
increased divergence in certain countries highlights
the risks of misrepresentation. This underscores
the importance of careful evaluation when using
LLMs to simulate national public opinion.

5.3 Question-Level Contributions to
LLM-Human Alignment

The results reveal substantial variation in how dif-
ferent survey questions contribute to the overall
similarity structure. As shown in Figure 4, ques-
tion 6, that addresses governmental effectiveness in
climate action and question 3, related to concerns
for future generations exhibit the highest contri-
butions, suggesting that LLM responses on these
topics align more consistently with the overall dis-
tance between humans and LLMs.

In contrast, question 15, related to international
cooperation and question 13, about educational
efforts present the lowest contributions, which sug-
gest that regarding these topics they present a dif-
ferent answer pattern from the one presented by the
global similarity pattern. This can be confirmed by
looking at the distance matrix of these two ques-
tions and noting that it describes a much smaller
distance between models and countries, specifi-
cally, the tested models seem to be express opinion
much closer to the developing responses than on
other questions.

Model F1 F2 F3

Deepseek 7b-chat 5.06 399 5.19
GPT-40 484 5.63 436
GPT-40-mini 491 4.18 4.05
Grok-2 477 17.73 5.87
LLaMa-3.1 8B-Instruct 6.12 7.10 | 8.53
Phi-3.5-mini-Instruct 499 482 6.03
Ministral 8 B-Instruct 538 6.84 6.36
Qwen2.5 7B-Instruct 488 642 4.44

Table 1: Factor scores for each tested LLM. Cells high-
lighted in red represent values in the top 10%, while
those in green represent the bottom 10%, including the
countries. Due to the scale we adopt for the answers, a
lower value on a factor indicates that the model is more
concerned with that aspect of climate change.

5.4 Exploring the Opinions of LLMs on
Climate Change

In the previous sections, we found that LLM an-
swer distributions, even when prompted to simu-
late responses as citizens of specific countries, had
very inconsistent alignment with those of human
groups. This suggests that the models do not ex-
hibit a strong bias towards any national perspective
on climate change issues. However, this analysis
alone does not reveal the underlying opinions the
models may be expressing. To address this, we
now turn to an Exploratory Factor Analysis (EFA)
to better understand the models’ perspectives on
climate change.

Three factors were identified as significant in
our analysis (Kaiser-Meyer-Olkin (KMO) test =
0.788, 69.4% explained variance), suggesting that
our data is suitable for factor analysis. The full
factor loadings are available in Appendix A. By
examining the associations between factors and
individual survey questions, we found that each
factor aligned with one of the main themes of the
survey presented in Section 3. Since these themes
emerged from question groupings, we defined the
factor labels a posteriori as:

F1: Future Actions: Concerns about long-term
climate policies and commitments.

F2: Present Actions: Focus on immediate ef-
forts and measures to address climate change.

F3: Climate Change and Daily Life: The per-
ceived impact of climate change on everyday
life and personal experiences.
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Using the weighted sum method (DiStefano
et al., 2019), we calculated factor scores for each
country and LLM, reflecting their responses to each
question. Table 1 presents the scores for LLMs an-
alyzed. A lower score on a given factor suggests
that the model is more likely to provide favourable
responses to questions related to that factor.

Among the models examined, the GPT-4 family
stood out as the most likely to acknowledge the
impact of climate change and the importance of
government actions across all factors, followed by
Phi. In general, we found that LLMs expressed
more concern about climate change’s effects on
daily lives (F3) and future actions (F1) than the
average human from most countries. This was not
the case for present actions (F2), where LLMs fac-
tor scores, except for Phi and GPT-4, aligned more
closely with human responses. Notably, Mistral
and LLaMA showed the most divergent responses:
both models tended to provide more negative as-
sessments regarding present and future actions, but
differed on their stance towards F3—-LLaMA be-
ing more negative than most countries, and Mistral
more positive, aligning with other LLMs.

Having analyzed the performance of the models
relative to each other, we now compare their re-
sponses to human answers. Figure 5 show the posi-
tions of the LLMs relative to the countries on these
factors. Most models are clear outliers in relation to
the factor values, positioning themselves relatively
far from the countries’ distributions. Even the mod-
els that are not clear outliers — LLaMa and Mistral —
appear on the border of the cloud of countries, sug-
gesting that the opinions they generate may differ

significantly from those of most countries.

In practice, this highlights how unusual the an-
swer distribution from LL.Ms are when compared
to humans, especially when considering the combi-
nation of factors. Although some of the concerns
of the large language models, in the form of factor
scores, individually may approach the opinions of
some countries, when assessing all three factors,
we notice that the generated response distributions
are inconsistent with existing countries.

6 Conclusion

As large language models gain widespread use, un-
derstanding the nature of the opinions they generate
is crucial, particularly in sensitive areas like cli-
mate change. Our analysis of responses from eight
LLMs compared with human answers from the Peo-
ple’s Climate Vote 2024 survey, reveals that LLMs
generally express greater concern about climate
change than average human, with their responses
differing significantly from human groups.

Furthermore, the higher levels of concern ob-
served in LLM responses may be linked to various
stages of model training, though the lack of trans-
parency in training data complicates the identifica-
tion of specific causes. Future research could ex-
plore the impact of these factors on LLM-generated
opinions.

It is still unclear whether LL.Ms should mimic
the public opinion or the expert opinion on a given
topic. In this study, we focus solely on the first, find-
ing that there is currently little alignment between
model generated and people’s response on climate
change. Nevertheless, future work should explore
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the latter, as it can be argued that this technology
should be used to gently steer people’s opinions
towards the scientific consent on pressing world
problems.

7 Implications

As the use of LLMs as substitutes for human
participants in surveys becomes increasingly de-
bated (Jansen et al., 2023), it is crucial to be aware
of the limitations these models have when repre-
senting diverse groups. As our analysis shows, the
answers distributions generated by these models
are considerably different from those of humans,
and mitigation techniques such as prompting the
model to adopt the role of a specific demographic
group can only go so far, potentially without risking
representational harms.

Another point to consider is that even between
LLMs, their answer distributions may vary greatly,
and, in some cases, this can lead them to express
different views on specific issues. For instance, the
degree to which each model values F2:Present Ac-
tions is significantly different, with LLama-3.1 and
Grok-2 showing much higher scores when com-
pared to GPT-40-mini and Deepseek-7B.

As an user, it is hard to know which kind of bias
or point of view an LLM may display a priori and
one may be influenced without even realizing. With
the trend in decreasing information in LLM model
cards, especially in sections related to bias and lim-
itations (Liang et al., 2024), and the sheer number
of different models, it is hard to know what kind
of information one may receive when interacting
with a LLM-powered application. Large language
model providers should be encouraged to provide
accurate and transparent documentation that can
inform the end users of the expected outputs of
their products.

Limitations

In our study, we aim to represent a diverse range of
cultures by examining the countries available in the
Peoples’ Climate Vote 2024 survey. However, this
focus on countries means we do not account for
within-country demographic variations. LLM re-
sponses may align closely with specific age, educa-
tion, gender, religion or other demographic groups,
which we leave for future work to explore. For
the model selection, we analyze eight widely-used
models from diverse companies and countries of
origin. However, other state-of-art models, such as
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Deepseek-V3 and Claude-3, or models tailored for
specific languages, could provide valuable insights.
Additionally, versions of models used in the study
with more parameters, such as LLaMa 3.1 405B
Instruct, may offer further improvements. Finally,
while we assess model opinions using controlled
prompts and survey questions, our findings may
not fully reflect the responses these models would
generate in real-world applications.
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A Factor Loadings for Survey Questions

Table 2 shows the factor loadings for each ques-
tion. The absolute value of the factor loading in-
dicates how related that question is to the factor.
For example, the question “Should your country
strengthen or weaken its commitments to address
climate change?” is highly associated with the fac-
tor (F1) Future Actions.

B Complete Jensen-Shannon Distances

Figure 6 shows the mean Jensen-Shannon distance
between all surveyed countries and the studied
LLMs. Note that the addition of the extra coun-
tries adds little information: they are generally fur-
ther away from the LLMs when compared to the
economical/geopolitical groups.

C System Prompt

The following system prompt was used to standard-
ize the responses generated by the LLMs:

"You will receive a question. You MUST
respond with only one letter. The pos-
sible answers will be presented as fol-
lows: A: answer, B: answer, C: answer,
etc. You should respond ONLY with the
letter corresponding to the correct alter-
native according to you. Do not provide
explanations, additional text, or repeat
the answer—just the letter."

This prompt ensured that all models produced
structured and comparable outputs, facilitating a
consistent evaluation of their alignment with hu-
man responses.

We append the following instruction to the
prompt in order to conduct the analysis proposed in
section 5.2, where country X stands for any country
we wish the LLM to mimic:

"You must answer the following ques-
tion as if you were a typical citizen of
{country X}, reflecting the general opin-
ions, beliefs, and cultural perspectives of
people from that nation."

D Question-Level Contributions
Distances

In this section, we present the distances between
each country and its group/LLM for Question
6: “How well is your country addressing climate
change?”. This analysis helps to understand how
each country perceives its own efforts in addressing
climate change relative to others. The results are
shown in Figure 7.

E Semantic Proximity in LLM Responses

Large Language Models rely on internal text rep-
resentations to generate responses. This raises the
question of whether their answer choices are in-
fluenced by semantic proximity in the embedding
space. To explore this, we analyze if LLMs tend
to favor answer choices closer to the questions in a
pre-trained sentence embedding space.

For this analysis, we use a pre-trained sentence
embedding model to encode both survey ques-
tions and answer choices into a shared embedding
space. Specifically, we adopt the SentenceTrans-
former (Reimers and Gurevych, 2019), a bidirec-
tional, encoder-only transformer model. Each ques-
tion is encoded as a single vector, and each answer
choice is separately encoded into the same space.

To assess whether LLMs are more likely to select
answer choices semantically closer to the question
in embedding space, we computed the correlation
between the distance of each answer choice to the
question and its selection probability. Figure 8
presents these correlations for the studied models.

The results indicate a clear negative correlation
across all LLMs, with values ranging from approx-
imately between -0.30 to -0.55. This suggests that
the closer an answer choice is to the question in
embedding space, the more likely the model is to
select it. While the strength of this effect varies
across models, the consistent trend implies that se-
mantic proximity plays a significant role in shaping
LLM predictions.
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1D Question Text (F1) Future | (F2)Present | (F3) Climate
Actions Actions Change and
Daily Life
1 How often do you think about climate change? 0.097 0.333 0.732
2 | Compared with last year, are you more or less worried -0.018 -0.123 0.806
about climate change?
3 | How worried are you about the effects of climate change -0.053 -0.049 0.840
on the next generation?
4 Thinking about extreme weather events - such as, -0.032 -0.027 0.743
droughts, flooding, storms, and extreme heat or cold
- was your community’s experience this year...
5 | How much has climate change affected any big deci- -0.024 0.423 0.548
sions for your family, such as where to live or work, or
what to buy?
6 | How well is your country addressing climate change? 0.020 0.830 0.010
7 | How well are big businesses addressing climate change? -0.052 0.944 -0.028
8 | In your country, who do you think has had the most N/A N/A N/A
impact addressing climate change?
9 | Should your country strengthen or weaken its commit- 0.758 0.088 0.050
ments to address climate change?
10 | How quickly should your country replace coal, oil, and 0.281 0.130 0.335
gas with renewable energy, such as power from the wind
or sun?
11 | How much should your country protect and restore 0.835 -0.121 -0.116
nature, for example, by planting trees or protecting
wildlife?
12 | When it comes to protecting people at risk from extreme 0.932 -0.057 -0.094
weather events, such as storms or extreme heat, should
your country provide...
13 | Should countries work together on climate change even 0.537 -0.045 0.197
if they disagree on other issues, such as trade or secu-
rity?
14 | Should rich countries give more or less help to poorer 0.824 0.076 0.037
countries to address climate change?
15 | Should schools in your country do more or less to teach 0.838 0.011 0.010
about climate change?

Table 2: Factor loadings for each survey question. Factors with an absolute value greater than 0.3 are highlighted for
easier interpretation. Question 8 was not included in the EFA as its answers are not ordinal, resulting in no factor

loadings.

This finding has important implications for how
LLMs respond to climate-related survey questions.
Survey design typically aims to capture nuanced
opinions, but an overreliance on semantic proxim-
ity may introduce biases in response selection. If
LLMs prioritize answers that semantically closer to
the question, they may systematically favor certain
perspectives rather than reflecting a broader range
of human responses. Moreover, the linguistic style
of the question, such as word choice and phras-
ing, could reinforce these biases, influencing the
model’s response selection. In climate discourse,
for example, questions often contrast immediate
versus long-term actions or individual versus gov-
ernmental responsibility, leading models to dispro-
portionately select semantically aligned answers.

The variation in correlation strength across mod-
els also suggests that architecture and training data
influence how semantic similarity impacts response
selection. Models with stronger correlations might

be more susceptible to this effect, limiting their
ability to represent a balanced spectrum of climate
opinions. This highlights the need to understand
the internal biases of LLMs, particularly when us-
ing them to simulate public sentiment or inform
policy decisions.

Overall, these results provide an initial insight
into how sentence embeddings influence LLM
decision-making, potentially introducing system-
atic patterns in response selection. While these
findings shed light on the role of semantic align-
ment in model outputs, further research is needed
to deepen this analysis and develop strategies to
mitigate such biases. This is particularly crucial to
ensure that LLM-generated responses in climate-
related surveys and discussion are are scientifically
grounded and not unduly influenced by embedding
or linguistic biases.
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Abstract

There is a huge demand for information about
climate change across all sectors as societies
seek to mitigate and adapt to its impacts. How-
ever, the volume and complexity of climate in-
formation, which takes many formats includ-
ing numerical, text, and tabular data, can make
good information hard to access. Here we use
Large Language Models (LLMs) and Retrieval
Augmented Generation (RAG) to create an Al
agent that provides accurate and complete in-
formation from the United Kingdom Climate
Projections 2018 (UKCP18) data archive. To
overcome the problematic hallucinations asso-
ciated with LLMs, four phases of experiments
were performed to optimize different compo-
nents of our RAG framework, combining var-
ious recent retrieval strategies. Performance
was evaluated using three statistical metrics
(faithfulness, relevance, coverage) as well as
human evaluation by subject matter experts.
Results show that the best model significantly
outperforms a generic LLM (GPT-3.5) and has
high-quality outputs with positive ratings by
human experts. The UKCP Chatbot developed
here will enable access at scale to the UKCP18
climate archives, offering an important case
study of using RAG-based LLM systems to
communicate climate information.

1 Introduction

Climate services are data, information, and knowl-
edge provided to support decision-making about
climate change (Global Framework for Climate
Services, 2025). In the UK, the national govern-
ment funded the UK Met Office to produce the UK
Climate Projections (UKCP) (Lowe et al., 2018),
a compilation of high-quality climate models, out-
puts, and analyses that help organizations prepare
and adapt to climate change. Similar efforts are
underway in other countries (e.g. Climate Change
in Australia (CSIRO and Bureau of Meteorology,
2015) and CH2018 in Switzerland (Fischer et al.,

h.dong2,
tristan.pigram}@metoffice.gov.uk

h.x.xiel}l@exeter.ac.uk,

2022)). The audiences for such climate services
can be very large and diverse; for example, the
UKCEP data portal has over 11,000 registered users
and is widely used in national government policy
(Department for Environment, Food and Rural Af-
fairs, 2024) and environmental regulations (Envi-
ronment Agency, 2024), as well as business adap-
tation planning (Anglian Water, 2020) and best
practice guidelines for local governments prepar-
ing for climate change (ADEPT, 2019). One ma-
jor challenge is tailoring such services to specific
and local user contexts. There are too few human
experts to serve the complex climate information
needs of such a large and diverse set of users. Gen-
erative Al tools offer a potential solution, allowing
a user to extract bespoke climate information tai-
lored to their own local context, through simple
natural language interfaces. However, it is very
important that such tools provide high-quality in-
formation; poor quality or incorrect information
could cause harm by worsening climate-related
decision-making.

In this study, we present the development of an
LLM-based climate service that is intended to help
deliver UKCP climate information. The UKCP
archive contains a wide variety of complex sci-
entific content (Met Office, 2025). A helpdesk
is provided and human experts assist the UKCP
user community in navigating the complex UKCP
archive, offering user guidance and scientific doc-
umentation to improve access and utilization. Our
tool is conceptualized as an automated support
tool that can respond to typical UKCP helpdesk
queries with accurate and trustworthy information.
If deployed, this will reduce pressure on human
experts and allow a greater number of UKCP users
to be served. Here we describe our development
of this tool in the form of a chatbot that uses Re-
trieval Augmented Generation (RAG). We evalu-
ate a number of different information chunking,
retrieval, ranking, and query expansion strategies,
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creating and testing 14 different RAG pipelines.
Performance is evaluated using a range of auto-
mated metrics (including a novel coverage met-
ric) and human evaluation of outputs by subject
matter experts (SME) in climate science. Results
show that our RAG-based chatbot communicates
accurate and relevant information from the UKCP
archive, avoiding hallucinations or deviation from
the content in the UKCP archive, and outperform-
ing a non-specialized LLM-based chatbot. Overall
positive ratings by human experts are achieved for
our best RAG system (S2BH-CHR-MQGS?).

2 Background and Related Work

Climate science and projections about future cli-
mate change are typically presented as complex
datasets, scientific reports, articles, and other tech-
nical content. Currently, human climate scien-
tists are needed to interpret this information for
non-experts (Intergovernmental Panel On Climate
Change (IPCC), 2023). While generative Al might
help increase access to climate information at
scale, effective decision-making around climate
entails accurate translation of complex concepts
and provision of trustworthy information. Al tools
for communicating climate science must prioritize
output accuracy and scientific quality.

Generally, LLMs are prone to hallucinations
while having strong generative capability — pro-
viding responses that appear grammatically cor-
rect, fluent, and authentic, but actually deviate
from source inputs (faithfulness) and/or fail on
factual accuracy (factualness), offering outdated
or incorrect information (Ji et al., 2023; Xu et al.,
2024). Answers may also be incomplete, generic,
or vague. This has led to methods that provide
LLMs with additional domain-specific informa-
tion to improve performance in applications re-
quiring precise answers (Wu et al., 2023; Peng
et al., 2023). Two popular approaches include
domain-specific training of LLMs and RAG. Be-
low we summarise studies that use these ap-
proaches in the domain of climate change.

Earlier studies adapt encoder-only, discrimi-
native LLMs like BERT (Devlin et al., 2019)
for climate communication tasks. ClimateBERT
(Webersinke, 2022) was trained on approximately
2 million paragraphs of climate-related informa-
tion, including reports, scientific paper abstracts,
and news articles. The training process included
general pre-training, followed by domain-specific

training on climate information and then down-
stream training for specific tasks like classifica-
tion, sentiment analysis, and fact-checking. An-
other example is ClimateBERT-NetZero (Schi-
manski et al., 2023) which fine-tuned BERT to de-
tect whether a text contains a net zero or reduction
target, and thus support subsequent data analyses.

Until most recently, generative LLMs are ap-
plied to convert climate information. ClimateGPT
(Thulke et al., 2024) is a foundation model trained
on a large corpus of climate-related texts. Training
of ClimateGPT involved pre-training and instruc-
tion fine-tuning. As reported (Thulke et al., 2024),
the pre-trained model outputs are domain-specific
but suffer from hallucinations and cannot provide
detailed information. ClimateGPT was then ex-
panded by integrating a simple hierarchical RAG
system, leading to improved performance. Also,
training LLMs is energy-consuming and cannot
easily adapt to new information, e.g., for climate
projection.

Retrieval Augmented Generation (RAG) (Lewis
et al., 2020) is a process of incorporating infor-
mation from external databases to increase the an-
swer accuracy of LLMs in domain-specific appli-
cations. It works by extracting relevant informa-
tion (retrieval), processing the retrieved informa-
tion with other external sources to create a struc-
tured prompt (augmentation), and summarising
the combined information using an LLM (gener-
ation). The study (Fore et al., 2024) shows that
RAG helps to improve the factual metrics of an-
swers using in-context learning, which effectively
mitigates conflicting information from the training
set, for question answering with climate-related
claims.

ChatClimate used a RAG-based system to com-
municate climate information (Vaghefi et al.,
2023). This RAG system extracted the top-n
pieces of relevant information for a given query
from the IPCC Report. More recently, ChatNet-
Zero (Hsu et al., 2024) is a RAG-based chatbot
targeting the net zero domain. Our RAG-based
system further explores a variety of chunking, re-
trieval and query rewriting strategies to enhance
the RAG process. We focus on the dynamic, fu-
ture climate projection data, instead of the current
climate reports.

Robust evaluation of answer quality and infor-
mation retrieval strategies is vital to ensure RAG
systems’ correctness and trustworthiness, as they
are highly sensitive to noisy or irrelevant con-
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Figure 1: Overall framework of the UKCP Chatbot.

texts (Shi et al., 2023). A notable RAG-focused
evaluation tool is RAGAS (Es et al., 2024), but
it does not capture all dimensions of trustworthi-
ness and accuracy. In the climate-focused appli-
cations above, human evaluators are used to judge
answer correctness (Thulke et al., 2024), or auto-
mated evaluation is performed using benchmark
datasets (Webersinke, 2022). These approaches
become difficult in specialized domains, such as
climate change and projection, where non-experts
may not spot mistakes and there are no domain-
specific benchmarks. In this work, we provide
a phased automated evaluation with new datasets
and human evaluation design with climate experts.

3 Methodology

We develop a conversational question-answering
system to provide relevant, accurate, and trust-
worthy information related to the UKCP archive
(hereafter referred to as “UKCP Chatbot”). An-
swers must be based only on the available UKCP
archive; in other words, answers should only use
UKCP data and not “general knowledge” or other
external information. This makes the task a com-
plex testbed for the faithfulness and hallucination
of an LLM-based RAG system.

Our structured RAG system integrates different
document chunking strategies, retrieval methods,
and query expansion into well-defined retrieval
pipelines. Multiple proposed pipelines are evalu-
ated to optimise information retrieval, answer rel-
evance and accuracy. A hybrid evaluation ap-
proach was used, incorporating both automated
and human assessments. To demonstrate the ad-
vantage of the RAG approach, we also compared a
general-purpose LLM, GPT-3.5-0125", used out-

'"https://platform.openai.com/docs/mod
els/gpt-3.5-turbo

side the RAG framework and based only on its
general knowledge. The same GPT-3.5 LLM was
used within several of our RAG system compo-
nents so gives a fair comparison. User surveys
were conducted to understand subjective percep-
tions of the UKCP Chatbot.

3.1 System Overview

The overall functionality of the chatbot is shown in
Figure 1. The user enters a query ¢ as input. The
RAG system then parses the query and extracts the
most relevant data chunks from the UKCP corpus.
The extracted information is encapsulated into a
prompt to a LLM to summarise the information
and generate an answer. GPT-3.5 was used for
its efficiency and cost-effectiveness. Conversation
history is recorded to better understand the con-
text of user queries. The components of the RAG
system are optimized by comparison of several al-
ternatives in each case; these choices are described
below. The system is developed using a JavaScript
front-end interface (see Figure 5 in Appendix F)
and Python for back-end data manipulation.

3.2 Data Preparation

The UKCP archive contains diverse UK-focused
climate data and information for a wide audience
including scientific researchers, policymakers, in-
dustry professionals, and members of the public.
The archive provides climate projections to the
year 2100 based on model projections of future
climate conditions for a number of greenhouse
gas emission scenarios. Information is presented
as published literature, observations, and climate
model data. Here we focus on documents avail-
able from the UKCP archive, which include sci-
entific reports, fact sheets, technical and guidance
documentation, stakeholder engagement materi-
als, and case study reports.

The corpus consists of 85 documents in raw
PDF format in complex layouts. From this cor-
pus, four segmented datasets were created by us-
ing different chunking approaches: fixed-length,
paragraph, section, and summary methods. De-
tails of data extraction, document segmentation,
data cleaning, and data representation are in Ap-
pendix A.

3.3 RAG Framework

To develop the optimal RAG pipeline, we divide
the RAG methodology into four components: doc-
ument segmentation (chunking), chunk retrieval,
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Table 1: Design options for RAG system components tested by phased evaluation.

Phase = Component Evaluated Model ID Component Variant

F5 Fixed-Length (5-chunk context)
. F10 Fixed-Length (10-chunk context)

! Chunking P5 Paragraph g(5-(:hunk context)
P10 Paragraph (10-chunk context)
H20 Hierarchical (20 documents)

> Retrieval S2B Small-to-big
S2BH15 Hierarchical (15 documents) & Small-to-big
S2BH20 Hierarchical (20 documents) & Small-to-big
S2BH-LST Lost-in-the-middle

3 Ranking S2BH-CHR Cf)heré?
S2BH-DVR Diversity
S2BH-REC Reciprocal

4 Query Expansion S2BH-CHR-MQG3  Multiple Query Generation (3 queries)

S2BH-CHR-MQGS5

Multiple Query Generation (5 queries)

¢~ Document
\_summaries

Summary
dataset

Paragraph
dataset

UKCP18 Corpus

Section
dataset

Hierarchical Simple
retrieval retrieval

Re-rankin Small-to-big Relevant Response
9 retrieval contexts P

Query
Expansion

Figure 2: Overview of the RAG framework for model S2BH-CHR-MQG3.

chunk re-ranking, and query expansion. A total of
14 RAG pipelines were evaluated across the four
components (see Table 1) and a locally optimal so-
lution for each component was identified.

Since the four components work together in a
functional RAG pipeline, component evaluation
was performed sequentially in four experimen-
tal phases that each identified the best option for
one component. This is based on the assump-
tion that the components are independent of each
other. The best component option found in each
phase was adopted for subsequent phases of test-
ing. This heuristic approach greatly reduces the
number of test combinations (as high as 128 con-
sidering all possible combinations). Evaluation
during this process used automated metrics that
are described below; outcomes are presented in the
Results section. The final RAG solution chosen
for the UKCP Chatbot is visualized schematically
in Figure 2 and incorporates the best components
selected by this process, with an additional layer
of human evaluation/testing (see Section 3.5).

3.3.1 Document segmentation (chunking)

This first phase considers the best low-level
chunking strategy and how many chunks are

needed in the prompt. It uses a simple retrieval ap-
proach based on cosine similarity between vector
embeddings of the query and context chunks. We
evaluated RAG pipelines that use the top-5 or top-
10 most-similar chunks (following ClimateGPT
(Thulke et al., 2024) and ChatClimate (Vaghefi
et al., 2023)) chosen by two different chunking
strategies (fixed-length F, or paragraph-based P).
Fixed length and paragraph has the length of 1024
tokens. Later we consider larger-sized section
chunks and summary chunks to improve final re-
trieval, but we do not use them in the initial re-
trieval stage.

3.3.2 Enhanced Information Retrieval

We introduce two retrieval strategies, small-to-big
and hierarchical, and a third strategy that com-
bines them, to enhance the simple retrieval of top-
k relevant paragraph chunks above. These three
retrieval algorithms combine multiple chunking
strategies (including section and summary chunks)
to enhance the final outputs of information re-
trieval. These enhanced retrieval methods provide
more information to answer a user question by
extracting longer document sections based on the
smaller chunks found by simple retrieval (small-
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to-big) and by pre-selection of relevant documents
prior to simple retrieval (hierarchical). These
methods localize the relevant documents and sec-
tions to reduce inclusion of irrelevant information.

Small-to-big contextual expansion. Here small
paragraph chunks are enhanced with bigger sec-
tion chunks to increase the amount of relevant
content found during information retrieval. First,
10 paragraph chunks are identified (using the P10
model, which provides the most relevant informa-
tion) and then the document sections containing
those paragraphs are also retrieved. The top-5 sec-
tions (fitting within the 16k context-length limit
of GPT-3.5) most similar to the user query are
then used to create the final prompt for question-
answering. Expanding from paragraphs to sec-
tions increases the relevant/specific information
extracted from the corpus and thereby enables bet-
ter answers to be generated.

Hierarchical filtering. Here a pre-filter is ap-
plied to consider only the top-k most relevant doc-
uments for initial retrieval of paragraph chunks,
creating a two-stage (or hierarchical) retrieval pro-
cess. We set k = 20 to include a large number of
documents and allow a more diverse set of chunks
to be retrieved. Relevant documents are identified
by first creating a summary of each document and
then using cosine similarity between the embed-
dings of the user query and each document sum-
mary. The P10 model for simple retrieval is then
applied to all paragraph chunks from the top-k rel-
evant documents. This approach can prevent the
spurious inclusion of paragraphs from irrelevant
documents.

The two approaches above are then combined,
leading to pipelines using hierarchical filtering
(with 15 or 20 documents retained) followed by
small-to-big retrieval. This helps extract the rele-
vant sections from the most relevant documents.

3.3.3 Chunk ranking

Ranking (cf. re-ranking) is prioritization amongst
the matching chunks selected by a retrieval
method; it applies a rule or strategy to re-order
the selected chunks and decide which ones will be
included in the prompt. Here we tested four re-
ranking strategies which we applied to the com-
bined, hierarchical & small-to-big model, which
was chosen as the candidate model for this phase
based on the automated evaluation results.
Lost-in-the-middle.  Language models can
struggle to parse information in a long prompt,

most often missing relevant information placed in
the middle of a long input sequence (Liu et al.,
2024). This re-ranking strategy places the most
relevant chunks at the beginning and the end of
the prompt, moving the least relevant chunks to the
middle, following (deepset, 2025a). Unlike many
other rankers, it does not use the query and simply
re-orders the list of retrieved chunks.

Cohere is a platform that provides relevance-
based re-ranking language models (Shi and
Reimers, 2024) trained on query-passage pairs in
documents. Here we used the Cohere “rerank-
english-v3.0” model” , which was fine-tuned to re-
trieve the most relevant passage for a given query.

Diversity ranking ranks a list of chunks based on
the relevance to the query and the diversity of the
information in each chunk. The greedy algorithm
initially chooses the most similar chunk to the
query and then iteratively adds chunks that are, on
average, least similar to previously added chunks,
until all chunks are ranked (deepset, 2025b). Fol-
lowing the implementation in deepset (2025b),
we use a sentence BERT model (Reimers and
Gurevych, 2019), here “all-MiniLM-L6-v2"3, to
embed the query and the chunks for ranking.

Reciprocal ranking (Rackauckas, 2024) is used
with multiple query generation (see below). For
each query, inverse rank scores are calculated for
all retrieved chunks:

1

_— 1
rank + k M

reciprocal_score =
where rank is the similarity-based rank of the
chunk and k is a smoothing factor. The final rank-
ing is calculated using the mean value of all recip-
rocal scores for each chunk.

3.3.4 Query Expansion

Retrieval responses are highly dependent on the
exact phrasing of the query, so this phase seeks
to diversify phrasing to give a more consistent re-
trieval of information (Rackauckas, 2024). An
LLM (GPT-3.5) is utilised to generate multiple
versions of the original query, keeping the mean-
ing but varying how it is written. Each version is
then used for information retrieval and the com-
bined responses are used collectively to generate
an answer to the original query. Here we tested

nttps://huggingface.co/Cohere/rerank
-english-v3.0

*https://huggingface.co/sentence-tran
sformers/all-MiniLM-L6-v2

130


https://huggingface.co/Cohere/rerank-english-v3.0
https://huggingface.co/Cohere/rerank-english-v3.0
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

RAG pipelines using 3 or 5 versions of the origi-
nal query. All chunks retrieved were collated and
ranked together using a re-ranker (Cohere) and
the original query to determine the top-k (here
k=10) chunks used in the prompt. Here we use the
S2BH-CHR model as the candidate based on the
evaluation of the re-ranking stage of the pipelines.
The prompt for generating multiple queries is pre-
sented in Appendix B (prompt-1).

3.3.5 Prompt construction

The complete prompt for the proposed RAG
framework comprises a detailed system instruc-
tion and a user prompt. The system instruction
includes the context for the chatbot (the UKCP
archive), the task (question-answering), detailed
constraints to ensure that answers are generated
only from provided chunks from the UKCP cor-
pus, and the steps to create an answer. The user
prompt includes a structured format of the chunks,
the query, and an answer mark (“ANSWER:”) to
prompt the system to generate an answer. The full
prompt is presented in Appendix B (prompt-2).

3.4 Evaluation

A combination of automated and human evalua-
tion was used to assess the quality of the UKCP
Chatbot.*  Automated evaluation metrics were
used to compare 14 RAG pipeline variants and
ChatGPT (GPT-3.5, chosen as a strong baseline
example of a general-purpose LLM). Human ex-
perts then evaluated four RAG pipelines identi-
fied by automated evaluation, to determine the best
pipeline overall and characterise user perceptions
of the system.

3.4.1 Evaluation data

Two datasets are used for the automated evalu-
ation of outputs from the UKCP Chatbot: (1)
A dataset of 250 synthetic QCA triplets; and
(2) An anonymised dataset of 50 authentic QA
pairs from the UKCP helpdesk. Details about the
dataset creation are available in the Appendix C.

3.4.2 Automated Evaluation Metrics

Automated evaluation here aims to assign metrics
to RAG pipeline responses to assess three impor-
tant characteristics that good answers must contain
for our use case: (i) answer relevance; (ii) answer
faithfulness; and (iii) answer coverage. Answer

*Evaluation data, user testing survey, and implementation

of the RAG pipeline are available at https://github.c
om/arjun8009/UKCP-Repo-pub.
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relevance measures how well the response aligns
with the intent of the user query. Answer faith-
fulness measures the extent to which the response
is based on the source information (or conversely,
how much it uses other unsupported content). For
Relevance and Faithfulness scores, we use met-
rics provided by RAGAS (Es et al., 2024). As
accurate answers to scientific questions (as here
in the climate domain) often require a high level
of specificity and detail, here we propose a new
Coverage metric, which calculates the proportion
of all the named entities, keywords, and numeri-
cal values from the context chunks that are given
in a generated answer. Details of the above met-
rics are described in Appendix.D. For the Chat-
GPT coverage score we compare the answers to
the groundtruth context.

We also compare RAG-system scores to those
from a baseline LLM (ChatGPT/GPT-3.5). Since
relevance and faithfulness are defined using con-
text chunks from a RAG system, the only metric
that can be directly compared to a non-RAG LLM
is coverage. We compute two metrics: (i) Chat-
GPT mean coverage score and (ii) Proportion of
answers with coverage > ChatGPT: the percent-
age of answers by each RAG pipeline that have a
higher coverage score than ChatGPT.

3.5 Human Evaluation

Four selected RAG pipelines, chosen as the top-
performing pipeline from each of the four phases
of automated evaluation, were tested by subject
matter experts. An initial screening was conducted
by climate experts in the author group to choose
the best two of these pipelines for further test-
ing. Interactive evaluation was then performed by
a panel of experts (n=10) recruited from UK Met
Office staff. Details are given in Appendix E.

Two-stage survey design. Panelists received a
survey in two stages, with access to the live chat-
bot given in the second stage.

In the first stage, two preliminary questions
assessed participant background: (Qla) Dura-
tion of professional experience in climate science;
and (Q1b) Self-assessed familiarity with UKCP18
data. Next, participants evaluated the quality of
answers provided by the chatbot. Four question-
answer pairs were chosen from the 50 authentic
QA pairs dataset, that could be easily reviewed
without extensive additional knowledge. Answers
given by the two selected pipelines were provided


https://github.com/arjun8009/UKCP-Repo-pub
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Table 2: Automated evaluation metrics calculated for all RAG pipelines

Faithfulness

Model Phase  Mean Score Relevance Coverage Answers with ChatGPT
Variation (Sources) Mean Score  Mean Score  Coverage>ChatGPT  Mean Coverage
F10 1 0.90 0.93 0.34 79.00% 0.26
P10 1 0.89 0.94 0.34 78.00% 0.26
F5 1 0.89 0.93 0.32 72.00% 0.26
P5 1 0.86 0.93 0.32 77.00% 0.26
H20 2 0.81 0.93 0.35 78.00% 0.26
S2BHI15 2 0.91 0.94 0.36 85.00% 0.26
S2BH20 2 0.92 0.94 0.36 83.00% 0.26
S2B 2 0.92 0.94 0.34 81.00% 0.26
S2BH-CHR 3 0.93 0.96 0.38 87.00% 0.26
S2BH-DVR 3 0.91 0.94 0.34 84.00% 0.26
S2BH-LST 3 0.90 0.93 0.36 82.00% 0.26
S2BH-REC 3 0.92 0.95 0.35 86.00% 0.26
S2BH-CHR-MQG3 | 4 0.91 0.90 0.32 81.00% 0.26
S2BH-CHR-MQGS | 4 0.92 0.90 0.36 77.00% 0.26

S2BH-CHR ——S2BH-CHR-MQG3 — — Neutral Line

Relevant

Authoritative /\ Understandable

)

Comprehensive Specific

(a) Average human ratings of answer quality (n=10 par-
ticipants). Scaled from strong disagree (inner) to strong
agree (outer).

S$2BH-CHR ——S2BH-CHR-MQG3 — — Neutral Line

Simple to get
information

Conversation /\ Understandable

felt natural

Authoritative Specific

Comprehensive

(b) Average human ratings of interaction quality (n=10
participants). Scaled from strong disagree (inner) to
strong agree (outer).

Figure 3: Human evaluation of answer quality and interaction quality for RAG pipelines SB2H-CHR and SB2H-

CHR-MQGS3.

alongside the original human answer. Participants
then used a standard Likert scale (1 - strong dis-
agree; 2 - disagree; 3 - neutral; 4 - agree; 5 -
strong agree) to assess RAG-pipeline answers on
five quality metrics: (Q2a) Relevant; (Q2b) Un-
derstandable; (Q2c) Specific; (Q2d) Comprehen-
sive; and (Q2e) Authoritative. Below each Lik-
ert scale, a free text box asked participants to ex-
plain their ratings and provide additional qualita-
tive feedback.

The second stage assessed the usability and
“conversationality” of the selected pipelines.
Based on their evaluations in the first stage, par-
ticipants were asked to interact with their preferred
RAG pipeline via an online chatbot interface (see
Appendix F). Users were tasked with a realistic
scenario involving the use of UKCP18 data (see
Appendix E for details) and asked to retrieve rele-
vant information from the chatbot. They then eval-

uated their experience using Likert scales for six
usability metrics: (Q3a) Simple to get informa-
tion; (Q3b) Understandable; (Q3c) Specific; (Q3d)
Comprehensive; (Q3e) Authoritative; (Q3f) Con-
versation felt natural. Free text boxes allowed fur-
ther detail to be provided.

4 Results

4.1 Automated evaluation

Table 2 shows the automated evaluation metrics
for all 14 RAG pipelines that were tested. All the
proposed RAG models perform better than Chat-
GPT (GPT-3.5) in terms of the percentage of an-
swers having a higher coverage Score, showing
substantial improvements in mean scores (72 to 87
% of the answers generated by the RAG pipelines
had a higher number of relevant keywords, entities
and numbers). This finding is a clear validation
of the RAG approach for this use case, showing
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(a) Response breakdown for answer quality (n=40; 10
participants rating answers to 4 questions).
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(b) Response breakdown for interaction quality (n=10
participants).

Figure 4: Human evaluation of answer quality and interaction quality for RAG pipelines SB2H-CHR and SB2H-

CHR-MQGS3: response breakdown

that the general-purpose LLM is unable to perform
as well as RAG systems with additional domain-
specific information.

From automated evaluation metrics (Table 2)
we also conclude that, while small, the differ-
ences between pipelines do allow marginally bet-
ter candidates to be identified. Since our four
automated evaluation phases tested qualitatively
different pipelines, sequentially introducing more
complexity to the RAG framework, we chose the
best pipeline from each phase for additional hu-
man evaluation. Evaluation phase 1 focused on the
chunking strategy. We found that a higher num-
ber of chunks yields a higher coverage score and
paragraph-based chunking produces better faith-
fulness and relevance scores. Therefore, pipeline
P10 is adopted as the best candidate from phase 1.
Evaluation phase 2 looked at the retrieval compo-
nent. Here a combination of small-to-big and hier-
archical methods gave the best outputs, so pipeline
S2BH20 is chosen as the best candidate from
phase 2. Phase 3 of automated evaluation consid-
ered chunk ranking approaches, with results show-
ing that the coherence-based re-ranking strategy
has the best performance. Hence pipeline S2BH-
CHR is taken forward from phase 3. In Phase
4, we examined query diversification as a method
for improving retrieval, finding that it boosts the
faithfulness score significantly. Since both variant
pipelines performed similarly, we chose S2BH-
CHR-MQ3 due to its lighter computational load
(few synthetic queries per answer). In this phase
we observe a lower relevance score. Multiple
query generation involves generating different ver-
sions of the same query and hence the generated

answer contains information from various chunks
that would not have been in the top 10 chunks if
the original query was used. Hence the generated
questions by the relevance metric can be slightly
different from the original questions as the infor-
mation can contain additional details. Therefore
we observe a decrease in relevance. Overall we
chose four pipelines for human evaluation: P10,
S2BH20, S2BH-CHR, and S2BH-CHR-MQ3.

4.2 Human Evaluation

Initial screening by climate experts in the au-
thor team showed that the more complex RAG
pipelines identified by automated evaluation
phases 3 and 4 (S2BH-CHR and S2BH-CHR-
MQG?3) outperformed the simpler pipelines from
phases 1 and 2 (P10 and S2BH20). Therefore
S2BH-CHR and S2BH-CHR-MQG3 were further
evaluated by the panel of subject matter experts.
The first stage of human evaluation by our panel
of subject matter experts considered the quality of
answers provided by the two RAG pipelines for
four authentic questions received by the UKCP
helpdesk. Figure 3a and results breakdown in
Figure 4a show that for both pipelines, partici-
pants agreed that answers were authoritative, com-
prehensive, specific, understandable, and rele-
vant. The weakest aspect across both pipelines
was the comprehensiveness of answers. While
pipeline S2BH-CHR appears to marginally out-
perform pipeline S2BH-CHR-MQG3 on answer
quality, 7/10 users said that overall they preferred
the responses generated by S2BH-CHR-MQG3.
The second stage of human evaluation by the
panel asked users to interact with their preferred
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chatbot to complete a typical task related to the
UKCP data archive. Results are shown in Fig-
ure 3b and Figure 4b. Participants using pipeline
S2BH-CHR (n=3; 30%) reported negative (worse
than neutral) outcomes for two performance crite-
ria. It was hard to get the information they needed
and the conversation felt unnatural. It should be
noted that the number of users testing this pipeline
was small and outcomes may be unreliable. Par-
ticipants using the more popular pipeline S2BH-
CHR-MQG3 (n=7; 70%) all reported positive out-
comes on all criteria, but conversationality and
simplicity of getting information were again the
weakest aspects. Overall, across both pipelines
tested performance was generally positively rated,
with S2BH-CHR-MQG3 receiving stronger rat-
ings on interaction quality.

The free text boxes in the user surveys gave
some useful qualitative feedback. Users reported
that the perceived weakness around “conversation-
ality” arose from the repetition of phrases, which
made the chatbot feel artificial. Broader ques-
tions were seen to be more successfully answered
than specific questions; one user commented that
“The chatbot did not have access to the under-
lying data, just a headline message. This made
answers vague and less authoritative.” While not
all users were able to find the exact information
they needed, they were impressed by the chatbot’s
ability to suggest relevant topics that fell slightly
outside the initial scope of the questions they had
posed. Furthermore, there were some areas of in-
formation where users reported not receiving in-
formation that they expected and knew to exist.
These user comments provide areas for future im-
provement of the RAG-based chatbot.

5 Conclusion

In this work, we develop an LLM-based RAG
framework with systematic evaluation to create a
tool (the UKCP Chatbot) to increase access and
understanding of complex climate information.
A heuristic phased design approach was utilized
to identify the optimal design for the RAG sys-
tem, with evaluation of multiple recently reported
strategies for chunking, retrieval, re-ranking, and
query expansion. This process was complemented
by two-stage automated and human evaluation.
The best pipeline was identified as S2BH-CHR-
MQGS3 (see Table 2 and Figure 3). The resulting
chatbot provides accurate and trustworthy infor-

mation from the UKCP archive.

Limitations

Two main limitations of our RAG-based system
were identified. First, a lack of conversational
ability was observed during human evaluation.
Due to the amount of retrieved information and
relatively large size of generated answers, earlier
portions of the conversation history were pruned
to reduce context length, making the chatbot “for-
get” past questions and answers; this made it less
conversational. Second, answer completeness is
another possible weakness. Results from the au-
tomated coverage metric and human evaluation
both indicate that answers provided by the chatbot,
while normally correct, are in some cases incom-
plete. In some instances, the retrieved information
may be comprehensive, but the LLM might fail
to incorporate it all into the summary response. In
other cases, retrieval may omit portions of relevant
information. These identified limitations call for
further research on RAG systems to improve con-
versational ability and answer completeness, with-
out compromising the trustworthiness/accuracy of
outputs.

In future work, we will explore the use of
multimodal RAG frameworks, since the UKCP18
archive is originally a multimodal database that
includes reports, images, maps, and raw climate
data. We also aim to refine our testing methodol-
ogy with new metrics to account for factual accu-
racy. Also, human evaluation in this study focused
on a small number of subject matter experts; in
future, we aim to extend the evaluation to a more
diverse set of user groups and gain more compre-
hensive insights into the performance of the chat-
bot.

Ethics Statement

We do not identify any ethical issues for this ex-
ploratory study. The UKCP18 archive is available
to the public (https://www.metoffice.go
v.uk/research/approach/collabora
tion/ukcp/data/index), published under
the Open Government Licence (https://www.
nationalarchives.gov.uk/doc/open
—-government—-licence/version/3/).
The UKCP Chatbot is a prototype and not pub-
licly available. It is currently undergoing internal
evaluation at the Met Office. Before any public re-
lease, it will be thoroughly assessed by a wider
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stakeholder group and subject to further ethical
and governance review.
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A UKCP corpus pre-processing: extraction, segmentation, cleaning

Data extraction. Many UKCP documents are in PDF format with complex layouts, figures, tables, and
multi-column text. Automatic text extraction often produced outputs that were fragmented or out of
order. Inconsistent formatting styles made it difficult to develop a single automated extraction process
that maintained the integrity of content and structure or correctly extracted captions for images and tables.
Careful manual checking and intervention were used to correct formatting issues, remove irrelevant data
(e.g., page numbers), and ensure content integrity.

Document segmentation (chunking). Four datasets were created by segmenting each document using
different chunking approaches: fixed-length, paragraph, section, and summary methods. Each “chunk” is
derived from one of the original UKCP documents, in a size/format that an LLM can effectively process.
Each chunk also includes metadata specifying the originating UKCP document name, page, and section
from which it was sourced. The details of each chunking method are given below.

Fixed-Length: Chunks have a fixed length of 1,000 characters. This is efficient but does not account
for semantic/structural boundaries within document content. Chunks are often cut off mid-paragraph,
leading to incomplete representations of topics/ideas.

Paragraph: Chunks represent each paragraph within the corpus. This preserves the natural semantic
boundaries within documents and can potentially give more meaningful retrieval results. Each chunk
varies in length.

Section: Chunks represent each section within the corpus (defined as content given under a single
heading). This preserves continuity between adjacent paragraphs and might improve retrieval quality by
delivering larger chunks of related content. Each chunk varies in length.

Summary: Each chunk is a LLM-generated summary of a UKCP document created using a two-step
approach. Firstly, each section of the document is summarised by an LLM (here GPT-3.5) to extract
key points. Secondly, all section summaries are combined (by the same LLM) into a single cohesive
summary for the entire document. Each chunk varies in length.

Data cleaning. Several processes were used to ensure the quality and consistency of the extracted
chunks: (i) Removal of irrelevant or extraneous elements such as page numbers, footnotes, and headers;
(i1) Correction of text extraction errors, such as erroneous characters; (iii) Correction of image/table cap-
tions and their linking to corresponding visual/numerical content. Final datasets were manually checked
to rectify any remaining inconsistencies.

Data representation. The embedding model used to represent the query and chunk was “text-
embedding-ada-002”, if not otherwise specified in the main text of the paper.

B Prompts

Below are the prompts for generating multiple queries for query expansion (prompt-1) and for generating
answers (prompt-2).
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Input prompt-1 for generating multiple queries

query system instruction =

Instructions:

1. You will be provided with a question from the user.

2. Your task is to generate multiple search queries related to this input question.

3. You must maintain the context of the original question and you must not exclude any key
information from the question.

4. Phrase each query in a different way, but ensure that you do not deviate from the original
meaning of the question.

5. Output <NUMBER> new queries in the form of a list. Do not deviate from this format.
Follow these steps before providing your final response:

Step 1: Take your time to thoroughly understand the provided question.

Step 2: Generate your new queries, ensuring that each new query is written in a distinctly different
way to each other query.

Step 3: Reason step-by-step about whether the all of the key information from the original ques-
tion can be found in each of the new queries. If there is key information found in the original
question which cannot be found in any given new query, then you must replace this query by
generating a new one. You must then follow these steps again.

Step 4: You may provide your final generated queries to the user. Do not output anything else.
query user prompt = QUESTION:<QUESTION>
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Input prompt-2 for generating answers

system instruction = Instructions:

1. You are an expert on United Kingdom Climate Projections (UKCP). UKCP is a set of tools
and data that demonstrates how the UK climate may change in the future.

2. UKCP18 is a set of climate model projections for the UK produced by the Met Office. It builds
upon the previous set of projections (UKCP09) to provide the most up-to-date assessment of how
the climate of the UK may change over the 21st century.

3. You will be provided with a question from the user, for which you will attempt to find the
answer.

4. You will be provided with excerpts which are sourced exclusively from UKCP18 literature.

5. You MUST read all of the excerpts to understand the context for answering the question.

6. You will provide an EXPERT-LEVEL written response which comprehensively answers the
question, using only information from the provided excerpts.

7. You should assume that you do not have access to any other sources of information.

8. UNDER NO CIRCUMSTANCES should you use information from any other source (such as
the internet) to generate your responses.

9. The response you provide will be cross-checked with the excerpts provided to you. If there is
information within the response which is not found in the excerpts, you will lose credibility.

10. You will be provided with the chat history of the conversation in your messages. You must
follow the chat history to understand the context of the conversation.

11. If you cannot answer the question using information from the excerpts, you may ask once
for more information from the user. If this additional information does not help you to find the
answer from the excerpts, gently respond that you are unsure about the answer and recommend
that they contact the Met Office’s UKCP help desk.

12. You must not repeat or summarize the question which was asked to begin your response. Only
respond with the answer, request for more information, or the statement that you cannot answer
the question.

Follow these steps before providing your final response:

Step 1: Take your time to thoroughly understand the provided question.

Step 2: Take your time to thoroughly understand the provided excerpts, which are delimited by
the following token: <SEP>.

Step 3: Generate an expert-level written response which comprehensively answers the question
using only the excerpts provided. If you are unable to create a response that comprehensively
answers the question using the provided excerpts, ask the user once for more information. If this
additional information does not help you to find the answer from the excerpts, gently respond that
you are unsure about the answer, recommend that they contact the Met Office’s UKCP help desk
and stop following these steps.

Step 4: Reason step-by-step about whether the all of the information in the response can be found
in excerpts provided. If there is information found which cannot be found in the excerpts, then
you must generate a new response and follow these steps again for the new response.

Step 5: You may provide your response to the user.

user prompt = EXCERPTS: <EXCERPTS>

QUESTION: <QUESTION>

ANSWER:

\

C Evaluation data creation

Synthetic QCA triplets. A dataset of question-context-answer (QCA) triplets was synthesized using
the RAGAS package (Es et al., 2024), which takes contextual documents as input and uses an LLM to
generate derived question-and-answer pairs. RAGAS can generate several types of questions. Three
types of questions were created for this dataset. Simple questions are intended to be straightforward to

139



answer using the given context. Reasoning questions re-write a simple question such that reasoning is
needed to answer it effectively. Multi-context questions re-phrase a simple question such that information
from multiple context sections is needed to formulate an answer. RAGAS outputs are question-context-
answer triplets. For this study, RAGAS was parameterized using GPT-4 as the LLM and the section
chunks as content. A sample of 500 section chunks was randomly split into groups of 5, and then 10
question-answer pairs were generated for each section chunk, using a 1:2:2 ratio for simple, reasoning,
and multi-context question types. The resulting dataset of 1,000 QCA triplets was sampled for 250 QCA
triplets used for evaluation.

Examples :
Question : "Which UKCP18 model better represents Scotland’s winter snow variability?"

Answer : The CPM better represents Scotland’s winter snow variability, particularly in terms of lying
snow and snowfall over the Scottish mountains.

Question : "What’s PoT’s role in estimating rare climate events?"

Answer : The PoT (peaks over threshold) method involves using all events exceeding a specified
threshold in a given season, thus considering more of the data, and avoiding the risk of missing multiple
extremes that may occur in close proximity. It also excludes any seasons which happen not to contain
any extreme events.

Authentic QA pairs. A dataset of 50 question-answer (QA) pairs was derived from real questions
received by the UKCP helpdesk and the answers provided by subject matter experts. The QA pairs
were anonymized, cleaned and formatted, and manually selected to represent a diverse range of typical
questions. The authentic QA pairs lacked contexts and were only used for human evaluation where the
subject matter experts decided the correctness of the extracted contexts and the answers. (Examples in
the github link under human evaluation survey form)

D Evaluation metrics: Relevance, Faithfulness, and Coverage

We follow the work RAGAS (Es et al., 2024) to use LLMs to measure the answer relevance and answer
faithfulness. We further propose a metric to measure answer coverage. The detailed metric settings are
described below.

Relevance. This metric measures the relevance of the answer to the user query by an inverse method,
using an LLM (GPT-4) to create alternate synthetic questions that could generate the answer and then
measure their (cosine) similarity to the original user query. Mathematically, the metric is found as:
relevance_score(gi,q) = + SN | cos(Ey,, E,) where E, is the embedding of a generated ques-
tion g; or the original query ¢, and N = 3 is the number of generated questions.

Faithfulness. This metric measures the extent that an answer uses only information that is contained
in the chunks given as context. An evaluator LLM (GPT-3.5) is used to identify the sets of factual
claims that are made in the provided answer and in the context chunks. Then the metric is defined as:

faithfulness_score = gansiwerl’ where C, is the set of claims present in either the answer
‘ cont ext‘
or the context chunks.

Coverage. Accurate answers to scientific questions (as here in the climate domain) often require a
high level of specificity and detail. This implies usage and adherence to numerical values, proper names,
keywords and other entities. Here we propose a new coverage metric, which calculates the proportion
of all the named entities, keywords, and numerical values from the context chunks that are given in a
generated answer. Identification of entities, keywords, and numbers was performed using the trained
model “en-core-web-sm™ in the SpaCy NLP package, and additional terms were identified using an
LLM (GPT-4). All proper nouns and adverbs are considered as keywords. Coverage is then defined by:

[Kanswer (1K \
coverage_score = |[—2 S|ke N cor|1text
context

and numbers in either the context chunks or the answer.

where K is the set of all keywords, named entities,

5https ://spacy.io/models/enf#en_core_web_sm
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E Human evaluation settings

Initial screening. The questions from the 50 authentic QA pairs dataset were posed to each RAG
pipeline, then subject matter experts reviewed each response to evaluate its quality and validity. The
two best-performing pipelines were determined based on subjective evaluations of answer correctness,
framing, style and specificity. Responses from these selected pipelines were further screened to curate a
pool of answers that could be easily reviewed without extensive contextual information. Four questions
with answer pairs were selected.

Interactive evaluation. A panel of subject matter experts evaluated the two remaining RAG pipelines
in a two-stage process conducted by survey and online access to the chatbot.

Panel recruitment. The panel (n=10) was recruited from Met Office staff to ensure a good baseline
understanding of climate science. Within this group, there was a range of experience, with 4/10 panelists
having over 10 years of experience using UKCP18 data.

User task for human evaluation of UKCP Chatbot Users were given access to the chatbot via an
online user interface and asked to complete the following task within 30 minutes: ‘Task - The Ministry
of Defence (MoD) needs to construct 30 large buildings by 2030 in various locations around the UK
coastline. The MoD would like to ensure that the buildings are suitably prepared to stay cool in the
future. Use the chatbot to find relevant information and try to achieve this task.*

F UKCP ChatBot interface

A screenshot of the user interface of the UKCP Chatbot is presented in Figure 5 below.

Hi there! | am UKCP18 ChatBot. | can answer guestions related to UKCP18
| can also provide data. However some instructions need to be followed before
providing a data query.
* When asking for data please provide a location in UK in the query
* If the location contains multiple words please separate them by '-' symbol like
North-East-UK

° * If you require daily or derived Projections please mention it in the inital query

What is RCP8.5 o

RCP8.5, or Representative Concentration Pathway 8.5, is a high greenhouse gas
emissions scenario used in climate modeling. It represents a future where emissions
continue to rise significantly, leading 1o a radiative forcing level of approximately 8.5
W/m? by the year 2100. This scenario is characterized by high levels of fossil fuel
consumption and is often used as a baseline for assessing potential climate impacts
under extreme emissions conditions. In the context of UKCP18, RCP8.5 is utilized to
project future changes in climate variables such as temperature and precipitation,
providing a framewaork for understanding the potential high-end outcomes of climate

change in the UK
(= » B

Figure 5: User Interface of the UKCP Chatbot
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An Automated LLM-based Pipeline for Asset-Level Database Creation to
Assess Deforestation Impact

Avanija Menon, Ovidiu Serban
Imperial College London

Abstract

The European Union Deforestation Regulation
(EUDR) requires companies to prove their prod-
ucts do not contribute to deforestation, creating
a critical demand for precise, asset-level en-
vironmental impact data. Current databases
lack the necessary detail, relying heavily on
broad financial metrics and manual data col-
lection, which limits regulatory compliance
and accurate environmental modeling. This
study presents an automated, end-to-end data
extraction pipeline that uses LLMs to cre-
ate, clean, and validate structured databases,
specifically targeting sectors with a high risk
of deforestation. The pipeline introduces In-
structional, Role-Based, Zero-Shot Chain-of-
Thought (IRZ-CoT) prompting to enhance data
extraction accuracy and a Retrieval-Augmented
Validation (RAV) process that integrates real-
time web searches for improved data relia-
bility. Applied to SEC EDGAR filings in
the Mining, Oil & Gas, and Utilities sectors,
the pipeline demonstrates significant improve-
ments over traditional zero-shot prompting ap-
proaches, particularly in extraction accuracy
and validation coverage. This work advances
NLP-driven automation for regulatory compli-
ance, CSR (Corporate Social Responsibility),
and ESG, with broad sectoral applicability.

1 Introduction

The European Union Deforestation Regulation
(EUDR), effective December 30, 2025, mandates
companies to verify that their products do not origi-
nate from recently deforested land (European Com-
mission, 2023). With deforestation contributing
15% to global CO4 emissions (ETC, 2024), indus-
tries with high environmental risks require precise
asset-level tracking. However, significant data gaps
persist: 30% of Forest 500 companies lack public
deforestation commitments, and 85% of financial
institutions lack comprehensive deforestation poli-
cies (Forest 500, 2024). Creating a physical asset
database is labour intensive (CGFI, 2024), costly,

and inefficient, making regulatory compliance dif-
ficult and limiting researchers’ ability to develop
accurate environmental impact models.

Due to their substantial contributions to environ-
mental degradation, we focus on three high-risk
sectors—Mining, Oil & Gas, and Utilities. Min-
ing drives deforestation through surface extraction
and infrastructure expansion, often leading to for-
est loss within a 50 km radius (Bradley, 2020). Oil
& Gas exploration accelerates deforestation, partic-
ularly in biodiversity hotspots like the Amazon,
where oil extraction disrupts ecosystems (Finer
et al., 2008; Amazon Watch, 2016). Utilities, es-
pecially hydroelectric projects, contribute to defor-
estation (IntegrityNext, 2024) through extensive
land clearing for dams and power infrastructure,
with continued expansion affecting forested areas
despite the shift to renewable energy (Rosenberg
et al., 2000; Imperiale et al., 2023).

Our research makes several key contributions:
(1) We develop a novel LLM-based pipeline (Fig-
ure 1) that transforms unstructured SEC EDGAR
filings into structured datasets, improving trans-
parency in environmental monitoring. (2) We intro-
duce Instructional, Role-Based, Zero-Shot Chain-
of-Thought (IRZ-CoT) prompting, a technique that
enhances the accuracy of entity extraction, particu-
larly for complex asset-related information. (3) We
conduct a comparative analysis of LLMs and a tra-
ditional Named Entity Recognition (NER) model,
evaluating their effectiveness in domain-specific
data extraction. (4) To ensure data integrity, we
implement a three-step database cleaning process,
which includes foundational standardisation, as-
set similarity consolidation using statistical meth-
ods, and LL.M-assisted refinement. (5) We propose
Retrieval-Augmented Validation (RAV), which in-
tegrates real-time web data to enhance dataset reli-
ability and address gaps in existing databases. (6)
Finally, the resulting datasets are visualised through
company-specific dashboards, providing detailed
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insights into each company’s database.

This work advances NLP-driven environmental
data automation, providing a scalable framework
for regulatory compliance, sustainability analysis,
and asset-based deforestation tracking.

Improvement
Module

Py
Modification @

Initial

@ Cleaning |
Process

° 2-Step Validation

(1) LSEG Database Validation

N — — — —
Performance

Identify and store . 5 String Similarity Output
Load LSEG Evaluation with -
s best matches Hi Calculations Scores
(2) Retrieval Augmented Validation
Retrieval Augmented Generation
L @t =a
Database LLM Output
Querying Classification s‘:o':es

of Answers

Figure 1: System design of end-to-end LLM-based
pipeline designed to handle systematic data extraction,
structured database creation, cleaning and validation,
and the improvement module to increase validation cov-
erage.

2 Background and Related Work

Existing asset-level databases rely on satellite im-
agery, geospatial data, and web sources with man-
ual collection and validation (CGFI, 2024), but
manual validation limits scalability. Early rule-
based and template-based entity extraction methods
lacked adaptability. At the same time, statistical
models like Markov Logic Networks (MLNs) and
Matrix Factorization improved relation extraction
but were computationally expensive (Abdurehim
et al., 2020; Cergani and Miettinen, 2013). Ma-
chine learning (ML) approaches, including boot-
strapping (Zhang, 2009) and clustering (Tuo and

Yang, 2023), automated pattern recognition but re-
quired large labeled datasets. Deep learning mod-
els such as CNNs, RNNs, and LSTMs enhanced
feature extraction and are the dominant approach
(Tuo and Yang, 2023). Hybrid models, combin-
ing deep learning and traditional ML (e.g., BiL-
STMs+ CNNs), to capture long-distance dependen-
cies were explored by Zheng et al (Zheng et al.,
2017).

LLM:s revolutionised entity and relation extrac-
tion, enabling zero-shot and few-shot learning.
Structured prompting techniques, such as Pipeline
Chain-of-Thought (Pipeline-COT), enhance accu-
racy by breaking tasks into reasoning steps (Zhao
et al., 2023). ML and NLP techniques have been
widely applied in healthcare, finance, and legal
domains. Transformer-based models like Legal-
BERT (Chalkidis et al., 2020), BioBERT (Lee et al.,
2019), and SciBERT (Beltagy et al., 2019) im-
prove clinical text analysis and regulatory com-
pliance. However, fine-tuning remains compu-
tationally expensive, making zero-shot LLM ap-
proaches more practical. GPT-based models like
GPT-NER incorporate self-verification to reduce
hallucinations (Wang et al., 2023), while ChatGPT
and REBEL enable structured knowledge extrac-
tion (Trajanoska et al., 2023). This study builds
on these advancements, introducing Instructional,
Role-Based, Zero-Shot Chain-of-Thought (IRZ-
CoT) prompting to enhance structured data extrac-
tion from SEC EDGAR filings.

Traditional SEC EDGAR processing relies on
RegEx-based tools like LexNLP, which efficiently
parse filings (Bommarito et al., 2018). Prior
keyword extraction and manual annotation work,
such as the KPI-EDGAR dataset, remains labour-
intensive and challenging to scale (DeuBer et al.,
2022).

Despite NLP advancements, limited work has
been done on developing a fully automated pipeline
that integrates data extraction, database creation,
cleaning, and validation. This research bridges that
gap by implementing an LLM-driven end-to-end
pipeline, introducing Retrieval-Augmented Valida-
tion (RAV) to improve accuracy and robustness.
By combining LL.M-assisted extraction, structured
prompts, and multi-step validation, this study de-
livers a scalable asset-tracking and environmental
impact analysis solution, advancing Al-driven au-
tomation for regulatory data processing.
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3 Data Acquisition and Processing

3.1 Data Source

This study uses publicly available SEC EDGAR
10-K filings from fifteen Mining, Oil & Gas, and
Utilities companies. These legally mandated re-
ports provide standardised, reliable, and accurate
data on company operations, finances, and envi-
ronmental impact. Unlike 10-Q and 8-K reports,
which offer limited asset details, 10-K filings com-
prehensively cover physical assets, expenditures,
and disclosures. News and social media data were
excluded due to bias, noise, and lack of granular-
ity. SEC filings ensure factual accuracy, regulatory
compliance, and ethical data sourcing, minimising
legal and privacy concerns.

3.2 Data Extraction

We collected 10-K filings from 2022 to 2024 us-
ing the secEDGAR Python library (Moody et al.,
2024), which allows efficient bulk downloads based
on company stock tickers and Central Index Keys
(CIKs). This method streamlines data acquisi-
tion, eliminating the need for custom web scraping
scripts while ensuring robust datasets across the
selected sectors. The companies focused on are
given in Table 3 in Appendix A.1.

The pre-processing workflow extracts metadata
(company names, filing dates, form types, and con-
tent), cleans text using BeautifulSoup to remove
HTML tags and irrelevant elements, and structures
data into SQLite databases per company. This en-
sures efficient management, querying, and reten-
tion of meaningful content for analysis.

4 Database Creation

4.1 Chunk-based Querying Technique

We adopt a chunk-based querying technique to
manage the extensive length of SEC EDGAR fil-
ings. This method involves splitting documents
into 1024-token chunks with a 20-token overlap
to maintain contextual continuity. Sentence-level
splitting ensures semantic coherence, preventing
the disruption of key information. Chunking opti-
mises memory usage, enables parallel processing,
and enhances entity recognition by allowing LLMs
to focus on specific, contextually rich segments.
This approach also facilitates error identification
and correction, improving the efficiency and scala-
bility of the data processing pipeline.

4.2 Comparison of LLM and NER Outputs

We compare the performance of 4-bit quan-
tised Ollama instruct models, specifically Mistral-
7B, Llama 3, and Gemma 2, against a tradi-
tional Named Entity Recognition (NER) model:
dslim/bert-large-NER (Devlin et al., 2018; Tjong
Kim Sang and De Meulder, 2003). Instruct models,
fine-tuned for instruction-based tasks, demonstrate
superior contextual understanding and precise en-
tity extraction (Chung et al., 2022; Hu et al., 2024),
which could be used for structured documents like
SEC filings. The use of 4-bit quantisation signifi-
cantly reduces memory and computational require-
ments while maintaining performance, enabling
efficient large-scale deployment without extensive
hardware upgrades (Banner et al., 2019; Dettmers
et al., 2023). These models minimise irrelevant
responses, ensuring more accurate asset identifi-
cation. We convert the text data into embeddings
using the SentenceTransformer model, specifically
the paraphrase-MiniLM-L6-v2 variant (Reimers
and Gurevych, 2019). Gemma 2 consistently out-
performs the NER model on cosine similarity met-
rics, achieving higher precision and recall, with the
highest cosine similarity for both locations (0.7702)
and organisations (0.7461), indicating strong align-
ment with ground truth data.

Error analysis reveals that LLMs are more effec-
tive in capturing nuanced entity relationships, while
the NER model often fragments entities or misses
domain-specific terms. Detailed performance met-
rics are provided in Table 4 in Appendix A.3, where
Gemma 2 outperforms both Mistral-7B and Llama
3.

As shown in Table 5 in Appendix A.4, qual-
itative error analysis highlights common issues
such as fragmented entity recognition in the NER
model and occasional hallucination in LLM out-
puts. While Mistral-7B and Llama 3 struggled with
consistency, Gemma 2 demonstrated more reliable
extraction, particularly in complex texts.

4.3 Ground Truth Creation

We manually curated a ground truth dataset from
30 chunks of Alcoa Corporation’s 2022 filings to
evaluate extraction accuracy. This dataset includes
detailed annotations of physical assets, their lo-
cations, ownership structures, and associated com-
modities. Manual annotation ensures high accuracy,
providing a robust benchmark for model evaluation.
While slightly labour-intensive, this process estab-
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lishes a reliable foundation for assessing model
performance. In future work, we recommend ex-
ploring automated ground truth generation using
advanced models like GPT-4, which could enhance
scalability and reduce annotation costs.

4.4 LLM Selection

We assessed multiple LLMs using evaluation met-
rics such as cosine and jaccard similarities, preci-
sion, recall, and F1 score. Gemma 2 emerged as the
top performer, excelling in quantitative and qualita-
tive analyses. Its superior performance is attributed
to its ability to maintain semantic coherence and
accurately extract domain-specific entities. As pre-
sented in Table 1, Gemma 2 achieved the highest
scores across all evaluation metrics. This perfor-
mance consistency and efficient resource utilisa-
tion led to its selection for further experimentation
within the data pipeline.

Model Similarity Metrics Evaluation Metrics
Cosine | Jaccard | Precision | Recall | F1 Score
Mistral-7B 0.64 0.41 0.54 0.58 0.60
Llama 3 0.64 0.43 0.58 0.64 0.59
Gemma 2 0.68 0.44 0.63 0.62 0.60

Table 1: Performance comparison of Mistral-7B, Llama
3, and Gemma 2 across five metrics.

4.5 Prompt Engineering

Prompt engineering plays a crucial role in opti-
mising data extraction. We developed the Instruc-
tional, Role-Based, Zero-Shot Chain-of-Thought
(IRZ-CoT) prompting technique through iterative
refinement. This method improves extraction ac-
curacy by providing LLMs with domain-specific
instructions, structured reasoning steps, and role-
based guidance. IRZ-CoT reduces hallucination,
enhances the extraction of complex attributes, and
minimises the need for extensive post-processing.

Common issues encountered with different
prompting techniques revealed key challenges,
such as hallucination in one-shot and few-shot
methods, incorrect classification in zero-shot,
and verbosity in generated knowledge prompting.
Specifically, zero-shot prompting often led to the
misclassification of financial terms as physical as-
sets, while few-shot techniques introduced halluci-
nated entities. Role-based and instructional prompt-
ing significantly improved specificity and reduced
errors, but IRZ-CoT demonstrated the best balance
between accuracy and efficiency.

Performance metrics for prompt engineering

techniques, illustrated in Figure 2, show that IRZ-
CoT achieved the highest scores in precision and re-
call. Additionally, Figure 6 in Appendix A.6 high-
lights IRZ-CoT’s computational efficiency, requir-
ing significantly less processing time than methods
like generated knowledge prompting.
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Figure 2: Comparison of different prompt engineering
techniques across various evaluation metrics

4.6 Experimental Evaluation of LLM
Ensemble Methods

We evaluated three LLLM ensemble methods to en-
hance robustness: Ensemble Averaging with Ma-
jority Voting (EAMYV), Weighted Majority Vot-
ing Ensemble (WMVE), and Stacking Ensemble
with Meta-Learning (SEML). EAMV improves
stability by aggregating predictions from multiple
LLMs and selecting the most common output, re-
ducing variance. WMVE assigns higher weights
to models with superior performance, prioritising
predictions from more accurate models, particu-
larly favouring Gemma 2. SEML utilises a meta-
learner—logistic regression—to combine outputs
from different LLMs, optimising predictive accu-
racy and achieving the highest F1-score (Figure 7
in Appendix A.7). However, SEML significantly
increased processing time—nearly 20-fold com-
pared to single-model approaches (Figure 8 in Ap-
pendix A.8). Due to computational constraints,
we selected the more efficient IRZ-CoT approach
with Gemma 2 as the primary model for the final
pipeline.

5 Database Cleaning

5.1 Foundational Data Cleaning and
Standardization

The first phase focuses on refining raw data to estab-
lish a solid foundation for further processing. We
use regular expression (RegEx) patterns to extract
key entity data, including asset types, locations,
ownership details, and commodities. This auto-
mated approach ensures consistent data extraction
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from large volumes of text. Post-extraction, we re-
move extraneous characters, such as surplus quotes
and brackets, to prevent data distortion.

Duplicates are identified and consolidated, with
corresponding information merged into single
records. For example, multiple entries for an
oil well in different locations are grouped, reduc-
ing redundancy. Ownership data is standardised
by normalising company names (e.g., consolidat-
ing "NEM," "Newmont," and "Newmont Corpo-
ration"). At the same time, geographic terms are
unified (e.g., "United States of America," "US," and
"U.S.A." standardised to "USA"). We also refine
the ‘location’ column, extracting country names
into a new ‘Countries’ column to support consis-
tent geographic analysis. Finally, rows with empty
‘physical asset’ entries are removed to maintain
database relevance.

5.2 Asset Similarity Consolidation

After initial cleaning, we address semantic similar-
ities among physical asset entries. To consolidate
such similarities, we use TF-IDF (Term Frequency-
Inverse Document Frequency) vectorisation and
cosine similarity.

TF-IDF quantifies the relevance of words within
documents, and cosine similarity identifies seman-
tic overlap. We set a similarity threshold of 0.5;
entries meeting or exceeding this threshold are
grouped and merged, preserving unique informa-
tion while eliminating redundancy. This method is
computationally efficient and effective for identify-
ing similar assets, although it has limitations, such
as sensitivity to synonyms. Despite these, TF-IDF
and cosine similarity offer a pragmatic balance of
accuracy and efficiency for large-scale datasets.

5.3 LLM-Assisted Database Cleaning

The final cleaning phase leverages the capabilities
of Gemma 2 to address issues beyond the reach
of traditional methods, as the previous steps still
outputted unnormalised information amongst other
issues. Using a domain-specific prompt, the LLM
performs tasks such as converting chemical sym-
bols (e.g., "Au" to "Gold"), standardising text, elim-
inating redundant punctuation, and verifying loca-
tions against Wikipedia.

This iterative process involves LLM-driven
cleaning followed by human review. Any inconsis-
tencies trigger prompt adjustments, enhancing the
LLM’s performance in subsequent iterations. The
LLM also identifies countries from location data

when not explicitly stated, verified through cross-
referencing with Wikipedia to ensure accuracy.
By automating complex tasks and reducing man-
ual effort, LLM-assisted cleaning improves data
quality, consistency, and scalability, making it an
effective strategy for managing large datasets.

6 Database Validation
6.1 Validation with LSEG Databases

We validated our databases against established
LSEG Workspace databases (London Stock Ex-
change Group (LSEG), 2024), focusing on the
‘Mines’, ‘Oil Refineries’, and ‘Power Generation’
datasets. This validation process involved data
preprocessing, where we standardised text to low-
ercase and filtered irrelevant entries, such as ex-
cluding closed or abandoned assets. This step en-
sured uniformity and minimised discrepancies re-
lated to case sensitivity. Subsequently, we used
the rapidfuzz library to find similar entries be-
tween our database entries and LSEG data. A
similarity threshold of 0.6 was applied to identify
potential matches, which helped us find the best
match from the list of matches. We then used the
Hits@5 metric to determine how frequently cor-
rect matches appeared within the top five candi-
dates for each attribute (physical asset, ownership,
commodity, and country). The Hits@5 score mea-
sures the consistency of our matching algorithm
by averaging successful matches across all entities,
assessing performance beyond the top result. Iden-
tified matches are then validated using five more
metrics (Partial Match Score (Partial Ratio), Jac-
card Similarity, Cosine Similarity, Dice-Sgrensen
Similarity Coefficient and Normalised Levenshtein
Distance), comparing entity similarities with the
LSEG database. Detailed similarity scores across
physical asset name, ownership, commodity, and
country are averaged into an overall attribute sim-
ilarity score, quantifying dataset alignment. This
validation ensures the reliability of our matching
algorithm.

6.2 Retrieval-Augmented Validation (RAV)

LSEG Workspace databases lack comprehensive
data for complete validation, necessitating an ad-
ditional verification layer to ensure completeness
and accuracy. To address these gaps, we developed
Retrieval-Augmented Validation (RAV).

RAV integrates real-time web search capabili-
ties using the Google Custom Search Engine (CSE)
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API (Google Developers, 2024) to retrieve current
information on physical assets. The retrieved snip-
pets are ranked using the BM25 algorithm, which
prioritises documents based on relevance, incor-
porating term frequency and document length nor-
malisation. This ensures that the most pertinent
information is considered for validation purposes.

RAV uses a dual-LLM framework where Llama
3 generates web-based answers, and Gemma 2
is tasked with classifying these answers strictly
against the database entries. This separation mit-
igates potential biases arising from using a sin-
gle model for generation and evaluation. Llama 3
efficiently retrieves concise, relevant information
from web sources, while Gemma 2 assesses the
similarity between this information and the exist-
ing database entries. The LLM-assisted validation
relies on a binary classification approach where
Gemma 2 outputs a ‘yes’ if the web-derived and
database information are similar and a ‘no’ other-
wise. This stringent evaluation ensures high relia-
bility, reducing the risk of false positives in valida-
tion.

Contrary to complex instructional prompts used
in earlier phases, we discovered that simple
prompts significantly improved LLM classification
accuracy. Initially, using detailed prompts resulted
in low similarity scores, averaging around 0.15,
with frequent misclassifications. After simplifying
the prompts to a single-line instruction asking the
LLM to classify answers as similar or dissimilar
(see Appendix A.13), we observed a substantial
improvement, with scores increasing by approxi-
mately 0.28. This reduction in cognitive load en-
hanced the model’s ability to determine similari-
ties accurately. However, some misclassifications
remain, mainly when subtle semantic differences
exist between the database entries and web-sourced
information.

RAYV automates asset validation by integrating
web data with traditional databases, enhancing reli-
ability for downstream analysis. While advanced
RAG methods like FLARE (Jiang et al., 2023) of-
fer sophisticated retrieval, their complexity and
resource demands outweigh the benefits for this
project. Our BM25-based RAV remains practical
and effective, with potential for future refinement.

7 Results

7.1 LSEG Database Validation Results

We validated our databases against LSEG
Workspace datasets, including ‘Mines,” ‘Oil Re-
fineries, and ‘Power Generation,” using six simi-
larity metrics: Partial Match Score, Jaccard Simi-
larity, Cosine Similarity, Dice-Sgrensen Similarity
Coefficient, Normalised Levenshtein Distance, and
Hits@5. These metrics assessed alignment across
physical assets, ownership, commodities, and coun-
try data. Figure 3 shows the partial match scores.
The full results are shown in Figure 9 in Appendix
A9.
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Figure 3: Partial match scores from the LSEG database
validation. The dotted lines separate the sectors, where
the sectors are mining, oil & gas, and utilities, respec-
tively.

The mining sector demonstrated strong align-
ment, with high partial match scores for companies
such as AA (0.95), FCX (0.88), and NEM (0.83),
reflecting data consistency. However, the oil & gas
sector showed mixed results, where CVX (0.72)
and MPC (0.74) achieved moderate alignment, but
XOM exhibited lower scores (Jaccard Similarity:
0.24), suggesting inconsistencies in asset classi-
fication. Utilities displayed moderate alignment,
with EXC and D achieving partial match scores of
0.93 and 0.79, respectively. Ownership data var-
ied significantly, with CVX achieving near-perfect
alignment (1.00), while XOM had lower similar-
ity (Jaccard Similarity: 0.43), likely due to differ-
ences in how joint ventures and subsidiaries were
recorded. Commodity data showed the most signif-
icant discrepancies, with many companies, such as
AA, registering low Jaccard and Cosine Similarities
(0.00), possibly due to differences in classifying
primary and secondary commodities. In contrast,
country data was generally consistent, with compa-
nies like FCX achieving perfect alignment (Partial

147



Match Score: 1.00), though some discrepancies
were observed in SCCO (Jaccard Similarity: 0.67).

The error analysis revealed key challenges. Own-
ership discrepancies arose due to variations in
recording structures, where our databases captured
joint ventures while LSEG focused on primary con-
trolling entities. Standardising ownership classifi-
cation could improve future alignment. Commod-
ity misalignments resulted from differences in list-
ing primary versus secondary commodities, sug-
gesting a need to refine entity extraction prompts
and separate commodity categories. Minor incon-
sistencies in country data, such as listing "USA"
versus "California," highlight the importance of hi-
erarchical structuring with separate fields for city,
region, and country to enhance accuracy.

7.2 Coverage Calculation

We evaluate database coverage by measuring the
proportion of physical assets and their attributes in
our constructed database that match those in LSEG.
This assessment ensures comprehensiveness, us-
ability, and accuracy while identifying areas for
improvement in our extraction pipeline. Coverage

is computed as Coverage Score = (%—’z) x 100,

where N, represents the number of matched phys-
ical assets between our database and LSEG, and
Ny is the total number of physical assets in LSEG.
The computed coverage scores, shown in Table 7
in Appendix A.10, indicate that the mining sector
has better coverage than oil & gas and utilities.

Manual inspection of SEC EDGAR filings re-
veals that lower coverage in oil & gas and utilities
stems from improper table parsing, as many assets
are listed in tabular formats rather than continuous
text. To address this, we integrated a table pars-
ing module using Llamalndex, which processes
HTML tables as structured data instead of narrative
text. This significantly improved extraction accu-
racy, particularly in oil & gas, where assets were
previously missed. Figure 10 in Appendix A.11
demonstrates this enhancement.

7.3 Retrieval-Augmented Validation (RAV)
Results

Table 8 in Appendix A.12 presents the results of
Retrieval-Augmented Validation (RAV), compar-
ing database responses with real-time web data.
Similarity scores range from 0.31 to 0.57, indicat-
ing moderate alignment, with the Oil & Gas sector
performing slightly better due to more transparent

regulatory disclosures. Notably, OXY is absent
from Table 8 since it only contains unnamed assets,
which RAV cannot validate.

Mining sector scores hover around 0.4, suggest-
ing uniform discrepancies, likely due to outdated
or incomplete records. The Oil & Gas sector shows
slightly higher alignment, with companies like
MPC and COP exceeding 0.5, possibly due to strin-
gent regulatory reporting. However, frequent asset
transfers contribute to inconsistencies. The Util-
ities sector exhibits the widest score range, from
0.31 (EXC) to 0.57 (NEE), reflecting differences
in data transparency. NEE’s higher score suggests
more consistent asset records, likely due to better
data management.

7.3.1 Error Analysis

Ownership mismatches arose from differing data
granularity. Our database captured joint ventures
and minority stakeholders, whereas web sources
listed only primary entities, leading to unfair scores
of 0. A weighted scoring system could better ac-
count for partial matches.

Location mismatches often resulted from im-
plicit references in web snippets. For instance, the
Bath County Power Station was correctly labeled
as USA in our database, but the web snippet lacked
an explicit country mention, receiving a score of
0. Similarly, Chino Mine was recorded as USA,
while web sources specified New Mexico, USA. A
hierarchical scoring approach would improve accu-
racy by recognising different levels of geographic
detail.

Commodity discrepancies occurred because web
data often listed only primary commodities, while
our database included by-products. For example,
Grasberg Mine was recorded as producing copper,
gold, silver, and molybdenum, whereas web results
mentioned only silver. Categorising commodities
into primary and secondary groups through prompt
refinement would help resolve this.

7.4 Total Validation Coverage

To assess RAV’s impact, we compute the total val-
idation coverage, which measures the proportion
of assets validated through both LSEG database
validation and RAV. Total validation coverage is

computed as (%) x 100, where N, represents

the number of assets validated, and V; is the total

number of assets in the constructed database.
Table 2 presents validation coverage for each

company, comparing LSEG-only validation to com-
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bined LSEG and RAV validation. Occidental
Petroleum (OXY) is excluded due to the absence
of company-specific information in the LSEG
database and the constructed dataset containing
only general assets (e.g., natural gas fields).

Since our validation applies only to named
assets, general assets remain largely unverified.
While extrapolating validation to unnamed assets
could extend coverage, this introduces risks to accu-
racy and completeness. Notably, RAV significantly
increases coverage, underscoring its role in enhanc-
ing database robustness by validating assets absent
from LSEG.

Coverage varies across companies; D achieves
the highest at 33.33%, while COP has the lowest at
6.43%, reflecting differences in named asset propor-
tions. Lower coverage suggests a higher proportion
of unnamed assets, highlighting gaps in the current
validation process.

Validation Coverage
Sector Company
LSEG Database | LSEG Database
+ RAV
AA 6.96% 20.00%
SCCO 7.27% 7.27%
Mining FCX 7.35% 21.32%
HL 17.11% 21.05%
NEM 19.51% 30.89%
CVX 7.61% 20.65%
0il and Gas XOM 7.69% 23.08%
MPC 15.12% 25.58%
(6(0) 0.71% 6.43%
D 6.06% 33.33%
ED 1.94% 17.48%
Utilities DUK 3.90% 23.38%
EXC 9.57% 24.35%
NEE 0% 10.77%

Table 2: Validation coverage comparison using LSEG
databases alone versus LSEG databases with RAV.

As regulatory demands like the EUDR grow, the
need for automated, comprehensive databases will
increase. Our LLM-based pipeline can adapt to
these demands, improving ESG and CSR compli-
ance. The feedback loop (Figure 4) from regulatory
success will drive continuous improvements in data
quality and database creation techniques, shaping
the future of environmental data management.

Detailed Analysis of
Asset Contributions
to Deforestation

Improved Compliance
with EUDR

HON

Increased focus

on refining database
ing Feedback Loop for Further Refinement &
creation techniques

Adoption of Advanced Database
\auon Techniques

v.v

Strengthened ESG and CSR
Initiatives

Figure 4: A feedback loop linking physical asset
database creation with improved compliance and ESG
initiatives, driving continuous refinement.

8 Conclusion

This study developed an end-to-end LL.M-based
pipeline for extracting, structuring, cleaning, and
validating physical asset data from SEC EDGAR
filings, providing a scalable and automated ap-
proach to asset tracking and environmental impact
analysis. The pipeline follows a structured archi-
tecture, incorporating data acquisition and process-
ing, entity extraction, database creation, database
cleaning and a two-step validation framework:
LSEG database validation followed by Retrieval-
Augmented Validation (RAV). The table parsing
improvement module also significantly increased
validation coverage, enhancing database complete-
ness. Using LLMs for automation, this study ad-
vances structured data extraction and validation,
laying the foundation for more efficient regulatory
compliance and environmental data management.
As regulatory demands evolve, LLM-based tech-
niques will play an increasingly critical role in en-
suring accurate, structured asset tracking.

9 Limitations

Despite its success, this study has several limita-
tions. The dataset was limited to fifteen companies
across three sectors, using only three years of SEC
filings, which may restrict the generalisability of
the findings. Additionally, the project relied heavily
on SEC 10-K filings, excluding potential insights
from 8-K, 10-Q, and other reports that may contain
relevant asset data. While the IRZ-CoT prompt
engineering technique significantly improved en-
tity extraction, its effectiveness in other domains or
regulatory environments remains untested.

The integration of LLMs introduces maintenance

149



and adaptation challenges, especially as newer
models may require retuning for continued effec-
tiveness. Biases in pre-trained data could also im-
pact extraction accuracy, particularly in financial
and environmental sectors. The RAV validation
process depends on web search quality, meaning
incomplete or inaccurate online data could affect
validation reliability. Although automation reduced
manual effort, human verification was necessary
for ground truth dataset creation and qualitative
assessments. Additionally, the pipeline primarily
focuses on historical data, making real-time asset
tracking and monitoring challenging.

To address these limitations, future improve-
ments should refine prompt engineering to extract
more named assets, reducing reliance on proxies.
Expanding the dataset to additional industries and
historical filings will enhance coverage and val-
idation effectiveness. Fine-tuning LLMs using
domain-specific databases could enhance extrac-
tion accuracy. Additionally, dynamic prompt engi-
neering combined with reinforcement learning —
where the model is rewarded for accurate extrac-
tions and penalized for errors — could help the
system adapt more effectively to different types of
company disclosures.

RAV significantly increases validation coverage.
It could further benefit from integrating advanced
web search APIs and adopting a weighted scoring
system to account for partial matches, improving
validation granularity. Broader data issues also af-
fected validation when web search results were in-
complete or irrelevant, leading to default scores of
0. Expanding search queries, integrating multiple
search engines, and refining data extraction tech-
niques could improve RAV’s robustness. Lastly,
enhancing automated table parsing would improve
structured data extraction from SEC filings, particu-
larly in appendices and financial disclosures where
asset details are often tabulated. This could be
achieved by automated prompt tailoring, where an
LLM (e.g., GPT-4) identifies asset examples from
parsed tables and incorporates them into IRZ-CoT
prompts.

10 Ethics Statement

This project adheres to the ACM Code of Ethics
(ACM, 2018) and the Ethics Guidelines for Trust-
worthy Al (European Commission, 2019), empha-
sizing transparency, fairness, accountability, and
technical robustness. It relies on publicly available

SEC EDGAR filings, ensuring legal compliance
and data integrity. Ethical data acquisition is upheld
by adhering to data source terms and conditions,
preventing legal conflicts. The project contributes
to environmental sustainability by assessing indus-
trial deforestation impacts, supporting global cli-
mate initiatives, and reinforcing corporate social
responsibility (CSR) through ESG compliance. Ac-
curacy and fairness are prioritized via a two-step
validation pipeline, minimizing misrepresentations
and addressing LLLM biases through transparency
and human oversight. By maintaining industry best
practices in data processing, the project ensures
reliability, robustness, and responsible Al develop-
ment for ethical and accurate asset tracking.
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A Appendix

A.1 Sectors, Companies and Stock Tickers

used

Sector Company Name Stock Ticker
Alcoa Corporation AA
Hecla Mining Corporation HL

Mining Newmont Corporation NEM
Freeport Mc-Moran FCX
Southern Copper Corporation SCCO
ConocoPhillips Company Ccop
Marathon Petroleum Corporation MPC

Oil & Gas | Chevron Corporation CVX
Occidental Petroleum OoXY
Exxon Mobil Corporation XOM
Dominion Energy D
Duke Energy Corporation DUK

Utilities Consolidated Edison ED
Exelon Corporation EXC
NextEra Energy NEE

Table 3: Companies used for pipeline construction,
grouped by sector.

A.2 Chunks per document in Chunk-based
Querying Technique

Number of Chunks in Each Document per Company

Number of Chunks

100 5 o8

5
S R R T

Company

Figure 5: Number of chunks generated per document
for each company across the three sectors.

A.3 Cosine similarities of LLM-generated
outputs against NER results

Model Location - cosine similarity | Or ion - cosine similarity
Mistral-7B 0.6945 0.6809
Llama 3 0.5987 0.7177
Gemma 2 0.7702 0.7461

Table 4: Cosine similarities of LLM-generated outputs
against NER results.
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A.4 Error Analysis of LLM-generated
outputs against NER results

Model

Type

Description (LLM vs. NER Out-
put)

Mistral-
7B

Success

LLM: Accurately extracted loca-
tions “South Church Street, Charlotte,
North Carolina” and organisations.
NER: Fragmented these into “Secu-
rities Exchange” and “##TON.” Split
up locations like ‘US’ into ‘U’ and
S,

Failure

LLM: Sometimes failed to extract
any entities.

NER: Correctly identified “Duke En-
ergy.”

Challenge

LLM: Provided a list of relevant or-
ganisations but missed key locations.
NER: Captured more entities but
included irrelevant fragments like
“GENERA.”

LLaMA 3

Success

LLM: Correctly extracted “Duke En-
ergy” without fragmentation.

NER: Fragmented other entities and
introduced spurious ones like “Per”
and “Board of Directors”.

Failure

LLM: Sometimes missed all entities.
NER: Extracted locations like “Cen-
tral” and organisations like “Spectra
Energy.”

Challenge

LLM: Identified relevant text but
added repeated/irrelevant words.
NER: Output was more accurate but
fragmented.

Gemma 2

Success

LLM: Correctly extracted locations
and organisations.

NER: Fragmented entities and re-
turned partial results.

Failure

LLM: Sometimes missed all entities.
NER: Extracted “Duke Energy” and
“Cinergy.”

Challenge

LLM: Missed key locations.

NER: Output included a broader
range of organisations but included
irrelevant fragments.

Table 5: Examples of Successes, Failures, and Chal-
lenges in entity extraction by LLMs compared to NER.
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A.5 Problem descriptions in Iterative Prompt

Refinement

Prompt Name Problem Descrip- Problem Example
tion
Zero-shot Incorrect mention of | ‘asset:
financial assets as | Consolidated
physical assets, lack | Operations
of location specificity | - Revenues’,
‘location: Seven
countries’
One-shot Hallucination — in-  ‘ownership:
cludes example in an-  Freeport-McMoran’
swer
Few-shot Incorrect classifi- | ‘physical asset:
cation of physical | Granted patents
asset, hallucination — | (intellectual
includes example in | property),
answer Registered
trademarks
(intellectual
property)’,

‘physical assets:
[Grasberg mine]’

Chain-of-thought

Incorrect mention of
location as physical
asset; provides irrele-
vant answers if no in-
formation is available

‘physical

asset: Brazil’,
‘relationships:
[asset: 7
location: ”
ownership: ”

commodities: ”]’

Generated knowl-

Outputs overly de-

‘physical assets:

edge tailed and verbose an- | [substantially
swers all assets of the
Company, ...]1’
Prompt chaining Lack of specificity ‘physical assets:
[substantially

all assets of
the Company]’,
‘physical

assets: [mining
operations,
properties,
leases]’

Role prompting

Improvement noted
but lack of specificity

‘physical

assets: [Mining
operations,
processing
plants,
manufacturing
facilities]’

Role and instruc-
tional prompting

Improvement noted
but lack of specificity

‘physical assets:
[facilities]’

Table 6: Problem descriptions and examples for each

prompting technique.

A.6 Computational times of prompting
techniques in Iterative Prompt
Refinement

Computational Time of Different Prompt Engineering Techniques on Evaluation Set
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Figure 6: Computational time (in seconds) required for
different prompt engineering techniques on the evalua-
tion set.

A.7 Results of LLM Ensemble
Implementation

P i of LLM Ensemble te:

mmm Ensemble Averaging with Majority Voting (EAMV)
m=m Weighted Majority Voting Ensemble (WMVE)
mmm stacking Ensemble with Meta-Learning (SEML)

Scores

Cosine Similarity

Jaccard similarity Precision F1 Score
Metrics

Figure 7: Performance comparison of various LLM
ensemble techniques.

A.8 Efficiency of LLM Ensemble Methods

Comparison of Computational Time with and without LLM Ensemble Techniques
555853

g
8

8
8

2578460

2000

Computational Time (seconds)
8
b4
8

1000

27,

Without LLM Ensemble EAMV WMVE SEML
Methods

Figure 8: Comparison of computational times with and
without using LLM ensemble techniques.
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A.9 LSEG Database Validation Results

Partial Match Score by Company and Entity Jaccard Similarity by Company and Entity
10f

Partial Match Score.
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Figure 9: Results from the LSEG database validation
across various metrics.

A.10 Coverage Calculation Results

Sector Company | Coverage
AA 71.43%
SCCO 54.55%
Mining HL 66.67%
NEM 62.16%
FCX 92.31%
CVX 25%
XOM 0%
Oil & Gas MPC 94.74%
(0):44 N/A
COP 100%
D 27.78%
DUK 40%
Utilities EXC 13.33%
ED 50%
NEE N/A

Table 7: Calculated coverage percentages for databases
across sectors.

A.11 Coverage before and after
implementation of table parsing

Coverage Before and After Table Parsing

Before Parsing 73.33%

70| === After Parsing

62.5%

Coverage Percentage

CvX XoM D DUK EXC
Companies

Figure 10: Coverage percentages before and after per-
forming table parsing.

A.12 Retrieval Augmented Validation (RAV)

Results
Sector Company | Similarity Score
AA 0.42
SCCO 0.37
Mining FCX 0.43
NEM 0.38
HL 0.46
CVX 0.44
. XOM 0.48
Oil and Gas MPC 052
COP 0.52
D 0.33
ED 0.38
Utilities DUK 0.40
EXC 0.31
NEE 0.57

Table 8: Averaged classification similarity scores from
Retrieval Augmented Validation (RAV).

A.13 Prompt Library

In this section, we present the comprehensive
collection of prompts utilised throughout this
project for information extraction. The prompt
library consists of a variety of carefully designed
instructions aimed at guiding LLMs in extracting
specific entities and relationships, such as physical
assets, locations, ownership details, and commodi-
ties, from SEC EDGAR filings. Each prompt is
tailored to enhance the performance of LLMs in
different scenarios, employing techniques such
as zero-shot, one-shot, few-shot prompting, and
more sophisticated methods like Chain-of-Thought
(CoT) reasoning and role-based prompting, before
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constructing our IRZ-CoT prompt.

The prompts are categorised based on their usage
in different stages of the project, including entity
extraction, database cleaning and when creating an
improvement module. This prompt library serves
as the foundation for automating the extraction pro-
cess and ensuring the reliability and accuracy of the
data. Each prompt has been optimised through iter-
ative testing and refinement to address the unique
challenges posed by our use case.

Prompt for extracting locations and organi-

sations when comparing LLMs and NER

prompt_instruction = "You are
a virtual assistant with
advanced expertise in a
broad spectrum of topics,
equipped to utilize high-
level critical thinking,
cognitive skills,
creativity, and innovation.
Your goal is to deliver
the most straightforward
and accurate answer
possible for each question,
ensuring high-quality and
useful responses for the

user."”
user_prompt = f"Text: {chunk]}\
nQuery: Does this text

mention any locations or
organisations? If yes,
please specify them in the
following format:\
nlocations: [ I\
norganisations: [ 1"

\

as follows:\

nrelationships: [asset:
’?, location: 77,
ownership: 77,
commodities: ’’]1"
- 7
One-shot
f"Text: {chunk}\nQuery: Does this
text mention any physical
assets, locations, ownerships,
and commodities? "
"If yes, please specify

them in the following
format:\n"

"physical assets: [ ]\
nlocations: [ 1\
nownerships: [ 1\
ncommodities: [J\n"

"Additionally, identify
the relationships
between them,
specifying the location

of each physical asset
, their ownership

details, and
commodities.

"Format the relationships
as follows:\
nrelationships:

)y

n

[asset:
location: 7’
ownership: ’’,

commodities: ’’]1"

"Here is an example:\n"

"Example:\n"

"Text: [...] Our principal
asset is the Grasberg
mine, which we
discovered in 1988.
Grasberg contains the
largest single gold
reserve and one of the
largest copper reserves
of any mine in the
world. Our principal
operating subsidiary is

’

f"Text: {chunk}\nQuery: Does this PT Freeport Indonesia,
text mention any physical a limited liability
assets, locations, ownerships, company organized under
and commodities? " the laws of the
"If yes, please specify Republic of Indonesia
them in the following and incorporated in
format:\n" Delaware. [...1]"
"physical assets: [ ]\ "Query: Does this text
nlocations: [ 1\ mention any physical
nownerships: [ 1\ assets, locations, and
ncommodities: [J\n" ownerships?\n"”
"Additionally, identify "physical assets: [
the relationships Grasberg minel]\
between them, nlocations: [Sudirman
specifying the location Mountain Range, Papua,
of each physical asset IndonesiaJl\nownerships:
, their ownership [Republic of Indonesia
details, and , Delaware]\n[
commodities. " commodities: copper,
"Format the relationships goldJ\n"
\ J \
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\.

"relationships: [asset: ’
Grasberg mine’,
location: ’Indonesia’,
ownership: ’PT Freeport

Indonesia’,
commodities: ’copper’,
’gold’J\n\n"

J

f"Text: {chunk}\nQuery:
Does this text mention
any physical assets,
locations, ownerships,
and commodities? "

"If yes, please specify
them in the following
format:\n"

"physical assets: [ ]\
nlocations: [ 1\
nownerships: [ ]\
ncommodities: [J\n"

"Additionally, identify
the relationships
between them,
specifying the location

of each physical asset
, their ownership

details, and
commodities.

"Format the relationships
as follows:\
nrelationships: [asset:

>?, location: 7’
ownership: ’’,
commodities: ’’]"

"Here are some examples:\n

n

"

)

"Example:\n"
"Text: [...] Our principal
asset is the Grasberg
mine, which we
discovered in 1988.
Grasberg contains the
largest single gold
reserve and one of the
largest copper reserves
of any mine in the
world. Our principal
operating subsidiary is
PT Freeport Indonesia,
a limited liability
company organized under
the laws of the
Republic of Indonesia
and incorporated in
Delaware. [...]"
"Query: Does this text
mention any physical
assets, locations, and
ownerships?\n"
"physical assets: [
Grasberg mine]\
nlocations: [Sudirman
Mountain Range, Papua,
Indonesial\nownerships:
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[Republic of Indonesia
, Delaware]\n[
commodities: copper,
goldJ\n"

"relationships: [asset: ’
Grasberg mine’,
location: ’Indonesia’,
ownership: ’PT Freeport

Indonesia’,
commodities: ’copper’,
>gold’JI\n\n"

"Example 2:\n"

"Text: [...] PT Freeport
Indonesia mines,
processes and explores
for ore containing
copper, gold and silver

It operates in the

remote highlands of the

Sudirman Mountain
Range in the province
of Papua (formerly
Irian Jaya), Indonesia,

which is on the
western half of the
island of New Guinea.
[...1”

"Query: Does this text
mention any physical
assets, locations, and
ownerships?\n”

"physical assets: [PT
Freeport Indonesia
Mines]\nlocations: [
Sudirman Mountain Range
, Papua, Indonesia, New

Guineal\nownerships: [
PT Freeport Indonesial]\
ncommodities: [copper,
gold, silver]\n”

"relationships: \n"

"[asset: ’'PT Freeport
Indonesia Mines’,
location: ’Sudirman
Mountain Range, Papua,
Indonesia, New Guinea’,

ownership: ’PT
Freeport Indonesia’,
commodities: ’copper,

gold, silver’]J\n"

"Example 3:\n"

"Text: [...] The Republic
of Indonesia consists
of more than 17,000
islands stretching
3,000 miles along the
equator from Malaysia
to Australia and is the

fourth most populous
nation in the world
with over 200 million
people. [...]1"

"Query: Does this text
mention any physical
assets, locations, and
ownerships?\n”




"physical assets: []\
nlocations: [Republic
of Indonesia, Malaysia,

Australia]\nownerships

: [IJ\ncommodities: [J\n
\n"

"relationships: \n"

\.

Chain-of-Thought (CoT) prompting

f"Text: {chunk}\nQuery: Let’s
think step by step. First,
identify any physical assets
mentioned in the text. Next,
determine if any locations or
ownership details are provided
for these physical assets. Then
, determine if the commodities
related to the physical assets
are provided. Finally,
summarize the relationships
between each physical asset,
its location, its ownership and
its commodity. "

"If yes, please specify
them in the following
format:\n"

"physical assets: [ ]\
nlocations: [ 1\
nownerships: [ ]\
ncommodities: [J\n"

"Additionally, identify
the relationships
between them,
specifying the location

of each physical asset
, their ownership

details, and
commodities.

"Format the relationships
as follows:\
nrelationships: [asset:

’?, location: 7,
ownership: 77,
commodities: ’’]1"

n

J

knowledge_prompt = (

"You are an expert in
analyzing texts for
information about
physical assets,
locations, ownerships,
and commodities. "

"Provide a brief summary
of how to identify
these elements in a
text and the
relationships between
them."

)
prompt_stepl = (

Generated knowledge prompting

158

f"{generated_knowledge}\n\
n"

"You are a virtual
assistant with
expertise in extracting

specific information
from text. "

"A physical asset is an
asset with a
geographical location.\
n\n"

f"Text: {chunk}\nQuery:
Identify any physical
assets mentioned in the

text. "

"List them in the format:\
nphysical assets: [ 1"

)
prompt_step2 = (
f"{generated_knowledge }\n\
no

"Using the extracted
physical assets:\n"

f"physical assets: {
physical_assets}\n\n"

f"Text: {chunk}\nQuery:
Identify any locations
mentioned in the text
associated with the
physical assets. ”

"List them in the format:\
nlocations: [ 1"

)
prompt_step3 = (
f"{generated_knowledge }\n\
no

"Using the extracted
physical assets and
locations:\n"

f"physical assets: {
physical_assets}\

nlocations: {locations
I\n\n"
f"Text: {chunk}\nQuery:

Identify any ownership
details mentioned in
the text associated
with the physical
assets. "

"List them in the format:\
nownerships: [ ]"

)
prompt_step4 = (
f"{generated_knowledge }\n\
n"

"Using the extracted
physical assets,
locations, and
ownerships:\n"

f"physical assets: {
physical_assets}\
nlocations: {locations
}\nownerships: {
ownerships}\n\n"

f"Text: {chunk}\nQuery:
Identify any
commodities mentioned
in the text associated




with the physical
assets. "

"List them in the format:\
ncommodities: [ ]"

)
prompt_step5 = (

f"{generated_knowledge}\n\
nll

"Using the extracted
physical assets,
locations, ownerships,
and commodities:\n"

f"physical assets: {
physical_assets}\
nlocations: {locations
}\nownerships: {
ownerships}\
ncommodities: {
commodities}\n\n"

"Text: {chunk}\nQuery:
Identify the
relationships between
the physical assets,
locations, ownerships,
and commodities. "

"Format the relationships
as follows:\
nrelationships: [asset:

’?, location: 7,

ownership: ’’
commodities:

’
yy:ln

Prompt Chaining

prompt_stepl = (

f"Text: {chunk}\nQuery:
Does this text mention
any physical assets? "

"If yes, please specify
them in the following
format:\n"

"physical assets: [ 1"

)

prompt_step2 = (

f"physical assets: {
physical_assets}\n"

f"Text: {chunk}\nQuery:
Does this text mention
any locations
associated with the
physical assets? "

"If yes, please specify
them in the following
format:\n"

"locations: [ 1"

)

prompt_step3 = (
f"physical assets: {
physical_assets}\
nlocations: {locations
I\n"

f"Text: {chunk}\nQuery:

Does this text mention
any ownership details
associated with the
physical assets? "

"If yes, please specify
them in the following
format:\n"

"ownerships: [ 1"

)

prompt_step4 = (

f"physical assets: {
physical_assets}\
nlocations: {locations
}\nownerships: {
ownerships}\n”

f"Text: {chunk}\nQuery:
Does this text mention
any commodities
associated with the
physical assets? "

"If yes, please specify
them in the following
format:\n"

"commodities: [ 1"

)

prompt_step5 = (

f"physical assets: {
physical_assets}\
nlocations: {locations
}\nownerships: {
ownerships3}\
ncommodities: {
commodities}\n"”

f"Text: {chunk}\nQuery:
Identify the
relationships between
the physical assets,
locations, ownerships,
and commodities. "

"Format the relationships
as follows:\
nrelationships:

’

[asset:

location: 77,
)

ownership: ,
commodities: ’’]1"

Role prompting

prompt_instruction = (
"You are a virtual
assistant with advanced
expertise in a broad
spectrum of topics,
equipped to utilize
high-level critical
thinking, cognitive
skills, creativity, and
innovation.\n"

"Your goal is to deliver
the most
straightforward and
accurate answer
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possible for each
question, ensuring high
-quality and useful
responses for the user
An”

"Now, let’s analyze the
following text:\n"

f"Text: {chunk}\nQuery:
Does this text mention
any physical assets,
locations or ownerships
? Does the text mention

what commodity the
physical asset is being
used for?\n"

"If yes, you must specify
them in the following
format:\n"

"physical assets: [ ]\
nlocations: [ 1\
nownerships: [ ]\
ncommodities: [J\n"

"Additionally, identify
the relationships
between them,
specifying the location

of each physical asset
, the ownership details
, the commodity the
physical asset is used
for and the status of
the physical asset. "

"Format the relationships
as follows:\
nrelationships: [asset:

»?, location: 7,
ownership: 77,
commodity: ’’71."

Role + instructional prompting

"You are a virtual
assistant with advanced
expertise in a broad
spectrum of topics,
equipped to utilize
high-level critical
thinking, cognitive
skills, creativity, and
innovation.\n"

"Your goal is to deliver
the most
straightforward and
accurate answer
possible for each
question, ensuring high
-quality and useful
responses for the user
An”

"A physical asset is a
tangible resource that
a company owns and uses

in the production of
goods and services.
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Examples of physical
assets are facilities,
equipment,
infrastructure, etc.
Ensure that a
geographical location
or region is never
considered as an asset
An”

"A financial asset or
other non-physical
asset should never be
included as a physical
asset. Examples of
financial assets
include equity
commitments, corporate
facilities, accounts
receivable, and short-
term investments. Never

include these in the
list of physical assets
An”

"A commodity is what the

physical asset is being

used for. Examples
include copper, gold,
electricity, renewable
energy, etc.”

"Now, let’s analyze the
following text:\n"

f"Text: {chunk}\nQuery:
Does this text mention
any physical assets,
locations or ownerships
? Does the text mention

what commodity the
physical asset is being
used for?\n"

"If yes, you must specify
them in the following
format:\n"

"physical assets: [ ]\
nlocations: [ 1\
nownerships: [ ]\
ncommodities: [J\n"

"Additionally, identify
the relationships
between them,
specifying the location

of each physical asset

, the ownership details
, and the commodity the
physical asset is used
for."

"Format the relationships
as follows:\
nrelationships: [asset:

’ ’

, location: ,
ownership: ’’,
commodity: ’’]. Do not

output anything else.”




IRZ-CoT prompting

prompt_instruction = (
"You are a virtual
assistant with advanced
expertise in a broad
spectrum of topics,
equipped to utilize
high-level critical
thinking, cognitive
skills, creativity, and
innovation.\n"

"Your goal is to deliver
the most
straightforward and
accurate answer
possible for each
question, ensuring high
-quality and useful
responses for the user
An”

"A physical asset is a
tangible resource that
a company owns and uses

in the production of
goods and services.
Examples of physical
assets are facilities,
equipment,
infrastructure, etc.
Ensure that a
geographical location
or region is never
considered as an asset
An”

"A financial asset or
other non-physical
asset should never be
included as a physical
asset. Examples of
financial assets
include equity
commitments, corporate
facilities, accounts
receivable, and short-
term investments. Never

include these in the
list of physical assets
An”

"A commodity is what the

physical asset is being
used for. Examples
include copper, gold,
electricity, renewable
energy, etc.”

"Now, let’s analyze the
following text:\n"

f"Text: {chunk}\nQuery:
Let’s think step-by-
step. Does this text
mention any physical
assets, locations or
ownerships? Does the
text mention what
commodity the physical
asset is being used for
2\n"

"If yes, you must specify

them in the following
format:\n"

"physical assets: [ ]\
nlocations: [ ]\
nownerships: [ ]\
ncommodities: [J\n"

"Additionally, identify
the relationships
between them,
specifying the location

of each physical asset

, the ownership details
, and the commodity the
physical asset is used
for."

"Format the relationships
as follows:\
nrelationships: [asset:

’

’? . location: ,
ownership: 77,
commodity: ’’]. Do not

output anything else.”

Dynamic prompting

)

prompt_instruction = (

"You are a virtual
assistant with advanced
expertise in a broad
spectrum of topics,
equipped to utilize
high-level critical
thinking, cognitive
skills, creativity, and
innovation.\n"

"Your goal is to deliver
the most
straightforward and
accurate answer
possible for each
question, ensuring high
-quality and useful
responses for the user
An”

if contains_assets:

prompt_instruction += (
"A physical asset is a
tangible resource
that a company owns
and uses in the
production of goods
and services.
Examples of
physical assets are
facilities,
equipment,
infrastructure, etc
An”

"Ensure that a
geographical
location or region
is never considered
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as an asset.\n"
"A financial asset or
other non-physical
asset should never
be included as a
physical asset.
Examples of
financial assets
include equity
commitments,
corporate
facilities,

accounts receivable
, and short-term
investments. Never
include these in
the list of
physical assets.\n”

)

if contains_commodities:
prompt_instruction += (

"A commodity is what
the physical asset
is being used for.
Examples include
copper, gold,
electricity,
renewable energy,
etc.\n"

)

if contains_locations:
prompt_instruction += (
"Always ensure that a
geographical
location or region
is mentioned
separately from the
physical asset.\n”

)

prompt_instruction += (

f"Now, let’s analyze the
following text:\n"

f"Text: {chunk}\nQuery:
Let’s think step-by-
step. Does this text
mention any physical
assets, locations or
ownerships? Does the
text mention what
commodity the physical
asset is being used for
2\n"

"If yes, you must specify
them in the following
format:\n"

"physical assets: [ ]\
nlocations: [ 1\
nownerships: [ 1\
ncommodities: [J\n"

"Additionally, identify
the relationships
between them,
specifying the location

of each physical asset
, the ownership details

, and the commodity the
physical asset is used
for."

"Format the relationships
as follows:\

nrelationships: [asset:
’?, location: 77,

ownership: 77,

commodity: ’’]. Do not

output anything else.”
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Database Cleaning

You are an expert data cleaner.
Your task is to clean and
standardize the following text.

You will be provided each cell
value one by one with its
respective column name. Apply
the following cleaning steps:

Standardize entries in the
commodity column to have a
consistent format. For
example, "Silver, Gold,
, Zinc" should be the
standard format for each
commodity, separated by
commas and no extra spaces.

- Ensure all entries in the
status column are in a
consistent format, removing
redundant words or phrases.

- All entries should be in
title case.

- Do not make any changes to
the ’Countries’ column.

- In the ’commodity’ column, if
chemical symbols are given,
change these to the element
name corresponding to the

chemical symbol.

- In all the columns, ensure
each entry is properly
formatted without redundant
commas and extra spaces. For

example, "ExxonMobil"”
should not be separated by
extra commas.

- Remove any leading or
trailing spaces in all
columns.

- All individual commodities
should be separated by a
comma.

- The ’location’ column should
only consist of geographical

regions and locations.

- A physical asset is a

tangible resource that a

company owns and uses in the
production of goods and

services. Examples of
physical assets are

Lead




facilities, equipment,
infrastructure, etc. If
there are any entries in the
physical asset column that
do not fit the description
of a physical asset, put N/A
in the corresponding cell.

- A commodity is what the
physical asset is being used

for. If there are any
entries in the commodity
column that do not fit the
description of a commodity,
put N/A next to the word in
brackets.

- Ensure that there are no
repetitions or redundant
entries in any of the cells.

- If any cell has ’not

specified’, it should be
empty.

All cells should have

standardized entries.

Process the following text
according to these instructions
Return only the new cleaned
cell value, nothing else.

\

You are an expert in
geographical locations.
Given the location
information provided,
identify the countries
mentioned in the location

Return the list of
countries separated by
commas. If no country is
mentioned, return "N/A".

\

Country Extraction Prompt

Modified prompt for improvement module

"You are a virtual assistant with
advanced expertise in a broad
spectrum of topics, equipped to

utilize high-level critical
thinking, cognitive skills,
creativity, and innovation.\n"
"Your goal is to deliver
the most
straightforward and
accurate answer
possible for each
question, ensuring high
-quality and useful
responses for the user
An”
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"A physical asset is a
tangible resource that
a company owns in a
location and uses in
the production of goods

and services. Examples
of physical assets are
all examples of ’Plant
’ in the tables (
Wateree, Greensville
and Colonial Trail West
are all physical
assets).\n"

"A financial asset or
other non-physical
asset should never be
included as a physical
asset. Examples of
financial assets
include equity
commitments, corporate
facilities, accounts
receivable, and short-
term investments. Never

include these in the
list of physical assets
\n"

"A commodity is what the

physical asset is being

used for. The status
of a physical asset
gives information on
whether the asset is
operational, under
construction or in end-
of-life.”

"Now, let’s analyze the
following text:\n"
f"Text: {text}\nQuery: Let

’s think step-by-step.
Does this text mention

any physical assets,
locations or ownerships

? Does the text mention
what commodity the

physical asset is being
used for?\n"

"Does the text mention the
status of the physical
asset? Examples of

status include whether
the asset is
operational, under
construction or in end-
of-life.”

"If yes, you must specify
them in the following
format:\n"

"physical assets: [ ]\
nlocations: [ 1\
nownerships: [ 1\
ncommodities: []\
nstatus: [J1\n"

"Additionally, identify
all the relationships
between them,
specifying the location

of each physical asset




, the ownership details
, the commodity the
physical asset is used
for and the status of
the physical asset. Do
not leave out any
relationships. "

"Format the relationships
as follows:\

nrelationships: [asset:
’?, location: 7,

ownership: ’’,

commodity: ’’, status:

’>7. Do not output
anything else.”

\. J

A.14 Standardised Characters in
Foundational Data Cleaning &
Standardisation

In this section, we detail the standardisation rules
applied during the Foundational Data Cleaning &
Standardisation phase in our database cleaning pro-
cess. By enforcing these cleaning and standardi-
sation rules, the data becomes more reliable and
easier to analyse, reducing potential errors caused
by inconsistent naming and formatting practices.
This standardisation forms the foundation for sub-
sequent cleaning steps within the study.

¢ Characters Standardised:

— \ (Backslashes): Removed from text

fields.

— ' (Single quotes): Removed from text
fields.

—” (Double quotes): Removed from text
fields.

— Extra spaces:

* Leading and trailing
Trimmed from text entries.

Spaces:

+ Multiple consecutive spaces: Con-
densed to a single space.
— Commas (,): Ensured proper spacing af-
ter commas by replacing them with ¢, °’
(comma followed by a space).

* Names Standardised:

— Company Names in ownership Field:
# All the following aliases and varia-
tions are standardized to “Newmont
Corporation”:
- “Company”
- “company”
- “The company”

- “the company”
- “The Company”
- “Company’s”
- “the Company”
‘e
- “NEWMONT CORPORATION”
- “Newmont’s ownership or eco-
nomic interest”

- “Company owns or controls land”

- “Newmont”

- “Newmont (majority)”

- “Newmont Corporation (for-
merly)”

- “100% owned by the Company”
- “Newmont Stockholders”
- “100% by Newmont”
- “Company owned”
- “Company’s”
— USA Variants in location Field:
* All the following variants are stan-
dardised to “USA”:
- “United States of America”
- “United States”
- “USA”
- “US”
- “USAA”
- “USAA”
- “U.S”
- “U.S.A”

A.15 LSEG Database Numerical Results

In this section, we present the complete numerical
results from stage 1 of the validation, showing six
performance scores for each company.
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Table 9: Complete Performance Scores for Companies across the following metrics: Partial Match Score, Jaccard
Similarity, Cosine Similarity, Dice Similarity Coefficient, Normalised Levenshtein Distance, and Hits@5.

Sector Company Entity l;;‘;:‘;: n.']ac.?ari(:y S .C9§1n§ty Si D:ce ity Le i\lorlln: . Hits@5
Physical Asset 0.95 0.7833 0.8591 0.8333 0.7667 0.7143
. Ownership 0.93 0.2139 0.3609 0.3389 0.3658 0.7143
Mining AA -
Commodity 0.52 0.0000 0.0000 0.0000 0.1839 0.7143
Countries 0.100 0.8333 0.8963 0.8333 0.8639 0.7143
Physical Asset 0.81 0.6389 0.7416 0.7333 0.6349 0.5455
SCCO Ownership 1.00 0.3000 0.5375 0.4127 0.5590 0.5455
Commodity 0.68 0.0000 0.5244 0.0000 0.1966 0.5455
Countries 0.82 0.6667 0.6667 0.6667 0.7222 0.5455
Physical Asset 0.88 0.5667 0.7014 0.6672 0.5148 0.8462
FCX Ownership 0.93 0.1667 0.7063 0.2222 0.5020 0.8462
Commodity 0.87 0.0000 0.3668 0.0000 0.2114 0.7692
Countries 1.00 1.0000 1.0000 1.0000 1.0000 0.8462
Physical Asset 0.83 0.8462 0.9083 0.8949 0.8531 0.6486
NEM Ownership 0.89 0.6520 0.7891 0.7090 0.7747 0.6216
Commodity 0.83 0.1154 0.5488 0.1282 0.3698 0.5946
Countries 0.79 0.7692 0.7692 0.7692 0.8225 0.6486
Physical Asset 0.82 0.7955 0.8608 0.8515 0.7738 0.6667
HL Ownership 0.97 0.5000 0.6667 0.6667 0.7500 0.6667
Commodity 0.88 0.0000 0.5776 0.0000 0.3281 0.6111
Countries 0.62 0.1818 0.1818 0.1818 0.3566 0.6667
Physical Asset 0.72 0.3417 0.5084 0.5016 0.4292 0.6250
VX Ownership 1.00 1.0000 1.0000 1.0000 1.0000 0.6250
Commodity 0.36 0.0000 0.4472 0.0000 0.2857 0.1250
Countries 0.53 0.0000 0.0000 0.0000 0.2000 0.5000
Physical Asset 0.71 0.2418 0.4341 0.3840 0.3808 0.6364
XOM Ownership 0.94 0.4286 0.5469 0.5238 0.5276 0.6364
Commodity 0.35 0.0000 0.0000 0.0000 0.1852 0.0000
0l & Gas Countries 0.63 0.1429 0.1667 0.1429 0.3127 0.5455
Physical Asset 0.74 0.3026 0.4935 0.4556 0.3552 0.7895
MPC OwnershiAp 0.95 0.6083 0.7457 0.6925 0.6947 0.7368
Commodity 0.49 0.1036 0.4149 0.1693 0.1907 0.5789
Countries 0.43 0.4722 0.6855 0.6389 0.2493 0.7895
Physical Asset 0.76 0.2000 0.3536 0.3333 0.2500 1.0
cop Ownership 1.00 0.3333 0.5774 0.5000 0.4118 1.0
Commodity 1.00 0.3333 0.8944 0.5000 0.1667 1.0
Countries 0.67 0.5000 0.7071 0.6667 0.2727 1.0
Physical Asset 0.79 0.2532 0.6368 0.3961 0.3788 0.2778
D Ownership 0.85 0.2740 0.4884 0.4015 0.4966 0.3333
Commodity 0.75 0.2292 0.3836 0.3125 0.2228 0.1667
Countries 1.00 0.9375 0.9634 0.9583 0.8984 0.2778
Physical Asset 0.64 0.3500 0.6400 0.5000 0.4602 0.5000
ED Ownership 1.00 0.5000 0.7071 0.6667 0.4637 0.5000
Commodity 0.40 0.0000 0.0000 0.0000 0.1364 0.0000
Utilities Countries 0.67 0.7500 0.8500 0.8333 0.6100 0.5000
Physical Asset 0.74 0.3131 0.5573 0.4683 0.5001 0.6000
DUK Ownership 0.98 0.4667 0.7953 0.6286 0.5889 0.6000
Commodity 0.41 0.0000 0.0000 0.0000 0.1051 0.0000
Countries 1.00 0.5417 0.7155 0.6667 0.3789 0.6000
Physical Asset 0.93 0.3778 0.7145 0.5367 0.5472 0.7333
EXC Ownership 0.71 0.2867 0.4354 0.4333 0.4136 0.6667
Commodity 0.40 0.4000 0.6285 0.5333 0.3520 0.5333
Countries 0.49 0.9000 1.0000 0.9000 1.0000 0.6667
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A.16 Dashboard User Interface (UI) ounerse

Ownership Share

In this section, we present snippets of dashboard
user interface (UI) for Alcoa Corporation (AA)
as an example of the functionality and design of
the visualisation tool developed for this project.
The dashboard provides an intuitive and interactive
platform to explore the relationships between key
entities within the database.
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Commodity vs. Ownership Heatmap

Commodity vs. Ownership Heatmap
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Abstract

We present the first Italian dataset for joint
hyperpartisan and rhetorical bias detection in
climate change discourse, enhancing the com-
plexity in modeling hyperpartisan detection.
Our annotation scheme achieves a Cohen’s
kappa agreement of 0.63 on the gold test set
(173 sentences). The dataset comprises 48 ar-
ticles (1,010 sentences) from far-right media,
annotated at sentence level for both binary hy-
perpartisan classification and the multi-label
classification of 17 rhetorical biases. We con-
duct extensive text analysis revealing signifi-
cant correlations between hyperpartisan con-
tent and specific rhetorical techniques. Our ex-
periments with state-of-the-art language mod-
els (GPT-40-mini) and Italian BERTbase mod-
els establish strong baselines for both classifi-
cation tasks. To ensure reproducibility while
addressing copyright concerns, we release ar-
ticle URLs, article id and paragraph’s num-
ber alongside comprehensive annotation guide-
lines. This resource advances research in cross-
lingual hyperpartisan detection and provides
insights into the rhetorical strategies employed
in Italian climate change discourse. To the best
of our knowledge, we are the first to tackle hy-
perpartisan detection related to logical fallacies,
focusing on on the sentence level. We provide
the code and the dataset to reproduce our re-
sults: https://anonymous.4open.science/
r/Climate_HP-RB-D5EF/README . md

1 Introduction

The rise of hyperpartisan news content and its po-
tential impact on public discourse has become a
critical concern in the digital age. For Hyperparti-
sanship, we referred to Maggini et al. (2025)’s defi-
nition: Hyperpartisan news detection is the process
of identifying news articles that exhibit extreme one-
sidedness, characteriz ed by a pronounced use of
bias.

This phenomenon is particularly evident in dis-
cussions about climate change (Luo et al., 2020),

because it is a polarizing topic (Falkenberg et al.,
2022). This phenomenon constitutes a threat to
social cohesion through a loop mechanism that, by
manipulating the emotions of the audience, fos-
ters the polarization of individuals (Marino et al.,
2024). In light of this, many scholars developed
NLP methods to tackle hyperpartisanship. Most
of the studies approach this task as a binary classi-
fication task. Despite the consistent performance
reached, such approaches fail to uncover the un-
derlying mechanisms that drive hyperpartisanship
(Maggini et al., 2025).

Linguistic scholarships have shown that specific
rhetorical strategies play a crucial role in creating
and reinforcing hyperpartisan narratives (Nguyen
et al., 2022; Potthast et al., 2018).

Rhetorical biases are vicious communicative
strategies aimed at circumventing or violating au-
dience’s intellectual autonomy, by depriving them
of the necessary elements to evaluate and counter
arguments effectively. Intellectual autonomy, in
fact, involves the capacity of individuals to think
critically and independently while maintaining the
ability to appropriately rely on external sources for
informed decision-making (?).

Examining such biases could provide crucial in-
sights, revealing how biased rhetorical techniques
are employed in hyperpartisan content to manip-
ulate audiences, thus enabling more targeted in-
terventions to mitigate polarization (Ruan et al.,
2024).

Additionally, while significant progress has been
made in detecting hyperpartisan content and propa-
ganda techniques in English-language media, there
remains a critical gap in resources and analysis
for other low-represented languages, particularly
Italian (Maggini et al., 2025).

Our study addresses these gaps by introducing
the first Italian dataset jointly annotated for hyper-
partisan detection and rhetorical bias identification
in the context of climate change news. Our main
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contributions to the field are:

* We introduce a novel dataset consisting of
48 articles (1010 sentences) from Italian
libertarian-right media, focusing on climate
change coverage and related topics such as
Euroscepticism and green policies. Our anno-
tation scheme operates at the sentence level,
capturing both binary hyperpartisan classifi-
cation and a fine-grained taxonomy of 17 dis-
tinct rhetorical biases.

* We leverage our fine-grained annotation to an-
alyze both the relationship between hyperpar-
tisan content with specific rhetorical manip-
ulation strategies, and the structural distribu-
tion of these techniques across article parara-
graphs, providing insights into their functional
roles within the discourse architecture.

* We establish baseline performance metrics
through experiments with state-of-the-art lan-
guage models. We evaluate two distinct ap-
proaches: 0-shot with GPT-4-mini, and Fine-
tuning (FT) with two BERTbase fine-tuned
models for Italian. Our results demonstrate
the feasibility of automated detection for both
hyperpartisan content and specific rhetorical
biases, while also highlighting the challenges
inherent in identifying more subtle manipula-
tion techniques.

* To ensure reproducibility while respecting
copyright constraints, we will release our
dataset in the form of article URLs accompa-
nied by detailed annotation guidelines. This
approach allows researchers to reconstruct the
dataset while maintaining its integrity and le-
gal compliance.

Our work contributes to the growing body of
research on automated detection of media bias
and manipulation, while specifically addressing the
need for non-English resources in this domain. The
findings and resources presented in this paper have
important implications for developing more robust
and culturally-aware systems for detecting and an-
alyzing media manipulation across languages and
contexts.

This article is organized as follows: Section 2 re-
views the key contributions in the field that inspired
our research. Section 3 details the methodology
used to create the dataset, covering data collection,
the annotation process, and a statistical overview

of the dataset. Section 4 presents benchmark ex-
periments for classification tasks using our dataset,
along with an in-depth corpus analysis. Finally,
Section 5 summarizes our findings and outlines
potential directions for future research.

2 Related Work

Hyperpartisan news detection has gained signifi-
cant attention in the context of online misinforma-
tion, leading to extensive research in recent years.
Maggini et al. (2025) provided a comprehensive
survey of hyperpartisan detection approaches. They
proposed a definition that captures the linguistic
and political aspects of hyperpartisanship. Addi-
tionally, they highlighted the dominance of English
and U.S.-centric datasets in this domain, empha-
sizing the need for datasets in underrepresented
languages to better understand hyperpartisanship
across different countries.

Potthast et al. (2018) pioneered the computa-
tional analysis of hyperpartisan news, delving
into the stylistic traits distinguishing hyperparti-
san news from mainstream. Kiesel et al. (2019)
established a significant foundation for compu-
tational approaches to hyperpartisanship, intro-
ducing a shared binary classification task involv-
ing 42 teams. They released two document-level
datasets—one manually annotated and one labeled
based on source—which provided standardized re-
sources for hyperpartisan scholarships.

Subsequent research evolved from document-
level detection toward more fine-grained ap-
proaches that leverage information from various
article components. Naredla and Adedoyin (2022)
experimented with BERT, ELMo, and Word2Vec
on entire articles, including both headlines and bod-
ies, while also testing various context lengths for
BERT. Lyu et al. (2023) analyzed 2,200 manually
labeled and 1.8 million machine-labeled news ti-
tles across the political spectrum, achieving Acc =
0.84; F'1 = .78 on an external validation set, using
their transformer-based model. By tracking politi-
cal stance, they revealed that right-leaning media
use hyperpartisan titles more frequently, identified
key contentious topics, and documented a cross-
spectrum increase in hyperpartisan content during
the 2016 U.S. election. This more granular ap-
proach was further advanced by researchers such as
Pérez-Almendros et al. (2019), who focused specif-
ically on quoted content as a distinctive component
for hyperpartisan classification, demonstrating the
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value of analyzing structural elements within ar-
ticles rather than treating them as homogeneous
units.

Omidi Shayegan et al. (2024) advanced hyper-
partisan detection in under-represented languages
by developing a benchmark for Persian tweets and
systematically evaluating various architectural ap-
proaches from encoders to decoder-only models.

Maggini et al. explored the application of LLMs
for hyperpartisan detection, utilizing LLaMA?3-
8b-Instruct (Touvron et al., 2023) in different In-
Context Learning settings with general and task
specific prompts on SemEval-2019 Task 4 and a
headline-specific dataset. Their research demon-
strated that these advanced neural architectures
achieve competitive performance when enhanced
with domain knowledge and structured reasoning,
establishing LLMs as effective tools for political
text analysis despite previous assumptions about
ICL and computational power limitations.

As mentioned in Sec. 1, hyperpartisan content
often manifests through the strategic deployment
of manipulative rhetorical techniques. Such tech-
niques are extensively employed to persuade audi-
ences in different settings, such as news, speeches,
and social media. Given the rapid spread of ma-
nipulative content in online environments, a wide
range of computational approaches has emerged to
address this phenomenon. As highlighted by Bassi
et al. (2024), early efforts predominantly focused
on content-based detection. More recently, argu-
mentative and rhetorical approaches have gained
traction, demonstrating greater scalability across
different contexts.

Martino et al. (2019) represents a seminal con-
tribution in this regard, proposing a method to
identify specific texts containing propaganda and
classify them based on 18 persuasion techniques

Their work later inspired a SemEval task in
2020 (Da San Martino et al., 2020) and has been
then followed by Piskorski et al. (2023), which ex-
panded the taxonomy to 23 fine-grained techniques,
grouped into six broad categories. Additionally,
they extended the analysis to a multilingual setting,
demonstrating the applicability of argumentation-
based propaganda detection across different lan-
guages.

More recent works (Hasanain et al., 2024a,b)
addressed LLMs’ potential for propaganda tech-
niques detection. In this regard, Sprenkamp et al.
(2023) demonstrated that reducing the number of

labels to 14 improved classification performance.

Building on this literature, to the best of our
knowledge, we are the first to approach hyperpar-
tisan detection at the sentence level and consider
the presence of rhetorical bias as a fundamental
characteristic of hyperpartisan texts. By treating
rhetorical biases as stylistic traits that shape the
message of a text, we capture deeper linguistic
patterns that contribute to hyperpartisan framing.
While prior research has shown that source-level
bias does not uniformly manifest across all articles
(Baly et al., 2018), our sentence-level approach
transcends these limitations. Working at this granu-
larity allows us to identify precisely where and how
hyperpartisan language emerges through specific
rhetorical fallacies, creating a dataset that supports
both binary hyperpartisan detection and multi-class
fallacy classification. This approach reveals signifi-
cant correlations between particular fallacy types
and hyperpartisan content (see Table 5 in the Ap-
pendix), providing empirical evidence for their re-
lationship.

3 Methodology

3.1 Dataset Creation

Article selection and Pre-Processing From the
moment that “alternative” media tend to spread
anti-establishment messages (Ernesto de Le6n and
Adam, 2024), we focused on NicolaPorro.it!, an
independent libertarian media outlet. The collected
corpus consists of 48 articles for a total of 1010
units on climate change, green policies and Eu-
roscepticism selected from the site’s "Green poli-
cies" section to ensure topical homogeneity. We
featured only the Italian language, since the recent
enhancements in NLP for disinformation detec-
tion mostly covered over-represented languages
like English (Maggini et al., 2025). To ensure a
fine-grained analysis of the texts, we then split the
articles following the html <p> tags, that mostly
corresponded to individual sentences. We grouped
together the sentences with less than 15 words to
guarantee minimal context.

Annotation Protocol To build our annotation
guidelines, we started by defining the constructs
under investigation.

For Hyperpartisanship we referred to the defi-
nition by Maggini et al. (2025) mentioned above:

"https://www.nicolaporro.it/articoli/
ambiente-sostenibilita/
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Hyperpartisan news detection is the process of
identifying news articles that exhibit extreme one-
sidedness, characterized by a pronounced use of
bias. We modeled this task as a binary classifica-
tion at the sentence level.

Regarding Rhetorical biases, to our knowledge
the most comprehensive taxonomy is the one of
Piskorski et al. (2023), with a total of 23 labels.

Starting from their taxonomy, we translated
the definitions in Italian and adapted them to
our use case on climate change. Addition-
ally, being our main scope to conduct a more
fine-grained analysis of the rhetorical biases un-
derlying hyperpartisanship, we merged some
of the techniques (Slogan/Conversation Killer,
Whataboutism/Tu Quoque, Appeal to Values/Flag
Waving, Causal/Consequential Oversimplification,
Smear/Doubt). Keeping them would have added
unnecessary complexity to the model without pro-
viding additional analytical insights. In Table 3 we
report brief descriptions for each technique, while
in Appendix A we report their in-depth definition
as well as the annotation guidelines.

Alongside the binary hyperpartisan classifica-
tion, annotators performed a multi-label task iden-
tifying specific rhetorical biases deployed to influ-
ence reader opinion in each sentence.

The annotation was conducted by two native Ital-
ian speakers with expertise in political discourse
analysis. Both annotators are Ph.D. students in ap-
plied NLP for disinformation, with academic back-
grounds in Philology, Data Science, Anthropology,
and Psychology. They have prior experience in
linguistic annotation of news content and rhetor-
ical technique identification. Annotators did not
know the source of the articles and during the an-
notation rounds, they did not have access to the
whole article’s context but only to the individual
sentences. We divided the annotation process into
three phases: Training phase: annotators stud-
ied the guidelines, performed pilot annotations and
completed the training through interactive sessions
to discuss doubts, edge cases and resolve disagree-
ments.; Annotation Phase: Each document was
independently annotated by both annotators; Cu-
ration Phase: Discrepancies between annotations
were discussed and resolved to ensure final label
consistency. Before the Curation Phase, we mea-
sured the Inter-Annotator Agreement (IAA) using
Krippendorf’s «, achieving a value of .92 for hyper-
partisan detection and .63 on rhetorical fallacies.

3.2 Dataset description

Table 1 represents key statistics of our dataset,
including size, sentence length, and the average
rhetorical biases per article. Table 3 shows the
definitions and distributions of hyperpartisan and
neutral sentences, as well as logical fallacies. To
analyze the thematic distribution within our cor-
pus, we applied BERTopic (Grootendorst, 2022)
with parameters optimized to preserve local struc-
ture®. Table 2 presents the topic distribution. After
manual inspection, we forced BERTopic to detect
three main topics: science, institutions and Other,
each further subdivided into specific subtopics like
institutions.Italy, science.cars, etc.

Metric Value
Number of Documents 48
Number of Sentences 1010
Avg. Sentences per Article 21.12
Avg. Words per Text 40.26
Avg. Characters per Text 264.37
Avg. Techniques per Document 2.12

Table 1: Dataset Statistics

Topic Count
Other.climate 241
Other.other 122
science.climate_change 109
science.other 82
institutions.Europe 70
Other.politics 68
science.energy_transition 54
science.environment 44
science.cars 38
institutions.Other 35
institutions.OMS 33
institutions.China 30
institutions.Italy 26
science.green_policies 23
institutions.BlackRock 16
science.medicine 14
Other.politically_correct 4
Other.politics 1

Table 2: Topic Distribution. Topics have been extracted
using BERTopic.

3.3 Models

We tested two different architectures: encoders and
decoder-only models.

Zumap-model = UMAP(n-neighbors=10, n-
components=3,  metric="cosine’)  hdbscan-model =
HDBSCAN(min-cluster-size=10, min-samples=10, met-
ric="euclidean’, prediction-data=True) ctfidf-model =
ClassTfidfTransformer(bm25-weighting=False, reduce-
frequent-words=True) representation-model = Maximal-
MarginalRelevance(diversity=0.5)
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Bias Type Definition

Distribution

Hyperpartisan Classification

Hyperpartisan Language
rhetorical biases

Text that displays extreme bias favoring one particular political side, often employing pronounced use of HP 304

N 706
Rhetorical Biases
Slogan/Conversation Killer ~ Using catchphrases or dismissive statements to shut down further discussion or debate 64
Appeal to Time Manipulating temporal perspectives or deadlines to create urgency or dismiss concerns 9
Appeal to Values/ Exploiting patriotic feelings or moral values to justify positions or actions 59
Flag Waving
Appeal to Authority Using the reputation of an expert or institution to support arguments without proper context 53
Appeal to Popularity Justifying a belief by citing its widespread adoption or acceptance 11
Appeal to Fear Manipulating audience’s fears to promote specific viewpoints or actions 99
Straw Man/Red Herring Misrepresenting opponent’s argument or diverting attention to unrelated issues 43
Whataboutism/ Deflecting criticism by pointing to the opponent’s alleged hypocrisy or similar actions 42
Tu Quoque
Loaded Language Using words with strong emotional implications to influence the audience 330
Repetition Repeating phrases or ideas multiple times for emphasis or to establish them as truth 23
Intentional Confusion/ Vague- Using deliberately unclear or ambiguous language to avoid commitment or scrutiny 55
ness
Exaggeration/Minimisation ~ Presenting facts in a distorted way by either magnifying or downplaying their importance 244
Name Calling Using labels or derogatory terms to discredit without substantive argument 159
Reductio ad Hitlerum Drawing inappropriate comparisons to Nazism, Hitler, or fascism 13
Smear/Doubt Attempting to damage reputation or create doubt through indirect attacks or insinuations 355
Causal/Consequential Over- Presenting complex situations with oversimplified cause-effect relationships 165
simplification
False Dilemma/ Presenting limited options while ignoring alternatives or middle ground 66
No Choice

Table 3: Taxonomy of rhetorical biases and hyperpartisan language detection used in our annotation scheme.
The rhetorical biases represent fine-grained categories of manipulative language techniques commonly found in

politically charged discourse.

For encoders, we used dbmdz/bert-base-
italian-xx1l-uncased?, trained from scratch on
Italian, and nickprock/sentence-bert-base-
italian-xxl-uncased*, fine-tuned for Italian.
Particularly, the first model was trained on OSCAR
corpus (Ortiz Sudrez et al., 2020) and is known
for its robust handling of complex relationships in
text, allowing for a comprehensive understanding
of contextual nuances. In contrast, the sentence-
transformer is optimized for generating meaningful
sentence embeddings, making it particularly suit-
able for capturing the semantic essence of individ-
ual sentences. By fine-tuning and comparing both
models, we aimed to evaluate their performance
on the hyperpartisan classification task, providing
insights into which approach better captures the
rhetorical distinctions in the data. We fine-tuned
the models

Regarding the decoder-only architectures we
used GPT 4o and 4o0-mini. For the Hyperparti-
san detection (HP) task we employed the models
in a 0-shot setting, while, for the Rhetorical Bias
(RB), each model was firstly tested 0-shot with

3https://huggingface.co/dbmdz/
bert-base-italian-xx1l-uncased

*https://huggingface.co/nickprock/
sentence-bert-base-italian-xxl-uncased

temperature equal to 0.2. Given the difficulty of
working with a high number of labels, we decided
to set this value so that the model could capture
the most subjective traits in the rhetorical fallacies.
Furthermore, we fine-tuned the models for Rhetor-
ical Bias detection. We prompted and fine-tuned
the OPENAI models via their APIs . The prompts
are available in the Appendix A.2 and A.3.

4 Results

4.1 Hyperpartisan-Rhetorical Bias Relation

To investigate the relationship between rhetori-
cal biases and hyperpartisanship, we analyzed
their correlation patterns. Figure 1 depicts which
rhetorical biases are most determinant to distin-
guish between hyperpartisan and neutral sentences.
To analyze the rhetorical distinctions between
hyperpartisan and neutral sentences in more de-
tail, we performed x? tests to compare the fre-
quency of each rhetorical technique across binary
labels (see Table 5 in Appendix A.3). We mea-
sured the effect sizes using Log Ratio®. Thus,

5https://platform.openai.com/docs/models

®Log Ratio (LR) is calculated as the logarithm base 2 of
the ratio of the frequencies between the two groups. A value
of 0 signifies equal frequency in both groups, positive values
indicate a higher frequency in the hyperpartisan group, and
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neutral sentences are usually characterized by
no rhetorical biases ("no_technique_detected"),
whereas "Reduction_ad_Hitlerum", "Name_Call-
ing", "Tu_Quoque/Whataboutism", "Loaded_Lan-
guage", "Smear/Doubt", "Straw_Man/Red_Har-
ring" and "Exaggeration_Minimisation" are highly
significant (p—value < 0.001) to discern hyperpar-
tisan sentences. Those findings validate Maggini
et al. (2025)’s definition of hyperpartisanship as
well as the previous definitions used in the litera-
ture by Kiesel et al. (2019); Lyu et al. (2023).

4.2 Topological Distribution of Rhetorical
Biases

Fig. 2 shows the average of hyperpartisan sentences
across the articles’ structure, while Fig. 3 illustrates
the concentration of bias in the articles’ structure.
This provides us with a better understanding of how
much and in which parts the articles are contami-
nated by hyperpartisanship and rhetorical biases.

To analyze the Hyperpartisan Contamination
Level (HCL), firstly, we grouped the sentences by
article ID and got the sentence positions. Then,
we created normalized positions for each sentence
and created 10 potision bins. Lastly, we computed
the average hyperpartisan score for each position
bin. Fig. 2 shows that hyperpartisan sentences ap-
pear in 50% of cases within the first 10% of the
articles and around 40% in the following 10% (i.e.,
between 10% and 20% of the article’s beginning).
This evidence aligns with what other researchers
analyzed in previous work, stating that titles usu-
ally are determinant to distinguish between fake
or hyperpartisan and mainstream news (Horne and
Adali, 2017; Shrestha and Spezzano, 2021). Then,
the average HCL drops in the central part (20-60%)
to increase again up to around 30% in the second
half of the articles (60-100%).

Then, we decided to investigate on how rhetor-
ical techniques are adopted to convey and shape
the message (Fig. 3). Firsly, we normalized the
position of the techniques within each article, cre-
ating position quartiles. After that, we counted
the occurrences of each technique in each quartile
and then pivoted the data for visualization. Succes-
sively, we calculated the raw totals for each tech-
nique and then normalized by technique, namely
we computed the percentage across quartiles for
each technique.

negative values indicate a higher frequency in the neutral
group.

Our annotation of sentences with rhetorical fal-
lacies revealed that certain techniques are more
prominent than others, offering valuable insights
into how these strategies are distributed across the
structure of the articles. For example, while Reduc-
tio ad Hitlerum is relatively rare (13 occurrences
with high statistical significance), it appears pre-
dominantly in the first quartile (Q1) at 53.8%, indi-
cating its use in setting a strong, biased tone early in
the article. Similarly, Name Calling is concentrated
in Q1, with 49% of its occurrences in this section,
and both techniques are highly significant for iden-
tifying hyperpartisan sentences. These strategies
allow reporters to directly express their stance on
a topic, often leveraging emotionally charged lan-
guage to engage the reader from the outset.

However, Repetition (statistically significant) is
most frequent in the second quartile (Q2), with
56.5% of its cases appearing here. This suggests its
role in reinforcing the ideas introduced earlier, con-
tributing to the redundancy of concepts to solidify
the intended message. Lastly, Slogan/Conversation
Killer usage peaks in the final quartile (Q4), ac-
counting for 43.8% of its total appearances. This
aligns with the tendency of journalists to use catchy
phrases or mottos at the end of articles to leave a
lasting impression and emphasize their message.

These findings align with the existing literature,
which highlights how clickbait headlines often em-
ploy rhetorical techniques to manipulate reader en-
gagement and frame narratives persuasively (Blom
and Hansen, 2015; Munger, 2020). Such strate-
gies are not only common in sensationalist media
but are also key tools for amplifying bias and pro-
moting specific agendas (Chakraborty et al., 2016).
This finding also strengthens the relationship be-
tween click-bait and hyperpartisan content.

4.3 Computational Baselines

The aim of our experiments is to provide baselines
and to explore the impact of different architectures
on two classification tasks: for hyperpartisan and
for logical fallacies. Both of the two tasks were an-
notated at the sentence level. While HP classifica-
tion is a binary classification task, RB classification,
is a multi-class classification task.

The results of the evaluation on the detection of
hyperpartisan and rhetorical bias are shown in Ta-
ble 4. The results demonstrate significant variabil-
ity in the metrics score between different models
and methodologies.
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Figure 1: Correlation between Hyperpartisan sentences and techniques. The table with the different levels of

significance is reported in the Appendix.
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Figure 2: Hyperpartisan Contamination Level per sentence position (deciles). n represents the number of sentences.
Because of articles have dissimilar number of sentences, we normalize their length.

GPT: GPT-40-mini and GPT-40 both perform
well on the HP classification task in a 0-shot setting.
GPT-40 achieves an accuracy of 0.969 with an F1
score of 0.942, outperforming GPT-40-mini, which
attains an accuracy of 0.959 and an F1 score of
0.933. The results indicate that GPT-40 is more
effective in recognizing hyperpartisanship in Italian
news articles. Those results can be explained by the
architectural and dimensional differences between
the two models.

For RB classification, GPT-40-mini performs
reasonably well in 0-shot mode (accuracy: 0.892,
F1: 0.319), and its fine-tuned performance in-
creased slightly (accuracy: 0.905, F1: 0.362). GPT-
40 exhibits similar behavior, with 0-shot perfor-
mance (accuracy: 0.906, F1: 0.385) being substan-
tially better than FT (accuracy: 0.908, F1: 0.410).
The low precision scores for both models in RB

classification indicate challenges in correctly iden-
tifying rhetorical bias. The high unbalanced distri-
bution between techniques explains these results.
Indeed, the other metrics we reported are macro-
averaged metrics, which offer a fair comparison.

Encoders: For HP classification, bert-base-
italian-xx1l-uncased achieves an accuracy of
0.861 and an F1 score of 0.859, showing strong
performance but slightly lagging behind GPT-4o.
However, in RB classification, the model performs
poorly, with a precision of 0.354 and an F1 score
of 0.470, indicating that it struggles to effectively
identify rhetorical bias. The difficulty in classi-
fying RB stems from the extreme class imbal-
ance, where certain rhetorical categories are un-
derrepresented, leading to biased model predic-
tions that favor more frequent classes. The macro-
averaged F1 score provides a clearer picture of
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Model Classification | Method | Accuracy | Precision | Recall | F1 Score
HP 0-Shot 0.959 0.942 0.924 0.933
GPT-40-mini RB 0-Shot 0.892 0.285 0.486 0.319
FT 0.905 0.326 0.465 0.362
HP 0-Shot 0.969 0.980 0.907 0.942
GPT-40 RB 0-Shot 0.906 0.387 0.434 0.385
FT 0.908 0.378 0.559 0.410
bert-base-italian-xx1l-uncased HP FT 0.861 0.858 0.861 0.859
RB FT 0.354 0.699 0.354 0.470
sentence-bert-base-italian-xxl-uncased HP FT 0.851 0.846 0.851 0.845
RB FT 0.321 0.683 0.320 0.436

Table 4: Comparison of Hyperpartisan and Rhetorical Bias Classification Models
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Figure 3: Distribution of Techniques Across Article
Quartiles

this imbalance, as models perform well on major-
ity classes but fail on rare ones. Similar trends
are observed for sentence-bert-base-italian-
xx1l-uncased, which achieves competitive HP clas-
sification results (accuracy: 0.851, F1: 0.845) but
performs poorly on RB classification (accuracy:
0.321, F1: 0.436). This suggests that sentence
embeddings are effective for hyperpartisan clas-
sification but less suited for rhetorical bias detec-
tion. The model’s struggle with RB is further ex-
acerbated by the highly skewed class distribution,
making it difficult to learn meaningful represen-
tations for rare rhetorical bias categories. The
macro-averaged F1 scores reinforce that under-
represented classes are poorly classified, reducing

overall model effectiveness.

5 Conclusion and Future Work

In this work, we introduced a novel Italian news
dataset focused on climate change and Euroscepti-
cism, specifically designed for hyperpartisan and
rhetorical bias detection. Our dataset emphasizes
the critical need to collect news in underrepresented
languages to gain a deeper understanding of hyper-
partisanship across European countries. Spanning
diverse and polarizing public topics, the dataset
consists of 48 articles divided into 1,010 sentences,
annotated for hyperpartisanship (binary labels) and
enriched with over 1.5K rhetorical fallacy labels
using a fine-grained taxonomy.

Our study underscores the significance of analyz-
ing hyperpartisanship in conjunction with rhetor-
ical biases, as these biases can profoundly influ-
ence the objectivity of storytelling in news articles.
Through detailed corpus analysis, we contributed to
the field by offering nuanced insights into how spe-
cific rhetorical techniques align with hyperpartisan
content, enhancing our understanding of manipula-
tion strategies in media.

We also established strong baselines using state-
of-the-art architectures and learning paradigms,
such as FT and 0O-shot, demonstrating the versa-
tility and applicability of our dataset. By sharing
the full pipeline to recreate the dataset, we aim
to facilitate the development of new methods and
tools to critically analyze online media content.

Future work will focus on experimenting with
advanced models and exploring how leveraging
rhetorical biases can further improve hyperpartisan
sentence detection. Despite the annotation required
high effort and is not scalable, we plan to extend
the current dataset with other articles. We hope our
work serves as a stepping stone for more robust and
transparent media analysis, ultimately contributing
to a healthier information ecosystem.
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6 Limitations

Regarding the dataset size (48 articles, 1,010 sen-
tences), we acknowledge is relatively small, po-
tentially limiting the generalizability of findings
and the robustness of model training. Expanding
the dataset with a broader range of sources and
perspectives would improve coverage and model
performance.

Second, the focus on far-right media outlets in-
troduces a selection bias, which, while intentional
for analyzing hyperpartisan rhetoric, may not cap-
ture the full spectrum of climate change discourse
in Italy. Future work should explore more diverse
media sources, including centrist and left-leaning
outlets, to provide a more comprehensive view.

Third, while our annotation scheme achieves
moderate agreement (Cohen’s kappa = 0.63), some
rhetorical biases remain inherently subjective and
difficult to categorize consistently due to their dis-
tributions.

Finally, differently from Martino et al. (2019);
Da San Martino et al. (2020); Piskorski et al. (2023)
we did not include the span, as the annotation pro-
cess was highly demanding and the number of an-
notators limited. Such approach could further con-
tribute to fine-grained analysis of news articles, un-
derstanding on which specific words and rhetorical
patterns the hyperpartisan is based.

Finally, while we provide article URLSs for trans-
parency, copyright restrictions prevent us from
openly distributing full-text data. This limits di-
rect replication and benchmarking. Future work
could explore ways to balance reproducibility with
legal constraints, such as structured metadata rep-
resentations or synthetic dataset augmentation.

Ethics Statement

Biases

The news articles in our dataset may contain
harmful content, including loaded language, name-
calling, and slurs. Our annotation process was de-
signed to focus solely on identifying rhetorical bias
and hyperpartisan language rather than assessing
the truthfulness of the information. To ensure ob-
jectivity, annotations were conducted without con-
sidering annotators’ personal opinions or political
views on the topics discussed. Additionally, we did
not rely on crowdsourcing; instead, we managed
our annotators directly, ensuring proper working
conditions and maintaining annotation quality.

We recognize the potential risks of bias in both
data collection and model predictions. The inherent
subjectivity in identifying rhetorical bias and hyper-
partisanship means that biases can emerge from the
dataset itself, as well as from the models trained on
it. Given the sensitive nature of hyperpartisan and
rhetorical bias detection, we advise caution when
using the dataset and models to avoid reinforcing
biases or misrepresenting viewpoints. Future work
should focus on refining annotation practices, im-
proving model interpretability, and incorporating
interdisciplinary perspectives to mitigate potential
harms.

Intended Use and Misuse Potential

This dataset is intended to advance research in
hyperpartisan news detection, particularly in un-
derrepresented languages. It can contribute to the
development of more robust models and analyti-
cal tools for identifying rhetorical bias in media.
However, we acknowledge the risk of misuse, par-
ticularly by malicious actors seeking to manipulate
or censor content. To prevent unintended conse-
quences, we urge researchers and practitioners to
use this dataset responsibly and transparently, en-
suring that any conclusions drawn are supported by
rigorous evaluation and ethical considerations.

The work presented in this paper complies with
the ACL Ethics Policy ’. We have relied on open
architectures when possible. We hope that the com-
munity can benefit from our work to apply NLP
technology to tackle climate change and Euroscep-
tism.
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A Appendix

Guidelines

Annotation Guidelines (ENG)

Hyperpartisan sentences: Text that displays ex-
treme bias favoring one particular political side,
often employing pronounced use of rhetorical bi-
ases. Label it 1, if the sentence is hyperpartisan, or
0 if it is neutral. Explicit examples: - "We are tired
of government’s abuses! We don’t want to drive

electric car!" Neutral examples: - "Electric cars are
not as green as industry tell us".

Slogan/Conversation Killer: Short and impact-
ful phrases designed to discourage critical think-
ing and/or urge a certain action by presenting the
message as definitive. These often draw on seem-
ingly indisputable popular wisdom or stereotypes
to avoid further discussion. Explicit examples: -
"Think global, act local!" - "That’s just how it is,
there’s nothing more to add." Implicit examples: -
"Be part of the solution, not part of the pollution."

- "With the utmost respect for green policies and

climate change, shareholders want profits. Period."

Appeal to Time: An argument centered on the
idea that the time has come for a particular action
or that there is no more time to waste. The call
to "Act Now!" Explicit example: "If we don’t act
immediately on the climate crisis, in ten years it
will be too late to save the planet!" Implicit exam-
ple: "The timing for this reform could not be more
perfect..."

Appeal to Values/Flag Waving: Leverages
identity values (nationalism, patriotism, belong-
ing to a social group/class), as well as moral and
social values considered positive by the target au-
dience (freedom, democracy, ethics, religion) to
promote or justify an idea. It operates on the as-
sumption that the audience already holds certain
biases or beliefs. Explicit examples: - "If we must
have climate policies—very few—then let’s adopt
only those that benefit Italy." - "Ecology cannot
and must not take priority over citizens’ freedom."
Implicit examples: - "While other countries bow
to these policies, we must protect our interests."
(a veiled appeal to nationalism) - "These policies
are gradually eroding the principles on which our
society is founded." (an appeal to preserving social
values)

Appeal to Authority: Giving weight to a partic-
ular idea by citing a supposed authority as a source,
regardless of whether they are actually competent
in the field. The tone of the statement suggests
that the weight of this supposed authority is being
used to justify information or conclusions. Explicit
example: "Climatologist Richard Dawkins says cli-
mate change doesn’t exist, therefore climate change
is a lie!" Implicit example: "Those who have truly
studied the issue know very well that things are not
as they seem."

Appeal to Popularity: Justifying an idea by
claiming that "everyone" agrees or that "no one"
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disagrees, encouraging the audience to adopt the
same position out of conformity. "Everyone" may
refer to the general public, experts (e.g., all experts
say that...), countries, or other groups. Explicit ex-
ample: "No one here is denying that the planet’s
temperature is rising, so climate change is real."
Implicit example: "Ideological rules have been im-
posed that no one else follows."

Appeal to Fear: Promoting or rejecting an idea
by exploiting the audience’s repulsion or fear, de-
scribing possible scenarios in a frightening way
(terrible things that could happen) to instill fear.
Explicit example: "Climate taxes are just the be-
ginning. If we keep up this farce, they’ll take ev-
erything we have!" Implicit example: "This is just
the first step in a larger plan that will lead to irre-
versible consequences."

Straw Man/Red Herring: A technique that
shifts the discussion away from the original topic
through two main approaches: distorting the orig-
inal argument into an easier-to-attack version or
introducing a different but seemingly related topic.
The goal is to avoid addressing the substance of the
initial issue by diverting attention to a secondary
theme. Explicit examples: - "When you ask for
a more gradual energy transition, you’re basically
saying you don’t care if the planet becomes unin-
habitable for our children." - "Instead of always
talking about CO2 emissions, look at this great ini-
tiative we launched for beach clean-ups!" Implicit
examples: - "Their concern for the employment im-
pact of closing coal plants reveals the usual mindset
that prioritizes profit over the planet’s survival." -
"Before discussing climate policies, shouldn’t we
focus on improving waste sorting in municipali-
ties?"

Tu Quoque/Whataboutism: A technique that
attempts to discredit a position or opponent by high-
lighting alleged contradictions or double standards.
This can manifest by pointing out inconsistencies
on the same issue or introducing comparisons with
other contexts or situations. The goal is to under-
mine credibility through comparisons with other
matters. Explicit examples: - "Look at them, all fly-
ing around in helicopters, while just weeks ago they
were sounding the alarm and criticizing waste!" -
"He talks so much about the climate emergency,
but we’re still waiting for answers on the migration
crisis." Implicit examples: - "Funny how certain
climate positions change so quickly when politi-
cal circumstances shift." - "Interesting concern for

the environment... I wonder if the same attention
was there when it came to approving the airport
expansion in your region."

Loaded Language: Using specific words and
phrases with strong emotional implications (both
positive and negative) to influence and persuade
the audience. The essence of this technique is the
use of terms that go beyond their literal meaning
to evoke an emotional response. Explicit exam-
ple: "These climate dictatorships run by idiots."
Implicit example: "A somewhat unconventional
management of public funds."

Repetition: The repeated use of the same word,
phrase, story, or image in the hope that repeti-
tion will persuade the audience. Explicit exam-
ple: "Safety is our priority. We must ensure safety.
Without safety, there is no future. Safety must come
first." Implicit example: "Innovation is the key. We
must focus on innovation. Innovation will save us.
Only through innovation can we progress."

Intentional Confusion/Vagueness: Using de-
liberately unclear wording so that the audience can
have their own interpretations. For example, an ar-
gument may include a vague phrase with multiple
or unclear definitions, which ultimately does not
support the conclusion. Explicit example: "We will
develop synergistic paradigms aimed at the hor-
izontal optimization of ecological performance."
Implicit example: "It has been proven that 70% of
the time green policies work every time."

Exaggeration/Minimization: Representing
something in an exaggerated manner: making
things seem bigger, better, or worse (e.g., "the best
of the best," "guaranteed quality") or downplaying
something to make it seem less important than it
really is (e.g., calling an insult just a joke), mini-
mizing statements and ignoring arguments or ac-
cusations made by an opponent. Explicit example:
"Never seen such colossal incompetence in pub-
lic management." Implicit example: "There were
some victims due to inefficiencies, but nothing to
worry about."

Name Calling: Characterizing an individual or
group using emotionally charged and/or derogatory
labels. This specifically relates to labeling the sub-
ject with adjectives, nouns, or references to politi-
cal orientations, opinions, personal characteristics,
or organizational affiliations, rather than construct-
ing an argument with premises and conclusions.
Explicit example: "Giuseppe Conte to Di Battista,
here are all the ’grillini” who should ’blush’ for
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their past pro-Putin positions on climate." Implicit
example: "The usual armchair theorists now want
to tell us how to manage the real economy."

Reductio ad Hitlerum: Attacking an opponent
or activity by associating them with another group,
activity, or concept with strong negative connota-
tions for the target audience. The technique estab-
lishes a link or equivalence between the target and
any individual, group, or event (past or present)
perceived as unquestionably negative or presented
as such. The goal is to transfer the negativity of
the association to the criticized subject. Explicit
example: "Even Big Brother said controlling ev-
eryone’s lives was for the greater good." Implicit
example: "This approach to dissent management is
just missing men in black shirts."

Smear/Doubt: A technique aimed at undermin-
ing the credibility of someone or something (e.g.,
institutions) by questioning specific skills or ca-
pabilities, attacking reputation and overall moral
character, or casting doubt on the intentions be-
hind a decision. Explicit examples: - "The increase
in energy bills exposes the green shift deception
promoted by the EU." - "He worked for the same
company he is now supposed to regulate—how can
we trust him?" Implicit examples: - "The U.S. and
Europe, with their green policies, still think in colo-
nial terms." - "Their recent decisions make one
wonder what this administration’s real priorities
are." Given the following text, read it very care-
fully and identify the possible presence of one or
more of the persuasion techniques defined above.

Consider that:

Techniques may overlap: the same sentence can
employ multiple techniques simultaneously. Tech-
niques can be expressed sarcastically or indirectly.
Tone and context are as important as specific words.
A technique may manifest through a series of re-
lated statements rather than a single sentence. The
text may not necessarily contain any technique, but
it is crucial to analyze it thoroughly to eliminate
any doubt. If no technique is detected, respond
with "no technique detected."

A.1 Examples
A.1.1 Anneotation Guidelines (ITA)

Hyperpartisan frasi: Testo che mostra un’estrema
faziosita a favore di una specifica parte politica,
spesso impiegando un uso marcato di bias retorici.
Etichettalo come 1 se la frase ¢ iperpartigiana, o 0
se ¢ neutrale.

Esempi espliciti:
"Siamo stanchi degli abusi del governo! Non
vogliamo guidare auto elettriche!" Esempi neutrali:

"Le auto elettriche non sono cosi ecologiche
come 1’industria ci racconta."

Slogan/Conversation Killer: Frasi brevi e inci-
sive per scoraggiare il pensiero critico eo esortare a
compiere una certa azione attraverso un’apparente
definitivita del messaggio. Spesso si richiamano
alla saggezza popolare, apparentemente incontesta-
bile, o a stereotipi per evitare ulteriori discus-
sioni. Esempi espliciti: - "Vivi locale, pensa glob-
ale!" - "E cosi e basta, non c’& altro da aggiun-
gere." Esempi impliciti: - "Sii parte della soluzione,
non parte dell’inquinamento” - "Con il massimo
rispetto per il green e per il cambiamento climatico,
¢gli azionisti vogliono gli utili. Punto."

Appeal to Time: Argomento centrato sull’idea
che sia giunto il momento di una particolare
azione, oppure che non ci sia pill tempo da perdere.
L appello ad "Agire Ora!". Esempio esplicito: "Se
non agiamo immediatamente sulla crisi climatica,
entro dieci anni sara troppo tardi per salvare il pi-
aneta!" Esempio implicito: "Il momento per questa
riforma non potrebbe essere pill propizio di cosi..."

Appeal to Values/Flag Waving: Fa leva su
valori identitari (nazionalismo, patriottismo, ap-
partenenza a un gruppo/ceto sociale) morali e so-
ciali considerati positivi dal pubblico target (lib-
erta, democrazia, etica, religione) per promuovere
o giustifica un’idea. Si basa sul presupposto che
i destinatari abbiano gia determinati pregiudizi o
convinzioni. Esempi espliciti: - "Se proprio abbi-
amo bisogno di politiche climatiche - pochissime
- allora adottiamo solo quelle che avvantaggiano
I’Italia." - "Perché I’ecologia non puo, né deve, es-
sere assolutamente prioritaria rispetto alla liberta
dei cittadini" Esempi impliciti: - "Mentre altri paesi
si piegano a queste politiche, noi dobbiamo pro-
teggere i nostri interessi.” (appello velato al nazion-
alismo) - "Queste politiche stanno gradualmente
erodendo i principi su cui si basa la nostra societa"
(appello alla preservazione dei valori sociali)

Appeal to Authority: Dare peso ad una certa
idea citando una presunta autorita come fonte, che
puo essere o meno effettivamente competente nel
campo. Il tono del testo indica che si sfrutta il
peso di questa presunta autorita per giustificare
informazioni o conclusioni. Esempio: "Il clima-
tologo Richard Dawkins dice che il cambiamento
climatico non esiste, ergo il cambiamento climatico
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Translation: Murky Green: What Lies Behind the Drug That Stops Cows

from Farting

Hyperpartisan; Smear/Doubt, Loaded Language

Translation: {To all this, [[add the utterly ||senseless||
traffic restrictions, |absurd|| speed limits, the lexorbitant]|
ownership tax (straight out of _), the |[prohibitive||
cost of insurance, maintenance, fuel—and anything else |] they can
think of to pile on}.
Hyperpartisan; NEICHGSENg , Smear/Doubt, Loaded
Language, Repetition, Exaggeration/ Minimisation. {} and [] indicate

overlapping techniques.

Figure 4: Comparable examples of rhetorical biases.

¢ una menzogna!" Esempio implicito: "Chi ha stu-
diato davvero la questione sa bene che le cose non
stanno cosi."

Appeal to Popularity: Giustificare un’idea
sostenendo che "tutti" sono d’accordo o che "nes-
suno" ¢ in disaccordo, incoraggiando il pubblico
ad adottare la stessa posizione per conformismo.
"Tutti" puo riferirsi al pubblico generale, esperti
(tutti gli esperti dicono che...), paesi o altri gruppi.
Esempio: "Nessuno qui sta negando che la tem-
peratura del pianeta stia aumentando, quindi ¢’¢ il
cambiamento climatico” Esempio implicito: "Sono
state dettate delle regole ideologiche che nessun
altro segue."

Appeal to Fear: Promuovere o respingere
un’idea sfruttando la repulsione o la paura del pub-
blico, descrivendo possibili scenari in modo spaven-
toso (terribili cose che potrebbero succedere) per
instillare paura. Esempio: "Le tasse sul clima sono
solo I’inizio. Se continuiamo con questa farsa si
prenderanno tutto quello che abbiamo!" Esempio
implicito: "Questo ¢ solo il primo passo di un piano
pilt ampio che portera a conseguenze irreversibili"

Straw Man/Red Herring: Tecnica che sposta la
discussione dall’argomento originale attraverso due
modalita principali: la distorsione dell’argomento
originale in una versione piu facilmente attacca-
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bile o I’introduzione di un argomento diverso ma
apparentemente correlato. L’obiettivo ¢ evitare di
affrontare direttamente il merito della questione in-
iziale spostando 1’attenzione su un tema secondario.
Esempi espliciti: - "Quando chiedi una transizione
energetica pit graduale, in pratica stai dicendo che
non ti importa se il pianeta diventera inabitabile
per i nostri figli." - "Invece di parlare sempre di
emissioni di CO2, guardate che bell’iniziativa ab-
biamo fatto per la pulizia delle spiagge!" Esempi
impliciti: - "Il loro interesse per gli impatti occu-
pazionali della chiusura delle centrali a carbone
rivela la solita mentalita che antepone il profitto
alla sopravvivenza del pianeta." - "Prima di dis-
cutere delle politiche climatiche, non dovremmo
concentrarci sul miglioramento della raccolta dif-
ferenziata nei comuni?"

Tu Quoque/Whataboutism: Tecnica che tenta
di screditare una posizione o un avversario evi-
denziando presunte contraddizioni o doppi stan-
dard. Puo manifestarsi evidenziando incoerenze
sullo stesso tema o introducendo comparazioni con
altri ambiti o situazioni. L’obiettivo ¢ minare la
credibilita attraverso paragoni con altre questioni.
Esempi espliciti: - "Guardateli, sono tutti li a girare
in elicottero, fino a poche settimane fa a lanciare
allarmi e criticare gli sprechi!” - "Parla tanto di



emergenza climatica, ma ancora stiamo aspettando
risposte sull’emergenza migratoria" Esempi implic-
iti: - "E curioso vedere come certe posizioni sul
clima cambino rapidamente quando cambiano le
circostanze politiche" - "Interessante questa preoc-
cupazione per I’ambiente... mi chiedo se c’era la
stessa attenzione quando si trattava di approvare
I’espansione dell’ aeroporto nella vostra regione."

Loaded Language: Utilizzo di parole e frasi
specifiche con forti implicazioni emotive (sia pos-
itive che negative) per influenzare e convincere il
pubblico. L’essenza di questa tecnica ¢ 1’uso di ter-
mini che vanno oltre il loro significato letterale per
evocare una risposta emotiva. Esempio : "Queste
dittature climatiche governate da idioti" Esempio
implicito : "Una gestione non proprio ortodossa
dei fondi pubblici”

Repetition: Uso ripetuto della stessa parola,
frase, storia o immagine nella speranza che la ripe-
tizione porti a persuadere il pubblico. Esempio:
"La sicurezza ¢ la nostra priorita. Dobbiamo garan-
tire la sicurezza. Senza sicurezza non c’¢ futuro.
La sicurezza deve essere al primo posto." Esempio
implicito: "Innovazione ¢ la parola chiave. Dob-
biamo puntare sull’innovazione. L’ innovazione ci
salvera. Solo attraverso I’innovazione possiamo
progredire."

Intentional Confusion Vagueness: Uso di pa-
role deliberatamente poco chiare in modo che il
pubblico possa avere le proprie interpretazioni. Ad
esempio, quando nell’argomentazione viene utiliz-
zata una frase poco chiara con definizioni multiple
o poco chiare e, quindi, non supporta la conclu-
sione. Esempio: "Svilupperemo paradigmi siner-
gici atti all’ottimizzazione orizzontale delle perfor-
mance ecologiche" Esempio implicito : "E’ stato di-
mostrato che nel 70% delle volte le politiche green
funzionano tutte le volte"

Exaggeration Minimisation: Rappresentare
qualcosa in modo eccessivo: rendere le cose piu
grandi, migliori, peggiori (es. "il migliore dei
migliori", "qualita garantita") o far sembrare qual-
cosa meno importante o pit piccolo di quanto sia in
realta (es. dire che un insulto era solo uno scherzo),
minimizzando dichiarazioni e ignorando argomenti
e accuse fatte da un avversario. Esempio: "Mai
vista una incompetenza cosi colossale nella ges-
tione pubblica” Esempio implicito: "Le vittime
ci sono state per alcune inefficienze, ma niente di
preoccupante”

Name Calling: Caratterizzare un individuo o

gruppo usando etichette cariche emotivamente e/o
denigratorie. Riguarda specificamente la caratteriz-
zazione del soggetto attraverso aggettivi, sostantivi
o riferimenti a orientamenti politici, opinioni, carat-
teristiche personali o appartenenze organizzative.
Opera a livello del gruppo nominale piuttosto che
come argomento completo con premesse e conclu-
sioni. Esempio: "Giuseppe Conte a Di Battista,
ecco tutti i grillini che dovrebbero "arrossire" per
le loro passate posizioni filo putiniane sul clima"
Esempio implicito: "I soliti teorici da salotto ora
vogliono dirci come gestire 1’economia reale"

Reductio ad Hitlerum: Attaccare un avversario
o un’attivita associandoli ad un altro gruppo, attiv-
ita o concetto che ha forti connotazioni negative
per il pubblico target. La tecnica opera stabilendo
un collegamento o un’equivalenza tra il bersaglio
e qualsiasi individuo, gruppo o evento (presente o
passato) che ha una percezione indiscutibilmente
negativa o viene presentato come tale. L’ obiettivo &
trasferire la negativita dell’associazione al soggetto
criticato. Esempio: "Anche il Grande Fratello
diceva di controllare la vita di tutti per il bene co-
mune" Esempio implicito: "A questo approccio
alla gestione del dissenso mancano solo gli uomini
in camicia nera"

Smear/Doubt: Tecnica che mira a minare la
credibilita di qualcuno o qualcosa (ad esempio
enti/istituzioni) questionando specifiche compe-
tenze o capacita, attaccando la reputazione e il
carattere morale complessivo, mettendo in dubbio
le intenzioni alla base di una scelta. Esempi es-
pliciti: - "L’aumento della bolletta svela I’inganno
della svolta green promossa dall’UE" - "Ha lavo-
rato per la stessa azienda che ora dovrebbe control-
lare, come possiamo fidarci?" Esempi impliciti: -
"Gli Stati Uniti e I’Europa, con le loro politiche
green, pensano ancora in termini coloniali" - "Le
loro decisioni recenti fanno riflettere su quali siano
le vere priorita di questa amministrazione"

Causal Oversimplification/Consequential
Oversimplification: Tecnica usata per ridurre
un fenomeno complesso ad una singola causa,
ignorando altri fattori, spesso per supportare
una narrativa o soluzione specifica (secondo
la logica Y ¢ successo dopo X, quindi X ¢ la
causa di Y", oppure "X ha causato Y, quindi X ¢
I’unica causa di Y). Usata anche per affermare
che un certo evento/azione portera a una catena
di eventi a effetto domino con conseguenze
negative (per respingere 1’idea) o positive (per
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supportarla). In questo caso assume la forma di
. se succedera A, allora B, C, D succederanno.
Esempi espliciti: - "Il riscaldamento globale ¢
causato esclusivamente dall’industria della carne.
Basta smettere di mangiare carne e il problema si
risolvera." (semplificazione della causa) - "Si inizia
con il limitare la circolazione in alcuni veicoli,
poi di alcuni veicoli e alla fine non ci si potra piu
spostare” (semplificazione delle conseguenze)
Esempi impliciti: - "Non sorprende che I’economia
sia in difficolta dopo le manovre green." (implicita
semplificazione causale) - "Iniziative simili in altri
contesti hanno innescato cambiamenti sorprenden-
temente positivi." (implicita semplificazione delle
conseguenze)

False Dilemma No Choice: Presentare una situ-
azione come se avesse solo due alternative quando
in realta esistono piul opzioni. Nella sua forma es-
trema, presenta una sola possibile linea d’azione,
eliminando tutte le altre scelte. L’essenza princi-
pale della False Dilemma ¢ limitare artificialmente
la gamma di possibili soluzioni o punti di vista,
spesso per forzare una particolare conclusione o
corso d’azione. Pud assumere 2 forme: Ci sono
solo due alternative, A o B, non puo essere A,
quindi & B; I’unica soluzione possibile ¢ B Esem-
pio: "O accettiamo I’energia nucleare o torniamo
al medioevo energetico. Esempio implicito: "In
questa situazione climatica mi chiedo quale altra
scelta abbiamo se non quella di adottare misure
drastiche."

Dato il seguente testo, leggilo molto attenta-
mente e individua I’eventuale presenza di una o
piu delle tecniche di persuasione sopra definite.
Considera che: - Le tecniche possono sovrapporsi:
la stessa frase puo utilizzare piu tecniche contempo-
raneamente - Le tecniche possono essere espresse
in modo sarcastico o indiretto - Il tono e il con-
testo sono importanti quanto le parole specifiche -
Una tecnica puo manifestarsi attraverso una serie
di affermazioni correlate, non necessariamente in
una singola frase - Non necessariamente il testo
contiene una tecnica, perod ¢ molto importante che
lo analizzi a fondo per evitare ogni dubbio

Se nessuna tecnica viene rilevata, rispondi "no
technique detected".

A.2 Prompt Rhetorical Bias Detection

Instruction: You are an expert in analyzing persua-
sive texts and identifying techniques of persuasion
and manipulation, including implicit ones. Care-

fully analyze each text provided, considering both
the literal and implicit meaning. The following are
rhetorical techniques.

Loaded Language : Using specific words and
phrases with strong emotional implications (both
positive and negative) to influence and persuade
an audience. Profanity may be used. The essence
of this technique is the use of terms that go be-
yond their literal meaning to evoke an emotional
response.

Exaggeration Minimisation : To over-represent
something: to make something bigger, better,
worse (e.g. "the best of the best", "quality guar-
anteed") or to make something seem less important
or smaller than it really is (e.g. saying an insult was
just a joke), by minimizing statements and ignoring
arguments and accusations made by an opponent.

Slogan/Conversation Killer : Short, punchy
phrases to discourage critical thinking and/or to
urge a certain action through an apparent definitive-
ness of the message. They often appeal to popular
wisdom, apparently incontestable, or to stereotypes
to avoid further discussion.

Appeal to Time : An argument centered on the
idea that the time has come for a particular action,
or that there is no more time to waste. The appeal
to "Act Now!".

Appeal to Values/Flag Waving : It leverages
identity values (nationalism, patriotism, belonging
to a group/social class) moral and social values
considered positive by the target audience (free-
dom, democracy, ethics, religion) to promote or
justify an idea. It is based on the assumption that
the recipients already have certain prejudices or
beliefs.

Appeal to Authority : When to support or justify
a thesis, one cites an authority as a source, who
may or may not actually be competent in the field.

Appeal to Popularity : Justifying an idea by
claiming that "everyone" agrees or that "no one"
disagrees, encouraging the public to adopt the same
position for conformity. "Everyone" can refer to
the general public, experts (all experts say that...),
countries or other groups.

Appeal to Fear : Promoting or rejecting an idea
by exploiting the revulsion or fear of the public,
describing possible scenarios in a frightening way
(terrible things that could happen) to instill fear.

Straw Man/Red Herring : The discussion is di-
verted from the original topic by introducing seem-
ingly coherent arguments, but different from the
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main theme. This shifts the focus to a secondary
theme.

Tu Quoque/Whataboutism : Discrediting a po-
sition or opponent by highlighting alleged contra-
dictions or double standards. It can occur by high-
lighting inconsistencies on the same topic or by
introducing comparisons with other fields or situa-
tions. The goal is to undermine credibility through
comparisons with other issues.

Repetition : Repeated use of the same word,
phrase, story, or image in the hope that repetition
will persuade the audience.

Intentional Confusion Vagueness : Use of delib-
erately unclear words so that the audience can have
their own interpretations. For example, when an
unclear sentence with multiple or unclear defini-
tions is used in the argument and, therefore, does
not support the conclusion.

Name Calling : When names or adjectives are
given to an individual, institution, or group with
the intent to denigrate or question their authority.
It specifically concerns the characterization of the
subject through adjectives, nouns or references to
political orientations, opinions, personal character-
istics or organizational memberships.

Reductio ad Hitlerum : Attacking an opponent
or an activity by associating them with another
group, activity or concept that has strong negative
connotations for the target audience. The technique
works by establishing a connection or equivalence
between the target and any individual, group or
event (present or past) that has an indisputably neg-
ative perception or is presented as such. The goal
is to transfer the negativity of the association to the
criticized subject.

Smear/Doubt : Technique that aims to under-
mine the credibility of someone or something (for
example entities/institutions) by questioning spe-
cific skills or abilities, attacking the reputation and
overall moral character, casting doubt on the inten-
tions underlying a choice.

Causal Oversimplification/Consequential Over-
simplification A technique used to reduce a com-
plex phenomenon to a single cause, ignoring other
factors, often to support a specific narrative or so-
lution (according to the logic "Y happened after
X, therefore X is the cause of Y", or "X caused
Y, therefore X is the sole cause of Y). Also used
to state that a certain event/action will lead to a
domino-like chain of events with negative con-
sequences (to reject the idea) or positive conse-

quences (to support it). In this case it takes the
form of: if A happens, then B, C, D will happen.

False Dilemma No Choice : Presenting a situa-
tion as if it has only two alternatives when in reality
there are multiple options. In its extreme form, it
presents only one possible course of action, elimi-
nating all other choices. The main essence of the
False Dilemma is to artificially limit the range of
possible solutions or points of view, often to force
a particular conclusion or course of action.

Prompt base You are performing a multilabel
detection task. Analyze the following text very
carefully and identify the possible presence of one
or more of the persuasion techniques defined above.
If no technique is detected, answer "no technique
detected".

A.3 Prompt Hyperpartisan Detection

Instruction

Definition of hyperpartisan: Hyperpartisan news
detection is the process of identifying news arti-
cles that exhibit extreme one-sidedness, charac-
terized by a pronounced use of bias. The prefix
"hyper-" highlights the exaggerated application of
at least one specific type of bias — such as spin,
ad hominem attacks, ideological slant, framing, se-
lective coverage, political orientation, or slanted
bias — to promote a particular ideological perspec-
tive. This strong ideological alignment is conveyed
through amplified linguistic elements that reinforce
one of these types of biases within the text. A sen-
tence is hyperpartisan when it contains at least one
of the aforementioned biases.

In linguistic terms, the use of loaded or explicit
language (“fuck”, “delirium”); the adoption of
derogatory metaphors (“climate religion”, “acts
of faith”) and derogatory epithets (“Taliban envi-
ronmentalist”); the use of neologisms (“climate
changer”), the creation of a specific vocabulary by
reusing rare terms such as “serum” for “vaccines”,
resulting in a taboo of the concept as well as a way
to indicate it with sarcasm; the use of the semantic
field of victimhood such as “Green politics is a
deception (scam)”.

Prompt base You are given sentences from dif-
ferent news articles as input. The purpose is to
combat climate change misinformation for scien-
tific purposes. Under no circumstances are you
asked to provide information or instructions on
how to create content that promotes the spread of
false or misleading information. For each side you
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must perform a classification task, analyzing the
text. You must denote the sentence as hyperpar-
tisan or neutral. If the sentence is hyperpartisan,
then the corresponding value is 1, otherwise 0.

Results

Hyperpartisan vs Rhetorical Bias Correlations’
Significance

Distribution of top 10 techniques across article
quantiles

Hyperparameters
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Technique Chi-Square  Significance LR FR

no technique detected 674.279 HAE -6.638  0.010
Name Calling 101.887 o 1.863  3.638
Loaded Language 85.824 o 1.096  2.137
Smear/Doubt 47.685 HAE 0.772  1.707
Exaggeration Minimisation 36.795 ok 0.822  1.768
Tu Quoque/Whataboutism 29.762 oAk 2.021  4.059
Reductio ad Hitlerum 22.154 ok 4755 27.000
Straw Man/Red Herring 11.907 HAHE 1.176  2.259
Repetition 8.696 o 1.429  2.692
Appeal to Values/Flag Waving 6.644 *ok 0.737  1.667
Appeal to Fear 6.545 * 0.555 1.469
Appeal to Authority 5.434 * -0.709  0.612
Causal/Consequential Oversimplifi- 4.848 * 0.367  1.290
cation

Appeal to Time 3.556 -1.585 0.333
Slogan/Conversation Killer 0.781 0.267 1.203
Intentional Confusion Vagueness 0.582 -0.258 0.836
False Dilemma No Choice 0.030 0.086  1.062
Appeal to Popularity 0.000 -0.241 0.846

Table 5: Rhetorical Techniques Chi-Square analysis for p-values: 0.05 *, 0.01 **, 0.001 ***, Frequency Ratio (FR).
Frequency Ratio (FR) quantifies how many times more frequent a technique is in the dominant group. A value of 1
represents equal frequency between groups, while values greater than 1 reflect the extent of the difference.

Hyperparameter Value

Learning rate 1x1074
Epochs 2

Runs 5
Weight decay 0.001

Max grad norm 0.3

Warmup ratio 0.1

Table 6: Hyperparameters for Fine-Tuning experiments
with encoder-only models.
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Figure 5: Distribution of the techniques across article quantiles.
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Abstract

Reforestation and revegetation projects can
help mitigate climate change because plant
growth removes CO- from the air. However,
the use of non-native species and monocul-
tures in these projects may negatively affect
biodiversity. Here, we describe a data pipeline
to extract information about species that are
planted or managed in over 1,000 afforesta-
tion/reforestation/revegetation and improved
forest management projects, based on detailed
project documentation. The pipeline lever-
ages a large-context LLM and results in a
macro-averaged recall of 79% and a macro-
averaged precision of 89% across all projects
and species.

1 Introduction

Reforestation and revegetation projects can help
mitigate climate change because plant growth re-
moves CO5 from the air. The voluntary carbon mar-
ket (VCM) includes carbon credits from both "af-
forestation/reforestation/revegetation” (ARR) and
"improved forest management" (IFM) projects.
The major VCM registries have issued more than
300 million credits (tons of CO5 equivalent, tCOqe)
to date for ARR and IFM projects (~14% of the
total volume) (Haya et al., 2025).

However, the use of non-native species and
monocultures in these projects may negatively af-
fect biodiversity (Cunningham et al., 2015), (An-
dres et al., 2022), (Moyano et al., 2024). ARR and
IFM projects may plant or manage one or more na-
tive species, use a mixture of native and non-native
species, or use entirely non-native species due to
faster growth rates that reduce the cost per tCOse
mitigated (Busch et al., 2024).

Unfortunately, comprehensive metrics to track
planted and managed ("p/m") species in ARR and
IFM projects are not readily available. Manual ex-
amination of project documents is difficult because
there are more than 1,000 ARR and IFM projects

in major VCM registries (Haya et al., 2025). A
single project’s documentation may have tens to
hundreds of pages across multiple documents with
no common format. Species may be named in the
text by botanical (Latin) or common names, and/or
be misspelled. A species may be mentioned to in-
dicate it will be planted, it will not be planted, it
will be reduced/suppressed, or without clear im-
plications. Given these complexities, advanced
natural-language-processing methods are needed.

Here we describe a data pipeline that uses large-
context large language models (LLM) to extract
information about p/m species in ARR and IFM
projects from project documentation. We apply
the pipeline to > 1,000 ARR and IFM projects and
compare our results to expert human annotation of
a subsample. Our pipeline performs well, although
validation against expert-annotated "ground truth"
data is challenging. Optimizing across two differ-
ent LLMs, our pipeline results in a macro-averaged
recall of 79% and a macro-averaged precision of
89%. We present an analysis of our system’s per-
formance using the better-performing model, an
error analysis, and a comparison between the two
LLM:s.

2 Background

There are two main approaches for LLM-based
information extraction from long documents.
Retrieval-augmented generation (RAG) uses vector
similarity between an input prompt and a docu-
ment database to identify relevant documents, then
sends the result to an LLM for response genera-
tion. The emergence of large-context (LC) LLMs
has led to an alternative approach in which an LC
LLM is directly prompted with tasks, with the en-
tire document appended as context. The relative
strengths of these two approaches continue to be de-
bated (Xu et al., 2024)(Li et al., 2024). LLMs have
been used in biology and ecology for information
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extraction, including the use of GPT-4 to extract
information about pests from scientific abstracts
(Scheepens et al., 2024); the use of GPT-3.5, GPT-
4, and LLaMA-2-70B to extract species distribution
data from news articles and research papers (Cas-
tro et al., 2024); and the use of fext-bison-001 to
extract information about plant pathogens from sci-
entific reports (Gougherty and Clipp, 2024). While
curated test datasets are needed for evaluating LLM
performance, human annotation is known to pro-
duce errors in domains ranging from medicine (Sy-
lolypavan et al., 2023) to online search (Peters
et al., 2023); careful annotation guidelines and pro-
cedures can partially mitigate this problem.

3 Methodology

Dataset Creation

We identified all ARR and IFM carbon credit
projects listed on three major VCM registries
(Verra, CAR and ACR) resulting in a total of
339 ARR and 750 IFM projects. We automati-
cally downloaded all existing project documents
for these projects and selected all PDFs for further
processing. The resulting dataset contains 4196
PDFs with a total of 148,778 pages. Projects in our
dataset contain up to 72 PDFs each, with an aver-
age of 10 documents per project. PDFs contain up
to 870 pages. The maximum number of document
pages in a project is 2502. Once downloaded, we
converted PDFs to plain text using LangChain’s
PyPDFLoader and concatenated the text, resulting
in one single, large document per project.

Test Set Annotation

We randomly selected 53 ARR and 21 IFM projects
for validation. These were distributed among 3
internal subject matter experts (SMEs), who an-
notated each one with a list of p/m species and
an indication of where the information was found
in the documentation. SMEs used keyword search
and visual scanning to find species information. On
average, the annotators spent 15 to 20 minutes per
project. Due to resource constraints, only a single
SME annotated each document. In a second step,
we automatically extracted p/m species informa-
tion from the documents using each of our LLMs
(see below) and manually validated the extracted
output. The final list of annotations combines the
SME annotations with corrections/additions from
the manually validated outputs of the LLMs.

Extracting Species Information

To extract species information from project descrip-
tions, we worked with gemini-1.5-flash-002 (writ-
ten gemini-1.5 in the following) and gemini-2.0-
flash-001 (gemini-2.0 in the following) through the
VertexAl platform. We chose to combine multiple
questions into a single prompt to minimize costs.
The prompt was as follows:

The context below describes a nature-based car-
bon credit project. Based on the context given,
answer the following questions:

* Which native plant species will be planted or
managed (if any)? Only list the native plants that
will be planted or actively managed, do not list
other native plants.

* Which non-native or invasive plant species will
be planted or managed (if any)? Only list the non-
native or invasive plants that will be planted or
actively managed, do not list other non-native or
invasive plants.

* Will native plant species be planted and/or
managed (true/false)?

* Will non-native or invasive plant species be
planted and/or managed (true/false)?

For each of the answers, provide an explana-
tion based on the context. Think in steps. If the
information is not in the text, simply say "l don’t
know".

We instructed the model to generate structured
output by providing VertexAl with a json structure.
If the generated response was not in valid json for-
mat, we retried the query once, and skipped the
project if that was also invalid. We also skipped
projects where the extracted text exceeded the
LLM’s (large) context window.

Post-Processing

LLM responses were cleaned by replacing "[I don’t
know]" and "[species]" with empty lists. The
prompt asked the LLM to distinguish between na-
tive and non-native plant species. Since in this pa-
per, we focus on analysing the complete list of all
p/m species, we discarded the answers to the final
two questions and aggregated the native and non-
native species lists to one final list, which we de-
duplicated, first automatically, then manually. Man-
ual de-duplication consisted of unifying species
that were mentioned with both their botanical and
common names, as well as de-duplicating species
that were clearly the same with minor spelling vari-
ations.
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Figure 1: Number of correctly identified vs true number
of species for gemini-1.5-flash (red circles) and human
expert annotators (blue squares) for all test set projects.

Output Validation

We manually validated the output by comparing the
list of species produced by the SME annotators and
the LLM. The validation was performed manually
since many species were mentioned in the docu-
ments using both botanical and common names;
both the SMEs and the LLM would sometimes
choose one and sometimes the other. Manual vali-
dation allowed us to accept a predicted species as
correct regardless of whether the botanical or com-
mon name was used. Species were also deemed cor-
rect if they were captured with minor misspellings.
These variations were typically the consequence
of a species being mentioned multiple times with
different spelling in the document. In some cases
the LLM output a higher-level taxonomic grouping
(e.g. the family or genus) rather than a species, for
example conifers or oaks instead of red cedar or
white oak. This was not counted as correct.

4 Results and Discussion

We successfully extracted data for 1006 out of the
1089 projects, with the remaining failing either be-
cause the documents were too long for the LLM’s
context window or the LLLM repeatedly failed to
create a valid json response. Given the prompt
above, gemini-1.5 performed better on our test set
than gemini-2.0. In the following we discuss the
results obtained with gemini-1.5 in detail, followed
by a short comparison with the results obtained
by gemini-2.0 and a qualitative discussion of the
differences.

Recall

In total, the 74 test set documents contained refer-
ences to 1241 p/m species. Of these, the human

SME annotators found 1147 and the LLM found
628, leading to a micro-averaged recall of 92%
for the human experts and 51% for the LLM. The
much lower micro-averaged recall of the LLM is
mainly caused by the LLM’s failure to correctly de-
tect the majority of p/m species for a small number
of projects with a large number of species. Fig. 1
shows the number of correctly identified species
by both the LLLM and the human expert annotators
as a function of the true number of p/m species in
the project documentation for all test set projects.
The LLM performs very well for projects with rel-
atively few species, finding all p/m species for all
test set projects with up to six p/m species. How-
ever, the LLM’s recall drops as the number of p/m
species in a project increases. In contrast, human
expert annotators tend to miss relatively few p/m
species and do so independently of the true number
of species in a project.

This pattern can be understood as follows. P/M
species are detailed in project documents in multi-
ple ways, but are mostly listed in large tables. SME
annotators almost always found these, with occa-
sional entries missing or cases where nearly identi-
cal tables exist in the project documents and only
the species in one table are annotated. The LLM
often did not capture all the species mentioned in
these tables, missing more for tables with large
numbers of listed species. Species can also be men-
tioned in the main body of the text. In some cases,
this is the only place in the documentation where
species names occur (there are no tables), and this
may include only a small number of species in to-
tal. SME annotators missed these species more fre-
quently than the species which are listed in tables,
while the LLM was able to identify them. Finally,
in other cases, species are mentioned in graphs and
figures, which were often not parsed correctly us-
ing our current data pipeline, and therefore were
not found by the LLM.

Recall can also be understood at the project level,
or macro-averaged recall, for which each project is
given the same weighting regardless of its number
of p/m species. The macro-averaged recall is 79%
for the LLM and 88% for the SME annotators. The
median recall is 100% for both LLM and SMEs.
The LLM found all p/m species for 62% of the
projects, and the SMEs found all p/m species for
68% of the projects. For the remaining projects, the
recall is uniformly distributed. Note that the given
prompt works better for ARR than IFM projects,
reaching a macro-averaged recall of 87% for ARR
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and 58% for IFM projects.

Precision

Since our test set is a combination of SME-
extracted species and LLM-found/human-verified
species, human recall for our test set is less than
100%. As for precision, since each document was
annotated by a single SME, our test-set creation
methodology does not allow us to identify when hu-
man annotations are incorrect, resulting in a SME-
expert precision of 100%. In contrast, when as-
sessing the precision of the LLM, there are two
separate sources of incorrect predictions. The first
is hallucination, when the LLM outputs species
that do not occur in the project documents. The
second is misinterpretation, when the LLM outputs
species that occur in the project documents, but in
a context that makes it clear they are not planted
or managed as part of project activities. For exam-
ple, in one project the LLM output eucalyptus as
a p/m species, despite it only being mentioned in
the introductory text as a plant that is often used
in reflectivity measurements for monitoring pur-
poses. In another project, the LLM output species
that were mentioned in the project documents as
having previously been present in the project area,
but were later destroyed by fire.

The micro-averaged precision of the LLM across
all projects and species was 87%, and the macro-
averaged precision was 89%. Of all incorrect pre-
dictions, 17% were due to hallucinations, and the
remaining 83% were due to misinterpretation, i.e.,
the LLM output a species present in the text but
only in a context different from being planted or
managed.

Our LLM-assisted annotation procedure (as de-
scribed above) impacts the LLM precision analysis.
Analysing the LLM’s precision taking into account
purely human expert annotations (without correc-
tions identified by the LLM-assisted procedure)
gives a macro-averaged precision of 78%, 11%
lower than the true macro-averaged precision of
89%. The values for the micro-averaged precision
are 80% for the manually-corrected data in compar-
ison to 87% without the correction. This highlights
the usefulness of LLM-assisted annotation proce-
dures.

gemini-2.0-flash vs. gemini-1.5-flash

LLMs are being developed quickly, typically de-
livering better performance each iteration. Having
evaluated our setup in detail using gemini-1.5, we

also tested it with a newer Gemini model, gemini-
2.0. Contrary to our initial expectation, we find
that gemini-2.0 performs worse against our test-set
using the original prompt, with the overall macro-
averaged recall dropping to 60% and the macro-
averaged precision dropping slightly to 88%. How-
ever, splitting the analysis by project type reveals
a more faceted picture. Replacing gemini-1.5 with
gemini-2.0 leaves the macro-averaged recall for
ARR projects roughly unchanged at 87%, but de-
creases the macro-averaged recall for IFM projects
from 58% to 18%. The model frequently outputs
that species are mentioned but no species are ex-
plicitly stated to be planted or managed, which is
true for many documents. Thus gemini-2.0 behaves
as a more literal reviewer than our SMEs, who will
infer that a mentioned species is planted or man-
aged from the overall context of being mentioned
in the project documents. How to prompt gemini-
2.0 to be more permissive for these species whilst
also not extracting species mentioned in other con-
texts will be the focus of further research. Separate
prompts for ARR and IFM projects will be a key
step.

S Summary and Conclusions

In this work, we developed a dataset of over
1,000 ARR and IFM projects listed on three ma-
jor VCM registries (Verra, CAR, ACR). We used
a combination of manual annotations and LLM-
derived corrections/additions to create a test set of
planted/managed species in 74 projects. Next we
developed a data pipeline to extract species infor-
mation from project documentation documents by
prompting a large-context LLM with questions re-
garding the species that would be planted and/or
managed as part of project activities, with the full
text of the project documentation appended as con-
text. The LLM achieved a macro-averaged recall of
79% and a macro-averaged precision of 89% whilst
human annotators achieved a macro-averaged re-
call of 88%. Notably, human annotators tended to
miss a small number of planted/managed species
per project, while the LLM missed more species
if more species were mentioned in the text. Our
results demonstrate the possibility of using large-
context LLMs to extract species diversity informa-
tion from lengthy project description documents.
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6 Future Work

In future work we will address several areas. First,
we will explore prompt-engineering to get the
LLM to consistently choose a species’ botani-
cal name over its common name and explore
the use of a second, smaller LLM for automatic
de-duplication. Second, we will further explore
prompt-engineering techniques to better distin-
guish when species are actively planted or managed
vs. simply mentioned in passing. Third, we will
analyze which errors are caused by PDF parsing
errors. Fourth, we will split not only our analysis
but also our prompt engineering by project type
(IFM vs ARR projects). Fifth, we will extend our
approach to look into the contrast between native
and non-native species use. Sixth, we will examine
the performance of the LLLM on non-English doc-
uments. Finally, we will explore the use of RAG
instead of large-context LLMs in order to improve
scalability.

Limitations

Labeling Accuracy

Annotating complex datasets is challenging and the
annotations created in this work might not yet be
completely correct. In particular, in IFM projects,
it is sometimes not possible (not even for human
annotators) to correctly label species as being under
active management or merely present in a project
area. Additionally, because of our use of a sin-
gle SME annotator per project, we were unable to
inter-compare manual annotations, a process used
to increase the reliability of a labelling process.
Species that are part of a project might still be miss-
ing, making the reported recall appear higher than
it truly is. In particular, albeit using two different
LLMs, we still used the same LLMs during annota-
tion and testing process, making this scenario more
likely.

PDF Parsing

In the current work, errors in recall are analysed
on a pipeline level, without distinguishing whether
the species information was present in the parsed
text or not (we only know that it was present in
the PDF). Distinguishing errors in recall into errors
caused by parsing issues vs errors caused by the
LLM would give further insights into the maximum
possible performance of the LLM pipeline.

IFM vs ARR Projects

This work treats ARR and IFM projects similarly.
The prompt is generalized, intended to work rea-
sonably well for both types of projects. However,
whilst these project types are similar, they are not
the same. In particular, in IFM projects, it is some-
times not possible (not even for human annotators)
to correctly label species as being under active man-
agement or merely present in a project area. A dis-
tinction between ARR and IFM projects in future
prompts will be helpful. As we demonstrated in
the present paper, this will become increasingly
important with the development of more power-
ful LLMs which are capable of understanding ever
more subtle nuances of human language.

Scalability

The presented approach used large-context LLMs
to extract species information from project docu-
ment descriptions. This approach works well for
most projects, but already reaches its limits for
some. Additionally, registries do not delete docu-
ments, making texts longer over time. Alternative
architectures like RAG could help alleviate this
issue.

Single-Purpose vs Multi-Purpose Prompts

Due to financial constraints, we tried to limit the
number of times we queried the LLM. In particu-
lar, we combined multiple questions into a single
prompt, where several, individual queries might
have achieved better performance. This is a limita-
tion of our set-up not of the LLM’s capability.

Manual De-Duplication

LLM outputs were manually de-duplicated, uni-
fying botanical with common names as well as
correcting spelling errors. In particular, valida-
tion was done manually. This approach does not
scale and makes the current process not suitable
for techniques like automatic prompt-optimization.
An automatic validation setup including prompting
the LLM to always list species with their botani-
cal names will be implemented in the future. This
could be supplemented by using dictionaries map-
ping between common and botanical names.
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Abstract

ClimateEval is a comprehensive benchmark de-
signed to evaluate natural language processing
models across a broad range of tasks related
to climate change. ClimateEval aggregates ex-
isting datasets along with a newly developed
news classification dataset, created specifically
for this release. This results in a benchmark
of 25 tasks based on 13 datasets, covering key
aspects of climate discourse, including text clas-
sification, question answering, and information
extraction. Our benchmark provides a standard-
ized evaluation suite for systematically assess-
ing the performance of large language models
(LLMs) on these tasks. Additionally, we con-
duct an extensive evaluation of open-source
LLMs (ranging from 2B to 70B parameters) in
both zero-shot and few-shot settings, analyzing
their strengths and limitations in the domain of
climate change.

1 Introduction

Climate change represents one of the most press-
ing global challenges of our time, impacting every
level of society, from international policy-making
to everyday decisions. The importance of the topic
is reflected in the vast amount of textual data gen-
erated, including a rich scientific literature as well
as thousands of reports from corporations, govern-
ment agencies and other organisations. Other data
sources include countless social media posts and
news articles capturing all aspects of the debate
on climate change, from urgent calls for action to
widespread misinformation. However, this enor-
mous supply of unstructured information is not in
a format amenable to analysis, and manual process-
ing is unfeasible due to the sheer volume of text at
hand.

A possible solution to this challenge comes from
the field of Natural language processing (NLP).
NLP has shown remarkable progress in recent
years, notably with LLMs achieving near human

levels of performance across a variety of tasks.
Thanks to their capacity to process textual data
at scale, LLMs can help researchers process large
volumes of data for a wide range of applications,
such as analyzing climate-related documents or
social media posts (EI Barachi et al., 2021; Upad-
hyaya et al., 2023), structuring information about
climate extremes from online texts into organized
databases (Li et al., 2024; Madruga de Brito et al.,
2025), and automatically detecting texts promoting
climate change misinformation (Zhang et al., 2024;
Zanartu et al., 2024). LLMs are thus playing a key
role in enabling the compilation and analysis of
climate change information from textual sources.
In this context, it is essential to assess their per-
formance. Such assessment needs to be compre-
hensive and consider a wide variety of tasks, since
the performance of LLMs is known to be highly
domain-dependent (Ling et al., 2023). In this pa-
per, we aim to address this need by combining a
newly-developed news classification dataset with
existing datasets to create a unified benchmark that
systematically evaluates the capabilities of LLMs
across a vast array of climate-related NLP tasks.
Our unified benchmark, ClimateEval, consists of
25 different tasks based on 13 datasets. It builds
upon previous NLP benchmarking datasets, most
notably ClimaBench (Spokoyny et al., 2023) and
adds the following contributions:

* We introduce a new topic classification dataset
using news articles on climate-related topics
from the Guardian newspaper.

* We compile diverse climate-related NLP tasks
into a unified benchmark using LM Evalua-
tion Harness (Gao et al., 2024), facilitating
systematic evaluation of models on various
aspects of climate change discourse.

The benchmark can be accessed here: https://github.
com/NLP-RISE/ClimateEval
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* We provide a comprehensive evaluation of a
wide range of open-source LLMs on climate-
related NLP tasks, highlighting these LLMs’
strengths and limitations as well as looking
into the different challenges they pose.

* We provide a one-line evaluation setup to en-
sure accessibility and reproducibility for a
wide range of users.

Through ClimateEval, we thus aim to facilitate
NLP research by providing an easy-to-use setup
enabling a comprehensive assessment of LLMs in
climate change-related applications. By covering
diverse, manually annotated datasets, our bench-
mark offers insights into the applicability of LLMs
to critical aspects of climate discourse, from stance
detection to claim verification.

2 Related Work

ClimaBench (Spokoyny et al., 2023) offers a collec-
tion of datasets designed to evaluate NLP models
on climate-related tasks, such as text classification
and stance detection. To the best of our knowledge,
it is the first effort to aggregate multiple datasets
into a benchmark for NLP models in the climate
change domain, laying the foundation for Climate-
Eval. In addition to curating existing datasets,
ClimaBench introduces a new dataset, CDP (Car-
bon Disclosure Project), which is based on climate-
related questionnaires filled out by different stake-
holders. ClimaBench was used for the evaluation of
ClimateGPT (Thulke et al., 2024), an LLM specif-
ically fine-tuned for climate-related applications.
However, the ClimateGPT evaluation omitted or
modified some of the ClimaBench tasks, including
simplifying multi-class classification tasks into bi-
nary ones. Nonetheless, ClimateGPT incorporates
two additional datasets not included in ClimaBench
in its evaluation suite, PIRA (Pirozelli et al., 2024)
and Exeter (Coan et al., 2021), which we also in-
clude in our benchmark. Fore et al. (2024) rely
on question answering (QA) datasets to detect cli-
mate change misinformation in LLMs, specifically
LLMs that have been intentionally injected with
false climate information and subsequently made
to unlearn it.

The above work provides a context for eval-
vating LLLMs on climate-related tasks. A key
knowledge gap is that only a limited number of
models have been benchmarked, and some tasks
have suffered reductions (e.g., transforming multi-
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Figure 1: The distribution of articles by year in the
Guardian Climate News Corpus, broken down by cate-

gory.

class classification into a binary classification prob-
lem) without considering the effect on performance
when transforming the task and target output in this
fashion. ClimateEval complements and extends
previous efforts by addressing this gap. Further-
more, the unified benchmark provides in unprece-
dented in breadth of both tasks and annotated data.

3 The ClimateEval Benchmark

In this section, we detail the datasets and the corre-
sponding tasks included in the ClimateEval bench-
mark, along with the evaluation metrics we employ.

3.1 Datasets and Tasks

In this subsection, we first describe our new dataset,
the Guardian Climate News Corpus, followed by
the other datasets included in ClimateEval.

* Guardian Climate News Corpus : A dataset
containing climate-related and non-climate-
related articles. These are assigned to nine
climate-related categories (climate activism,
climate denial, emissions, biodiversity, pollu-
tion and waste, global crisis, extreme climate
impacts, and climate policy) and one unre-
lated to climate category with articles sampled
from diverse domains (e.g., sports, technology,
gardening).?

Data for each category is scraped from the
Guardian’s website®. The Guardian was cho-

The benchmark and full details on the categories and tags
can be foundon HuggingFace: https://huggingface.co/
datasets/NLP-RISE/guardian_climate_news_corpus.

3Using the Guardian Open Platform API https://
open-platform. theguardian.com/documentation/
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Dataset (Source) Task(s) #labels Train Dev Test
ClimaText (Varini et al., 2021) Sentence classification 2 121847 3918 5426
Climate-Stance (Vaid et al., 2022) Stance classification 3 2871 354 355

Climate-Eng (Vaid et al., 2022)

Topic classification

5 2871 354 355

Climate-FEVER (Diggelmann et al., 2020)

Claim verification

SciDCC (Mishra and Mittal, 2021)

Topic classification
Topic classification
Topic classification

CLIMA-CDP (Spokoyny et al., 2023)

QA-Cities (answer
QA-Corp. (answer
QA-States (answer
Topic-Cities (topic

3 - - 7675
by Title 20 9231 1154 1154
by Title & Summary 20 9231 1154 1154
by Title & Body 20 9231 1154 1154
relevance) 2 288418 51018 55872
relevance) 2 207450 22044 29892
relevance) 2 52287 5814 6888
classification) 12 46803 8771 8984

PIRA 2.0 MCQ (Pirozelli et al., 2024)

PIRA with Context

PIRA without Context

1798 225 227

Exeter Misinformation (Coan et al., 2021)

Claim Detection

2

5

5 1798 225 227
6 23436 2605 2904
8

Sub-claim Detection 18 23436 2605 2904
Climate-Change NER (Bhattacharjee et al., 2024) Entity recognition 13 31633 6366 5775
Climate Detection 2 1300 - 400
Climate Sentiment 3 1000 - 320
CheapTalk (Bingler et al., 2023) Climate Commitment 2 1300 - 400
Climate Specificity 2 1000 - 320
TCFD Recommendations 5 1300 - 400
Net-Zero Reduction (Schimanski et al., 2023) Paragraph Classification 3 3441 - -
Environmental Claims (Stammbach et al., 2023) Sentence Classification 2 2400 300 300
To cson b T o o

Table 1: Overview of the ClimateEval benchmark tasks, subtasks, and dataset sizes. The # labels column gives the
number of labels per task; for PIRA, it represents the number of answer choices per question, while for Climate-
Change-NER, it corresponds to the total number of distinct entities annotated in the dataset.

sen because it explicitly permits the use of its
content for research and non-commercial pur-
poses. Accordingly, we are able to freely gen-
erate and distribute this dataset. Articles are
scraped based on having been assigned spe-
cific tags. These tags are used by the Guardian
to taxonomize their own publications; each
tag is usually comprised of a section and
unique topic identifier, separated by a forward
slash (e.g., the “environment/flooding” tag is
assigned to articles covering flooding-related
incidents in the Guardian’s Environment sec-
tion*). This taxonomy has enabled us to curate
a manual selection of tags that are relevant to
each of the ten categories with ease.

As example, an article that we categorize as
falling under climate activism is scraped based
on a list of article tags that relate to climate ac-
tivism (such as “environment/school-climate-
strikes”). However, this article could also
have been assigned other tags that describe it,
such as “australia-news/australian-education”
and “world/extreme-weather” — the latter is

*https://www. theguardian.com/uk/environment

a tag that falls under our "Extreme Climate
Impacts" category. Since the second tag fall
under another category we have defined, we
remove this article from the pool so that each
article can only belong to one category; oth-
erwise, no action is taken. After these are
filtered out, any articles with a body shorter
than 49 words or longer than 1,000 words
are also dropped from the dataset, resulting
in 40,173 articles in ten mutually-exclusive
categories published any time between 1998
and 2024. Figure 1 shows the distribution of
articles across years.

We derive two tasks from this dataset:

i. Topic classification by Title, where multi-
class classification is performed only on
the title of the article; and

ii. Topic classification by Body, where the
same task is performed on the body of
the article.

We believe the Guardian Climate News Cor-
pus is a valuable addition to existing resources,
as it provides a large-scale, real-world news
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dataset focused on climate topics with fine-
grained labels that capture diverse aspects
within climate discourse. In contrast, existing
datasets, such as SciDCC (Mishra and Mittal,
2021), are not exclusively focused on climate
change, but instead cover broader scientific
categories, of which some are climate-related
(e.g., “Pollution” and “Hurricanes”).

For simplicity, we have chosen to create a
dataset to evaluate multi-class classification
as each article belongs only to a single class.
However, it is possible to reproduce this
dataset with a different set of tags, with the
option to not filter out articles sharing tags
across categories, in turn creating a dataset
more suitable for mutli-label classification.

ClimaText (Varini et al., 2021): A dataset
with sentences from the web, Wikipedia, and
public companies’ 10-K reports. Each sen-
tence is labeled for whether it is related to
climate change or not. Therefore, this datasets
is suitable for the task of binary classification
of sentences, requiring models to distinguish
texts relevant to climate change.

Climate-Stance (Vaid et al., 2022): A dataset
consisting of 3,777 tweets posted during the
2019 United Nations Framework Convention
on Climate Change COP (Conference of the
Parties). The dataset is annotated for stance
detection (classification), where each tweet
is categorized into one of three classes: (i)
being in favor of climate change mitigation,
(ii) being against such measures, or (iii) taking
an ambiguous stance.

Climate-Eng (Vaid et al., 2022): A dataset
designed for multi-class topic classification,
constructed from the same set of 3,777 tweets
as the Climate-Stance dataset, but labeled ac-
cording to one of five distinct topics: disaster,
ocean/water, agriculture/forestry, politics, or
general.

Climate-FEVER (Diggelmann et al., 2020):
A claim verification dataset that consists of
real-world claims about climate change. Each
of the 1,535 claims is paired with five ev-
idence sentences extracted from Wikipedia,

which either support, refute, or provide insuf-
ficient information about the claim. Climate-
FEVER also includes a general label, deter-
mined by aggregating the ratings of individual
claim-evidence pairs. However, in our bench-
mark, we model the task for this dataset as
a three-way entailment problem where each
claim is evaluated individually against each of
its five evidence sentences, resulting in 7,675
claim-evidence pairs.

SciDCC (Mishra and Mittal, 2021): A multi-
class classification dataset comprising news
articles sourced from the Science Daily web-
site, annotated with one of the possible 20
scientific categories (e.g., biology, weather,
ozone holes, endangered animals). Each ar-
ticle includes a title, a summary, and a body
section. In order to fully utilize the available
information at different granularity, we model
the task in three ways:

i. Topic Classification by Title, where clas-
sification is performed solely on the arti-
cle title;

ii. Topic Classification by Title & Summary,
which utilizes both the title and the sum-
mary sections; and

Topic Classification by Title & Body,

where the full article body is used, in
addition to the title.

iii.

We aim for these complementary tasks to en-
able a comparative assessment of how much
information is needed for an accurate classifi-
cation performance.

CLIMA-CDP (Spokoyny et al., 2023): A
dataset derived from disclosure questionnaires
collected and made available by Carbon Dis-
closure Project (CDP), an international non-
profit organization. These questionnaires are
completed by various stakeholders, including
cities, corporations, and states. The dataset
consists of responses to hundreds of unique
questions related to climate impact, mitiga-
tion efforts and governance, and supports two
distinct classification tasks:

i. CDP-QA is a binary classification task
that predicts whether a given report re-
sponse correctly answers the questions

>The code used for scraping the dataset from the
Guardian’s Open Platform is available on GitHub: https:
//github.com/NLP-RISE/extractguardian

posed. This task has three variants based
on the type of stakeholder providing
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the response: CDP-QA-Cities, CDP-QA-
-Corporations, and CDP-QA-States, for
municipal, corporate and state-level re-
sponses, respectively.

ii. CDP-Topic-Cities is a multi-class classi-
fication task where responses from city
stakeholders are categorized into one of
twelve predefined topics (e.g., climate
hazards, emissions, energy, food). The
task is limited to city responses since no
annotations exist for other stakeholders.

¢ PIRA 2.0 MCQ (Pirozelli et al., 2024): A
multiple-choice QA dataset constructed from
a collection of scientific abstracts and United
Nations reports, with a focus on climate-
related topics such as oceanography, coastal
ecosystems, and climate change impacts.
Each instance consists of a question and five
answer choices. Additionally, each question
is accompanied by a supporting context that
provides relevant information to guide the an-
swer selection process. We divided the dataset
into two sub-tasks:

i. PIRA with Context, where models are
expected to answer a question with the
help of the accompanying context, like
in an open-book exam setting;

1i. PIRA without Context, where models are
required to answer the question without
any supporting information.

By structuring the dataset in this manner, we
aim to evaluate both retrieval-augmented and
self-knowledge-based approaches to climate-
related QA.

Exeter Misinformation (Coan et al., 2021):
A dataset designed to detect climate misin-
formation by annotating text from prominent
climate contrarian blogs and think tanks span-
ning over 20 years (1998-2020). The dataset
is structured according to a two-level taxo-
nomy of climate contrarian claims. The first
level consists of broad claim categories, such
as: (1) Global warming is not happening,
which is further divided into more specific
sub-claims, including (1.1) Ice isn’t melting,
or (1.2) Oceans are cooling. To test different
levels of misinformation detection, we define
two sub-tasks:
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i. Claim Detection, a classification task
where texts are categorized into one of
the six first-level claim labels; and

1. Sub-Claim Detection, a more fine-
grained classification task where each
text is assigned to its corresponding sub-
claim category within the taxonomy.

These tasks allow for a detailed evaluation of
how LLMs classify misinformation narratives
in climate discourse at different granularities.

Climate-Change NER (Bhattacharjee et al.,
2024): A named entity recognition (NER)
dataset constructed from 534 scientific ab-
stracts sourced from the Semantic Scholar
Academic Graph (Kinney et al., 2023). The
dataset was collected using a set of climate-
related keywords (e.g., wildfire, floods) to en-
sure relevance to climate science. Each ab-
stract is annotated for entity types that are
specific to the climate discourse, such as
greenhouse gases, climate hazards, climate-
impacts, climate mitigations. The associated
task is a token classification task, where the
goal is to identify tokens corresponding to
these entities. NER is a crucial preprocess-
ing step for various downstream applications
that aim to extract structured information from
unstructured text (Li et al., 2024). Hence, a
model’s performance on climate-specific NER
is a strong indicator of its usefulness for in-
formation extraction in climate discourse (Li
et al., 2020).

CheapTalk (Bingler et al., 2023): A dataset
consisting of corporate disclosures, focus-
ing on how companies communicate climate-
related information. Unlike the previously
described datasets, primarily dealing with ei-
ther academic discourse or social media posts,
this dataset uncovers corporations’ climate
communication strategies. The following five
tasks are performed on it:

i. Climate Detection: A binary classifica-
tion task to determine whether a given
text passage discusses climate-related
topics. This dataset serves as a filtering
mechanism to extract climate-relevant
content from corporate reports.

ii. Climate Sentiment: A sentiment analy-
sis task that categorizes climate-related



Gemma-2  Llama-2 Llama-2 Climate Climate Qwen-2.5  Llama-3.1 Mistral Llama-3.3
Task 2B 7B 13B GPT-7B GPT-13B 7B 8B 24B 70B

0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5
CDP-QA-Cities 46 .60 .62 .69 37 55 48 57 59 .57 61 .62 57 .66 .68 .68 .61 .69
CDP-QA-Corp. 46 59 .62 .67 32 .55 40 57 58 58 60 .61 51 .64 .67 68 .60 .68
CDP-QA-States 46 .61 .68 71 .37 .56 48 59 .60 58 62 .63 54 .66 72 .68 .59 .70
CDP-Topic-Cities 28 .34 | 32 35 | 35 35| 33 35| 30 35| 30 35| 31 37|34 32|35 235
Climate Commit. 42 .63 .66 71 .56 .63 .63 65 .61 .60 56 .69 .68 71 71 71 68 .68
Climate Detection .20 70 .65 69 61 .60 59 .66 .62 .68 53 73 .50 .76 .69 78 71 76
Climate Eng 37 46 52 .59 .37 .50 52 53 53 .50 52 54 .55 .59 .60 .59 57 .59
Climate NER 11 .19 14 .20 .10 17 .09 17 .07 14 04 18 16 21 23 30 20 27
Climate Sentiment .49 .64 72 74 44 1 .60 .70 61 .65 57 .63 .54 72 75 12 73 75
Climate Specificity .39 .66 12 69 .54 .60 51 .64 48 .60 53 .68 .60 73 5 .79 5 79
Climate Stance 13 .50 .30 .54 .20 47 16 48 11 37 14 42 .06 56 18 .61 26 .64
Climate-Fever 33 34 57 48 40 34 35 41 25 45 41 .55 52 51 .56 50 Sl 55
Climatext Sent CIf. .39 .64 .56 .62 .58 .67 .63 .70 58 61 54 .68 47 68 57 .68 .63 1
Env. Claims 53 77 .80 .81 .61 .79 .66 78 .80 75 64 81 75 .83 75 .82 .85 .83
Exeter Claim .14 41 43 48 17 .30 .20 .38 .26 37 34 41 35 46 55 .61 .56 .59
Exeter Sub-Claim 22 27 48 51 .05 13 .15 25 24 25 33 40 39 47 .61 .63 .59 59
Guardian Body 39 31 48 .54 .29 .19 31 21 30 25 33 45 47 49 58 .00 00 .00
Guardian Title 35 35 45 .54 40 41 38 .00 46 48 45 .00 42 50 S1 .53 57 .00
Net-Zero Reduction 22 44 .38 45 46 .84 39 .86 23 .83 43 .85 48 43 28 47 60 .89
Pira W/ Ctx. .86 .86 95 94 74 .70 87 88 86 .87 93 94 93 95 94 96 94 92
Pira W/O Ctx. .64 .62 84 84 44 52 58 .67 .67 74 70 .81 .69 80 .80 .89 .89 .88
SciDCC Title .16 .19 27 .28 18 23 .08 .20 .16 17 16 24 15 23 .28 33 25 33
SciDCC Title Body .10 21 .20 23 13 .14 .08 17 13 11 17 18 18 23 26 32 .26 31
SciDCC Title Sum. .10 .19 25 27 13 25 12 25 17 16 .20 25 .20 27 28 33 27 34
Tcfd Recommend. 15 31 43 46 24 30 24 .30 16 29 29 37 .26 45 50 52 53 48

Table 2: Evaluation results for various models across different few-shot experiments. The numbers indicate the
models’ performance for each task in F1-macro, except for PIRA (see Section 3.2). Numbers in boldface are the
highest performing, whereas underlined numbers are the second highest for that task. For shortened task identifiers,
see Table 6.

iil.

1v.

statements based on their tone. Each pas-
sage is labeled as highlighting risks, em-
phasizing opportunities, or maintaining
a neutral stance on climate change.

Climate Commitments: A classifica-
tion task that determines whether a cor-
porate disclosure contains a climate-
related commitment. Texts are labeled as
commitment-yes if they explicitly state
planned or ongoing climate actions and
commitment-no if they do not reference
concrete climate actions.

Climate Specificity: A binary classifi-
cation task assessing the specificity of
corporate climate commitments. A pas-
sage is labeled as specific if containing
“detailed performance information, de-
tails of actions, or tangible and verifiable
targets” (Bingler et al., 2023), or non-
specific if it is vague.

. TCFD Recommendations: A multi-class

classification task assessing corporate
disclosures against the guidelines of the
Task Force on Climate-related Financial
Disclosures (TCFD), an international
framework that standardizes the report-
ing of climate-related financial risks and

opportunities.® Each text is labelled by
one of the four TCFD recommendation
categories (governance, strategy, risk
management, and metrics and targets)
or as none if none applies.

* Net-Zero Reduction (Schimanski et al.,
2023): A dataset comprising 3,517 expert-
annotated paragraph samples designed to de-
tect and assess net-zero and emission reduc-
tion targets in corporate, national, and regional
communications. Each sample is labeled as
net-zero target (commitment to net-zero emis-
sions), reduction target (commitment to emis-
sion reduction without full net-zero), or no tar-
get (no explicit reduction commitment). This
dataset is used for multi-class classification.

¢ Environmental Claims (Stammbach et al.,
2023): A dataset comprising 3,000 sentences
from corporate sustainability reports, earnings
calls, and annual reports by publicly listed
companies that are expert-annotated for envi-
ronmental claims. An environmental claim
any statement suggesting that a product, ser-
vice, or company is environmentally friendly.
Each sentence is labeled as containing an en-

https://www.fsb-tcfd.org

199


https://www.fsb-tcfd.org

vironmental claim or not. This dataset is used
for a binary sentence classification task.

Most of the datasets in ClimateEval were devel-
oped in the pre-LLM era and were not designed
with prompting-based evaluation in mind. More-
over, prior work has used some datasets in differ-
ent ways — for example, ClimateGPT modeled
Climate-FEVER as a binary classification task (not
three-way). To address this lack of standardization,
ClimateEval provides a unified evaluation bench-
mark that standardizes task formulations, label sets,
and prompts. Each task is paired with a suitable
prompt and, where applicable, modeled at multiple
granularities (e.g., title-only vs. full-body classi-
fication in SciDCC). This unification ensures that
different models are evaluated under consistent con-
ditions, enabling reproducible comparisons across
tasks.

3.2 Evaluation Setup and Metrics

ClimateEval is implemented using the LM Eval-
uation Harness library (Gao et al., 2024), which
provides an easy-to-use infrastructure for evalu-
ating language models on a wide range of tasks.
Each task in the benchmark is defined through a
YAML-formatted configuration file, specifying the
input format, prompt template, expected output and
the target metric. The benchmark can be executed
with a single command, allowing for efficient and
standardized evaluation across diverse models and
tasks.

We evaluate model performance primarily us-
ing accuracy and macro-averaged F1-score for all
classification tasks. Macro F1 is particularly im-
portant due to class imbalances in several datasets
where there are as many as 20 labels with skewed
distributions (see Appendix C for details). Macro
F1 averages scores across all classes equally to en-
sure a balanced assessment by preventing frequent
labels from biasing the results.

For Climate-Change-NER, the only sequence
labeling task in our benchmark, we compute preci-
sion, recall, and F1-score based on the entity-type
and entity-span pairs. Each entity-type is evalu-
ated independently, and a model’s prediction is
considered correct if it correctly identifies an entity
within the set of gold entities for that type. If a
gold-standard entity-type contains multiple entities
and the model predicts only a subset, we count each
correctly identified entity as a true positive, while
missing entities contribute to false negatives. We

report only exact matches, where an entity is cor-
rect only if both the span and type match perfectly.

For multiple-choice QA (MCQA) tasks (e.g.,
PIRA 2.0 MCQ), we report exact match accuracy,
as Fl-score is not meaningful in this context. In
MCQA tasks, each question has one correct answer,
and the model selects from arbitrary option labels
(e.g., A, B, C), which are not semantic classes.
Since the model selects a single arbitrary option
and only one answer is correct, precision and recall
are not meaningful, making exact match accuracy
the appropriate metric.

4 Evaluation of Open-Source LL.Ms

We report the performance of a range of open
source baseline LLMs with varying sizes, ranging
from 2B to 70B, in both zero-shot and 5-shot sce-
narios. The mid-sized models (Mistral 24B and
Llama3.3-70B) are loaded in 4-bit quantization
whereas the other models were run in half-precision
FP16.

For classification tasks, the log-likelihoods of
each possible label are calculated, and the la-
bel with the highest likelihood is selected as the
model’s prediction. For the generation task, Cli-
mate Change NER, the model is simply prompted
to generate the corresponding JSON file.

The baseline LLMs that we use are: Gemma-2
(2B) (Team et al., 2024), Qwen-2.5 (7B) (Yang
et al., 2025), ClimateGPT (both 7B and 13B)
(Thulke et al., 2024); Llama-2 (both 7B and 13B);
Llama-3.1 (8B), Llama-3.3 (70B) (Grattafiori et al.,
2024) and Mistral (24B). The baseline models’ per-
formances are reported in Table 2 in both zero-shot
and five-shot settings.

4.1 Zero-shot vs. Few-shot Performance

Across the benchmark, few-shot prompting con-
sistently improves performance (Figure 2). The
most significant gains are observed in Climate
Stance (+0.26 for ClimateGPT-7B to +0.50 for
Llama-3.1-8B) and Net-Zero Reduction (+0.15 for
Qwen-2.5-7B to +0.44 for Gemma-2-2B). Both
tasks rely on understanding specialized classifica-
tion taxonomies, whether for categorizing social
media discourse or analyzing policy documents.
The improvement diminish as the number of labels
increases. The Exeter Sub-claim Detection and
SciDCC tasks exhibit minimal gains (0.03 on aver-
age), suggesting that when models must choose
between a high number of categories, few-shot
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Task 0-Shot 5-Shot  Diff.
CDP-QA-Cities S55(10) .63 (.06) .07
CDP-QA-Corp. S53(11)  .62(05) .09
CDP-QA-States 56 (11) .64 (.06) .07
CDP-Topic-Cities 32(.02) .35(01) .03
Climate Commit. .61(.09) .67(04) .06
Climate Detection 57 (.15) .71 (.06) .14
Climate Eng 50 (.08) 5405 .04
Climate NER 13 (.06) .20(.05) .08
Climate Sentiment .60 (.11) .70 (.04) .09
Climate Specificity 58 (.13) .69 (.07) .10
Climate Stance A7 (07) 5109 .34
Climate-Fever 43 (11) 46(08) .03
ClimaText Sent CIf. .55 (.08) .67 (.03) .12
Env. Claims 71 (.10) .80 (.03) .09
Exeter Claim 33 (16)  45(10) .11
Exeter Sub-Claim 34 (19)  .39(.17) .05
Guardian Body 42 (.13)  41(18) -.01
Guardian Title 44.(.07) 48(08) .04
Net-Zero Reduction .39 (.13) .67 (.22) .29
Pira W/ Ctx. .89 (.07) .89(.08) .00
Pira W/O Ctx. J0(14)  75(13) .06
SciDCC Title Sum. .19(.07) .26(.06) .07
SciDCC Title 19 (.07)  .24(06) .06
SciDCC Title Body .17 (.06) .21(.07) .04
TCFD Recommend. .31 (.14) .39(.09) .07
Average 45 .53 .09

Table 3: Comparison of average model performance
across tasks in O-shot and 5-shot settings. Standard
deviations are provided within parentheses. The last
column shows the performance difference between the
zero-shot and five-shot experiments. For shortened task
identifiers, see Table 6.

prompting does not provide sufficient guidance.

Another set of tasks that do not benefit from in-
context learning includes Climate-FEVER (fact ver-
ification) and PIRA (multiple-choice QA), which
show no improvement. Unlike standard classifica-
tion tasks, these tasks require external knowledge to
be successfully carried out, limiting the efficiency
of few-shot prompting. As each instance in these
datasets depends on specific knowledge, the lack
of improvement is unsurprising.

4.2 Analysis of tasks

Among the 25 tasks in our benchmark, certain
tasks consistently emerge as more challenging than
others (Table 3). SciDCC and Climate-Change-
NER exhibit particularly poor performance, with
F1-scores below 0.34 across models, even with few-
shot prompting. The poor performance on SciDCC
can be attributed to the large number of classes
(20 in total), making the assignment more difficult.
Surprisingly enough, classification of news texts
based solely on their titles only leads to a minor
performance loss compared to using the full article.
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Figure 2: Average model performance across all tasks
in Zero-Shot and 5-Shot settings.

This may indicate that titles provide sufficient cues
regarding the content of articles.

Climate-Change NER, on the other hand, is the
only non-classification task in the benchmark, re-
quiring models to correctly identify climate-related
named entities in scientific abstracts. This task in-
volves both span detection and entity type classifi-
cation, where entity types are domain-specific’ and
differ significantly from standard NER labels such
as "location" or "organization". Without specific
training/fine-tuning on climate-specific entity an-
notations, it is understandable that general-purpose
LLMs struggle to accurately extract these entities.

In contrast, the LLLMs perform strongly on sev-
eral tasks in the benchmark, even in the zero-shot
setting. The performance on PIRA improves by
0.2 points on average in the zero-shot setting when
relevant context is provided, showcasing the LLMs’
ability to identify and utilize relevant parts of ad-
ditional knowledge for question answering (QA).
However, the overall high performance on PIRA
even without any context suggests that the task may
be relatively easy, highlighting the need for a more
challenging QA dataset.

Perhaps the most surprising finding is the rel-
atively poor performance of the models on the
CheapTalk dataset tasks. Intuitively, one might
expect tasks like Climate Detection (whether or
not a text is climate-related) or Climate Sentiment
(classifying tone as risk, opportunity or neutral) to
be straightforward for advanced LLMs. Yet, our
results show that even the best models achieve F1
scores below 0.8 on these tasks, indicating that

"For the full list of entities, see: https://huggingface.
co/datasets/ibm-research/Climate-Change-NER
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these models experience challenges in understand-
ing the climate discourse.

4.3 Impact of In-domain Training

ClimateGPT presents a unique opportunity to eval-
uate the impact of in-domain training for climate-
related NLP, as it is an LLM developed through
continuous pre-training of Llama-2 models on 4.2B
climate-focused tokens and instruction-tuned on
expert-curated datasets (Thulke et al., 2024). To
gain insights regarding the benefits of domain adap-
tation, we compare ClimateGPT against its base
Llama-2 models (Table 4).

Table 3 shows the performance differences be-
tween these models. On average, ClimateGPT
exhibits a slight improvement over Llama-2 by
< 0.05. The largest gains are seen in Exeter Sub-
claim, CDP-QA, and PIRA With Context. How-
ever, the improvements are inconsistent, with some
tasks, including Climate-Change NER, Climate
Stance, and Net-Zero Reduction, showing negligi-
ble or negative differences. The limited impact of
in-domain training across tasks suggests that, while
climate-focused continuous pre-training provides
benefits in specific cases, the performance gains
are not uniform across the tasks in ClimateEval.

5 Conclusion

We have presented ClimateEval, a comprehensive
benchmark for climate change NLP, encompassing
13 datasets and 25 tasks that cover a wide range of
climate-related language understanding tasks. By
unifying these diverse tasks into a single frame-
work, ClimateEval enables systematic assessment
of how well current LLMs perform in the domain
of climate change. Our evaluation of some widely-
used open-source LLMs revealed systematic pat-
terns: few-shot prompting generally improves per-
formance, but certain text classification tasks such
as claim detection or climate-specific NER remain
challenging. We hope that ClimateEval will serve
as a valuable resource for the NLP community and
facilitate future research on evaluating and improv-
ing LL.Ms for climate change-related applications.

Limitations

We acknowledge that ClimateEval is currently lim-
ited to English, which restricts its applicability
to multilingual climate discourse. Due to com-
putational constraints our evaluation focuses on
mid-sized open-source models, ranging from 2B

Task 7B 13B
0 5 0 5

CDP-QA-Corp. 0.26  0.02 | 0.20 0.04
CDP-QA-States 023  0.02 | 013 0.04
CDP-QA-Cities 0.22 0.03 | 0.13 0.05
CDP-Topic-Cities -0.05 0.00 | -0.03  0.00
ClimaText Sent. CIf. -0.00 -0.06 | -0.10 -0.02
Climate NER -0.03 -0.04 | -0.04 0.00
Climate Commit. 0.05 -0.03 | -0.07 0.04
Climate Detection 0.01 0.07 | -0.06  0.08
Climate Eng 0.16 0.00 | -0.00 0.00
Climate-FEVER -0.15 0.1 | 0.07 0.14
Climate Sentiment 0.17 -0.06 | -0.03 -0.06
Climate Specificity -0.06  0.01 | 0.02 0.04
Climate Stance -0.09 -0.10 | -0.01 -0.06
Env. Claims 0.19 -0.05 | -0.02  0.03
Exeter Claim 0.09 0.07 | 0.14 0.03
Exeter Sub-claim 0.19 012 | 0.19 0.16
Guardian Body 0.02 0.06 | 0.02 0.24
Guardian Title 0.06 0.07 | 0.07 0.08
Net-Zero Reduction  -0.24  -0.01 0.04 -0.01
PIRA w/ Ctx. 0.12 0.17 | 0.06 0.06
PIRA w/o Ctx. 023 023 | 012 0.15
SciDCC Title -0.02 -0.07 | 0.08 0.04
SciDCC Title Sum. 0.04 -0.10 | 0.08 0.00
SciDCC Title Body -0.00 -0.02 | 0.08 0.01
TCFD Recommend. -0.08 -0.02 0.05 0.07
Average 0.05 0.01 | -0.04  0.04

Table 4: Comparison of ClimateGPT against its’ base
Llama models in 0-shot and 5-shot settings. The values
represent the difference where positive values (high-
lighted in bold) indicate better performance of Climate-
GPT over Llama.

to 70B parameters, with larger models tested un-
der 4-bit quantization. This may introduce some
performance degradation and may not reflect their
optimal performance. Additionally, commercial
models such as GPT-4 and Claude are not included
in our experiments due to budget constraints. Fi-
nally, the benchmark largely consists of n-way clas-
sification tasks, with the only exception of Climate-
Change NER. This was partly driven by available
climate-relevant datasets, which are predominantly
classification-oriented. Future work should focus
on enabling assessment of generative tasks such
as information extraction, text generation or multi-
modal classification.
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A Models

Table 5 lists the baseline models used in our paper,
along with their corresponding repository names
on https://huggingface.co/.

Model Name HuggingFace Repository
Gemma-2-2B google/gemma-2-2b-it
Qwen-2.5-7B Qwen/Qwen2.5-7B

Llama-2-7B meta-llama/Llama-2-7b-chat-hf
Llama-2-13B meta-llama/Llama-2-13b-chat-hf
ClimateGPT-7B climategpt/climategpt-7b
ClimateGPT-13B | climategpt/climategpt-13b
Llama-3.1-8B meta-llama/Llama-3.1-8B-Instruct
Mistral-24B mistralai/Mistral-24B-Instruct
Llama-3.3-70B meta-llama/Llama-3.3-70B-Instruct

Table 5: HuggingFace repository names of the baseline
models used in our evaluation.

B CO2 Emission Related to Experiments

Experiments were conducted using a private infras-
tructure, which has a carbon efficiency of 0.432
kgCO2eq/kWh. A cumulative of 240 hours of com-
putation was performed on hardware of type A100
SXM4 80 GB (TDP of 400W). Total emissions are
estimated to be 41.47 kgCOqeq of which O percent
were directly offset. Estimations were conducted
using the Machinelearning Impact calculator pre-
sented in Lacoste et al. (2019).

C Label distribution

To provide further insights into the datasets, we
visualize the label distribution for each test set in
Figure 3. Given the wide size range of the test
sets (between 300 and 55872), we present the nor-
malized label distributions, where each stack in a
bar represents the percentage of a label within the
corresponding task’s test set.
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Dataset (Source)

Task(s)

Shortened identifier

ClimaText (Varini et al., 2021)

Sentence classification

ClimaText Sent. CIf.

Climate-Stance (Vaid et al., 2022)
Climate-Eng (Vaid et al., 2022)
Climate-FEVER (Diggelmann et al., 2020)

Stance classification
Topic classification
Claim verification

Climate-Stance
Climate-Eng
Climate-FEVER

SciDCC (Mishra and Mittal, 2021)

Topic classification by Title

Topic classification by Title & Summary
Topic classification by Title & Body

SciDCC Title
SciDCC Title Sum.
SciDCC Title Body

CLIMA-CDP (Spokoyny et al., 2023)

QA-Cities (answer relevance)
QA-Corporations (answer relevance)
QA-States (answer relevance)
QA-Topic-Cities (topic classification)

QA-Cities
QA-Corps.
QA-States
QA-Topic-Cities

PIRA 2.0 MCQ(Pirozelli et al., 2024)

PIRA with Context
PIRA without Context

PIRA w/ Ctx.
PIRA w/o Ctx.

Exeter Misinformation (Coan et al., 2021)

Claim Detection
Sub-claim Detection

Exeter Claim
Exeter Sub-claim

Climate-Change NER (Bhattacharjee et al., 2024)

Entity recognition

Climate NER

CheapTalk (Bingler et al., 2023)

Climate Detection
Climate Sentiment
Climate Commitment
Climate Specificity

Climate Commit.

TCFD Recommendations TCFD Recommend.
Net-Zero Reduction (Schimanski et al., 2023) Paragraph classification Net-Zero Reduction
Environmental Claims (Stammbach et al., 2023) Sentence classification Env. Claims
. . Topic classification by Title Guardian Title
Guardian Climate News Corpus Topic classification by Body Guardian Body

Table 6: Shortened task identifiers (if they exist) for each task presented in the ClimateEval benchmark. These
shortened task names are used in tables presenting the results for the purpose of saving space.

Label Percentage (%)

Figure 3: The normalized distribution of labels in each task across all sets (train, development, and test).
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Abstract

Bidirectional Topic Matching (BTM) is a novel
method for cross-corpus topic modeling that
quantifies thematic overlap and divergence be-
tween corpora. BTM is a flexible framework
that can incorporate various topic modeling ap-
proaches, including BERTopic, Top2Vec, and
Latent Dirichlet Allocation (LDA). It employs
a dual-model approach, training separate topic
models for each corpus and applying them
reciprocally to enable comprehensive cross-
corpus comparisons. This methodology facil-
itates the identification of shared themes and
unique topics, providing nuanced insights into
thematic relationships. A case study on climate
news articles illustrates BTM’s utility by ana-
lyzing two distinct corpora: news coverage on
climate change and articles focused on climate
mitigation. The results reveal significant the-
matic overlaps and divergences, shedding light
on how these two aspects of climate discourse
are framed in the media.

1 Introduction

Topic modeling is widely used to analyze and struc-
ture large textual corpora (Churchill and Singh,
2022), with a key application being the identifi-
cation of latent topics that experts can evaluate
for quantitative insights (Grundmann, 2021). Be-
yond single-corpus analysis, topic modeling also
facilitates comparisons across multiple corpora, en-
abling the examination of thematic similarities and
differences (Bystrov et al., 2022).

In climate discourse research, cross-corpus meth-
ods can reveal how different aspects of climate
change and mitigation are framed in the media.
While corpus linguistics has traditionally applied
similarity measures during corpus creation or selec-
tion, studies have demonstrated their value for dis-
course analysis (Taylor, 2018). Recent research has
leveraged such approaches to compare narratives
across policy debates, social media discussions,

and news coverage in various contexts, including
migration, elections, and economic development
(Shaikina and Funkner, 2020; Bystrov et al., 2024;
Hellwig et al., 2024; Taylor, 2018).

This study introduces Bidirectional Topic Match-
ing (BTM), a novel method for cross-corpus topic
modeling, to analyze thematic overlaps and dis-
tinctions in climate change and mitigation news
articles. BTM identifies shared and corpus-specific
topics, enabling both quantitative comparisons and
deeper qualitative exploration of how these issues
are framed.

Existing cross-corpus topic modeling ap-
proaches typically rely on Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003) or language em-
bedding models to compute topic similarities via
cosine similarity (Carniel et al., 2022; Hellwig
et al., 2024). Others merge corpora into a single
model and analyze topic distributions separately
(Wang et al., 2023). In contrast, BTM trains dis-
tinct topic models for each corpus and applies them
reciprocally, allowing topics to be assigned across
corpora. This approach enhances the identifica-
tion of both shared and unique themes, providing
deeper insights into the evolving discourse on cli-
mate change and mitigation.

2 Method

2.1 Topic modelling

BTM is a flexible framework for cross-corpus anal-
ysis that can incorporate various topic modeling
approaches. For assessing corpus similarity, any
method capable of inferring topics for new data
is suitable. However, analyzing unique or corpus-
specific topics requires a method that can identify
intraclass outliers—documents that do not align
with any topics generated by the chosen topic mod-
eling approach. Language embedding-based meth-
ods, such as BERTopic (Grootendorst, 2022) or
Top2Vec (Angelov, 2020), are particularly well-
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suited for this purpose as they inherently sup-
port outlier detection. Traditional approaches like
Latent Dirichlet Allocation (LDA), which assign
a topic to every document, can also be adapted
through post-processing techniques such as HDB-
SCAN (MclInnes and Healy, 2017) or Local Out-
lier Factor (Breuniq et al., 2000) to identify out-
liers. Given BERTopic’s state-of-the-art perfor-
mance and its built-in outlier detection capabilities,
this study demonstrates the application and efficacy
of BTM using BERTopic as the underlying topic
modeling approach.

BERTopic presents an innovative method for
topic modeling, capitalizing on recent advance-
ments in embedding models. Derived from Bidi-
rectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019), this approach
involves the representation of documents as points
within a high-dimensional vector space. In this
space, each coordinate represents contextual infor-
mation corresponding to the respective document.
As a result, semantically analogous documents will
be in proximity to each other. Subsequently, di-
mensionality reduction and clustering algorithms
are employed to identify compact clusters of docu-
ments with shared thematic content. Each of these
clusters can then be interpreted as individual topics
that are found within the investigated collection
of documents and are represented by a set of key-
words that are most indicative of the underlying
theme. An outlier refers to a document that cannot
be assigned to any of the identified topics due to its
lack of thematic similarity. This occurs when the
document does not align well with any of the top-
ics, often because it is too different or semantically
distant from the other documents in the model. In
BERTopic, both topics and outliers can be easily
accessed and handled, where outliers are grouped
together under an outlier topic, often with a spe-
cial identifier like -1. As a final step, a class-based
term frequency inverse document frequency mea-
sure (c-TFIDF) is applied to extract the most salient
terms from each topic and create interpretable topic
representations (Grootendorst, 2022).

2.2 Cross-Corpus Topic Assignment

For BTM, which is schematically depictured in
Figure 1, two independent topic models are trained
on two thematically related corpora, corpus 1 and
corpus 2. Each model is used to identify the main
themes within the respective corpus, generating
topics T1 for corpus 1 and topics T2 for corpus 2.

Individually, these native topic models provide a
comprehensive understanding of the thematic struc-
tures specific to each dataset.

To explore thematic alignment between the cor-
pora, each model was applied to the corpus, it was
not trained on. For this, the semantic similarity
between the document’s embedding and the topic
embeddings of the model trained on the other cor-
pus was calculated. Specifically, each document
in corpus 2 gets matched to a topic from T1, and
each document in corpus 1 gets matched to a topic
from T2, based on the highest similarity score. This
process produced cross-corpus topic assignments,
resulting in T12 (topics from T1 assigned to Cor-
pus 2) and T21 (topics from T2 assigned to Corpus
1).

Subsequently, topic pairs are generated by as-
signing each document from one corpus to the most
similar topic from the opposite corpus. Specifically,
for each document, the topics assigned by the cor-
pus 1 model (T11 and T12) and the topics assigned
by the corpus 2 model (T22 and T21) are combined
into cross-corpus topic pairs.

For a comprehensive cross-corpus analysis, both
the main set of topics and outliers are considered.
Outliers, while exhibiting atypical or low similarity
scores within their own topic model, are included
in the pairing process if they represent the highest
similarity match for a document. Thus, topic simi-
larity is calculated across all topics (0, 1, 2, ..., n),
with outliers treated as an additional category (-1).
This approach ensures that all thematical aspects
are represented, even if the relationships involving
outlier topics require further scrutiny in subsequent
analyses. This becomes especially crucial when
working with documents that are split into smaller
units, like paragraphs, where certain sections may
show unexpected topic associations, increasing the
likelihood of outliers that require careful attention.

2.3 Cross-Corpus Topic Pair Analysis

The topic pairs from both corpora were analyzed
through co-occurrence analysis to identify fre-
quently paired topics between the two models.
Specifically, we calculate how often each pair —
composed of one topic from the corpus 1 model
(T1, T12) and one from the corpus 2 model (T2,
T21) — is assigned to the same document. The
cross-topic co-occurrence is given by aggregation
of these pairs across all documents. This process al-
lows us to assess the frequency with which specific
cross-corpus topic combinations occur together,
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Corpus 1 Corpus 2

Train Topic Model 1 Train Topic Model 2

Topic 11 Topic 21 Topic 12 Topic 22

ssign Topic Pair to Each
Document in Corpus 1

Assign Topic Pair to Each
Document in Corpus 2

Calculate Topic
Co-Occurences

Calcutate Topic Simitiarity:
Topic Ranking Based on
Frequent Co-Occurence

Calcutate Outlier Topics:
Select Unique Topics Based
on Outlier Criteria

Evaluate Topic Similarity:
Calculate Cosine Similarity

Figure 1: Schematic Outline of Bidirectional Topic
Matching Procedures for Calculating the Thematic
Closeness Factor of Corpus 1 and Corpus 2. Optional
additional analysis of topic similarity may be conducted
via cosine similarity.

providing insights into their thematic relationships.
High-frequency pairs indicate topics from both
models that were commonly associated with sim-
ilar documents, reflecting thematic alignment be-
tween the corpora. Although the co-occurrence
analysis itself remains undirected, focusing solely
on the frequency of simultaneous topic occurrences
within the documents, the subsequent exploration
of relationships between topics from Corpus 1 and
Corpus 2 is framed in a directed context. This di-
rected approach enables a detailed investigation of
the interactions and semantic linkages between the
topics across the two corpora.

The interpretation of topic pairs helps clarify
patterns of topic co-occurrence between corpora.
High co-occurrence between a native topic and
main cross-topics suggests strong thematic align-
ment, whereas alignment with smaller cross-topics
indicates a more nuanced or niche connection. If
a native topic aligns with outlier topics from the
cross corpus, it may reflect themes unique to the
native corpus. Similarly, when outlier topics from
both corpora co-occur, it suggests a shared lack of
thematic focus, while low co-occurrence between
outliers is unexpected and may indicate inconsis-
tencies in topic modeling or heterogeneity within
the outlier topics.

3 Topic and Corpus Measures

For a corpus containing T native topics, a series
of measures can be calculated to describe its rela-

tionship with a second corpus containing T cross
topics. A pairing strength is introduced as a quanti-
tative measure of the degree of association between
a topic from the native corpus and a topic from
the cross corpus. This measure is based on the fre-
quency of co-occurrence of the two topics within
the same documents. For a topic pair (¢;, ), where
tili € {—1,...,T} belongs to the native topics and
tilj € {~1,...,T} belongs to the cross topics, the
pairing strength S(¢;, ;) can be defined as:

St = 5%

6]

where n(D;;) denotes the size (or cardinality) of
the set of documents D;; to which both topics ;
and ¢; are assigned. Respectively, n(D;) denotes
the size of the set of documents D), associated with
the native topic t;.

For the cross topics £|j € {0, ..., T}, the pair-
ing strength is referred to as topic closeness and
represents the degree of alignment between each
cross-topic and a specific native topic t;. A spe-
cial case of pairing strength involves the outlier
topic f_; called topic uniqueness. Topic unique-
ness quantifies the extent to which a native topic
is distinct from the cross corpus. Native topics
with a topic uniqueness value of 0.5 or higher are
classified as unique topics.

3.1 Corpus Closeness and Corpus Uniqueness

Based on the topic closeness of all native topics,
we define the corpus closeness C', which quantifies
the overall thematic relatedness between the two
corpora:

ZzT:O Z;“on S(ti, Ej)

C= T

2

as well as its weighted variant C,, which gives
higher importance to larger and more relevant na-
tive topics:

ST n(Dy) S 5(t.4))
ZiT:O n(D;)

Both closeness measures reflect the thematic over-
lap between the two corpora, while the weighted
measure assigning greater significance to larger
and thus more prominent topics within the native
corpus. Generally, low closeness indicates that the
two corpora are largely thematically independent.
The difference Cy, — C' = 6;60 € [—1,1] can be

Cy = 3)
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used to assess whether the relationship between the
corpora is evenly distributed across all native topics
or predominantly concentrated within a subset of
native topics:

corpus closeness is pro-
portionally influences by

larger native topics
corpus closeness is not in-

fluenced by native topic

size .
corpus closeness is pro-

portionally influenced by
smaller native topics

0~ —1

“)
The corpus uniqueness U and its weighted equiv-
alent U,, are alternatives to the corpus closeness
to indicate the level of independence between the
corpora:

T oz
U: 1—C— Zi:osj(fut—l) (5)
T . . . g
Upy=1-Cyp = > iz M(Di) - S(tis t-1) ©)

T
i=o 1

>i—o(Di)

Here, S(t;,1_1) represents the topic uniqueness of
each native topic. As with the corpus closeness
factor, a high positive difference U,, — U indicates
that most of the corpus uniqueness is explained
by larger native topics while a large negative dif-
ference sees most of it covered by smaller native
topics.

3.2 Corpus Alignment

Both closeness and uniqueness fail to account for
the specificity of topic matches and topic size dis-
tribution of the native corpus. The topic alignment
strength S A(t;) of a native topic quantifies the con-
centration of topic closeness values with respect
to the topics of the cross corpus. This indicates
whether a native topic is associated with a single
theme (focused) or to multiple themes (scattered)
in the other corpus. To achieve this, the highest
topic closeness of the native topic is selected:

SA(tZ> = max S(ti,fj) (7)
j€{0,....,T}

= maX{S(ti, LZ()), S(ti, 7?1), e ,S(ti, tNT)}

®)

A high topic alignment strength indicates that a na-
tive topic aligns with a single cross topic, whereas
a low value suggests a wider variety of important
pairings.
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The corpus alignment A serves as an overall
metric that captures the average alignment strength
across all native topics. It quantifies whether the
topic alignments between the two corpora are fo-
cused on specific topic pairs or spread over multiple
combinations.

A > i SA(t:)

T €)
_ XionD)-SAt)
B ZiT:O n(D;)

Here, the difference A,, — A is useful to indicate
whether the distribution of topic alignment strength
is skewed towards larger or smaller native topics.

By comparing the corpus uniqueness factor U
and the corpus alignment factor A, we identify
three key relationships between corpora. Low
uniqueness and low alignment indicate thematic
overlap, with the cross corpus exploring similar
topics in greater depth or from multiple perspec-
tives. Low uniqueness and high alignment suggest
that the corpora are closely related, likely subsets
of a larger parent corpus. High uniqueness and low
alignment imply that the corpora are largely inde-
pendent, as many topics in the native corpus are not
present in the cross corpus. A scenario with both
high uniqueness and high alignment is not possible
due to their inherent relationship.

4 Validation through related Methods

Since both topic models are generated from the
same embedding model, the resulting embedding
vectors for each topic are located in the same vector
space. Therefore, to validate the effectiveness of
the proposed method, we introduced an additional
analysis by measuring the cosine similarity be-
tween the topic embeddings of the two BERTopic
models. In this validation process, cosine similar-
ity scores were first calculated between the topic
embeddings of the corpus 1 and corpus 2 mod-
els to quantify the semantic overlap between their
topics. Higher cosine similarity scores indicated
greater alignment between topics. These scores
were then compared to the distribution of observed
topic pairs, with the goal of finding the most similar
topics across the corpora. To assess the consistency
between the two methods, Cohen’s kappa was cal-
culated, providing a measure of agreement between
the cosine similarity-based approach and the topic
pair distribution.
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B 121_Melzer_OFB_Roddick_Rapid

Figure 2: Left side — The largest native topic from corpus 1 along with the five most prominent cross topic pairs
from corpus 2. They gray area indicates the pairing strength for each pair. Right side — The largest native topic from
corpus 2 along with the five most prominent cross topic pairs from corpus 1. They gray area indicates the pairing

strength for each pair.

5 Case Study Climate News
5.1 Dataset

To showcase BTM, two sets of digitized print arti-
cles were extracted from the WISO database that
provides a repository for online newsarticles in
the German-speaking region. According to Adam,
Scholger, and Kogler (2023), the regional climate
debate is characterized by two largely indepen-
dent subject areas: climate change, which encom-
passes information on natural and physical im-
pacts, dangers, and risks, and climate mitigation,
which focuses on actions, socio-economic strate-
gies, and technological solutions. The search terms
climate change (“klimawandel*” where the aster-
isk serves as a wildcard symbol that matches any
suffixes or word endings attached to the German
root word "klimawandel") and climate action (“’kli-
maschutz*””) were used to create the climate change
dataset (corpus 1) and the climate action dataset
(corpus 2), respectively. The investigated period
spans from 2002 until 2022 and includes 21.753
articles in corpus 1 and 20.135 articles in corpus 2,
with an overlap of 3.111 articles.

To account for the limited encoding length of em-
bedding models, all articles were split into smaller
parts of up to 150 words, which corresponds to
the average length of German paragraphs (Altpeter
et al., 2015). This was done with the help of the
gsd model available in the stanza library (Qi et al.,
2020). The final dataset therefore consisted of
124.500 paragraphs.

Both BERTopic models were trained based on

the German Semantic STS V2 embedding model.
For corpus 1 a topic model consisting of 122 topics
was generated, while corpus 2 produced a topic
model with 88 topics.

6 Results

6.1 Case Study

6.1.1 Topic Pairs and primary Relationships
between Topics

Tables 1 and 2 provide qualitative evidence support-
ing BTM’s ability to identify meaningful relation-
ships between topics across corpora. By examining
paired topics, corpus-specific nuances emerge. For
example, a comparison of topics focused on forests
and glaciers reveals differences in thematic empha-
sis: Corpus 1 highlights specific results of climate
change, such as increased bark beetle infestations
and rockfalls in the Alps, while Corpus 2 empha-
sizes the state of forests or national parks and the
impact of climate change on alpine temperatures.
This capacity to reveal varying degrees of speci-
ficity allows researchers to understand how distinct
datasets prioritize or converge on shared themes.
Such insights are critical for comparative discourse
analyses, such as political communication or cross-
cultural studies.

6.1.2 Subpairing Topics — Quantifying
Secondary Thematic Relationships
Whether individual topics are directly shared be-
tween corpora or whether one corpus discusses
certain topics more diversely can be analyzed us-

212



Native Topics Corpus 1 (T1)

Cross Topics Corpus 2 (T12) SA

EU OVP Austria Government

Trees Bark_Beetle Federal_Forestry
Spruce

Fridays Greta_Thunberg Streets Youths
Glacier Alps Rockfall Dachstein
Diesel Electric_Cars Vehicles
Automobile_Industry

Greens OVP FPO Sebastian_Kurz 0.44
Woods Hectare Federal_Forestry National_Park  0.60
Fridays Greta_Thunberg Movement Humans 0.69
Degree Glacier Temperatures Climate_Change  0.58
Electric_Cars Vehicles BMYV Diesel 0.41

Table 1: Five native topics of corpus 1 along with their respective main cross topic pair from corpus 2 and
topic alignment strength S A (highest pairing strength). Each topic is represented by four topic words or phrases
(connected with an underscore), which is the standard output of BERTopic. The topic representations were translated

from German to English.

Native Topics Corpus 2 (T2)

Greens OVP FPO Sebastian_Kurz
Brussels Parliament Head_of_Government
Barroso

Renovation Residential_Construction
Housing_Subsidies Buildings

OBB Million_Euro Truck Commuter
Baerbock Merkel CSU Greens

Cross Topics Corpus 1 (T21) SA
EU OVP Austria Government 0.70
EU OVP Austria Government 0.61
Passive_House Residential_Construction 0.31
Energy_Efficiency Real_Estate '
OBB Vienna Mobility Means_of_Transport  0.68
Laschet Baerbock Greens Coalition 0.74

Table 2: Five native topics of corpus 2 along with their respective main cross topic pair from corpus 1 and
topic alignment strength S A (highest pairing strength). Each topic is represented by four topic words or phrases
(connected with an underscore), which is the standard output of BERTopic. The topic representations were translated

from German to English.

ing topic alignment strength, as shown in Tables
1 and 2. For instance, the politics topic in Corpus
1 exhibits a moderate topic alignment strength of
0.44. This indicates that several topics from Cor-
pus 2, beyond the most similar cross-topic, address
relevant aspects of this native topic. The left side of
Figure 2 visually showcases this distribution across
different cross-topic pairings. This suggests that
political discourse is more granular in Corpus 2,
allowing its topic model to recognize distinctions
within documents assigned to a single topic in Cor-
pus 1.

Conversely, Table 2 reveals that both national
and EU-level politics topics in Corpus 2 exhibit
high topic alignment strength with the same politics
topic in Corpus 1. This supports the hypothesis that
political discourse in Corpus 2 is more detailed,
encompassing multiple perspectives that align with
a broader theme in Corpus 1.

A broader overview is provided in Figure 3,
which illustrates the pairing strength composition
for the 25 largest topics in each corpus. For most
native topics, the most similar cross-topic alone

does not account for the majority of topic close-
ness. This highlights thematic asymmetries, where
one corpus tends toward generality while the other
emphasizes specificity. Such analyses are instru-
mental in uncovering where thematic overlaps or di-
vergences occur, enabling nuanced interpretations
of the data

6.1.3 Identifying Unique Topics

One of BTM’s most compelling features is its abil-
ity to identify topics unique to each corpus. This is
achieved by extracting topics with a topic unique-
ness value above 0.5. In this case study, 23 unique
topics were identified in Corpus 1, while Corpus 2
contained 15 unique topics.

Table 3 illustrates examples of unique topics
from each corpus. Corpus 1 focuses on science
communication and geographic impacts, such as
water supply, while Corpus 2 emphasizes action-
able measures, including renewable energy and
local initiatives. Such differentiation is especially
valuable for corpora with overlapping themes, as it
enables researchers to discern distinct areas of fo-
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Figure 3: The pairing strength composition for the 25 largest native topics. The shading of the bars indicates the
ranking of the topic pairing strengths, where the most prominent pair is represented by the darkest color. Topic
pairs with a pairing strength below 0.05 were merged into the “remaining topic” category. The outlier topic pairing
strength or topic uniqueness is indicated by the red dashed bars. a): Corpus 1. b): Corpus 2.

cus. For example, in interdisciplinary studies, this
capability bridges gaps between problem-oriented
and solution-oriented approaches, fostering more
comprehensive analyses.

6.1.4 Corpus Level Relationship

Table 4 reveals that both corpora exhibit notable
distinctions, with approximately one-third of the
content in each corpus not described by the other.
Both show a corpus uniqueness factor of 0.34, indi-
cating a significant level of thematic independence.
The corpus closeness factor of 0.66 suggests ma-
jor thematic overlaps, while the low difference be-
tween weighted and general corpus uniqueness fac-
tors (< 0.1) implies that neither corpus is skewed
toward unique topics of particular sizes. However,

Corpus 2 displays slightly more pronounced topic
uniqueness in smaller topics compared to Corpus
1.

Similarly, both corpora have comparable corpus
alignment factors (0.45 for Corpus 1 and 0.44 for
Corpus 2). The minor influence of native topic
sizes indicates that alignment is not disproportion-
ately driven by larger topics. Together, these met-
rics suggest that while the corpora share substantial
thematic overlap, they focus on different thematic
subsets in more detail. This is consistent with the
low corpus uniqueness and low corpus alignment
case, where native topics frequently pair with mul-
tiple relevant cross-topics, as observed in Figure
3.
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Corpus 1 Unique Topics Corpus 2 Unique Topics

Austria Emissions Measures Euro
Energy Project Municipality Climate_Alliance
Wind_Power Renewable Austria Energie_Transition

Slopes Ski_Area Snow_Making Wintertourism
Lakes Donau Groundwater Water
IPCC Al_Gore Climate_Researcher Consensus

Table 3: Selection of three unique native topics from corpus 1 and corpus 2 respectively based on a topic uniqueness
above 0.5.

Native Corpus C' Co—C U Uy — U A A, — A
Corpus 1 0.66 0.02 0.34 -0.02 0.45 -0.01
Corpus 2 0.66 0.04 0.34 -0.04 0.44 0.04

Table 4: Values for the corpus closeness factor C, the corpus uniqueness factor U, the corpus alignment factor A and

the difference between the three factors and their respective weighted variants for corpus 1 and corpus 2.

6.2 Validation - Comparison with Cosine
Similarity

We demonstrate the agreement between BTM and
cosine similarity-based methods for climate news
articles to highlight the validity of the proposed
approach. When identifying the most similar topic
from corpus 2 for each topic in corpus 1, Cohen’s
kappa was calculated at 0.75. Conversely, when
determining the most similar topic from corpus 1
for each topic in corpus 2, Cohen’s kappa increased
to 0.81. These values reflect a strong level of agree-
ment, affirming the reliability of BTM (Mchugh,
2012).

Discrepancies between BTM and cosine similar-
ity approaches were most evident when BTM as-
signed the outlier topic as the closest match. Since
this topic encompasses documents that do not fit
into any defined clusters, its inclusion is inherently
challenging for methods relying solely on cosine
similarity. Beyond the outlier topic, the remaining
discrepancies (approximately 20%) lacked clear ev-
idence favoring one method over the other, suggest-
ing that both approaches offer comparable utility
for calculating topic similarity.

7 Discussion and Conclusion

BTM provides a robust framework for cross-corpus
topic modeling. By leveraging BERTopic’s inter-
pretable topic representations and employing recip-
rocal topic assignments, BTM facilitates a nuanced
exploration of thematic relationships across cor-
pora. This approach not only captures shared topics
but also highlights unique themes, offering a com-
prehensive lens through which to analyze corpora
with overlapping or divergent thematic structures.

7.1 Methodological Contributions

BTM addresses key limitations in traditional cross-
corpus topic modeling approaches. By training
separate topic models for each corpus and applying
them reciprocally, BTM ensures that each model’s
native structure is preserved while enabling cross-
corpus comparisons. This dual approach allows
for the identification of both shared and unique
topics, a capability that is particularly valuable in
interdisciplinary or comparative discourse studies.

Validation through cosine similarity underscores
the reliability of BTM. Strong agreement between
BTM and cosine similarity-based methods (Co-
hen’s kappa scores of 0.75 and 0.81) demonstrates
the robustness of the approach, while the discrep-
ancies observed with outlier topics highlight areas
where BTM’s methodological strengths are most
apparent. These findings suggest that BTM can
serve as a reliable alternative or complement to
existing methods, particularly for datasets with sig-
nificant thematic variability.

7.2 Insights from the Case Study

The application of BTM to climate news arti-
cles revealed meaningful thematic distinctions and
overlaps between two corpora focused on climate
change and climate action. The results demon-
strate that while both corpora share substantial the-
matic overlap (corpus closeness factor of 0.66),
they also exhibit notable differences, with approx-
imately one-third of the content in each corpus
being unique (corpus uniqueness factor of 0.34).
Corpus 1 prioritizes broad environmental and
scientific discussions, such as the geographic im-
pacts of climate change, while Corpus 2 focuses
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on actionable measures like renewable energy and
local initiatives. This differentiation underscores
the value of BTM in identifying thematic nuances
that may be overlooked by less granular methods.
Moreover, the ability to quantify topic alignment
and uniqueness provides a structured way to assess
thematic relationships, facilitating more targeted
qualitative analyses.

8 Limitations

There are a few notable limitations in the suggested
approach. First of all, BTM provides direction de-
pendent results. Comparing Corpus 1 with Corpus
2 can lead to different results than comparing Cor-
pus 2 with Corpus 1. For example, if Corpus 2 were
to be a highly specific sub-corpus of Corpus 1. In
this case, Corpus 1 would exhibit high Uniqueness
values, as only a limited number of its native topics
would be covered by Corpus 2. However, Corpus
2 would have low Uniqueness as all of its native
topics are present in Corpus 1.

Secondly, the presented case study uses the same
embedding model for both corpora. While this is
necessary to compare the results with cosine simi-
larity, there are cases where it might be preferable
to use different embedding models for each cor-
pus. Especially when domain-specific models are
available such as in the medical or financial do-
main. BTM can, theoretically, still be employed
in such a case, it is however unclear how valid the
results would be. Such an investigation would be
an important aspect of future research.

A third limitation is that using topic merging
methods after creating topic models will result
in different corpus level measures than using un-
merged topics. The topic level measures of a
merged topic will be the averages calculated from
the topic level measures of each individual topic
that was used to create the merged topic. And as
the corpus level measures are either weighted or un-
weighted averages of the used topic level measures,
averaging some of them beforehand will naturally
change the final results.

9 Further Research

Future research could apply BTM to dissect the
complex interplay between scientific understand-
ing and policy formulation. For instance, a system-
atic comparison of academic literature on specific
climate solutions, such as carbon capture technolo-
gies or nature-based solutions, with corresponding

governmental policy documents or legislative pro-
posals could quantitatively reveal how scientific
findings are translated, prioritized, or re-framed
within policy-making arenas (Ibarra et al., 2022).
Similarly, BTM offers a robust methodology to
analyze the critical interface between expert com-
munication and public discourse. By comparing
outputs from climate science organizations, like
IPCC summaries or national climate assessments,
with the vast textual data generated on social media
platforms or in public commentary on news articles,
researchers could identify unique public concerns,
pinpoint areas of scientific misunderstanding, or
highlight divergent thematic emphases, thereby in-
forming the development of more effective and
resonant climate communication strategies.

Furthermore, BTM can facilitate nuanced com-
parisons across diverse geopolitical and ideological
landscapes. It could be employed to systemati-
cally examine climate narratives within Nationally
Determined Contributions (NDCs) submitted by
developed versus developing nations, or to contrast
climate impact reporting styles and thematic priori-
ties between media outlets in the Global North and
Global South (Hase et al., 2021). Such analyses
could illuminate shared thematic ground alongside
areas of significant contention or differing national
priorities, which is crucial for international climate
negotiations and cooperation.

Beyond governmental and public spheres, BTM
can also shed light on corporate engagement with
climate change. Applying the framework to an-
alyze corporate sustainability or Environmental,
Social, and Governance (ESG) reports across var-
ious industry sectors, or between companies with
different stated climate commitments, could iden-
tify common and unique themes related to per-
ceived climate risks, adopted mitigation strategies,
and planned adaptation efforts (Dahl and Flgttum,
2019). Through these varied applications, BTM
promises to provide researchers with a powerful
tool for a deeper, more quantified understanding of
the multifaceted and evolving discourses surround-
ing climate change, its impacts, and the global re-
sponse.
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Abstract

Misinformation about climate science is a
serious challenge for our society. This pa-
per introduces CPIQA (Climate Paper Image
Question-Answering), a new question-answer
dataset featuring 4,551 full-text open-source
academic papers in the area of climate science
with 54,612 GPT-40 generated question-answer
pairs. CPIQA contains four question types
(numeric, figure-based, non-figure-based, rea-
soning), each generated using three user roles
(expert, non-expert, climate sceptic). CPIQA
is multimodal, incorporating information from
figures and graphs with GPT-40 descriptive an-
notations. We describe Context-RAG, a novel
method for RAG prompt decomposition and
augmentation involving extracting distinct con-
texts for the question. Evaluation results for
Context-RAG on the benchmark SPIQA dataset
outperforms the previous best state of the art
model in two out of three test cases. For our
CPIQA dataset, Context-RAG outperforms our
standard RAG baseline on all five base LLMs
we tested, showing our novel contextual decom-
position method can generalize to any LLM
architecture. Expert evaluation of our best per-
forming model (GPT-40 with Context-RAG) by
climate science experts highlights strengths in
precision and provenance tracking, particularly
for figure-based and reasoning questions.

1 Introduction

Misinformation about climate science continues to
pose a challenge for our society. This poses a seri-
ous challenge for public understanding, policymak-
ing and even experts (Lewandowsky, 2020). At the
same time, large language models (LLMs) have be-
come powerful tools for information retrieval and
evidence synthesis, but they are also highly prone
to hallucination—generating incorrect or fabricated

facts, references, and claims (Huang et al., 2025).
Given the high stakes of climate communication,
there is a pressing need for a reliable question-
answering (QA) system that grounds responses in
authoritative scientific sources.

In this work, we introduce CPIQA, a new dataset
for climate science QA that incorporates both text
and visual data from academic papers. CPIQA con-
sists of 4,551 papers from twelve sources set out
in appendix C, with extracted figures and their de-
scriptions used as additional evidence in question-
answering. The dataset supports three role varia-
tions and four question categories designed to re-
flect different types of real-world climate questions.

Building on CPIQA, we develop a retrieval-
augmented generation (RAG)-based chatbot for
climate QA. Our system follows a two-stage re-
trieval process: it first retrieves full papers based on
the user’s query, then extracts relevant text chunks
from the most relevant papers. This approach im-
proves both chunk similarity and cross-relevance
of chunks. Further, we introduce Context-RAG, a
novel prompting method that enhances retrieval by
decomposing a given question into distinct contex-
tual variations before searching for relevant doc-
uments. Rather than relying on a single query,
our method anticipates different ways the ques-
tion might be framed—such as a scientific expla-
nation, a policy-related perspective, or a public
concern—allowing for more diverse and targeted
retrieval. This ensures that retrieved documents
are not biased toward a single interpretation of the
question.

To evaluate the effectiveness of our method, we
test it on SPIQA, a dataset for scientific QA in the
computer science domain, in addition to CPIQA.
This allows us to assess how well our QA pipeline
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generalizes beyond climate science. Finally, we
validate the system’s outputs through qualitative
climate scientist expert evaluation, ensuring that re-
sponses are accurate, relevant, concise and aligned
with scientific consensus.

By combining structured retrieval with expert-
informed question generation, this work con-
tributes a robust, transparent approach to cli-
mate QA, helping to bridge the gap between Al-
generated answers and reliable scientific communi-
cation.

More specifically, our contributions in this work
include the following:

¢ A new multimodal QA dataset resource
(CPIQA dataset) for the NLP community
based on 4,551 academic climate research
paper documents. This dataset is large,
annotated with 54,612 question-answer
pairs generated by GPT-40 and includes
text summaries of all images, graphs and
figures within the full text documents.
Questions are broken down into figure-
based, numeric-based, non-numeric, and
reasoning-based types to allow for a finer-
grained evaluation of QA performance
than most existing QA datasets allow. Our
code and dataset is open source and avail-
able at github.com/RudraMutalik/CPIQA,
doi.org/10.5281/zenodo.15374870 and
doi.org/10.57967/hf/5386 respectively.

* Description of a novel context-based query
expansion method for RAG, comprehensively
evaluated on both the benchmark SPIQA
dataset and our new CPIQA dataset. Context-
based query expansion provides a 7.2% im-
provement in BERTscore-F1 over baseline
RAG methods across various question types
and roles. We include a detailed breakdown of
performance across different question types
which future researchers can benchmark their
models against.

2 Related Work

2.1 Scientific QA Datasets

Table 1 sets out notable QA datasets that have been
designed to support scientific domains such as cli-
mate science.

A significant number of existing QA datasets
come from the biomedical and computer science

domains, reflecting the heavy use of document-
based QA in these fields. While these datasets
offer strong benchmarks for scientific QA, they
are typically unimodal, focusing exclusively on
textual information. Multimodal datasets—those
incorporating both text and figures—are far less
common, with SPIQA (Pramanick et al., 2024)
being the most comprehensive multimodal dataset
designed for scientific applications.

Among multimodal datasets, FigureQA (Ka-
hou et al., 2017) is a notable example, containing
question-answer pairs for synthetic graphs, figures,
and tables. However, it lacks contextual informa-
tion from accompanying text, making it unsuitable
for tasks that require a deeper understanding of
scientific literature.

Compared to biomedical and computer science
domains, climate science QA datasets are less com-
mon. One of the most relevant efforts is ClimaQA
(Manivannan et al., 2024), which includes both
a 502 question "gold" dataset curated by experts
and a larger LLM-generated 3000 question “sil-
ver” dataset. ClimaQA is unique in that it supports
three types of questions: multiple-choice, cloze-
style, and free-form, allowing for a broader range
of QA applications. Our CIPQA is significantly
larger with 54,612 questions, and unlike ClimaQA
which relies on textbook sources our dataset relies
on academic paper sources making it suitable for
research-driven climate QA.

2.2 Climate Science LLMs

Recent efforts have been made to fine-tune LLMs
specifically for climate-related tasks such as fact-
grounded QA, ambiguous policy analysis, and mis-
information debunking. One such example is Cli-
mateBERT (Webersinke et al., 2022), a model
trained on climate-focused text sources to improve
NLP performance in this domain. ChatClimate
(Vaghefi et al., 2023) grounds GPT-4 responses in
IPCC ARG reports, showing that retrieval signifi-
cantly improves accuracy. Hallucinations are iden-
tified, however, when queries extend beyond the
IPCC’s coverage. ChatNetZero (Hsu et al., 2024)
applies a similar approach to net-zero policies, re-
trieving structured data on corporate and govern-
mental pledges. While this helps ground responses,
the model struggles with policy ambiguity.
Beyond policy analysis, LLMs are being ex-
plored for misinformation debunking. Generative
Debunking of Climate Misinformation (Zanartu
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Question basis

Dataset Questi?n Num. QA Num Paper Source Domain Full - Figs &
generation pairs documents text  tabs

FigureQA Schema based 1.8M 140k Synthetic General N Y
BioAsq Human experts 3.2K - PubMed Biomedical N N
PubMedQA Human experts 1K 120K abstracts PubMed Biomedical Y N
BioASQ-QA Human experts 4.7K - PubMed Biomedical N N
ArgSciChat Human experts 41 dialogues 20 papers arXiv NLP Y N
ScienceQA Human experts 21K - School curriculum General Y Y
QASPER Human experts 5K 1.5K papers S20RC NLP N N
QASA Human experts 1.8K 112 papers S20RC AI/ML Y N
SPIQA Huriirllvlei;e - 270K 25.5K papers arXiv Computer Sci. | Y Y
ClimaQA-Gold Human Experts 502 23 Textbooks Climate Sci. Y N
ClimaQA-Silver LLMs 3000 23 Textbooks Climate Sci. Y N
CPIQA (ours) LLMs 54.6k 4551 papers core.ac.uk Climate Sci. Y Y

Table 1: Comparison of relevant QA datasets over scientific literature: (Kahou et al., 2017), (Tsatsaronis et al.,
2015), (Jin et al., 2019), (Krithara et al., 2023), (Ruggeri et al., 2023), (Lu et al., 2022), (Dasigi et al., 2021), (Lee

et al., 2023), (Manivannan et al., 2024) (2)

et al., 2024) introduces claim classification and fal-
lacy detection, structuring responses using a fact-
myth-fallacy-fact framework. While this improves
coherence, LLMs sometimes fail to select the most
relevant counterarguments, leading to misdirected
rebuttals.

My Climate Advisor (Nguyen et al., 2024) tar-
gets the specific domain climate adaptation in agri-
culture, retrieving information from peer-reviewed
research, grey literature, and climate projection
data. It tailors responses to regional climate risks,
offering actionable insights for farmers. A key con-
tribution is its expert-driven evaluation framework,
which assesses responses across seven domain-
specific criteria. Initial results highlight gaps in
retrieval precision and the difficulty of adapting to
evolving climate knowledge.

2.3 Retrieval-Augmented Generation

Effective retrieval-augmented generation (RAG)
depends on retrieval quality, query formulation, and
model alignment with retrieved knowledge. Tradi-
tional RAG pipelines perform a single retrieval step,
which can fail when initial queries are too vague
or incomplete (He et al., 2024). Recent research
has explored iterative retrieval, query reformula-
tion, and domain-specific adaptations to improve
response accuracy.

CoRAG (Chain-of-Retrieval Augmented Gen-
eration) (Wang et al., 2025) introduces stepwise
retrieval reasoning, allowing the model to dynam-
ically reformulate queries based on retrieved evi-
dence, significantly improving multi-hop QA. Simi-
larly, RICHES (Retrieval Interlaced with Sequence

Generation) (Jain et al., 2024) integrates retrieval
within the decoding process, eliminating the need
for a separate retriever module. This improves re-
sponse fluency but can introduce hallucinations if
retrieval is inconsistent.

Ensuring alignment between retrieved knowl-
edge and generated responses is another key chal-
lenge. CoV-RAG (Chain-of-Verification RAG) (He
etal., 2024) introduces a verification step that evalu-
ates and refines retrieved documents before answer
generation, reducing retrieval errors and halluci-
nations. RAGAR (RAG-Augmented Reasoning)
(Khaliq et al., 2024) extends this further with hier-
archical retrieval techniques (CoRAG and ToRAG -
Tree-of-RAG) that decompose complex claims into
sub-questions, retrieving evidence iteratively for
fact-checking in multimodal political discourse.

Beyond reasoning techniques, RAG-Studio
(Mao et al., 2024) focuses on domain-specific adap-
tation, addressing a major limitation of general-
purpose RAG models. It introduces a self-
alignment framework, where the retriever and gen-
erator co-train on synthetic domain-specific data,
improving retrieval precision and factual grounding
without requiring manually labeled examples. This
approach outperforms traditional RAG fine-tuning
in specialized domains such as law, finance, and
biomedicine.

Our Context-RAG approach is motivated by pre-
vious work on multi-step query reformulation, but
extending it to novelly focus on extracting distinct
contexts in which the question can be re-framed
to provide more diverse and user role-targeted re-
trieval.
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3 Methods

3.1 CPIQA Dataset

To develop CPIQA, we curated a dataset of climate-
related academic papers, integrating both textual
and visual information for the RAG QA task.

We sourced papers from relevant open source cli-
mate science journals, identified by climate science
expert recommendations. Using CrossRef, we re-
trieved the DOIs of all available articles from these
journals published between 2020 and 2024. We
sourced full-text PDFs from CORE.ac.uk (Knoth
etal., 2023), an open-access repository of academic
publications.

For each document, we extracted full text using
pymupdf4llm, introducing a filter for documents
with significant chunks of missing text. Figures and
captions were extracted using pdffigures 2.0 (Clark
and Divvala, 2016), aligning with the CPIQA ap-
proach. We use GPT-40 (OpenAl et al., 2024) to
generate detailed figure retrieval-friendly descrip-
tions based on the extracted figure type, caption
and raw image file. This allows for text-only em-
beddings to be used in a RAG setting, although
image-caption pairs are included in the release.

We generated question-answer pairs by present-
ing GPT-40 with the full text and figure descrip-
tions. We utilise role-based prompting, generat-
ing questions for the general public, climate ex-
perts and climate sceptics. Additionally, we gen-
erate multiple question types to encourage a wide
breadth of questions. Full prompt variations can be
found in appendix B.

3.2 Question-Answering Architecture

Our baseline two-stage RAG pipeline follows a
standard retrieval approach, designed for compara-
bility with SPIQA and evaluation of source attri-
bution. The retriever embeds the user query, and
retrieves relevant full text documents. These are
used as a filter for the second stage, where the same
query is used to retrieve chunks and figures from
the filtered documents, maintaining continuity be-
tween chunks if required. Retrieved chunks and
figure descriptions are inserted into a prompt tem-
plate alongside the question, from which the LLM
generates the answer.

We use NovaSearch/stella_en_1.5B_v5 (Zhang
et al., 2024) as our embedding model due to it be-
ing the highest ranked on the MTEB (Massive Text
Embedding Benchmark) (Muennighoff et al., 2022)
for the retrieval task with a minimum tokens of at

least 100k+, which is a requirement for embed-
ding the majority of documents in CPIQA. In cases
where the document is longer than the max-tokens,
we chunk the document, maximising token count.

3.3 Context-Based Query Expansion

Context-RAG first seeks to understand the context
and intent behind the question. Instead of simply
asking, "What do we need to know to answer this
question?", our approach reframes it as, "What is
the context of this question?" or "Why is this ques-
tion being asked?". This decomposition enables
retrieval that is broader, more targeted, and better
aligned with the underlying information need.

The LLM breaks the input question into three
distinct contextual perspectives, each represented
as a descriptive paragraph, ensuring that retrieval
is not biased toward a single interpretation. These
are used as part of stage one - retrieval of full text
documents. Further, we use the same LLM to break
down each context into a set of domain-specific key
terms that are up to a sentence in length. This gives
finer granularity in the second stage of retrieval.

By shifting retrieval focus from the question it-
self to its underlying context, we hypothesize that
Context-RAG improves recall, diversity, and fac-
tual grounding, ensuring that responses draw from
a broader and more relevant evidence base. Further,
this prompt structure can be applied prior to any
other prompt decomposition or expansion method
so should be seen as a complimentary method.

4 Results

We evaluate our proposed Context-RAG method
against the standard two-step RAG approach across
two datasets: SPIQA, a benchmark for scientific
paper image question answering, and CPIQA, our
newly introduced dataset for climate science. Per-
formance is measured using BERTScore-F1 across
multiple test cases and language models.

4.1 Context-RAG

Table 2 demonstrates the two-step RAG approach
has a 7% lower BERTScore-F1 compared to the
best open source models tested, and our Context-
RAG a 3% lower score. Given our change in
SPIQA problem formulation, from a one-step QA
task where the relevant source paper is provided to
a two step QA task where the source paper must be
retrieved, this lower performance was expected. In
the SPIQA dataset test-A contains LLM-generated
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Best open-weight baseline™

Test Case (Pramanick et al., 2024) 2 step RAG  Context-RAG
test-A 61.61 57.54 63.28
test-B 47.21 53.22 53.32
test-C 48.45 32.27 34.20
Overall 54.57 47.85 51.31

Table 2: Comparison of our standard two-step RAG

Llama-3.3-70B-Instruct, compared to baseline results:

and Context-RAG methods on the SPIQA dataset, using
LLaVA-1.5-7B (Liu et al., 2023) for test-A, test-B and

InstructBLIP-7B (Dai et al., 2023) for test-C. bert-base-uncased is used as the evaluation model for BERT-score

(Zhang* et al.,
retrieves from the entire dataset.

QAs whilst test-B and test-C have human-written
QAs. For two-step RAG we see a 6% improvement
for test-B. With Context-RAG, we see an improve-
ment of 4% over two-step RAG, outpeforming the
best open source models in test-A by 2% and test-B
by 6% showing the potential for our Context-RAG

2020). *Baseline results experimental setup provides correct source paper, whereas our setup

method.

4.2 Climate Question-Answering

A summary of our CPIQA dataset can be found in
table 3. We define a train/test/validation split to
improve comparability to future work that may use
this data.
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Split Paper count

Question count

Figure count

Train 4255
Validation 99
Test 197

51060 38325
1188 903
2364 1816

Table 3: Summary of CPIQA dataset size incl. number of documents, questions and figures

LLM 2 step RAG  Context-RAG
GPT-40 67.18 69.10
Gemini 2.0-flash 62.22 64.21
Llama-3.3-70B-Instruct 64.38 65.35
DeepSeek-R1-Distill-Qwen-32B 64.79 65.47
Gemma-2-27b-it 62.32 62.05

Table 4: Comparison of our standard two-step RAG and Context-RAG methods on our CPIQA dataset. Evaluated
using BERT-score F1 using the model microsoft/deberta-xlarge-mnli (He et al., 2021)

On CPIQA (table 4), we compare both RAG
methods across five LLMs. GPT-40 achieves the
highest overall performance, with Context-RAG
(69.10) slightly surpassing the two-step approach
(67.18). Gemini 2.0-flash follows closely, show-
ing a similar pattern, where retrieval based on
generated contexts consistently improves results.
Other models, such as Llama-3.3-70B-Instruct and
DeepSeek-R1-Distill-Qwen-32B, show a smaller
gap between the two approaches, suggesting that
context informed retrieval benefits higher-capacity
models more significantly.

Table 5 provides insights into the retrieval effec-
tiveness of two-step RAG vs. Context-RAG when
retrieving the specific source paper for GPT-4o.
Interestingly, two-step RAG achieves a higher cor-
rect retrieval rate (60%) than Context-RAG (39%).
However, despite retrieving the correct document
less frequently, Context-RAG still yields a higher
F1 score (70.96 vs. 68.71) which suggests the
enhanced retrieved diversity of Context-RAG is
allowing it to generate better overall answers.

4.2.1 Expert Evaluation

We asked academic climate science experts to eval-
uate our best performing model, GPT-40, accord-
ing to the qualitative citeria and scoring guidelines
below:

* Answer precision: Degree of errors in the an-
swer (1 - lots of errors, 5 - no errors). Unre-
lated to the question, consider only the answer
independently of the question.

* Answer recall: To what degree does the re-
sponse answer the question? Consider the
relevance to the question (1 - irrelevant to the
question, 5 - fully covers the question)

* Answer provenance: Is the answer using in-
formation from the source document? (1 =
not based on context paper; 5 = fully based on
context paper)

« Answer conciseness: Does the answer contain
waffle or does it go off on a tangent to the
question? (1 = verbose; 5 = concise)

The experts were given the question, generated
answer, and full PDF source document. Due to
expert availability, a random 6% sample of the
test set was evaluated by our experts balanced by
question type. Table 6 presents the expert eval-
uation of GPT-40 with Context-RAG, analyzing
performance across different question audiences
and types. Context-RAG achieves high concise-
ness scores across all audiences (>4.1), indicating
its ability to generate succinct responses. Non-
figure-based and numeric questions exhibit strong
precision and recall, particularly for the climate
expert role, where numeric questions achieve 4.1
precision and 4.7 recall. Questions generated us-
ing the climate expert role had significantly higher
provenance scores, especially for numerical (4.6)
questions, suggesting that the experts found the
answers well-supported by evidence in the source
paper. For the general public and climate scep-
tic roles, Context-RAG achieves moderate per-
formance across all dimensions. Numeric ques-
tions for the climate sceptic role showed 3.7 pre-
cision and 4.1 recall, while figure-based and rea-
soning questions had slightly lower provenance
scores (2.4-2.7), indicating some difficulty in trac-
ing sources. For the general public role, prove-
nance remains lowest for reasoning questions (2.4),
suggesting challenges in aligning broad responses
with domain-expert expectations. Overall, our ex-
pert qualitative evaluation results align with the

223



Method Retrieval result  Retrieval rate % BERTscore-F1
Correct 60% 68.71

2 step RAG Incorrect 40% 66.12
Correct 39% 70.96

ContextRAG o rrect 61% 67.97

Table 5: Retrieval rate of the specific source paper for GPT-40, and its corresponding BERTscore-F1 result. Retrieval
result is defined as the retrieved papers containing the one based on which the question is generated. Retrieval rate
is the frequency of how often the source paper is included in the retrieved documents

LLM ngstion Question Precision Recall Proven- Concise-
Audience Type ance ness
Figure-based 3.6 3.7 2.8 4.9
General public Numeric 2.9 3.6 3.0 4.6
Non-fig 4.2 4.3 3.0 4.9
Reasoning 34 3.7 24 4.7
({iTi:g’ Figure-bascd 9 38 33 33
C(%‘gff:ei‘gf Climate sceptic o "6 3.4 33 74 44
apf)roa;:h) R.easomng 4.0 3.6 2.7 4.3
Figure-based 39 3.6 3.7 4.1
Climate expert Numeric 4.1 4.7 4.6 4.8
Non-fig 39 4.3 4.4 4.7
Reasoning 4.0 4.4 4.4 4.4

Table 6: Expert evaluation of our best approach across roles and evaluation types on a scale of 1-5

trends demonstrated in the BERTscore-F1 results
shown in table 7.

5 Discussion

5.1 Context-RAG vs two-step RAG: Retrieval
vs Answer Quality

Our results highlight key differences between
Context-RAG and the two-step RAG approach in
terms of retrieval accuracy and answer quality. As
shown in table 5, two-step RAG achieves a higher
retrieval rate for the exact source paper (60% vs.
39%), while Context-RAG has a lower rate of ex-
act source matches but produces slightly higher F1
scores in answer generation. This suggests that
Context-RAG, despite not always retrieving the
original source, provides sufficient and relevant
information for generating high-quality answers.
One possible explanation for this is the nature of
climate science literature, where overlapping fac-
tual content across multiple papers may reduce the
importance of retrieving a specific source. Many
academic papers cite and build upon each other,
meaning that relevant information can often be
found in multiple documents. Context-RAG’s abil-
ity to extract and structure key concepts before
retrieval may allow it to synthesize information
from related sources, even if the exact original pa-
per is not retrieved. This could explain its rela-
tively strong answer quality despite a lower direct

retrieval rate.

This trade-off is further reflected in our broader
evaluation metrics. In our Climate QA setting (ta-
ble 4), Context-RAG yields improved BERT-scores
compared to two-step RAG, particularly for more
complex questions. This indicates that selecting
and structuring context before retrieval may con-
tribute to better alignment with model-generated
responses. However, two-step RAG’s higher re-
trieval rate suggests it may be more reliable when
strict source matching is a priority.

These findings suggest that retrieval rate alone is
not always the best indicator of final answer quality.
While two-step RAG more frequently retrieves the
intended source, Context-RAG appears to generate
answers that are at least as effective, if not more so,
in terms of response accuracy.

5.2 Performance Across Different Models

Our evaluation shows that the performance of
Context-RAG compared to two-step RAG, whilst
generally better, varies across models. Larger
models, such as GPT-40 and Gemini 2.0-flash,
show greater improvements in answer quality with
Context-RAG, suggesting that their enhanced rea-
soning capabilities allow them to make better use
of retrieved context. For smaller models, the im-
provements are less pronounced, indicating that
they may struggle to leverage retrieved information
as effectively.
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Notably, context generation can be done in ad-
dition to any other prompt augmentation or de-
composition technique, though potential impact on
performance is not evaluated in this work.

5.3 SPIQA vs CPIQA: Domain-Specific
Insights

Comparing SPIQA and CPIQA, we observe dis-
tinct trends that highlight domain-specific retrieval
challenges. Context-RAG demonstrates consis-
tent improvements over two-step RAG across both
datasets, but CPIQA remains more challenging due
to domain-specific complexities. Specifically, cli-
mate science papers frequently cite each other and
share overlapping facts, making it harder for re-
trieval models to isolate the most relevant docu-
ment before evidence extraction. This is reflected
in CPIQA’s lower retrieval accuracy despite the
improved context expansion.

The expert evaluation of Context-RAG on
CPIQA suggests that provenance and precision are
particularly important for climate science experts,
as climate-related claims often require precise at-
tribution to datasets, models, or prior research. In
contrast, SPIQA, which focuses on interpreting
structured results in computer science papers, may
place relatively less emphasis on cross-document
attribution and more on model reasoning over struc-
tured information. These differences suggest that
retrieval and reasoning challenges may manifest
differently across domains.

5.4 Breakdown by Question Type and
Audience

Performance varies across different question types
and target audiences, highlighting distinct chal-
lenges in retrieval and answer generation. As
shown in table 7, numeric and figure-based ques-
tions benefit the most from Context-RAG, with con-
sistent improvements across models. This suggests
that retrieving structured, contextually relevant in-
formation before chunk selection is particularly
useful for questions requiring precise data interpre-
tation.

Reasoning-based questions show smaller gains,
indicating that retrieval improvements alone may
not fully address challenges in multi-step inference.
This aligns with previous findings that complex
reasoning tasks often depend more on a model’s
intrinsic capabilities than retrieval alone (Liu et al.,
2024).

Audience-specific performance trends also re-
veal key insights. Questions targeted at climate ex-
perts generally yield the highest scores, suggesting
that expert-level queries align well with retrieved
academic content. In contrast, questions posed
from a sceptic’s perspective score lower, likely due
to misalignment between the retrieved scientific lit-
erature and the framing of the question. This high-
lights the difficulty of addressing sceptical view-
points in a fact-based retrieval system.

6 Conclusion

To support research in climate-focused QA, this
paper introduces CPIQA, a dataset built from over
4,551 climate science papers and 54,612 GPT-4o
generated question-answer pairs, integrating both
text and figure-based question answering. CPIQA
incorporates expert-informed question generation
and multimodal evidence retrieval, making it a valu-
able resource for future work in climate Al.

We describe Context-RAG, a novel retrieval-
augmented generation (RAG) approach that im-
proves answer quality by structuring retrieval
around contextual variations of a question. Unlike
traditional RAG methods that directly retrieve doc-
uments based on the query, Context-RAG first gen-
erates multiple contextual perspectives, retrieves
documents accordingly, and then refines retrieval
using key domain-specific terms. Our evaluation
on CPIQA, a new multimodal climate QA dataset
described in this paper, and SPIQA, a scientific
paper image QA benchmark dataset, demonstrates
that Context-RAG outperforms the standard two-
step RAG approach in answer quality, even when
exact document retrieval rates are lower.

Our results show that Context-RAG improves
performance across various question types and
user audiences, particularly for numeric and figure-
based questions. Larger models, such as GPT-4o,
benefit most from this structured retrieval approach,
leveraging contextually relevant evidence for im-
proved reasoning. Furthermore, our expert evalu-
ation of the best-performing model reinforces the
effectiveness of Context-RAG in real-world climate
science applications.

These findings highlight the importance of
evidence-based QA methods. Future directions
for this work include the exploration of domain-
specific fine-tuning of RAG QA models, a more
complete evaluation of the effectiveness of differ-
ent RAG prompting techniques, and exploring en-
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hancements to Context-RAG that are more explic-
itly tailored to our four different question types.

7 Limitations

Our GPT-40 generated question-answer pairs are
sourced from single source documents, and do not
consider answers that might span multiple docu-
ments. Other documents in our dataset may contra-
dict or deviate from the source document and this
is an exciting area for future work to explore, as we
show with Context-RAG increased performance
even when the specific source document was not
retrieved.

Our CPIQA dataset has GPT-40 generated QA
pairs. Whilst we performed a qualitative climate
scientist expert evaluation for our RAG answers in
terms of precision, provenance and conciseness, it
was not feasible to perform expert analysis of the
generated QA pairs themselves due to the size of
our dataset and availability of our experts.

In this paper, we only use LLaMa-based models
for evaluation on SPIQA due to time constraints.
We expect our RAG results will generalize to any
base LLM on any scientific paper QA task, but
this paper has not explicitly confirmed this and we
leave it as an item for future work. We did test
CIPQA on five LLMs which strongly suggests our
hypothesis for this is correct.

Our RAG experiments were run on eight H100
GPU cards using approximately 60 GPU hours
of compute time. The GPT-40 QA pair genera-
tion took twelve hours and cost $550. We note
that context-RAG is computationally more expen-
sive than the 2-step method it is compared to. Fur-
ther work is required to evaluate the complexity-
performance trade-off.
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A Results breakdown

Table 7 breaks down the results of models on
CPIQA by prompt variation.

B Prompts

B.1 Question-answer generation prompts

The general prompt template is as follows:

Context:

{full_text}

Figure 1 description:
{figure 1 description}

Figure i description:
{figure i description}
Instruction:
{instruction}

B.1.1 Instruction for public QA pair

As a lay member of the public,
generate a single question-answer
pair that are answered by the given
academic document. {gtype} Use
information from the descriptions
of figures. Do not reference any
part of the document directly. Do
not refer to the study or any figure
directly. Keep the question simple.
Assume the user has never seen the
document. Assume the asker knows
little about climate science. The
question could be written by a
child. Answer such that a child will
understand. Include a mix of basic
factual, analytical and inferential
questions. DO NOT MENTION THE
CONTEXT DIRECTLY.
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B.1.2 Instruction for expert QA pair

As an expert of the topic, and
climate science generally, generate
one meaningful question and its
answer based on the context.
gtype Use information from the
descriptions of figures. Do not
reference any part of the document
directly. Do not refer to the study
directly. The question may be asked
with no knowledge of the document
content.

B.1.3 Instruction for skeptic QA pair

Generate a single question-answer
pair about the context as an extreme
climate sceptic. Do not mention
that you are a climate sceptic
directly. qtype Include doubt,
previous beliefs. Use information
from the descriptions of figures.
Do not reference any part of the
document directly. Do not refer to
the study directly. The question
may be asked with no knowledge
of the document content. Do not
blindly agree with the critic’s
question. Demonstrate evidence to
dispel scepticism. Give examples.
Answers should be 1 paragraph or
shorter.

B.1.4 Instruction addition for question types

{qtype}

For figure based question:

The question should be answerable
from the figure descriptions only
but don’t reference the figure or
picture.

For numerical question:

The question should query a useful
numerical value without mentioning
the document or figure directly.

For reasoning based question:
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The question should require
reasoning to answer.

For general questions, no additional prompt is

used.

B.2 Question-answering prompts
B.2.1 QA template with context

’

You are an assistant for climate
research question-answering tasks.
Use the following pieces of
retrieved context to answer the
question. If you don’t know the
answer, say that you don’t know. Use
three sentences maximum and keep
the answer concise.

Retrieved information: {context}
Question: {question}

Answer:

B.2.2 Stage 1 contexts generation template

,

Given a question, describe in
detail 3 contexts or domains in
which it can be asked, explain
the contexts with a paragraph
each. Include titles of academic
documents that could be used in the
context. Give the contexts as 3
paragraphs with no headings.
Question: {question}

Contexts:

B.2.3 Stage 2 keyword generation template

7

Given a question and context
about the question, decompose the
guestion and context into a set of
relevant long-form query sentences
for evidence document retrieval
(RAG) that can answer the question.
Present each sentence on a newline
only with no headings.

Context: {context}

Question: {question}

Decomposed phrases:

C CPIQA paper sources

Table 8 sets out the source venues drawn from to
develop the CPIQA dataset.
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Large language model Question Audience  Question Type 2 Step RAG | Context-RAG
(BERTScore-F1) (BERTScore-F1)
Numeric 73.67 76.65
General public Figure-based 66.40 67.06
Non-fig 64.25 67.10
Reasoning 63.41 63.81
Numeric 64.61 65.55
. . Figure-based 64.36 66.15
OpenAl GPT-40 Climate sceptic Non-fig 64.97 66.32
Reasoning 64.97 66.39
Numeric 78.48 81.34
Climate expert Figure-based 68.62 70.73
Non-fig 67.69 69.92
Reasoning 63.97 66.63
Numeric 64.11 64.93
. Figure-based 61.81 63.70
General public Non-fig 60.64 6275
Reasoning 59.28 61.63
Numeric 60.84 62.35
.. . . Figure-based 60.07 61.97
Google Gemini 2.0-flash Climate sceptic Non-fig 60.35 62.23
Reasoning 60.23 62.35
Numeric 70.02 72.35
Climate expert Figurf;—based 64.66 67.18
Non-fig 64.76 66.01
Reasoning 60.04 62.35
Numeric 63.64 72.11
. Figure-based 64.13 67.48
General public Non-fig 63.00 6481
Reasoning 62.33 62.05
Numeric 63.33 61.22
. . Figure-based 62.93 61.16
Llama-3.3-70B-Instruct Climate sceptic Non-fig 63.28 60.23
Reasoning 63.14 60.04
Numeric 70.26 77.59
Climate expert Figure-based 66.93 66.66
Non-fig 66.90 66.10
Reasoning 63.32 63.89
Numeric 70.40 67.78
. Figure-based 65.05 65.16
General public Non-fig 63.30 66.04
Reasoning 62.25 61.48
Numeric 62.80 63.56
DeepSeek-R1-Distill-Qwen-32B  Climate sceptic Ilj;fllfg_gbased ggig 21%
Reasoning 63.50 64.45
Numeric 73.26 74.40
Climate expert Figure-based 63.75 64.43
Non-fig 64.87 65.74
Reasoning 61.16 63.31
Numeric 68.76 67.25
. Figure-based 64.13 63.99
General public Non-fig 62.43 62.81
Reasoning 58.20 58.94
Numeric 60.82 60.74
. . . Figure-based 59.81 61.22
gemma-2-27b-it Climate sceptic Non-fig 6135 62.24
Reasoning 60.52 62.00
Numeric 71.95 64.65
Climate expert Figure-based 60.60 63.17
Non-fig 62.67 63.18
Reasoning 53.15 54.59

Table 7: Evaluation of models across question types and RAG methods. Questions are divided into numeric, figure
bases, non-figure based and reasoning based
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Electronic ISSN  Title

1432-0894 Climate Dynamics

1573-1480 Climatic Change

1097-0088 International Journal of Climatology
1520-0442 Journal of Climate

1758-6798 Nature Climate Change

1752-0908 Nature Geoscience

1757-7799 WIRES Climate Change

2364-3587 Advances in Statistical Climatology, Meteorology and Oceanography
1814-9332 Climate of the Past

2190-4987 Earth System Dynamics

1866-3516 Earth System Science Data
2569-7110 Geoscience Communication

Table 8: ISSNs and venue titles of sources of drawn on for CPIQA
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Abstract

The extraction of emissions-related information
from annual reports has become increasingly
important due to the Corporate Sustainability
Reporting Directive (CSRD), which mandates
greater transparency in sustainability reporting.
As a result, information extraction (IE) meth-
ods must be robust, ensuring accurate retrieval
while minimizing false values. While large lan-
guage models (LLMs) offer potential for this
task, their black-box nature and lack of spe-
cialization in table structures limit their robust-
ness — an essential requirement in risk-averse
domains. In this work, we present a two-step
hybrid approach which optimizes both accuracy
and robustness. More precisely, we combine
a rule-based step for table IE with a regular-
ized LLM-based step, both leveraging tempo-
ral prior knowledge. Our tests demonstrate the
advantages of combining structured rules with
LLMs. Furthermore, the modular design of our
method allows for flexible adaptation to vari-
ous IE tasks, making it a practical solution for
industry applications while also serving as a
scalable assistive tool for information extrac-
tion.

1 Introduction

Environmental, social, and governance (ESG) con-
siderations have rapidly become central to corpo-
rate accountability and risk assessment. In the Eu-
ropean Union, the Corporate Sustainability Report-
ing Directive (CSRD)! mandates that organizations
disclose a variety of sustainability metrics in their
annual or sustainability reports. While large public
companies’ data points are often available from
data vendors, this is usually not the case for small
and medium-sized enterprises (SMEs), whose re-
ports frequently vary in format, presentation, and
structure. At the same time, financial institutions,
insurance companies, and other stakeholders in-
creasingly require precise and reliable data, such

"https://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=CELEX:32022L2464

as carbon emissions and other key indicators, to
feed into quantitative risk models, in line with di-
rectives from bodies such as the European Banking
Authority (EBA)?.

Despite the growing volume of reported ESG
data, extracting the relevant numerical values from
heterogeneous documents remains a challenging
task. In this work, we focus on the most common
requirement of extracting numerical values from
tabular structures. Many reports feature tables with
inconsistent layouts, unstructured text, and vary-
ing terminologies, making standard IE methods
prone to errors or heavy manual intervention. Fur-
thermore, any inaccuracies in extracting emissions
data or related metrics can lead to flawed risk as-
sessments and regulatory non-compliance, under-
scoring the need for a highly robust, automated
extraction pipeline.

To address these challenges, we propose a mod-
ular hybrid approach that regularizes LLM-based
table IE by integrating domain expertise with tem-
poral prior information. We demonstrate that com-
bining rule-based techniques with machine learn-
ing models yields high accuracy, robustness, and
scalability. Our table IE approach consists of two
steps: A rule-based step that generates a candidate
set containing the true information with high confi-
dence and an LLM-based step that assists the user
in selecting the most relevant element from this set.
Our approach effectively addresses challenges such
as mislabeled table headers, inconsistent data for-
mats, and variations in corporate reporting styles.
Most importantly, it reliably detects cases where
the desired data point cannot be determined with
confidence, ensuring transparency and trustworthi-
ness in the extracted information. To the best of our
knowledge, this is the first work to develop a table
IE algorithm specifically tailored to the regulatory

2https://www.eba.eur‘opa.eu/publications—and—m
edia/press-releases/eba-publishes-its-final-gui
delines-management-esg-risks
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requirements of financial institutions.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of existing
research related to table IE. Section 3 presents the
proposed methodology. Section 4 describes our ex-
perimental setup and the datasets used to evaluate
performance. Section 5 summarizes our empirical
results and discusses the practical implications for
stakeholders. Finally, Section 6 concludes the pa-
per by highlighting the method’s potential benefits
and directions for future research. All our data is
available on Github?.

2 Related Work

The analysis of annual reports for climate-related
information is an active area of research. We-
bersinke et al. (2022) introduce ClimateBert, a deep
learning model based on BERT. In Bingler et al.
(2024), it is applied to detect climate-related cheap
talk in annual reports. In Schimanski et al. (2023),
it is used to detect corporate, national, and regional
net zero and reduction targets. The OS-Climate
initiative, hosted by The Linux Foundation, recog-
nized the need to extract key emission data from
annual reports to facilitate climate-aligned finan-
cial decision-making. To address this, their Data
Commons project (OS-Climate, 2025) offers an
NLP toolkit for table data extraction. Mishra et al.
(2024) explores table IE of ESG metrics. Their
methodology translates tables into structured text
using sequence-to-sequence transformer models.
LLMs are also being explored for extracting finan-
cial data from tables in corporate reports. Balsiger
et al. (2024) evaluates ChatGPT-4 and BARD for
extracting key financial figures, such as balance
sheets and income statements, from PDF-based an-
nual reports. Their study highlights the potential
and limitations of LLMs in processing complex
financial tables. Wang et al. (2023) and Lamott
et al. (2024) demonstrate that enriching prompts
with OCR-derived layout information improves
LLM document understanding; however, neither
approach explicitly targets robustness in table ex-
traction. Looking at the more technical research
about table IE, the study by Lu et al. (2024) gives
an overview of current research about table related
tasks for transformer-based language models. Be-
fore the advent of large-scale LLMs (i.e., models
with fewer than one billion parameters), researchers

Shttps://github.com/hendrikweichel/hybrid_2_s
tep_table_information_extraction

sought to enhance table understanding through ar-
chitectural modifications, improved encoding meth-
ods, and model fine-tuning (Herzig et al., 2020;
Tida et al., 2021; Deng et al.). With the emergence
of LLMs, two strategies became dominant: fine-
tuning and prompt engineering. The inputs typ-
ically include metadata along with the full table
contents and a task-specific instruction. A more
recent advancement in LLM-driven table extrac-
tion involves agent-based methods, which utilize
LLMs’ reasoning capabilities. Techniques such
as Chain-of-Thought (CoT) prompting (Wei et al.,
2023) and ReAct prompting (Yao et al., 2023) en-
able iterative extraction, refining the data retrieval
process through step-by-step reasoning.

Despite these promising developments, a re-
search gap remains in ensuring the robustness of
these methods in risk-averse application domains.
Purely LLM-based approaches inherently lack this
robustness: On the one hand, their statistical nature
limits reliability, and on the other, their inherently
one-dimensional input representations conflict with
the two-dimensional structure of tables. At the
same time, academic literature highlights a discon-
nect between industry and academia. Chiticariu
et al. (2013) state that “while rule-based IE domi-
nates the commercial world, it is widely regarded
as dead-end technology by academia.” They ob-
serve, however, that rule-based methods remain
essential in the industry. Unlike purely statistical
machine learning approaches, rule-based systems
leverage expert knowledge to define explicit pat-
terns (e.g., regular expressions, ontology schemas,
or grammar rules) that target relevant information.
Rule-based table IE has been explored more ex-
tensively in other domains. For example, Potvin
et al. (2016) propose a position-based rule-based
method that utilizes the spatial arrangement of text
elements to infer relationships.

3 Methodology

Let R denote a finite set of company annual and
sustainability reports. Suppose we aim to extract a
numerical value y; € R, where ¢ represents the year
of the report. An example of such a value, which
will serve as our running example, is “Scope 3
emissions in 2023 (in tonnes CO2 equivalents)”
from the report r9g23. An IE algorithm provides
a function f: R — R, where f(r;) represents the
best estimate of the true value y; contained in the
report r¢. Our approach integrates both domain ex-
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pertise and temporal prior information, leveraging
validated data from previous reports of the same
company, i.e., 7¢_1, . . . , Tt—n. Including such prior
information into the IE pipeline can be interpreted
as a regularization method, cf. Appendix A.
Henceforth, the objective is to develop a reliable
IE algorithm such that

f(Tt|7"t—17---,7“t—n) = Yt Vry € 7~Z CR

where we use the notation f(:|ry_1,...,7_p) to
indicate the dependency of the function f on the
parameters 11, . . ., ¢y, With |7~€| as large as pos-
sible, while ensuring that

frelre—1, ..., ren) = 00 VTtGR\7~z

to indicate cases where the function cannot reliably
determine y;. We base our approach on two key
empirical observations made by domain experts
analyzing sustainability reports:

(i) Emission data is almost always presented in
tabular form.

(i1) Historical data provides a valuable prior for
validating extracted values.

Thus, we assume that all emission values in R
are stored in tables and define 7 (r;) = {T|T €
(RUX)™™:m,n € N}, where X represents tex-
tual values and R represents numerical values, as
the set of all tables within report r;. Our proposed
IE function f is provided by a recursive approach,
assuming that the relevant information has been
successfully extracted and persisted in the previ-
ous years. In practice, the initial year is labeled
manually. We follow a three-step pipeline:

1. Table Extraction: Given input r;, extract the
set of all tables 7 () using a table extraction
method.

2. Information Retrieval (IR): Given the in-
put ¢, ..., 7¢+—p, (as well as the relevant tables
and values extracted by the table extraction
method in the previous years, see (iii) below),
identify a table T(r;) € 7 (r;) that contains
y; (as well as y;—1 or even a longer history).

3. Information Extraction (IE): To extract the
target value y;, we apply a mapping

T(ry) X - x T(ri_n)x

Yi—1 X = X Yp—p = Yi.-

o~ ~

T(ri—1), ..., T(ri—,) denotes the tables containing
Yi—1, -+, Y¢—n as extracted by the table extraction
method in the previous years.

This paper focuses on step 3 of the pipeline,
extracting information from tables, which is abbre-
viated as table IE in the following. While LLMs
could, in principle, learn the complex mapping for
table IE, T (r;) — y,, there is one limiting factor
making them unreliable for precise data extraction
in regulatory settings: They are prone to hallucina-
tions. This is further complicated by their inability
to perceive the two-dimensional structure of tabular
data due to their one-dimensional input format. To
solve this problem, we present two distinct contri-
butions:

1. A rule-based table information extraction
approach to systematically extract y; from
’i‘(rt_l). It exploits the historical knowledge
about previous extractions and selects a candi-
date set of [ possible solutions

@, .00y € T(ry)

that has a high probability of uniquely contain-
ing y; and a low probability of only returning
candidates different from y;. Applications that
do not allow the use of LLMs, can apply this
rule-based table IE like so:

g,

None,

f(rt|7”t71,~--,7“t7n) = { [=1
else
2. A hybrid two-step table information extrac-
tion approach expands the rule-based table
IE by leveraging the candidate set to regular-
ize table IE with LLMs. We demonstrate in
Section 3.2 below that the mapping

~

T(r) < (G, 00} X g1 > e

can be implemented through LLMs, both op-
timizing the robustness and accuracy of stan-
dard table IE through LL.Ms. We show that
the rule-based pre-processing serves as a reg-
ularization mechanism for the LLM’s table
IE task. Still, given their black-box character,
such a hybrid approach should assist in man-
ual extraction rather than a fully automated
solution in domains that require maximum
robustness.

Note that our IE process is both recursive and
highly modular, enhancing its flexibility and re-
liability. We extensively leverage this modularity
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Hybrid Two-Step Table IE

Rule-Based Table IE
2025 2025
EU ‘World
Scope 1 2t 3t
Scope 2 13t 15t
Scope 3 20t 23t
20t 23t

Figure 1: Illustration of our two contributions: (1) a
rule-based table IE approach, and (2) a hybrid table IE
method that builds upon (1) by leveraging its output.

to optimize our method for robustness, ensuring
a low probability of incorrect outputs. Instead of
returning erroneous results, the system is designed
to return None when confidence is insufficient.

3.1 Rule-Based Table IE

Purely LLM-based table IE methods fail to utilize
the two-dimensional nature of tables, cf. (Lu et al.,
2024), and as a result, they overlook the implicit
knowledge embedded within the matrix structure
of tables T'(r;) € (RUX)™*™. Our approach takes
into account this knowledge by individually scor-
ing all columns and rows based on their alignment
with the target extraction. The different scoring
methodologies tested in this work are presented
in Section 3.1.1 below. Ultimately, cells that in-
tersect in both the highest-scoring columns and
rows are selected as the candidate set of values
{70,570} c {T(re)ig i€ {1,...,n},j €
{1,...,m}}. To ensure that the candidate set con-
tains y; with high confidence, we gather a set
of constraints {C',...,C,} that apply to all the
columns and rows that contain y;. Such as, e.g., y;
always lies in a column which is annotated with
the year ¢.

Algorithm 1 outlines the process of generating
the candidate set, which is further illustrated in
Figure 2. Based on the constraints, the algorithm
assigns a score to each cell 'T(rt)i,j expressed in
the score matrix O € R"*™ Each constraint C},
ke {1,...,q}, is formalized as a triplet

™ =(QW,5M(c,Q),a"),

where Q¥) is the query, e.g., the year of the
searched emissions; S*) (¢, Q) is a similarity met-
ric, that calculates the similarity score between a
cell ¢ and the respective query Q*); and d*) spec-
ifies the application orientation of Q%) and S,

Algorithm 1 Computation of scores for table cells
Require: M, O € R™*™
1: forkinl,...,gdo
2: for T(T‘t)i,j € T(r) do
3 Mﬁj < S(k)(Q(k),T(T’t)ZJ)
4: end for
5: v + max(M, dim = d¥)
6
7
8
9

Mieieet < tﬂe(V, shape = M(rt).shape)
M,z < M.where(M; ; = max (M))

: O+ 0O+ Mselect - Mmax

: end for

indicating whether they are applied across rows or
columns. These constraints encapsulate all prior
knowledge about the target extraction that can be
derived from T(ry_1) X - -+ x T(ry_p).

Besides the constraints for rows and columns,
we apply additional constraints on the individual
cell level. If the cell ’/I\‘(rt)i,j does not match the
format of our target extraction, we set the corre-
sponding score O; ; to zero. In our example, where
the goal is to retrieve numerical emission values,
we exclude all cells that do not contain numbers or
that include financial figures and percentages, as
indicated by their corresponding units (€, $, £, %).

As a final step, the cells of the table ’i‘(rt) with
the highest scores in O are selected as the candidate
set:

@, 50y = {T(r)i

Oi,j = max (O)}

In production practice, an additional layer for
identifying implausible results could be imple-
mented by leveraging the time series of target val-
ues Y, ..., Yi—n. Candidate values 7() with a
high deviation from the previous value y;_1 can
be flagged as implausible. In practical terms, this
involves calculating the difference between each
candidate §() and y,_1, then flagging all candidates
where |37() — y4—1]| exceeds a predefined threshold.

The proposed modular and recursive design en-
ables robust IE. More precisely, leveraging this
modularity is essential for selecting robust simi-
larity metrics and comprehensive constraint sets
to accurately identify the row and column contain-
ing the target value y;. As demonstrated in 4.2.1,
where we conduct a cross-validation, this approach
ultimately increases the likelihood of retrieving y,
as a candidate value.
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Figure 2: Flow chart of Algorithm 1.

3.1.1 Similarity Metrics

The similarity metrics take a query and a cell as
input and assign a score between 0 and 1, reflecting
the degree to which the cell matches the query, i.e.,

S(e, @) = [0,1]

We perform cross-validation across several differ-
ent metrics to determine the best-performing met-
rics for each query type; a comprehensive definition
of all similarity metrics is given in Appendix B.

Regular expressions represent the simplest sim-
ilarity metrics, applied either as exact string match-
ing (“is Q in ¢?”) or in combination with pre-
processing methods: We examine pre-processing
through only selecting the numerical sub-strings
of the query and the cell, and then carry out the
string matching. Furthermore, one can tokenize
the query into subqueries and compute the share
of subqueries that are contained in the cell. This
leaves more degrees of freedom for the structure
of the cell strings and enables the use of continu-
ous scores between 0 and 1. For the same reason,
we examine the set-based Jaccard similarity and
the Levenshtein distance. Both, in theory, accept
minor dissimilarities between cell and query and
could lead to a higher precision.

Additionally, we evaluate semantic vector-
based matching. Techniques such as Word2Vec
(Mikolov et al., 2013) and transformer-based word
embedding models* have demonstrated strong per-
formance in measuring similarity. These models as-
sign vectors to sentences, enabling similarity mea-
surement based on the comparison of their vector
embeddings. A drawback of these machine learn-
ing models is their black-box nature and higher

“We use the models from Song et al. (2020) and Wang
et al. (2020), with fine-tuning in https://huggingface.
co/sentence-transformers/all-mpnet-base-v2 and
https://huggingface.co/sentence-transformers/al
1-MinilLM-L6-v2, respectively.

computational cost compared to the previously dis-
cussed methods.

Numerical metrics can be used to compare cells
and queries containing numerical content. To do so,
both the cell and the query are converted to floats.
We test both, a numerical metric that returns the
percent-wise deviation from the cell value to the
query value and one binary numerical metric that
returns 1 if the absolute difference is smaller than
a given threshold and O else.

In Section 4, we perform cross-validation to de-
termine which similarity metric fits best for which
type of query. Appendix B formally defines all the
queries we tested.

3.2 Hybrid Two-Step Table IE

If the rule-based table IE does not return a unique
candidate, its candidate set can be used to assist ta-
ble IE with LLMs. A straightforward table IE task
would instruct the LLM to return the target value
s, given the table 'f‘(rt). We shift this question
and answer task to a regularized binary classifica-
tion task: Given the table T'(r;) and the previous
year’s emission y;_1 (if contained in T‘(rt)), we
instruct the LLM to select y; from {71, ... 7}
Note that this approach offers a two-fold regular-
ization of the problem: first, by incorporating prior
information (cf. Appendix A), and second, by con-
straining the solution space. This enhances the
robustness of table IE using LLMs. Our instruction
prompt is structured as follows:

Table IE by Selection Prompt

Context: T(r;)

Instruction: Choose the element from the list of can-
didate lists that contains the total Scope 3 emissions
in the year ¢ given in the table T () in JSON format.
The previous year’s emissions were y;—1, and it is
likely that this year’s emissions do not deviate signif-
icantly from y;_1.
Candidate list: {7V, ..., 7"}
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4 Experiments

This section presents our experiments on testing
the table extraction approach using our running
example of extracting Scope 3 emissions from fi-
nancial institutions’ annual reports. In these exper-
iments, we used the following queries: (1) Filter
the columns by the emission year ¢; (2) Filter rows
by the emission type “Scope 3”; (3) Filter rows
by the previous year’s emission y;_1; (4) Given
the fact that the table structure frequently remains
unchanged, with consistent row and column de-
scriptions, we leverage this stability and use the
name of the row in 'f‘(rt_l) that contains ;1 as
a query to filter the rows in T(r;). In some cases,
the first column can be None; we then take the first
cell in the row that contains a textual value.

We test the purely rule-based table IE in two
steps: First, we cross-validate several similarity
metrics for each of the used query types to iden-
tify the robust metrics. Second, we choose the
robust similarity metrics and combine them to test
the creation of a candidate set. Here, we aim to
validate that y, is identified with high probability
within the candidate set. We evaluate both the rule-
based table IE and the hybrid two-step table IE
approach against a benchmark — a straightforward
LLM-based extraction.

4.1 Dataset

We test our approach by extracting Scope 3 green-
house gas emissions from tables in the annual
reports of Europe’s largest banks. This repre-
sents a particularly relevant real-world scenario,
as Scope 3 emissions constitute the most signif-
icant emission category for financial institutions,
given that they encompass financed emissions. At
the same time, Scope 3 emissions are notoriously
difficult to quantify, often resulting in frequent re-
statements from year to year, thus providing an
ideal testbed for our table IE approach. Note that
this table IE methodology should, in a subsequent
step, be integrated into a full IE pipeline, as out-
lined in Section 3. Since step two of this pipeline,
Information Retrieval, ensures that the retrieved
tables contain the emission, our dataset consists
exclusively of reports including tables that contain
the Scope 3 emissions.

For calibration and testing, we retrieved the 52
largest European banks by market capitalization
and examined their annual reports between 2018
and 2023. The Scope 3 emissions were initially

extracted manually from each report and tagged
with their corresponding page numbers. These val-
ues represent the extraction target y;. Using an
AWS-based OCR system (see (EdenAl, 2025)), we
extracted a set of candidate tables from the page
that contains y;. We then automatically selected
only the table T'(r;) that contains y;. Subsequently,
we ensured that the structured tables accurately
preserved the original formatting and structure as
presented in the PDF versions of the annual reports.
Any deviations from the original table structure
were corrected manually, because the final pipeline
must preserve layout fidelity while discarding only
those tables that lack the target value y;. Automatic
detection of deviations will be explored in future
work as part of the Information Retrieval step. The
rule set was calibrated on a separate dataset drawn
from a distinct group of banks.

4.2 Rule-Based Table IE

To evaluate the rule-based table IE, we adapt the
notion of a binary classification that classifies each
cell in the table y € T(r;) into one of two classes:

1. positive: y € ’f‘(rt) is a candidate for y; due
to the structure of T'(r), these are all the can-

didates {@El), . ,’yfl)}.

2. negative: y € T(ry) is not a candidate for
Yyt due to the structure of T(r;), these are all
the elements in the complement set {y| y €

-~ ~(1 ~(1
T\ @, 0}

That is, the predicted positives are the candidates,
and the predicted negatives are all other elements
in T'(r;). The true value is the extraction target 1,
and the false values are all other elements. This
type of table IE is considered robust if it consis-
tently includes y; in the candidate set. Naturally,
this may come at the cost of retrieving more false
positives, resulting in a larger candidate set. In
terms of the classification problem, our goal is to
minimize false negatives and optimize recall. For
example, if the candidate set contains the only ele-
ment for y;, the recall is 100.00%. Naturally, this
introduces a recall-precision trade-off: including
all elements {y| y € T(r)} in the candidate set
would result in a recall of 100% but a significantly
lower precision score. A precision of 100.00%
would occur, for instance, if the sole candidate 7!
is y¢. We additionally use the notion of false posi-
tives only (FPO), which describes the share of ex-
tractions where only false positives were returned.
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Find column that contains Find row that contains
y¢ with query ¢t y¢ with query y¢ 1
recall prec. FPO recall prec. FPO
Regex
Complete 97.62 78.97 0.00 38.10 38.10 0.00
Numerical 100.00 78.97 0.00 38.10 38.10 0.00
Word Wise 97.62 78.97 0.00 45.24 40.66 0.00
Numerical Metrics
Binary 80.95 71.03 0.00 40.48 40.48 0.00
Continuous 88.10 79.76 11.90 64.29 64.29 35.71
Step 95.24 76.97 4.76 71.43 53.97 28.57

Table 1: Test performance of numerical similarity met-
rics for the numerical queries to find the required rows
and columns (cf. Section 4.2.1).

Given one particular table, FPO is 1, if a nonempty
candidate set disjoint from {y;} is returned, and 0
otherwise. Recall, precision, and FPO report the
average values across all extractions in the dataset.

4.2.1 Similarity Metrics Cross-Validation

The similarity metrics are used to find those rows or
columns in i‘(rt) that contain the extraction target
y¢. In our running example, we use four different
queries to do this. The cross-validation provided
here evaluates a selection of similarity metrics (see
Section 3.1.1 and Appendix B) with respect to their
ability to individually identify the rows or columns
in T(r¢) that contain y;. Queries are classified into
two categories: numerical and textual. Table 1
presents the results for numerical queries, specifi-
cally the year ¢ and the previous year’s emissions
Yt—1; we apply numerical metrics and regular ex-
pressions. Table 2 presents the results for textual
queries, including the emission type and the row
name of the row in ’T(rt_l) that contains y; 1, we
apply several NLP similarity metrics such as simple
regular expressions, Levenshtein distance, Jaccard
similarity, and embedding-based similarities.

Find row that contains y¢
with prev. table’s row name

Find row that contains y¢
with emission type

recall prec. FPO recall prec. FPO

Regex
Complete 100.00 89.84 0.00 64.29 60.71 0.00
Word Wise 100.00 77.94 0.00 100.00 80.38 0.00
Levenshtein 57.14 45.36 42.86 83.33 79.76 16.67

Jaccard Similarity

4-grams 71.43 69.05 28.57 88.10 84.52 11.90
5-grams 73.81 73.81 26.19 88.10 84.52 11.90
6-grams 80.95 80.95 19.05 90.48 86.90 9.52
7-grams 85.71 85.71 14.29 88.10 84.52 11.90
Embedding
All MiniLM 59.52 59.52 40.48 85.71 82.14 14.29
MPNet Base 54.76 54.76 45.24 85.71 82.14 14.29
Word2Vec 40.48 40.48 59.52 88.10 84.52 11.90

Table 2: Test performance of textual similarity metrics
for the textual queries (cf. Section 4.2.1).

4.2.2 Test Rule-based Table IE

To evaluate the proposed table IE approaches, we
define the following constraint set, obtained from
the most robust similarity metrics in the cross-
validation, i.e.,

1. (¢, Reg. Ex. Numerical, column)

2. (y¢—1, Numerical Binary, row),

3. (“Scope 3”, Reg. Ex. Complete Strings, row),
4. (x;—1 row name, Reg. Ex. String-Level, row)

The average recall of the table IE experiments
with this set of constraints was 100%, the average
precision was 89.65% and the extraction uniquely
identified y; as the sole element in the candidate
set in 80.95% of all extractions.

4.3 Hybrid Two-Step Table IE

Testing the full table IE, i.e., retrieving a single
candidate for y; rather than a set of candidates, in-
volves a slightly different notion of false positives
and false negatives than we used for the test of the
rule-based table IE, since the result is no longer
a set of candidates but either a single value for y;
or None. In this context, a true positive extrac-
tion is selecting the correct element y;, selecting
a candidate different from g is considered a false
positive. A false negative when None was returned
despite T'(r;) containing y;. Analogously, frue neg-
ative occurs when y is not contained in T'(r;) and
None is correctly extracted. It is crucial to empha-
size that, unlike the rule-based table IE in the first
step, which focuses on minimizing false negatives
when creating a candidate set, a robust second step
that selects only one element prioritizes minimiz-
ing false positives, thereby optimizing precision.
Table 3 presents benchmark results for a straight-
forward LLM-based table IE.

LLM recall prec.

GPT-40 95.23 100.00
GPT-40-mini | 93.65 100.00
Deepseek 1-1 90.91 95.65
Ilama 70b 90.48 100.0
llama 8b 86.11 83.78

Table 3: Benchmark for extracting y; from T (r;) with
straightforward Table IE by LLMs.

Our methodology yielded the following results on
the same dataset:

* The rule-based table IE achieved a precision
of 100 %, meaning that it never extracted an
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incorrect value for y;. It also achieved a re-
call of 80.95%, indicating that in 80.95% of
cases, the correct value y; was extracted di-
rectly, while in the remaining 19.05% of cases,
¢ was included in the candidate set.

* Our hybrid two-step table IE approach im-
proved these results by utilizing an LLM to
identify y; within the candidate set gener-
ated by the rule-based method. For all LLMs
listed in Table 3, i.e., GPT-40, GPT-40-mini,
Deepseek r-1, llama 70b, and llama 8b, this
approach successfully identified y;, achieving
both precision and recall of 100%.

5 Discussion

The cross-validation described in Section 4.2.1 en-
abled selecting the most robust similarity metrics,
cf. Tables 1 and 2. Using regular expressions on
numerical substrings is the most effective approach
for identifying the column containing ¥, given the
year t. It always identifies the right column and
has a relatively high precision. We can also ob-
serve that identifying the row containing y; given
yr—1 works robustly using regular expressions and
binary numerical metrics. Specifically, if y;_1 is
present in T(r;), our rule-based approach success-
fully detects it; otherwise, it correctly determines
its absence. The fact that the latter case is ob-
served rather frequently is not particularly surpris-
ing, given the fact that in our dataset companies’
yearly Scope 3 emission restatements have a fre-
quency of roughly 60%. However, through the
EU’s efforts to standardize sustainability reporting,
it is likely that the frequency of restatements will
decrease in the future. Table 2 presents the evalu-
ation of textual metrics. The results indicate that
identifying the correct row using textual metrics
is highly robust when employing simple regular
expressions. These methods consistently achieved
a false positive only rate of 0% for both queries.
However, finding the row based on the row name of
y1—1 in the previous table did not achieve a 100%
recall, suggesting that only 64.29% of row names
remained unchanged from year to year. This issue
is effectively addressed by word-level matching,
which improves both precision and recall. The
Levenshtein ratio and Jaccard similarity performed
poorly, primarily because these metrics penalize
differences in query and cell lengths, even when
such variations do not affect the semantic mean-
ing. Similarly, embedding-based similarities strug-

gled because they treat numerically similar terms
(e.g., “Scope 2” vs. “Scope 3”) as nearly iden-
tical, leading to underperformance compared to
simpler rule-based methods. In future work, we
aim to explore how embedding-based similarities
can be better adapted to improve performance. As
a result of the cross-validation, we selected the
four most robust similarity metrics and combined
them to perform the rule-based table IE described
in Section 4.2.2. We see that the recall is 100%,
which means that the candidate set always contains
the extraction target y;. The proportion of extrac-
tions in our tests where the candidate set contained
only 1, i.e., exclusively returning true positives, is
80.95% for the most robust set of constraints. The
average number of candidate values was below 1.5
for all sets of constraints. In summary, these re-
sults demonstrate that a robust IE can be ensured if
the similarity metrics provide a consistently robust
extraction. The tests described in Section 4.3 com-
pared both steps of our table IE approach against
a straightforward LLM-based approach. We ob-
serve that, in a table question-and-answer setting,
only the models GPT-40, LLaMA 70B, and GPT-
4o0-mini achieved a precision of 100%. In con-
trast, our hybrid two-step approach successfully
performed information extraction with both recall
and precision at 100%. These results demonstrate
immense substantial gains in information extrac-
tion, especially for smaller LLMs such as llama 8B,
thus highlighting the effectiveness of our regular-
ization approach. Consequently, our approach en-
ables the utilization of smaller, more cost-effective,
and open-source models, enhancing accessibility
and scalability. This factor is especially critical in
the financial industry, which prefers open-source
on-premise solutions and demands scalability.

6 Conclusion

In this paper, we presented a two-step hybrid table
IE approach with a focus on robustness, making it
well-suited for risk-averse application domains. As
outlined in the problem statement, relying solely
on an LLM is not feasible in such domains — an
essential argument in favor of our approach. Ad-
ditionally, candidate sets generated by our method
include the extraction target with high probabil-
ity, which can be leveraged to support manual data
quality control and validation. We anticipate that
evolving regulations for sustainability reporting
will lead to higher data quality, greater consistency,
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and increased standardization. These trends further
strengthen the effectiveness and applicability of the
methodology presented in this paper.

Limitations

Our approach ensures robustness through cus-
tomize the constraints of the extraction in a highly
modular system. This is an advantage, however,
it is important to exploit this customizability for
other extraction tasks, i.e., it is important to specify
queries and similarity metrics for other applications
and / or other domains. A further limitation is that
we tested the approaches for a rather small dataset
and only used tables in a well-structured format. In
future work, we plan to address these limitations.

Ethics Statement

No ethical concerns arise from the study, and all
methodologies adhere to standard academic and
scientific integrity principles. Additionally, no con-
flicts of interest are present, and the work complies
with ethical guidelines for responsible research and
publication.

Acknowledgements

The authors would like to express their gratitude
to Ann Smith and George Bargiannis at University
of Huddersfield, whose support and feedback sig-
nificantly contributed to the development of this
study.

Funding

This project (HA project no. 1647/23-200) is fi-
nanced with funds of LOEWE — Landes-Offensive
zur Entwicklung Wissenschaftlich-okonomischer
Exzellenz, Forderlinie 3: KMU-Verbundvorhaben
(State Offensive for the Development of Scien-
tific and Economic Excellence). Martin Simon
would like to acknowledge support by the Ger-
man Federal Ministry of Education and Research
(BMBF) under Grant No. 03FHP191. The study
used computing infrastructure sponsored by the
Bundesministerium fur Bildung und Forschung
(BMBF)/German Federal Ministry of Education
and Research, Funding program Forschung an
Fachhochschulen, KI@FRA-UAS.

References

David Balsiger, Hans-Rudolf Dimmler, Samuel Egger-
Horstmann, and Thomas Hanne. 2024. Assessing

241

large language models used for extracting table in-
formation from annual financial reports. Computers,
13(10).

Julia Anna Bingler, Mathias Kraus, Markus Leippold,
and Nicolas Webersinke. 2024. How cheap talk in
climate disclosures relates to climate initiatives, cor-
porate emissions, and reputation risk. Journal of
Banking & Finance, 164:107191.

Laura Chiticariu, Yunyao Li, and Frederick R. Reiss.
2013. Rule-based information extraction is dead!
long live rule-based information extraction systems!
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
827-832, Seattle, Washington, USA. Association for
Computational Linguistics.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and
Cong Yu. TURL: Table Understanding through Rep-
resentation Learning.

EdenAl. 2025. Ocr table parsing apis - eden ai. https:
//www.edenai.co/feature/ocr-table-parsing
-apis. Accessed: 28-January-2025.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 43204333, Online. Association for Computa-
tional Linguistics.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. TABBIE: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446-3456, Online. Association
for Computational Linguistics.

Marcel Lamott, Yves-Noel Weweler, Adrian Ulges,
Faisal Shafait, Dirk Krechel, and Darko Obradovic.
2024. Lapdoc: Layout-aware prompting for docu-
ments.

Weizheng Lu, Jing Zhang, Ju Fan, Zihao Fu, Yueguo
Chen, and Xiaoyong Du. 2024. Large Language
Model for Table Processing: A Survey.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space.

Lokesh Mishra, Sohayl Dhibi, Yusik Kim, Cesar
Berrospi Ramis, Shubham Gupta, Michele Dolfi, and
Peter Staar. 2024. Statements: Universal information
extraction from tables with large language models
for esg kpis. In Proceedings of the 1st Workshop on
Natural Language Processing Meets Climate Change
(ClimateNLP 2024), page 193-214. Association for
Computational Linguistics.

OS-Climate. 2025. Data commons. https://os-cli
mate.org/data-commons/. Accessed: 2025-03-01.


https://doi.org/10.3390/computers13100257
https://doi.org/10.3390/computers13100257
https://doi.org/10.3390/computers13100257
https://doi.org/https://doi.org/10.1016/j.jbankfin.2024.107191
https://doi.org/https://doi.org/10.1016/j.jbankfin.2024.107191
https://doi.org/https://doi.org/10.1016/j.jbankfin.2024.107191
https://aclanthology.org/D13-1079
https://aclanthology.org/D13-1079
https://doi.org/10.48550/arXiv.2006.14806
https://doi.org/10.48550/arXiv.2006.14806
https://www.edenai.co/feature/ocr-table-parsing-apis
https://www.edenai.co/feature/ocr-table-parsing-apis
https://www.edenai.co/feature/ocr-table-parsing-apis
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.18653/v1/2021.naacl-main.270
http://arxiv.org/abs/2402.09841
http://arxiv.org/abs/2402.09841
https://doi.org/10.48550/arXiv.2402.05121
https://doi.org/10.48550/arXiv.2402.05121
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/2024.climatenlp-1.15
https://doi.org/10.18653/v1/2024.climatenlp-1.15
https://doi.org/10.18653/v1/2024.climatenlp-1.15
https://os-climate.org/data-commons/
https://os-climate.org/data-commons/

Benoit Potvin, Roger Villemaire, and Ngoc-Tan Le.
2016. A Position-Based Method for the Extraction
of Financial Information in PDF Documents. In Pro-
ceedings of the 21st Australasian Document Comput-
ing Symposium, pages 9—16. ACM.

Tobias Schimanski, Julia Bingler, Mathias Kraus,
Camilla Hyslop, and Markus Leippold. 2023.
ClimateBERT-NetZero: Detecting and assessing net
zero and reduction targets. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 15745-15756, Singa-
pore. Association for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers.

Wenjin Wang, Yunhao Li, Yixin Ou, and Yin Zhang.
2023. Layout and task aware instruction prompt for
zero-shot document image question answering.

Nicolas Webersinke, Mathias Kraus, Julia Anna Bin-
gler, and Markus Leippold. 2022. Climatebert: A
pretrained language model for climate-related text.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models.

A Including prior information as a
regularization method

Let us demonstrate that for IE purely driven by an
LLM, including temporal prior information may
be interpreted as a regularization method in a strict
mathematical sense. While the method we propose
here is a hybrid method rather than purely driven
by an LLM, this may still serve as a motivation for
including prior knowledge to obtain more robust
methods. Xie et al. (2022) study in-context learn-
ing for LLMs trained on a pretraining distribution
given by a HMMM. They prove that, under this as-
sumption, the LLM implicitely performs Bayesian
inference. We define the sequence of training exam-
ples S,, = (S1, ..., Sp,) such as “Scope 1 emissions
in 2021 were ?? t”, “Scope 1 emissions in 2020

were 77 t”, and the test prompt x5 ="Provide the
Scope 1 emissions in the year 2023 in the unit t”.

The first step in in our framework provides an
additional chunk C of text from the text corpus
r¢ which is appended to the training examples to
obtain

Sp = (S, C).

Therefore, Equation 5 in Xie et al. (2022) becomes

p(y | S:ny xtest) X /Hzp(y | Trest, I, 9)

heH
X p(Snu Ttest ‘ 6)
% p(h | Sn, Tiew, 0) p(6) dO.

In this setting, the prior p(#) encodes the LLM’s
pretrained distribution. Including S in addition to
the test prompt updates the model’s posterior by an-
swering the question which parts of the parameter
space and which hidden states i € ‘H are most rel-
evant with regard to the inputs, thus preventing the
model from drifting to irrelevant states or modes.

B Similarity Metrics

Each similarity metric has inputs query and cell
and returns a value between 0 and 1.

B.1 Regular Expression

To evaluate whether a query is contained within
a string, we implemented five complementary ap-
proaches.

B.1.1 Complete Word Matching

The first approach converts both the query and cell
string to lowercase and checks if the query is con-
tained within the cell. It returns 1 for a match and
0 for no match.

B.1.2 Numerical Substring Matching

The second method extracts the numeric characters
from both the query and cell string, then checks if
the query’s numbers appear in the cell. It returns 1
for a match and O for no match.

B.1.3 Word-Level Matching

The fourth method splits the query into words, con-
verts them to lowercase, and calculates the frac-
tion of words found in the target string. The re-
sult ranges from O (no matches) to 1 (all words
matched).
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B.2 Levenshtein Ratio

This method is based on the Levenshtein distance,
which quantifies the minimum number of single-
character edits — insertions, deletions, or substitu-
tions — required to transform one string into an-
other. To normalize this distance, the Levenshtein
ratio divides it by the maximum possible string
length, yielding a similarity score between 0 and
1, where 1 indicates identical strings and 0 denotes
no similarity. This approach is particularly useful
for handling minor spelling variations, typos, and
fuzzy matching, making it a robust technique for
evaluating approximate string containment.

B.3 Jaccard Similarity

The Jaccard-Coefficient is a statistic used for the
similarity of two sets. In NLP this statistic is used
to yield a similarity score between 0 and 1. During
preprocessing, we create separate both the query
and the cell into the sets A and B of strings with
length n. Then we calculate the Jaccard similarity
as so:

ANB
SAB) = g

B.4 Numerical Comparison

Here, we preprocess the strings such that we obtain
the quantity and unit. (“20,000 t CO2” — Quan-
tity: 20000, Unit: “t CO2”). If there is no unit,
we directly compare the two quantities. To create a
similarity score between the two quantities @ and b,
we use the following methods.

B.4.1 Binary Comparison

The binary comparison returns the score 1 if the
absolute difference between a and b is smaller than
1. Else it returns 0.

1 - 1
S(a,b):{’ o =] <

0, else

B.4.2 Continuous Comparison

To allow minor differences between a and b we
use a continuous function. It returns the relative
difference between with respect to a.

S(a,b) = max (CL;b‘,O>

B.4.3 Step Function

The step function is an extension of the continuous
function.

0, Ja—0l<1
0.9, bl <01
0.8, =t o2

S(a,b) =306, 1=t <04
0.4, 1=t <06
0.2, l=tl <03
(1.0, else

B.44 Word Embeddings and Cosine
Similarity

To calculate the similarities between two words a

and b, we first generate the word embeddings with

the given model e, and e. Then we define the

similarity of ¢ and b as:

€, €

S(a,b) =

 lealllles]”
where e, - e, denotes the scalar product.

C Measurements for Experiments

These are the formal definitions for the experiments
to test the rule-based approach to create a candidate
set:

Averase Procici 1% TP,
T T 10n = — —_——
verage rrecisio Ni_l TPZ'—i—FPi
N
1 TP,
A Recall= — ) ——— 1
verage Kneca N;TB+FNi
N
FPO =Y 1(TP,=0AFN; =0AFP, >0),
=1

where IV is the total number of test extractions,
and T'F;, FP;, F'N; correspond to the counts for
extraction 1.

These are the formal definitions for the ex-
periments to test the full table IE:

Precision e
1sion = ———
TP+ FP
Recall rre
ecall = ————
TP+ FN
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D Prompting

We used the following prompt for our benchmark

of table IE:

Benchmark Table IE Prompt

System: Help to extract the total Scope 3 emissions
in the year ¢ from a table given below.

Human: Therefore, choose the best answer for the
given context. And fill in the json format: "Scope 3":
<Scope 3 emissions>, where <Scope 3 emissions> is
a string of the Scope 3 emission with unit.

Context: T‘(rt)

Question: What are the total scope 3 emissions in the
year t given in the table?

We used the following prompt for our hybrid two-

step table IE:

Table IE with candidate set

System: Help to extract the total Scope 3 emissions
in the year ¢ from a table given below.

Human: Help to extract the total Scope 3 emissions
in the year ¢ from a table given below from a preselec-
tion of possible answers. The previous year’s emis-
sions were y;_1, and it is likely that this year’s emis-
sions do not deviate significantly from y;—1. There-
fore, choose the best answer for the given context out
of the set of possible answers. And fill in the json
format: {"Scope 3": <Scope 3 Emission>}, where
<Scope 3 Emission> is a string of the Scope 3 Emis-
sion with unit.

Context: T(r4)

Question: What are the total Scope 3 emissions in
the year ¢ given in the table?

Select one of these possible answers {§(1>, R g’](l)}
and make sure that it keeps the JSON format.
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Abstract

Large language models that use retrieval aug-
mented generation have the potential to unlock
valuable knowledge for researchers, policymak-
ers, and the public by making long and techni-
cal climate-related documents more accessible.
While this approach can help alleviate factual
hallucinations by relying on retrieved passages
as additional context, its effectiveness depends
on whether the model’s output remains faithful
to these passages. To address this, we explore
the automatic assessment of faithfulness of dif-
ferent models in this setting. We then focus
on ClimateGPT, a large language model spe-
cialised in climate science, to examine which
factors in its instruction fine-tuning impact the
model’s faithfulness. By excluding unfaithful
subsets of the model’s training data, we develop
ClimateGPT Faithful+, which achieves an im-
provement in faithfulness from 30% to 57%
in supported atomic claims according to our
automatic metric.

1 Introduction

As the urgency of climate action intensifies (Calvin
et al., 2023), researchers, policymakers, and the
public require efficient access to reliable climate
information. Large language models (LLMs) have
emerged as powerful tools for processing and sum-
marizing vast amounts of climate-related litera-
ture. However, these models often suffer from
factual hallucinations, where generated responses
contain incorrect or misleading information. One
promising approach to mitigating this issue is Re-
trieval Augmented Generation (RAG), which en-
ables models to ground their responses in retrieved
passages from trusted sources. Several climate-
related RAG-based systems have been developed,
including ChatClimate (Vaghefi et al., 2023), Cli-
mateGPT (Thulke et al., 2024), and ClimateQ&A
(Calzada et al., 2024). Despite these advancements,
challenges remain in ensuring that generated out-
puts remain faithful to the retrieved content.

Prompt
What is the purpose of the Global Stocktake?

Context

[0] Recalling Article 14 of the Paris Agreement,
the objective of the Global Stocktake is to assess
the collective progress towards achieving [...]

[1] - Paragraph 34 of 19/CMA.1 decides that the
outputs of this component of the global stocktake
should: a) Identify opportunities for and [...]

[2] The SBSTA and the SBI invited submissions
on views on the approach to the consideration of
outputs component of the first global [...]

ClimateGPT 7B

The Global Stocktake is a key component of the
Paris Agreement, scheduled to begin in 2023. It
involves a comprehensive assessment of global
progress in addressing climate change, considering
scientific evidence, economic implications, and
societal impacts. The Stocktake aims to inform
the updates to countries’ climate commitments,
known as “nationally determined contributions”
(NDCs), to ensure they are in line with the
agreement’s objectives and targets. [...]

ClimateGPT 7B Faithful+

The Global Stocktake’s purpose, as outlined in Ar-
ticle 14 of the Paris Agreement, is to assess the
collective progress made towards achieving the
Agreement’s purpose and long-term goals, which
encompass mitigation, adaptation, and means of
implementation. This assessment is conducted con-
sidering equity and the best available science. The
Global Stocktake process spans two years, begin-
ning with information collection and preparation
and culminating in a consideration of [...]

Figure 1: Shortened example from the original Cli-
mateGPT and the Faithful+ variant on one example
from the Climate Policy Radar task. Text marked in
red is not faithful, i.e. it is not supported by the given
context. The full example is shown in Figure 3.
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Faithfulness, in this context, refers to the extent
to which a model’s response accurately reflects
the information contained in the retrieved passages
without introducing extraneous or misleading de-
tails. Importantly, factuality does not imply faith-
fulness. A response may be factually correct with
respect to general world knowledge but still un-
faithful if the information is not supported by the
retrieved passages as shown in Figure 1. A lack
of faithfulness undermines trust in these models,
particularly in the climate domain, where misinfor-
mation has significant real-world consequences.

Moreover, we argue that faithfulness is even
more important than general factuality in this set-
ting, as large language models may inevitably hallu-
cinate when faced with long-tail or rare knowledge.
By requiring that all factual information in a re-
sponse originates from the provided context, we
can mitigate the risk of such hallucinations and
ensure that model outputs are transparent, verifi-
able, and aligned with the available evidence. Thus,
evaluating and improving faithfulness is a crucial
step in enhancing the reliability of climate-focused
LLMs.

In this work, we investigate methods for auto-
matically assessing the faithfulness of RAG-based
models in climate-related applications. We then
focus on ClimateGPT (Thulke et al., 2024), a
specialised open-weight LLLM trained on climate-
related texts to examine how different instruction
fine-tuning (IFT) datasets influence faithfulness.
By excluding parts of the training data with low
faithfulness, we propose a new model ClimateGPT
Faithful+ that on our main benchmark increases the
percentage of supported claims from 30% to 57%.

2 Faithfulness and Factuality

Our definition of faithfulness and factuality follows
the work of Dziri et al. (2022) and Huang et al.
(2025). Given a question g, a set of N retrieved
passages K = (ki, ka, ..., ky) from a knowledge
base KB, and a response 7, we define faithfulness
of r with respect to K as r should be supported by
the information in K, i.e., r should not contain any
information that contradicts the information in K
or is not present in K. Factuality, on the other hand,
refers to the correctness of the information in r with
respect to general world knowledge. In our context,
we assume that the relevant world knowledge is
contained in C3. Thus, we consider a response r
to be factual if it is faithful to KCB5.

2.1 Evaluation

To assess both the faithfulness and factuality of
long-form responses, we build upon existing auto-
mated evaluation approaches, particularly RAGAs
(Es et al., 2024) for faithfulness and FActScore
(Min et al., 2023) and VeriScore (Song et al., 2024)
for factuality. These methods share a common
three-step pipeline: (1) claim decomposition, (2)
evidence retrieval, and (3) claim verification. The
main differences in evaluating for faithfulness ver-
sus factuality lie in the evidence retrieval step, as
we describe below.

Claim Decomposition As long-form responses
are typically composed of multiple claims, we first
decompose the response into smaller and indepen-
dent claims to simplify the subsequent steps. Given
a response 7, we decompose it into a set of claims
C = ¢1,...,cy. The definition of a claim and the
granularity of the decomposition differs between
different variants and use-cases. In this work, we
use the claim decomposition method from RAGAs
(Es et al., 2024) which prompts a large language
model to decompose the full response into smaller
claims in one step.

Evidence Retrieval The key distinction be-
tween evaluating faithfulness and factuality lies
in this step. For faithfulness evaluation, we directly
use the retrieved passages K = ki, ko,..., kN
from the RAG process as evidence. In contrast,
for factuality evaluation, relevant evidence for each
claim ¢; is retrieved from a knowledge base /CB. In
this work, we use the retrieval mechanism that is
also used for RAG.

Claim Verification Finally, for each claim, we
verify whether it is supported by the retrieved evi-
dence. Therefore, we use an LLM to classify each
claim ¢; given the retrieved evidence (multiple re-
trieved evidence passages are concatenated into a
single evidence). Similar to other work (Song et al.,
2024), we do not differentiate between refuting
and unrelated evidence. The overall faithfulness
and factuality scores of r are then aggregated from
these individual claim verifications by reporting the
percentage of supported claims.

Implementation Details The exact prompts we
used for each step are reported in Appendix B. GPT-
40 (version gpt-40-2024-08-06) is used as the
large language model.
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#Tokens #Parameters Avg. Claim Support wrt.

Model in Trillion in Billion RAG #Claims Ref. [%] KB [%]
LLama 3.1 Instruct 15 8 - 22.7 - 59
v 17.3 67 72

LLama 2 Chat 2 7 - 23.3 - 60
v 21.2 48 65

ClimateGPT 2 7 - 21.6 - 59
v 21.1 30 61

ClimateGPT Faithful+ (ours) 2 7 - 20.2 - 57
v 19.2 57 @

Table 1: Results for claim support wrt. the reference, as a metric of faithfulness, and wrt. the knowledge base (KB)
as a metric for factuality for different large language models with and without RAG.

3 ClimateGPT IFT Evaluation Task

We use the same evaluation dataset and RAG setup
as Thulke et al. (2024) to evaluate the faithfulness
and factuality of the generated responses. The test
set is a held-out portion of the IFT data curated
to train ClimateGPT. It was created in cooperation
with domain experts and contains different open-
ended tasks like QA, text generation, classification,
chat, and brainstorming as well as closed-ended
tasks like summarisation, extraction or rewrite. Our
evaluation focuses on the subset of open-ended
prompts of the held-out data (334 out of the 400
samples).

3.1 Information Retrieval

We use the dataset and retrieval pipeline as de-
scribed by Thulke et al. (2024) for retrieving
relevant contexts in our faithfulness evaluation.
The dataset consists of climate-related documents
from various sources, including IPCC reports and
climate science related papers (see Appendix C
for detailed statistics). For retrieval, we employ
the bge-large-en-v1.5 embedding model (Xiao
et al., 2024) and a hierarchical retrieval strategy
where we first retrieve the most relevant pages
based on the query, selecting the top 5 ranked pages.
Then, within these, we retrieve the top 5 most rele-
vant 115-token snippets.

3.2 Large Language Models

We experiment with several language models in
addition to ClimateGPT. As baselines, we include
the 7B parameter variants of Llama 2 Chat (which
shares the same foundation model as ClimateGPT)
and Llama 3.1 Instruct. Further, we report results

on the 70B parameters variants as well as on GPT-
40 in Table 4 in the appendix. For all baseline mod-
els, we use a standardized RAG prompt that explic-
itly instructs the model to base its response solely
on the provided references'. Both the user ques-
tion and retrieved references are included within
the user message to ensure a consistent evaluation
setup. For ClimateGPT, we leverage its dedicated
context role, which was introduced during train-
ing to optimize reference usage. We also use the
model’s default system prompt to align with its
intended deployment configuration.

3.3 Results

We report the results with our faithfulness and fac-
tuality metrics for the small models in Table 1.
Results of all models are reported in Appendix A.
Overall, we observe that the more recent Llama
3.1 has significantly higher faithfulness than the
predecessor Llama 2. For ClimateGPT, we observe
that the faithfulness, as measured by claim sup-
port, is very low. Further, in contrast to the other
models, using RAG with ClimateGPT does only
slightly improve the claim support wrt. to the KB,
i.e. the factuality. This is a strong indicator that the
model does not make effective use of the provided
paragraphs.

Factuality, i.e. claim support in the knowledge
base might be underestimated. By looking at
claims that are not supported by the knowledge
base, we identify multiple instances of claims that
are factual but where we fail to retrieve the rele-
vant evidence. This either occurs due to the limited
size of our knowledge base or due to a failure on

"Full prompt in Appendix D.
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Avg. Claim Support wrt.

Source Subset Size #Claims Ref. [%]
Senior Expert Grounded 74 8.6 93
Expert Grounded 403 13.1 52
Non-Expert Open-Ended 8,503 19.1 -
Closed-Ended 1,160 10.0 90

(Open-Ended) Grounded 2,368 19.0 43

(Closed-Ended) Grounded 1,024 9.6 91

Table 2: Climate-specific subsets of the ClimateGPT IFT data. For the closed-ended examples, claim support wrt.
reference refers to the context given in the prompt and for grounded examples it refers to the given paragraphs.

retrieval. For an assessment of factuality, we there-
fore note that the reported metric should just be
considered as a lower bound and more accurate
results could be achieved.

4 Ablation of the IFT Data

Motivated by the suboptimal faithfulness of Cli-
mateGPT, especially compared to Llama 2 Chat,
we want to study the post-training of the model. We
focus on the IFT step as we do not expect that the
continued pre-training step has a significant impact
on the faithfulness of the model. The IFT data of
ClimateGPT consists of a general domain partition
and a climate-specific partition that was specifically
curated to train the model. The different subsets of
the latter are listed in Table 2. A small portion of
the data was generated in close cooperation with
domain experts (Exp.), and the larger set generated
by non-experts (Non-Exp.). In closed-ended ques-
tions, the model is given a reference text to perform
its task, such as creating a summary of that text or
extracting specific information from it. In contrast,
for open-ended questions, no additional explicit
references are given in the prompt, and the model
is expected to use its parametric knowledge or to
retrieve additional sources via RAG.

Grounded refers to examples where additional
context is provided to the model as it would be the
case when RAG is used during inference. For the
expert and senior expert subsets, these references
were directly provided during annotation. In the
case of the non-expert subset, annotators only pro-
vided one or multiple URLS to sources the answer
is based on. For a subset of the dataset, these URLs
were crawled, chunked and Thulke et al. (2024)
used a heuristic? to select the most relevant chunk
as context for the response. Additionally, for each

2See Section 4.3 in Thulke et al. (2024) for more details.

example up to four distractor paragraphs from other
documents were selected to make the model more
robust to noisy retrieval results. For closed-ended
questions, only distractors were added as all the
relevant content is already provided in the prompt.

We start our investigation by analysing the faith-
fulness of the gold responses in the IFT data with
respect to their context. For closed-ended ques-
tions, we use the full prompt as context and for
the grounded questions, the selected context para-
graphs. The percentage of supported claims for
each subset as well as the average number of claims
per response are reported in Table 2. We notice
that the Grounded Senior Expert and Closed-Ended
Non-Expert are faithful to their context with 93%
and 90% of claims being supported. The faithful-
ness of the Grounded Expert data is already much
lower with only 52% claim support. Upon closer
inspection, we found that the annotators only pro-
vided grounding passages for crucial claims in the
response. Finally, we observe the lowest level of
faithfulness for the Open-Ended Grounded Non-
Expert data with only 43% claim support.

Next, we repeated the IFT step on different sub-
sets of the data to observe the effect on the faithful-
ness on the final model. The results are reported
in Table 3. As anticipated from our previous anal-
ysis of the IFT subsets, excluding the grounded
non-expert data significantly increases the claim
support from 30% to 57%. Furthermore, excluding
the closed-ended but not grounded non-expert data
reduces the claim support again to 49%. This indi-
cates that closed-ended examples with high faithful-
ness seem to improve the faithfulness of the model
despite the context being provided directly in the
prompt, rather than via retrieval. Finally, removing
the open-ended non-expert data without grounding
does not have a significant effect on the claim sup-
port. For the final model, ClimateGPT Faithful+
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Other Open-End. Closed-End. Grounded Avg. Claim Support

Size 65,000 8,503 1,160 3,328 #Claims wrt. Ref [%]
ClimateGPT 7B v v v v 21.1 30
v v v - 19.2 57

v v - - 18.9 49

v - v - 20.1 58

v - - - 20.4 53

Table 3: Ablation study results showing test-time claim support for different training data combinations.

we still include the open-ended data as we expect
it to improve other aspects.

4.1 Validation on Alternate Metrics and Tasks

To validate the generalizability and robustness of
our improvements, we conducted additional experi-
ments on a RAG dataset from Climate Policy Radar
(Juhasz et al., 2024) focussing on questions on cli-
mate policy documents. For ClimateGPT Faithful+,
we observe a similar improvement in faithfulness
with an improvement in claim support from 44 %
to 58%. More details are discussed in Appendix F.
Further, we confirm the results on the Cli-
mateGPT IFT Task by using an additional faith-
fulness metric (LettuceDetect, Addm Kovécs and
Recski (2025)) and observe an improvement from
6% to 34% completely faithful responses with the
Faithful+. Details are discussed in Appendix G.

5 Related Work

Similar to our work, Schimanski et al. (2024) study
the faithfulness of a RAG system on climate ques-
tions. They restrict the output of the model so that
one sentence always corresponds to exactly one
reference passage and verify the faithfulness using
an NLI model. This way they avoid the claim de-
composition step. They also fine-tune the model on
a synthetic dataset following these constraints to
improve faithfulness. Our work focuses on improv-
ing faithfulness by fine-tuning on more complex
human written responses.

In addition to the faithfulness evaluation ap-
proaches discussed in this work, there are other
approaches to evaluate faithfulness of text gener-
ation. Early work on document-grounded dialog
used simple overlap based metrics like unigram
F1 scores between the response and retrieved pas-
sages as a proxy for faithfulness (Dinan et al., 2019;
Thulke et al., 2023). Fadeeva et al. (2024) make

use of uncertainty quantification to evaluate the fac-
tuality of generated responses. Other work does
not consider the claim decomposition step and di-
rectly verify the full response against the reference
(Honovich et al., 2022; Juhasz et al., 2024, Adam
Kovécs and Recski, 2025).

6 Conclusion

Ensuring faithfulness of LLM outputs is crucial for
improving the reliability of climate-related RAG se-
tups. Our study evaluates automated faithfulness as-
sessment methods. According to our metric, recent
LLMs like Llama 3.1 Instruct and GPT-40 provide
much higher faithfulness than Llama 2 Chat or the
climate-specific ClimateGPT model. Based on our
experiments, we assume that the main difference
comes from the instruction fine-tuning and other
post-training steps and not from the pre-training.

For ClimateGPT, we then do a detailed analy-
sis, which subsets of the IFT data are most impor-
tant for faithfulness. We show that faithful closed-
ended prompts in training also improve the faith-
fulness in the context of RAG and that it is crucial
to avoid unfaithful training examples in the IFT
data. With these insights, we develop ClimateGPT
Faithful+ which improves ClimateGPT’s faithful-
ness from 30% to 57% according to our automatic
metric. These results are confirmed by additional
experiments on an additional task as well as by
using an additional metric to measure faithfulness.

These initial findings point to promising direc-
tions for future work. Rather than discarding un-
faithful training examples, one potential approach
is to enrich them by retrieving supporting passages
for each claim and using those passages as context
during training. For cases where no suitable evi-
dence can be retrieved, synthetic context could be
generated using a LLM. This would keep a larger
portion of the data while still encouraging faithful
model behaviour.

249



Limitations

In this work, we discuss results from our ongoing
work towards more faithful LLMs for RAG on cli-
mate questions. While our preliminary results are
promising, there are still many open questions and
limitations.

While RAGAs (Es et al., 2024) is a popular
approach to evaluate faithfulness with RAG, we
did not perform a systematic evaluation of its
performance in the context of the task at hand.
Spot-checking of results during the development
progress indicated that the metric is reliable enough
for our purposes. We tested the approach on two
relevant climate datasets from the literature. The
results are reported in Appendices F and I, but the
results are inconclusive. Thus, a more thorough
human evaluation is needed to fully verify the ade-
quacy of the metric for the task and to validate the
improvements reported in this work.

The claim verification step in our pipeline cur-
rently focuses on verifying direct support via a
given evidence passage. This approach works well
if the claim is directly expressed in the given pas-
sage and we can consider its content as truth. In
the context of evaluating faithfulness one can argue
that this is a valid assumption. But as soon as we
want to also apply these methods to evaluate the
factuality of more complex claims, this does not
hold any more. Often claims are not directly stated
in a retrieved passage and more complex reasoning
is required to identify the support. Claims might
express opinions or more holistic statements that
require support from multiple sources to be consid-
ered as supported. Also, a binary decision between
supporting and not supporting might not be ade-
quate in many cases, or more nuance is needed.
More complex claim verification approaches as
proposed by Leippold et al. (2025) partially ad-
dress many of these points but are also much more
complex and computationally expensive than the
approach we use.

The behavior of a RAG system is highly depen-
dent on the relevancy and adequacy of the retrieved
passages. In this work, we adopted the same knowl-
edge base and retrieval method as used by Thulke
et al. (2024). Thus, our results are also limited
to this specific setting and generalization to other
settings needs to be studied. Furthermore, the size
of the knowledge base and the accuracy of the re-
trieval method limit the accuracy of the factuality
evaluation during the evidence retrieval step. Addi-

tional analysis would be needed to study the impact
of these factors on the claim support wrt. the knowl-
edge base, we consider as a proxy for factuality.

The ablation experiments on the IFT data fo-
cus on the climate-specific subsets. We did not
study the impact of the general domain IFT datasets
included in IFT training, such as Open Assistant
(Kopf et al., 2023), Dolly? and FLAN v2 (Long-
pre et al., 2023). Further, ClimateGPT is based on
Llama 2. In our experiments, we observed higher
faithfulness for Llama 3.1 Instruct than for Llama
2 Chat. The impact of the pre-training compared
to different post-training steps on the faithfulness
of the model remains unclear.

Finally, during our evaluation we only focused
on claim support wrt. the reference and knowledge
base which we consider as a proxy for faithful-
ness and factuality. We do not consider additional
quality factors like the helpfulness or adequacy of
generated responses. In some cases, a less faithful
output can actually be more helpful or relevant. For
example the unfaithful parts in Figure 1 like the
information on the year might actually make the
response more helpful for some users.
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A Full Results on the ClimateGPT IFT
Task

Table 4 shows the claim support of all models that
we tested on the ClimateGPT IFT task. In contrast
to the table in the main part of the paper, here we
also report the claim support wrt. the reference for
the case that no RAG was used. As the reference
is not given to the model as additional input, we
do expect low claim support. The value is interest-
ing as an indication for the percentage of claims
that are faithful to the reference by chance. Inter-
estingly, we observe that the claim support of the
original ClimateGPT models is close to this value.
This further supports the interpretation that these
models do not make effective use of the provided
context. We omitted these results in the main part
of the paper for better clarity as they are not directly
relevant to the main claims of the paper.

B Evaluation Prompts

Listing 1 and Listing 2 show the prompts that were
used for the claim extraction and verification steps
in the evaluation pipeline. Both prompts are based
on the implementation of RAGAs* (Es et al., 2024).

C Knowledge Base Details

Table 5 shows the statistics of the ClimateGPT
knowledge base.

D RAG Prompts

Listing 3 shows the prompt used in RAG for infer-
ence for all models except ClimateGPT.

Listing 3: Prompt used in RAG for inference for all
models except ClimateGPT.

You're a helpful assistant supporting users
with their questions on climate change. Answer
the question based on the given contexts. Make
sure to only use information that is fully
grounded in the contexts.

Context:

[[0]] "{passage[0].title}", {passagel[0].year}
{passage[@].content}

{...2}

[[4]1]1 "{passage[4].title}", {passagel[4].year}
{passage[4].content}

Question:
{question}

E Training Details

In our training pipeline, we follow the setup from
Thulke et al. (2024). The models are trained using

*https://github.com/explodinggradients/ragas

Megatron-LLM? a fork of NVIDIA’s Megatron-
LM © by the EPFL LLM team. A cosine learning
rate schedule with a peak LR of 107® and 100
warmup steps are used. The batch size is 64 and
the sequence length is 4096. Additionally, a weight
decay of 10~2 and dropout are used.

All 7B parameter models are trained with full pa-
rameter fine-tuning on 4xA100 80GB GPUs. One
training run takes approximately 4 hours, so in to-
tal 64 GPU hours were needed to train the models
reported in this paper.

F CPR’s RAG Dataset Evaluation

To further evaluate the generalization of Cli-
mateGPT 7B Faithful+ to other datasets, we tested
it on a set of question—passage pairs published by
the Climate Policy Radar team (Juhasz et al., 2024).
This dataset contains 1,013 examples, with the re-
trieved passages taken from Climate Policy Radar’s
internal database. We generated responses using
both ClimateGPT 7B and ClimateGPT 7B Faith-
ful+, and evaluated their faithfulness to the pro-
vided reference passages using our RAGAs-based
metric. On this dataset, ClimateGPT 7B Faithful+
achieved a claim support of 58%, substantially out-
performing the base ClimateGPT 7B model, which
achieved 44%. These results demonstrate that the
improvements made in the refined model general-
ize effectively to other climate-domain datasets.
In addition, Juhasz et al. (2024) also collected
expert annotations for model outputs from GPT-
40, GPT-3.5, Gemini 1.0 and 1.5, and Mistral 7B
v0.2. Each response was evaluated for faithfulness
using a definition closely aligned with ours. Ex-
pert annotators labeled responses as either faithful
(58.9%), not faithful (9.6%), not applicable (28%),
or don’t know (3.5%). We used this data to evalu-
ate how well our RAGAs-based metric aligns with
human judgments. For the analysis, we focused
only on examples that were labeled as either faith-
ful or not faithful, excluding cases where the model
refused to answer. This resulted in a total of 1,367
samples. To convert the claim support from our
metric into a binary label for each example, we
classify an output as faithful if the claim support
exceeds 50%. On this test set, our metric achieved
an overall agreement of 86.7% with the human an-
notations. However, accuracy varied between label
categories: it reached 93.7% for human-labeled

5ht’cps: //github.com/epfLLM/Megatron-LLM
®https://github.com/nvidia/megatron-1m
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#Tokens #Parameters Avg. Claim Support wrt.

Model in Trillion in Billion RAG #Claims Ref. [%] KB [%]
GPT-40 n/a n/a - 17.4 33 68
v 16.2 72 74

LLama 3.1 Instruct 15 8 - 22.7 24 59
v 17.3 67 2

70 - 21.8 25 60

v 16.1 E 74

LLama 2 Chat 2 7 - 23.3 25 60
v 21.2 48 65

70 - 25.1 24 60

v 21.6 54 68

ClimateGPT 2 7 - 21.6 25 59
v 21.1 30 61

70 - 21.8 27 61

v 22.2 30 62

ClimateGPT Faithful+ (ours) 2 7 - 20.2 27 57
v 19.2 57 69

Table 4: Results of all tested models for claim support wrt. the reference, as a metric of faithfulness, and wrt. the
knowledge base (KB) as a metric for factuality for different large language models with and without RAG. The best
values are in bold and the second best values underlined.

Listing 1: Prompt template used for Claim Extraction adapted from RAGAs.

Given a question, an answer, and sentences from the answer, analyze the complexity of
each sentence and break it down into one or more fully understandable statements.
Ensure that no pronouns are used in each statement and that every claim is explicit
and self-contained. Format the output as a structured JSON response.

EXAMPLE
Question: Who was Albert Einstein and what is he best known for?
Answer: He was a German-born theoretical physicist, widely acknowledged to be one of
the greatest and most influential physicists of all time. He was best known for
developing the theory of relativity. He also made important contributions to the
development of quantum mechanics.
Statements:
{
"statements"”: [
"Albert Einstein was a German-born theoretical physicist.”,
"Albert Einstein is recognized as one of the greatest and most influential physicists of all time.",
"Albert Einstein was best known for developing the theory of relativity.”,
"Albert Einstein also made important contributions to the development of quantum mechanics.”

}

YOUR TURN

Question: {{question}}
Answer: {{sentences}}
Statements:
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Listing 2: Prompt template used for Claim Verification adapted from RAGAs.

Your task is to judge the faithfulness of a series of claims based on a given context. For each claim you
must return verdict as 1 if the claim can be directly inferred based on the context or @ if the claim can
not be directly inferred based on the context.

EXAMPLE 1:

Context: John is a student at XYZ University. He is pursuing a degree in Computer Science. He is enrolled in
several courses this semester, including Data Structures, Algorithms, and Database Management. John is a

diligent student and spends a significant amount of time studying and completing assignments. He often stays
late in the library to work on his projects.

Claims:

1. John is majoring in Biology.

2. John is taking a course on Artificial Intelligence.
3. John is a dedicated student.

4. John has a part-time job.

Analysis:
{"analysis”": [
{
"claim”: "John is majoring in Biology.",
"reason”: "John's major is explicitly mentioned as Computer Science. There is no information suggesting

he is majoring in Biology.",
"verdict”: @

3,

{
"claim”: "John is taking a course on Artificial Intelligence.”,
"reason”: "The context mentions the courses John is currently enrolled in, and Artificial Intelligence
is not mentioned. Therefore, it cannot be deduced that John is taking a course on AI.",
"verdict": @

3,

{
"claim”: "John is a dedicated student.”,
"reason”: "The context states that he spends a significant amount of time studying and completing
assignments. Additionally, it mentions that he often stays late in the library to work on his projects,
which implies dedication.”,
"verdict": 1

3,

{
"claim”: "John has a part-time job.",
"reason”: "There is no information given in the context about John having a part-time job.",
"verdict”: @

}

1}

EXAMPLE 2:

Context: Photosynthesis is a process used by plants, algae, and certain bacteria to convert light energy
into chemical energy.

Claims:
1. Albert Einstein was a genius.

Analysis:

{"analysis": [

{
"claim”: "Albert Einstein was a genius.",
"reason”: "The context and claim are unrelated.”,
"verdict”: @

3}

1

YOUR TURN:

Context: {{context}}
Claims:

{{claims}}

Analysis:
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Source #Docs # 512 Chunks
IPCC Reports 16 17,897
Potsdam Papers 390 8,539
Earth4All 14 235
Other 336 8,648
Total 756 35,319

Table 5: Statistics of the different data sources of the
ClimateGPT knowledge base.

faithful responses, but only 29.5% for not faithful
ones. Notably, Juhasz et al. (2024) themself ac-
knowledged that their annotations were sometimes
“too noisy along the faithfulness dimension”. In
addition, limited spot-checking on our part more
frequently agreed with our metric’s assessments
than with the human annotations.

G Evaluation with LettuceDetect

In addition to our primary faithfulness evaluation
using RAGAs, we include results using LettuceDe-
tect (Addm Kovics and Recski, 2025), a recent
hallucination detection framework designed for
RAG systems. LettuceDetect is a token-level clas-
sifier based on ModernBERT (Warner et al., 2024),
trained on the RAGTruth dataset (Niu et al., 2024)
to identify hallucinated spans in LLM responses
given the input question and context. As LettuceDe-
tect’s definition of hallucination closely aligns with
our notion of faithfulness, we use it to validate the
results obtained with RAGAs.

For our evaluation, we convert LettuceDetect’s
span-level predictions into a binary faithfulness
score by marking a generation as faithful if no
hallucinated spans are detected. Results, using the
lettucedetect-large-v1 variant of the model,
are reported in Table 6.

The LettuceDetect results support the conclu-
sions drawn from our RAGAs-based evaluation.
Without RAG, both ClimateGPT and ClimateGPT
Faithful+ achieve low scores (6% and 2% respec-
tively), providing a baseline for how often gener-
ations align with the reference context by chance.
With RAG, ClimateGPT Faithful+ shows a substan-
tial improvement, reaching 34% hallucination-free
responses compared to only 6% for the original Cli-
mateGPT. This underpins the claim support results
obtained with RAGAs (57% vs. 30%), reinforcing
the effectiveness of our instruction fine-tuning strat-
egy in improving the model’s ability to ground its

Listing 4: Climate-FEVER example where our claim
verifier disagrees with the gold label.

Claim:
Global warming is driving polar bears toward
extinction

Evidence:

[Global Warming] Environmental impacts include
the extinction or relocation of many species as
their ecosystems change, most immediately the
environments of coral reefs, mountains, and the

Arctic.

Gold label: supported
Predicted label: not_supported

generations in the retrieved context.

H ClimateGPT IFT Example Output

Figure 2 shows an example output of ClimateGPT
7B and the ClimateGPT 7B Faithful+ model pro-
posed in this work. While both responses address
the question in the prompt and are generally cor-
rect, the refined model’s response demonstrates a
significantly closer alignment with the reference
passages.

I Climate FEVER Claim Verification

To evaluate our claim verification method, we ap-
plied it to the Climate-FEVER dataset (Diggel-
mann et al., 2021). The dataset consists of 1,535
claims, each paired with 5 corresponding evidence
passages. Each claim-evidence pair is annotated by
at least two annotators as either supported, refuted,
disputed, or lacking sufficient information. For
our analysis, we classify refuted and lacking suf-
ficient information as not supported, and exclude
all pairs labelled as disputed. In addition, we only
include examples where all annotators agree on
the label, resulting in a total of 1,146 claims and
3,348 claim-evidence pairs. On this subset, the
RAGAs-based claim verifier achieves an overall
accuracy of 67.1%. For pairs with the gold label
“not supported”, the accuracy is 99.7%, while for
supported pairs, it drops to 20.6%. Qualitatively,
we observe that our claim verifier is relatively strict,
requiring the claim to be explicitly stated in the ev-
idence. An example of this is given in Listing 4.
In this instance, the evidence does not explicitly
state that polar bears are one of the affected species.
However, it could be argued that it is plausible to
infer that polar bears are included among the “many
species” mentioned in the evidence.
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#Tokens #Parameters Hallucination-Free Responses [%]

Model in Trillion in Billion w/o RAG w/ RAG
GPT-40 n/a n/a 9 73
LLaMA 3.1 Instruct 15 8 4 65
70 2 65
LLaMA 2 Chat 2 7 2 18
70 2 29
ClimateGPT 2 7 4 6
70 4 4
ClimateGPT Faithful+ (ours) 2 7 2 34

Table 6: Percentage of hallucination-free responses according to lettucedetect-large-v1 (Addm Kovics and
Recski, 2025) for various models with and without RAG. The best values are in bold and the second best values
underlined.
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Prompt

How do ocean ecosystems, ranging from coral reefs to the deep sea, support biodiversity and provide essential services? Answer in a
single detailed paragraph.

Context

[0] "Understanding the Effectiveness of Coastal Nature-based Solutions: Practitioner-based Learning", 2023

despite the high cost and failure rate. oyster reefs are effective for wave attenuation, and research suggests that focusing on positive
species interactions can provide a framework for restoration. biodiversity enhancement supports a shellfish reef’s ability to provide
ecosystem services. ecosystem services research highlights that healthy ecosystems provide high - quality services, while stressed
ecosystems produce degraded services and may harm human well - being. most ecosystem services are supported by biodiversity.
biodiversity in coastal systems contributes to providing ecosystem services such as fish habitat, nutrient cycling, and various cultural
services. additionally, biodiversity may play a role in the

[1] "The Role of Blue Carbon in Climate Change Mitigation and Carbon Stock Conservation", 2021

is an essential to sustainably manage and develop marine resources to their maximum potential. environmental measures should tackle
both terrestrial and marine ecosystems, with one as a continuum of the other. coral reef restoration can increase coastal resilience to sea
level rise and flooding and provide valuable environmental services for local populations. water pollution in rivers contributes to ocean
ecosystem degradation, via eutrophication and the formation of

[2] "The Ocean and Cryosphere in a Changing Climate", 2020

level of risk than the high emission scenario. changing marine ecosystem services and human well - being ecosystem services are
environmental processes and functions that provide benefits to people and support human well - being. marine ecosystem services are
generated throughout the ocean, from shallow water to the deep sea. these services can be divided into provisioning services, regulating
services, supporting services, and cultural services. they are also described as’nature’s contribution to people ’. changes in key ecosystem
[3] "Climate Change 2022: Impacts,Adaptation and Vulnerability", 2022

logical shifts and trophic mismatches, changes in communities and biodiversity, time of emergence of climate - impact signals in
ecological systems from background natural variability, and changes in biomass, primary productivity, and carbon export. coastal
ecosystems and seas warm - water coral reefs warm - water coral reef ecosystems, which house a significant portion of marine biodiversity,
provide food, income, and shoreline protection to coastal communities. these ecosystems are threatened by climate - induced and non -
climate drivers, including ocean warming, marine heatwaves, ocean acidification, sea - level rise, tropical cyclones

[4] "Understanding the Effectiveness of Coastal Nature-based Solutions: Practitioner-based Learning", 2023

research indicates that biodiversity plays a crucial role in the functioning of ecosystem services provided by habitats. recent studies have
focused on the climate mitigation capacity of forests in the context of biodiversity and nature - based solutions ( nbs ). challenges arise in
prioritizing monoculture plantations for carbon storage over intact and diverse ecosystems. the identity and richness of species, as well as
the concept of "niche complementarity °, contribute to boosting ecosystem function and their services. significant restoration efforts are
underway for shellfish reefs, despite the high cost and failure rate. oyster reefs"

ClimateGPT 7B (Faithfulness: 19%, Factuality: 67 %)

Ocean ecosystems, encompassing a diverse range from coral reefs to the deep sea, demonstrate unparalleled biodiversity and provide
a multitude of essential services. In the coral reef ecosystem, vibrant arrays of colorful fish and intricate coral structures serve as vital
breeding grounds and habitats for countless marine organisms. These ecosystems act as natural breakwaters, reducing coastal erosion and
protecting shorelines. Additionally, they store vast amounts of carbon, contributing to climate change mitigation. Moving out from the
coast, the deep sea presents a different world, characterized by complete darkness, extreme pressure, and cold temperatures. Despite the
harsh conditions, it sustains unique species adapted to these environments, many of which are still undiscovered. The deep sea plays a
crucial role in regulating climate and weather patterns, driven by its immense biological pump, which captures carbon from the surface and
transports it to the deep oceans. In essence, ocean ecosystems are not only a source of aesthetic beauty and recreation but also linchpins of
the Earth’s ecological balance and a treasure trove of biodiversity.

ClimateGPT 7B Faithful+ (Faithfulness: 92%, Factuality: 96 %)

Ocean ecosystems, including coral reefs and the deep sea, play a vital role in biodiversity support and providing essential services.
They provide provisional services, regulating services, supporting services, and cultural services. Coral reefs contribute to coastal
resilience to sea level rise and flooding and provide valuable environmental services for local populations. However, they are threatened
by climate-induced and non-climate drivers, impacting coastal ecosystems and warm-water coral reefs. These ecosystems provide food,
income, and shoreline protection to coastal communities. Restoration efforts, such as oyster reefs, are essential for wave attenuation,
but their failure and high cost are challenges. Recent research has focused on the climate mitigation capacity of forests in the context of
biodiversity and nature-based solutions. Prioritizing monoculture plantations for carbon storage over intact and diverse ecosystems is a
challenge. The identity and richness of species and the concept of niche complementarity contribute to boosting ecosystem function and
services.

Figure 2: Example comparing the outputs of ClimateGPT and ClimateGPT 7B Faithful+ on one example of the
held-out test set. Parts marked in red correspond to claim that are not supported in the given context according to
our automatic evaluation.
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Prompt

What is the purpose of the Global Stocktake?

Context

[0] Recalling Article 14 of the Paris Agreement, the objective of the Global Stocktake is to assess the collective progress towards achieving
the purpose of the Agreement and its long-term goals, considering mitigation, adaptation and the means of implementation and support, in
light of equity and the best available science. The outcome of the global stocktake shall inform Parties in updating and enhancing, in
a nationally determined manner, their actions and support in accordance with the relevant provisions of this Agreement, as well as in
enhancing international cooperation for climate action. The GST two-year process, begins with an information collection and preparation
component, followed by a technical assessment component and culminates in a consideration of outputs component, which includes the
outcomes of the GST. The SBSTA and the SBI invited submissions on views on the approach to the consideration of outputs component of
the first global stocktake. This submission responds to that invitation and sets out to identify important characteristics for the outputs
phase and the shaping of the outcomes of the GST.

[1] - Paragraph 34 of 19/CMA.1 decides that the outputs of this component of the global stocktake should: a) Identify opportunities for
and challenges in enhancing action and support for collective progress in relation to the thematic areas of the global stocktake referred to
in paragraph 6(b) above, as well as possible measures and good practices and international cooperation and related good practices;

[2] The SBSTA and the SBI invited submissions on views on the approach to the consideration of outputs component of the first global
stocktake. This submission responds to that invitation and sets out to identify important characteristics for the outputs phase and the
shaping of the outcomes of the GST. Approach to the Consideration of Outputs:

ClimateGPT 7B

The Global Stocktake is a key component of the Paris Agreement, scheduled to begin in 2023. It involves a comprehensive assessment of
global progress in addressing climate change, considering scientific evidence, economic implications, and societal impacts. The Stocktake
aims to inform the updates to countries’ climate commitments, known as “nationally determined contributions” (NDCs), to ensure they are
in line with the agreement’s objectives and targets. This process seeks to enhance international cooperation and commitment to mitigating
climate change on a global scale.

ClimateGPT 7B Faithful+

The Global Stocktake’s purpose, as outlined in Article 14 of the Paris Agreement, is to assess the collective progress made towards
achieving the Agreement’s purpose and long-term goals, which encompass mitigation, adaptation, and means of implementation. This
assessment is conducted considering equity and the best available science. The Global Stocktake process spans two years, beginning with
information collection and preparation and culminating in a consideration of outputs. The outputs of the latter component are decided
upon in paragraph 34 of 19/CMA.1, which states that they should identify opportunities for enhancing action and support for collective
progress in relation to thematic areas of the global stocktake and possible measures and good practices.

Figure 3: Example comparing the outputs of ClimateGPT and ClimateGPT 7B Faithful+ on one example from the
Climate Policy Radar data. Parts marked in red correspond to claim that are not supported in the given context
according to our automatic evaluation.
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Abstract

Research syntheses, such as systematic maps
or evidence and gap maps, provide valuable
overviews of the coverage of research in a par-
ticular field. They serve as pointers for funders
and researchers to identify important gaps in
the literature where more research is needed
but also to find relevant work for more in-depth
systematic reviews or meta-analyses. How-
ever, systematic maps become outdated quickly,
sometimes even after they are released due to
the time it takes to screen and code the available
literature and long publication processes. Fur-
thermore, the write-up of the synthesis (in form
of a peer-reviewed article) can only serve as
a high-level summary—for detailed questions
one would need full access to the underlying
data. To this end, we developed an interactive
web-based platform to share annotated datasets.
For some datasets, where automated categori-
sation passes the necessary scientific quality
standards, we also update the data as new re-
search becomes available and thus make them
‘living’.

1 Introduction

The number of scientific publications is continu-
ally growing at an exponential rate. For example,
more articles on climate change were published
during the sixth assessment cycle of the IPCC
than during all previous cycles since 1985 com-
bined (Callaghan et al., 2020). Systematic maps of
timely topics that are up-to-date are crucial tools
to get an overview of a specific field, to identify re-
search gaps, or to identify articles that are relevant
for a particular meta-study or review (JPT et al.,
2024; Kastner et al., 2016). The sheer amount
of potentially relevant literature to consider and
the rapid growth make it increasingly prohibitive
to conduct systematic maps by hand. Digital evi-
dence synthesis tools can speed up the most time-
consuming of a synthesis, particularly screening
abstracts in search for relevant articles (Haddaway

et al., 2020; Tsafnat et al., 2014). The Covid-19
pandemic has shown the value of so-called ‘living
evidence syntheses’ that are continually updated to
capture findings from the latest clinical trials and
other research strands (Chakraborty et al., 2024;
Elliott et al., 2014). The crises of our time require
similar up-to-date repositories of evidence to sup-
port evidence-based policy-making.

Traditional publication models, however, are not
able accommodate requirements of regular and fre-
quent updates (Thomas et al., 2017). By the time a
research team submit their initial draft, especially
until the final publication, the synthesis might al-
ready be outdated. The publication is by definition
a high-level overview of the underlying data, for
which the authors and contributors have spent a
lot of time to compile and annotate. However, this
raw data is often not published alongside the arti-
cle or is no longer available. Even where data is
available, it might only be available in a proprietary
format or the schema used in a csv file might not
be self-explanatory. This makes it hard for other
researchers or policy analysts to utilise existing
categorisations to find relevant literature of their
particular questions.

To this end, we developed an interactive web-
platform for sharing the underlying data of sys-
tematic maps. The initial prototype' hosts four
projects: A systematic map of literature on climate
policy instruments (Callaghan et al., 2025), a sys-
tematic evidence and gap map of literature on car-
bon pricing (Dobbeling-Hildebrandt et al., 2024),
a systematic map of literature on carbon dioxide re-
moval (Liick et al., 2024; Smith et al., 2023, 2024),
and a systematic map of literature on climate and
health (Berrang-Ford et al., 2021; Romanello et al.,
2023, 2024). We are also working on adapting data
from past publications and making all maps ‘living’
by building pipelines that automatically retrieve
new publications and classify them. Depending on

1https: //climateliterature.org/

260

Proceedings of the 2nd Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2025), pages 260-265
July 31, 2025 ©2025 Association for Computational Linguistics


https://climateliterature.org/

Literature Hub—Climate and Health Map
U Explorer @ Info

FuTers © ScATTERPLOT

Number of documents: 35,228 / 57,992

Publication years

u T T T d
1090 1999 2008 2017

Category L_J A4
755/3370| | 395979662 | 8522847010
Mitigation | | Adaptation | [Impacts

Meta-topic =@V

19.494/34733
Exposure

35228/ 41374 5281 /15064
Health impact| | Intervention option

6201/12229 | | 12259 /17,582
Mediating pathways  Other
Exposure -

215673985 | 1997/5011
Drought | | Emissions

 ags/101:
Extreme precipitation & flooding

4725943 ag14/550
General climate change | | General seasonality & weather

453976023 1,569/ 2,194
Heat Precipitation variabilty

Health impact o

@  LABEL CORRELATION
o/0@

Home About License/Privacy
& Download

© Resuts °©

@ Use Vertical axis ~ # Horizontal Deaths of Psychiatric Patients During Heat Waves
log- Continer v axis 1998 | Nigel Bark
scale Meta-to] v Deaths of patients in state psychiatric hospitals in the
@ Avply New York City area during heat waves and control
global periods from 1950 to 1984 were compared with
those in the overall New York City population during
filter the same periods. Psychiatric patients had twice the
risk of dying during a heat wave than the general
Health Intervention Mediating population. The risk for patients was higher in the
Exposure . Other . N .
impact  option pathways 1950s, before the introduction of antipsychotic
North medications, than in the 1980s, but was highest in the
America - 1182 943 [SIES 19705, when higher dosages of antipsychotic
South medication were commonly used. During 1980 to

. 749 [18121| 148 230 805

Oceania 939 1494 297 180 432

1984 the risk was the same for both populations,
suggesting that both psychiatric illness and
antipsychotic medications increase patients' risk of
dying during heat waves but that risk can be
eliminated with preventive measures.

Africa 1437 500 618 940

DOl §OpenAlex
(NGrefAErical 1) IFBAEHSI 0.86) Patients| 0.73) (REIEVaRE 0.75)
[Risk assessment & risk perception|0.56) Death]| 0.5 (Heat stress|
061 + M Report error

Europe

571 758 1561

Factors influencing the course of posttraumatic
stress following a natural disaster: Children's
reactions to Hurricane Katrina

2009 | Paul Boxer; Amanda Sheffield Morris; Andrew M.
Terranova

This investigation examined psychosocial and
behavioral factors involved in the course of post-
order (PTSD) symptoms in youth
ne Katrina Particinants (N = 169+

4567“91011

Figure 1: Screenshot of the interactive climate literature hub; Left panel contains all available filters, the second
panel shows a scatterplot of the semantic landscape with a descriptive keyword overlay (hidden in the screenshot),
the third panel provides a heat-map (or gap-map) to show how different filters or labels correlate, the right panel
shows the abstracts that match the current set of filters. Not shown is a panel of a geographic map to see which
places are mentioned in abstracts or where authors’ affiliations are located.

the purpose of the map and the quality of machine-
learning classifiers, this entire process can—with
several caveats—be fully automated. With this plat-
form we want to foster open research, transparency,
and reusability and make up-to-date evidence eas-
ily accessible for anyone. The platform itself is
also open-source and available for anyone to adapt
or host.”> The system can easily be adapted to in-
clude additional datasets by adding a meta-data and
database file using a very basic format (see project
repository for details).

Figure 1 shows the main screen of the latest pro-
totype (March 2025) for our map of literature at
the nexus of climate and health. The interface is
modular, so authors can decide how to best show-
case their data. Current components feature various
filters for publication year (with a histogram), nor-
mal labels (boxes that can be selected), as well
as full-text and author search. Furthermore, the
dataset can be explored on a ‘semantic landscape’,
a scatter-plot where each dot represents an arti-
cle and their close proximity indicates high simi-
larity. This explorative visualisation, inspired by
Nomic Al (Gonzédlez-Marquez et al., 2024), may be
useful to quickly identify clusters of similar works

thtps://gitlab.pik—potsdam.de/mcc—apsis/
living-evidence-maps/literature-hub

or to see how specific filters cover the topical spec-
trum. The lasso-selection tool on the landscape
also acts as an additional filter. Aside from the
semantic landscape, there is also a component to
display geographical locations associated with the
articles, for example by mentions in the abstract
or author affiliations. Regions and location on this
map can also be used as filters. The heat-map com-
ponent provides a quick overview of how labels
correlate and is inspired by gap-maps (Snilstveit
et al., 2016). Lastly, we implemented a list com-
ponent to show the most relevant records based on
the current global filter.

In the remainder of this article, we describe
some of the technical aspects that enable this web-
platform to be highly interactive—even for large
datasets and many filters. Furthermore, we discuss
some challenges of automated updates of datasets
shared on this platform and considerations for fu-
ture work.

2 Real-time filtering

One of the key features of the web-platform is the
ability to combine arbitrary filters and receive real-
time feedback of how they influence the overall
statistics. The platform is built to handle large
datasets—tested for a million records. This poses
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a particular challenge for optimising the traffic be-
tween the front-end and the server. We address this
challenge by only transmitting binary bit-masks for
each label during the initial page-load. This allows
us to do all computations in the client’s browser
very efficiently, including updating the visualisa-
tions. The required traffic for each bit-mask is
around 1.2kb per 10,000 records per filter before
additional gzip compression on the transport layer.
In the example shown in Figure 1, there are three
filters grouped under ‘Category’. Publication years
and x/y coordinates for the scatter-plot are transmit-
ted as uint16 and float16 in a light-weight batched
Apache arrow file amounting to around 120kb per
10,000 records.

While we have not conducted dedicated perfor-
mance experiments, we have not encountered any
noteworthy lags to hinder any interactive explo-
ration of the data. For example, on a basic laptop
from 2021, a dataset with 78k records and 20 fil-
ters only takes a few milliseconds to update all
counts and has rendered the scatterplot component
in under 200ms after a click event on one of the
filters is triggered.

This design has the added benefit, that server
requirements are very limited. The raw data is
stored by sqlite files that contain raw classifier or
topic-model scores. Where human annotations are
available, they supersede automatically assigned
labels and are set as explicit zero or one scores,
whereas all others are limited to the range 0.01—
0.99. Alternative bit-masks are transmitted if the
user sets different thresholds. By setting the thresh-
olds accordingly, users can decide to only show
human annotations. For full-text and author search,
the same mechanism is used and generates specific
bit-masks.

The result set is loaded in the frontend by send-
ing the bit-mask of the current global filter—the
combination of all active filters—to the server,
which then responds with the records ranked by
the sum of the stored classifier scores.

Overall, users have given very positive feedback
and were excited to explore our systematic maps in
real-time, filter for what they need, and download
records including all labels as a csv for the selection
they made. At this point, we have not conducted
systematic user studies, but plan to do so to inform
future developments.

3ThinkPad T14s, no dedicated GPU

3 Considerations for ‘living’ maps

The conventional process for a systematic map fol-
lows a linear and very labour-intensive structure.
Once an appropriate (boolean) query is developed,
the author team would retrieve bibliographic meta-
data from a search engine like the Web of Science
or Scopus and then screen all records by hand for
inclusion. Included records are then annotated fur-
ther, in case of a review additional information
is extracted from the full-text. With the help of
automation (Thomas et al., 2017), we can speed
up the process by prioritising which records to
screen and stop early without having to look at
all records (Callaghan and Miiller-Hansen, 2022).
This also means, that we can design more inclu-
sive queries may lead to more complete system-
atic maps overall. Once enough labels are col-
lected, other categorisations might also be done
with machine-learning classifiers to automate fu-
ture updates once the first version of a systematic
map is published. This means, that we can build
fully-automated pipelines to reproduce the original
study and run this pipeline regularly (for example
daily) to also include newly published research.
At this point, we did not develop a standardised
framework for machine-learning-based classifica-
tions and refer to the original publications the re-
spective datasets came from for how automation
was developed and how well it performs.

However, such an automated update should also
come with a protocol for how the quality is mon-
itored over time. As a research area evolves, key-
words that are relevant for the topic of the system-
atic map may change, which requires updates to the
boolean query at the first step of the pipeline. This
then may also require additional annotations as the
scope changes to ensure a high-quality scientific
standard. Depending on the use-case, a systematic
map might prioritise inclusiveness over precision.
However, that trade-off might be hard to commu-
nicate to users, especially with varying levels of
classifier performance. The versions of the dataset
also need to be clearly marked, for example to dis-
tinguish if only new data was added or whether
classifiers were re-trained or the process changed
in any way.

Furthermore, the research community needs to
develop guidelines for the safe and responsible
use of automation. Particularly the rise of gen-
erative large language models has already found
early adopters in research synthesis. The perfor-
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mance of such models are very hard to validate,
as they are also shown to suddenly fail. However,
more conventional supervised classification mod-
els are also rarely perfect, especially with limited
data available for training. In these cases, we need
clear guidelines when it is acceptable to still use
automation or in which use-cases some categori-
sation have to be omitted from automated updates
and rather need to be reviewed by experts before
including them in the published dataset.

Another aspect to consider is continuity of a liv-
ing systematic map that users return to. Visualisa-
tions, such as semantic landscapes need to remain
relatively stable over time and should not suddenly
use a completely different layout, which, to an ex-
tent, can be ensured by adding new data to existing
layouts and some additional fine-tuning (Policar
et al., 2024; Repke and Krestel, 2021). As men-
tioned before, classifiers may be updated during
the life-time of a living map. In this case, labels for
records that were in earlier versions might change,
which could have an impact on downstream users.

Initially, the update iterations are just available
via additional fine-grained publication date filters.
In future work, we are planning to develop newslet-
ters that interested parties can subscribe to that
sends them a list of latest publications that apply
to their filter settings. Furthermore, we plan to in-
clude a dashboard that showcases the latest trends,
ideally highlighting semantic shifts.

One major impact on the continuity across ver-
sions of a living systematic map is the data avail-
ability in academic search engines. Proprietary
databases, such as the Web of Science or Scopus
are not accessible to all researchers and the num-
ber of results may vary based on the institutional
subscription. Open repositories such as OpenAlex
or SemanticScholar have shown very good inter-
operability and coverage (Priem et al., 2022; Cul-
bert et al., 2024), but are increasingly sabotaged
by large publishers who enforce the deletion of ab-
stracts from these public indices, which renders the
database effectively useless for use in automated
pipelines and prevents many researchers from do-
ing their work effectively.

On a similar note, the data shared on such a plat-
form should also be subject to clear licenses where
all authors and contributors need to agree to. The
license should ideally be very permissive so that
other researchers are free to use the annotations for
their own work—be it to improve tools for digital

evidence synthesis or as a starting point for a sys-
tematic review, meta-study, or even a companion
map with additional labels or adjusted scope. Fi-
nally, as the user base of such a platform grows,
they might also identify errors and provide feed-
back. The maintainers of the living map should to
consider how they might want to incorporate the
support by a (potentially) global community of ex-
perts and laypeople alike. Incorporating feedback
and improving the classifications may also mean
that annotations for historic data changes. This
requires a clear way to reference specific versions
of the underlying database for reproducibility, for
example by providing daily changelogs.

At this point, we have automated updates for two
of the publicly accessible datasets orchestrated by
running modified versions of the original studies’
scripts and models using scheduled GitLab runners.

4 Limitations

This platform—in its current form—certainly qual-
ifies as an ‘expert system’. That means, that some
functionality may not be intuitive, especially the
combination of filters. We deliberately opted to
provide very fine-grained control of how filters can
be combined or choosing custom thresholds for
classifier scores to adjust the precision/recall trade-
offs. Since the development is not directly funded,
prioritising usability improvements over additional
features or bug fixes is challenging. This high-
lights another consideration about the sustainabil-
ity of providing such a platform. The original data
should additionally always be published through
conventional channels such as zenodo, the OSF, or
companion platforms of the publisher.

That said, a systematic evaluation of the usabil-
ity of the platform should be conducted as part of
future work. In particular, such user studies should
focus on how each component contributes to a bet-
ter understanding to contextualise the available ev-
idence and how it can reduce the time required
to find relevant evidence for a user’s information
needs.

5 Conclusion

We have released the climate literature hub, a pro-
totype of a web-platform for sharing data from
large-scale systematic maps as we believe in open
and transparent research that serves the wider com-
munity of researchers and policy-makers. We hope
that in exploring our datasets, we inspire ‘ecosys-
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tems of reviews’ in which expert teams can use
our maps as starting points for their in-depth anal-
yses on more specific questions or offer a tool for
policy-makers to identify relevant research more
quickly. Feeding into the platform, we built (semi-
)automated pipelines to update the data as new rele-
vant research is published. This submission should
serve as a starting point for the wider community
how digital evidence synthesis tools can be used
responsibly in the future. Future work is needed
to develop guidelines for safe use of Al and au-
tomation systematic maps feeding into platforms
like this, how results can be presented in such a
way, that users can make informed decisions if the
(possibly imperfect) automated classifications meet
their quality needs, and how to address challenges
around continuity.
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Abstract

The voluminous, highly unstructured, and
intersectoral nature of climate policy data resulted
in increased calls for automated methods to
retrieve information relevant to climate change
adaptation. Collecting such information is crucial
to establish a large-scale evidence base to monitor
and evaluate current adaptation practices. Using a
novel, hand-labelled dataset, we explored the
potential of state-of-the-art Natural Language
Processing methods and compared the
performance of various Transformer-based
solutions to classify text based on adaptation-
relevance in both zero-shot and fine-tuned
settings. We find that fine-tuned, encoder-only
models, particularly those pre-trained on data from
a related domain, are best suited to the task,
outscoring zero-shot and rule-based approaches.
Furthermore, our results show that text granularity
played a crucial role in performance, with shorter
text splits leading to decreased performance.
Finally, we find that excluding records with
below-moderate annotator confidence enhances
model performance. These findings reveal key
methodological considerations for automating and
upscaling text classification in the climate change
(adaptation) policy domain.

1 Introduction

The urgent need for climate change adaptation
(referred to as ‘adaptation’ hereafter) has driven
governments to formulate and implement
ambitious policies and actions LA
comprehensive understanding of global adaptation
progress, however, has remained absent. Despite
conceptual proposals, no consistent, large-scale
framework for tracking progress has been
implemented to date .

A key factor in this challenge is the abundance
and unstructured nature of the relevant evidence,
with adaptation information often being embedded

robbert.biesbroek,

ioannis.athanasiadis) @wur.nl

in long climate policy documents. This hinders
accessibility of relevant information to inform
monitoring and evaluation, making identification
of adaptation-relevant text essential for a tracking
framework. The sheer volume of the text available,
however, makes manual analysis infeasible, thus
requiring an automated text classification
approach. The field of Natural Language
Processing (NLP) has shown great promise to
contribute to adaptation tracking

, but the multitude of
approaches, setups, and data strategies that can
potentially influence performance makes selecting
the most suitable method challenging.

Rule-based approaches (e.g., keyword search)
are most transparent and may achieve satisfactory
results for non-complex topics, but their statistics-
based successors are typically more accurate and
stable . For classification of short
texts, early Deep Learning-based approaches
continued this rising trend in accuracy, albeit with
small margins — particularly when the dataset gets
more imbalanced — and at the cost of computational
efficiency .

More recently, the NLP field has shifted to the
use of pre-trained models based on the Transformer
architecture

, of which encoder-only language models
(ELMs) like BERT and large
language models (LLMs) like GPT

are examples. For text classification tasks,
state-of-the-art (SOTA) models have shown
potential through three main approaches: (1)
supervised fine-tuning of an ELM on a labelled
dataset; (2) using an existing ELM fine-tuned on
Natural Language Inference (NLI) for zero-shot
classification, and; (3) prompting an advanced,
general-purpose LLM to classify in a zero- or few-
shot setting.
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The choice of approach and model, and their
performance relative to more traditional NLP
approaches, depends on numerous aspects. Prior
research has shown that fine-tuned ELMs tend to
outperform general-purpose LLMs on
classification tasks when sufficient training data is
available , when the
model is pre-trained on domain-relevant data

, or when the task is of limited
complexity . However, when
training data is scarce or the text complexity
requires advanced language understanding, LLMs
may outperform fine-tuned ELMs ,
as well as traditional and NLI-based models

Other influential factors include text splitting
strategy and inclusion threshold. Longer texts
preserve context but pose challenges for SOTA
models, as: (1) these are typically pre-trained on
shorter texts ; (2) the models have
difficulties with identifying information when text
becomes more sparse , and;
(3) computation of Transformers scales
quadratically with input length

, making it challenging to determine the right
text granularity and splitting strategy. Inclusion
threshold refers to the extent to which a given text
block must align with a label to belong to that class,
potentially affecting model adaptability, and,
therefore, performance. For zero-shot
classification, setup choices like labels, task type
(e.g., binary or multi-class), and prompt design (for
LLMs) may also impact results.

To address the uncertainties discussed above,
SOTA and traditional, automated text classification
approaches are benchmarked against manually
labelled climate policy texts. In addition, the
impact of text granularity and inclusion thresholds
is assessed. The aim is to identify the best method
— i.e., the combination of approach, setup, and

,,,,,,,,,,,,,,,,,,,,,,, for the
nomenclature) getting closest to human-labelled,
‘ground truth® examples — for extracting
adaptation-relevant information from climate
policy texts. By doing so, this work supports the
creation of a global evidence base of adaptation

progress.

! The data was retrieved from the database in June 2024.
Documents added after this data are, therefore, not included
in the dataset.

2 Data

The main dataset comprises text extracted from
national policy documents in the Climate Policy
Radar (CPR) database!

, filtered to include only documents pre-
labelled as adaptation-relevant and UNFCCC
submissions, excluding mitigation-focused NIRs.
A sample of 14 countries? (243 documents) was
carefully selected to represent variety in climatic
zones , developmental levels,
number of available documents, and administrative
language. All text was parsed from publicly
available PDFs, transformed into Markdown
format based on PDF layout, and non-English texts
were translated via the Google Translate API using
the default API settings . Subsets were
created to evaluate the effects of text splitting and
data cleaning strategies, as detailed in the following
sections.

2.1 Chunking strategy

For assessing the effect of text granularity and
context, three subsets of the main dataset were
created. Each subset, referred to as ‘dataset’, uses a
different strategy for splitting the texts into smaller
blocks (i.e., chunking), as introduced below.

Dataset 1: Full chunks

First, the documents were split into text chunks of,
on average, 3,186 characters and 10 paragraphs,
using a Markdown-aware semantic splitter

. The chunks were sampled by document type,
resulting in a set of 3,159 chunks, which were
manually labelled by trained, graduate-level
students and the authors of this paper. 24% of the
dataset was labelled as relevant to adaptation. The
inter-annotator agreement is 83%, which is
considered acceptable. For the cases of
disagreement between two annotators, the label
with the highest confidence score was taken as the
ground truth label. These confidence scores are

Dataset 2: Sub-chunks

To facilitate experimenting with variation in text
splitting strategies, the text of dataset 1 was further
split into sub-chunks of 500 to 800 characters so

2 Australia, Azerbaijan, Canada, Cyprus, Ecuador, Finland,
Haiti, Iceland, Mexico, Nigeria, Sierra Leone, United
Kingdom, Vanuatu, and Vietnam
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that the chunks average approximately one
paragraph and stay within the common NLP model
limit of 512 tokens. For the full chunks previously
labelled as ‘not adaptation’, the corresponding sub-
chunks, totalling 13,132 items, were automatically
assigned the same label. The remaining 5,356
‘adaptation’ sub-chunks were re-labelled.

To address missing context caused by unclear
coreferences, the sub-chunk experiments are
conducted in two settings: one using the original
sub-chunks without preprocessing (dataset 2a), and
another applying coreference resolution

to replace unclear noun phrases (e.g., ‘the
country’) with their parent entity (e.g., ‘Vietnam”)
from outside the sub-chunk (dataset 2b). 71% of
the sub-chunks retrieved from the relevant full
chunks were re-labelled as adaptation-relevant,
representing 20% of the full sample of 18,488 sub-
chunks.

Dataset 3: Summarized chunks

To balance the advantages of shorter text but
retaining crucial context, a third experimental
dataset was created, in which the full chunks were
summarized to single paragraphs using bart-
large-cnn, a Transformer-based summarization
model . The automatically
generated summaries were not evaluated at scale
and thus may contain errors or inaccurate
information. They are, therefore, solely used for the
classification stage and not as actual adaptation
evidence: the predicted labels are connected to the
original, full chunks.

2.2 Data cleaning strategy

Besides the datasets resulting from applying the
different chunking strategies, more dataset variants
were created to assess differences in performance
when applying different data cleaning strategies.
Below, these strategies, each resulting in additional
dataset variants”, are introduced.

Confidence score threshold

A distinctive step was added in the annotation
process. While labelling the chunks, the annotators
specified a confidence score, indicating how sure
they were about the assigned label (i.e.,
‘adaptation’ or ‘not adaptation’) on a 0-100 scale.

3 Decision and Plan, Regulation, Vision, Roadmap,
Constitution, Act, Long-Term Low-Emission Development
Strategy, and Biennial Update Report

This score is used during evaluation to allow for
assessing to what extent exclusion of chunks below
a certain confidence score threshold (CST) affects
performance. Figure 1 shows the distribution of the
scores across the text chunks, indicating that for the
majority of the chunks (i.e., >80%), the annotators
were very confident (i.e., 80-100% certain).

Total
I Adaptation

800 1

600 -

400

200 -

0 10 20 30 40 50 60 70 80 90 100

Figure 1: Distribution of confidence scores among
3,159 hand-labelled text chunks. The darker bars
show the ratio of chunks labelled as ‘adaptation’.

Document type filter

When training classifiers, imbalanced data (i.e.,
uneven distribution of the classes) can cause
difficulties for these models to correctly predict the
right label, particularly for the under-represented
class . Since the
document types of the full documents retrieved
from CPR are known, an analysis of the class
distribution per document type, based on the labels
of dataset 2, revealed that there were multiple
document types with a sub-chunk relevance ratio
0f 4% or lower®. Removing all chunks of these low-
relevance document types would increase the
initial (i.e., with no CST applied) ratio of
adaptation-relevant chunks from 24% to 29%
(dataset 1 and 3) and from 20% to 28% (dataset 2).
The size of the datasets reduces from 3,159 to 2,572
(dataset 1 and 3) and from 18,488 to 13,948
(dataset 2) when applying this document type filter.
To assess whether this increased balance, despite
the decreased size of the training data, leads to
improved performance that compensates for
potentially missed relevant data, both strategies are
applied and evaluated in combination with all
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dataset variants are referred to as unfiltered (i.c., all
document types included) and filtered (i.e., low-
relevance document types removed).

3  Methodology

Four main approaches are benchmarked against the
dataset variants presented in section 2. Each
approach and the corresponding sub-methods (i.¢.,
models, queries, tasks, and/or prompts) are
introduced in below sections. The confidence
scores of the labels and the two filtering strategies
each dataset, each corresponding to a CST value of
0 (i.e., original labels maintained), 50, 60, 70, or 80
combined with filtered or unfiltered as the data
cleaning strategy. For each CST iteratively, the
items with label ‘adaptation’ but a score lower than
the CST are excluded from the dataset. For each
dataset variant, random splits are created, where
15% is used for evaluation, and, where applicable,
70% for training and 15% for wvalidation.
Performance is evaluated by computing precision,
recall, and F1-score compared to the human-coded
labels. Additional criteria, such as computational
cost, are also noted during the final evaluation.

3.1 Rule-based classification (RBC)

The rule-based pattern matching technique is
arguably the simplest approach evaluated, querying
for (sets of) keywords to classify the chunks. Three
different queries are applied. The first is a baseline
query, focusing on the text sequence ‘adapt’ only.
The second is theory-based, following the concept
of adaptation . The third query is
data-driven, following the prominent topics in the
data labelled as relevant, determined by applying a
topic model. The queried topics were additionally
filtered to exclude the topics that occurred in more

than 200 of the chunks that were labelled as ‘not
adaptation’ (e.g., ‘Paris Agreement’). The resulting

3.2 Natural Language Inference (NLI)

Four NLI-based zero-shot classifiers are evaluated
for identifying adaptation-relevant text: deberta-

small-long-nli , bart-large-

mnli , deberta-v3-large-
zero-shot-v2.0 ,and nli-
MinilM2-L6-H768 . NLI

models leverage their understanding of language
obtained through pre-training to determine whether
a hypothesis (label) is true given a premise (text)

. The model selection is based
on compatibility with longer texts, model
transparency, and reported performance in prior
work. For each model, different tasks were
evaluated, adding variety in used labels and task
type (i.e., binary versus multi-class). An overview
For the ‘multi-class’ task type, where the model is
asked to assign scores to multiple labels rather than
a binary judgment about only the presence of an
adaptation-related label, the additional label (i.c.,
‘mitigation”) was ignored during evaluation, and
the experiments were repeated with different
thresholds for the adaptation label.

3.3 Fine-tuned encoder-only models (FEM)

Four models were selected to be fine-tuned for the
classification task. They were chosen to include
both general-purpose and domain-specific models,
taking into account important criteria such as
context length compatibility, pre-training data
characteristics, and model parameters. The first one
is the general-purpose model distilroberta-

Table 1: Overview of search queries

Title Simplified expression

Baseline query adapt[a-z]*

Theory-based
query

adapt[a-z]* OR ((decreas[a-z]+ OR reduc[a-z]+ OR mitigat[a-z]+ OR avoid[a-z]*) NEAR
(impact OR vulnerab[a-z]+ OR hazard OR exposure OR risk)) OR ((increas[a-z]+ OR

improv[a-z]+ OR enhanc[a-z]+ OR build) NEAR resilien[a-z]+)

Data-driven
query

((climat[a-z]+)? (change)? adapt[a-z]+) OR ((natural)? disaster NEAR (prevent[a-z]* OR
control OR respons[a-z]+)) OR (risk NEAR (reduc[a-z]+ OR manag[a-z]+)) OR

((negative)? climat[a-z]+ NEAR impacts?) OR (climat[a-z]+ NEAR respons[a-z]+) OR
((sea level) NEAR rise) OR (capacit[a-z]+ NEAR build[a-z]*) OR ((climat[a-z]+ OR (fast
start)) NEAR financ[a-z]+) OR ((early) warning NEAR system) OR (environment[a-z]*
NEAR protect[a-z]*) OR (natural NEAR resource[a-z]+ NEAR manag[a-z]+)
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Table 2: Overview of prompts used for LLM-based classification

ID Prompt

P1 Classify the following climate policy text chunk as "Adaptation" or "Not adaptation". Do not
(concise) include any text other than the label.

P2 Your task is to categorize text chunks as "Adaptation" or "Not adaptation”. If the text contains any
(specific) information about climate change adaptation policy, categorize it as "Adaptation". If not, for

example when it only contains information about mitigation, categorize it as "Not adaptation". Do

not include any text other than the label.

base . The second is a climate
domain-specific model from the ClimateBERT
family, namely distilroberta-base-
climate-£f . The third
model evaluated is legal-bert-small-uncased
, a model tuned to the legal
domain, and the final one involves a model trained
for understanding of environmental texts, namely
EnvironmentalBERT-base

All listed models are iteratively fine-tuned on the
different dataset variants to assess the performance
of the models themselves, as well as the impact of
tuning the training data on the results.

3.4 Large Language Models (LLMs)

State-of-the-art LLMs are prompted to assign a
binary label (i.e., ‘adaptation’ or ‘not adaptation’)
to the text chunks they are provided with. Here, the
experiments are conducted with OpenAl’s GPT-40
and the 8 billion parameter
version of Llama 3.1 . Table
2 provides an overview of the two prompts used.
Given the length of the chunks combined with the
abundance of the dataset, only zero-shot prompting
techniques were included in the experiments:
providing examples in the prompt (i.e., few-shot
learning) would require excessive computational
resources Two prompt
variations were applied, were the first one (P1)
only provides the task to the model, and the second
(P2) elaborates further on the label definitions.
The prompts were carefully composed to vary in
conciseness (P1) and specificity (P2), following
common  prompt  engineering  principles
. This experiment is intended
to bring insights into how extending the prompt
with additional context information and elaborated

4 git.wur.nl/bonen003/transforming-adaptation-tracking

instructions, thereby limiting conciseness, affects
performance.

4 Results

The variations in approaches, setups, and dataset
variants resulted in 791 different methods”. A
complete overview of the evaluation scores of each
method are accessible via the Git repository of this
paper®. In the following sections, a selection of the
most noteworthy results is presented.

4.1 Approaches

For each approach introduced in section 3, the two
best methods based on F1 score and the best
bars show the distribution of true positives (darker
green), false positives (pastel green), and false
negatives (orange). In below subsections, the
results of each approach are discussed.

Rule-based classification (RBC)

The results of the RBC experiments reveal, as can
based and data-driven queries outscored the
baseline query on the recall metric. This indicates
that these setups” excel at correctly identifying the
largest ratio of relevant chunks. This increase,
however, negatively affects precision, as the
baseline query (i.e., only searching for the word
‘adaptation’) shows better results at limiting the
number of irrelevant items being predicted as
relevant. Overall, the data-driven query mainly
outperforms the theory-driven one on recall.

Zero-shot classification (NLI/LLM)

The results of the two zero-shot approaches (see the

instructed LLMs provide better scores compared to
the NLI-based models. Although the BART-large
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Figure 2: Selection of results for the four approaches, namely Rule-Based Classification (RBC), Natural
Language Inference (NLI), Large Language Models (LLM) and Fine-tuned Encoder Models (FEM). For each
approach, the two top-performing models based on F1 score (F) and the top one according to recall (R) were

selected. Precision is also reported (P).

model achieves a perfect recall, it incorrectly
classifies most of the irrelevant items as adaptation-
relevant. Among the two LLMs evaluated, GPT-40
outperforms Llama on all occasions, being
particularly well-capable of identifying relevant
chunks. For GP7-4o, the specific prompt (P2)
shows an increase in recall, although at the cost of

precision.

Fine-tuned models (FEM)

The FEM experiment results show that three
different domain-specific models occur among the

methods using ClimateBERT and Environmental-
BERT achieve the best Fl-score, indicating good
capability of balancing inclusion of relevant items
and exclusion of irrelevant items, with the
differences mainly found in the balance between
recall and precision. The LegalBERT-based
method excels at recall, predicting 94.1% of the
adaptation-relevant items as such.

4.2 Annotator confidence

For analysis of the effects of applying CSTs on the
training and evaluation data, the CSTs were
clustered into low (i.e., all labelled data included),
medium (i.e., all items labelled with a score of 50%
or lower excluded), and high (i.e., all items with a
score of 70% or lower excluded). The bars in figure
3 show the mean evaluation scores of the best five
methods per approach based on F1 score. Here, it
becomes clear that applying a CST affects
performance for all approaches, as a low CST
yields the lowest scores in all four cases. For the
traditional and zero-shot approaches, a higher CST
positively affects the ratio of items correctly
identified, whereas it mainly results in increased
precision (i.e., the ratio of non-relevant items
incorrectly predicted as relevant) for the fine-tuned

models.
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Figure 3: Results of applying a low, medium, or high
confidence score threshold (CST) on the dataset. The
average performance metrics of the top five methods
per approach, ranked by F1-score, are plotted.

In the prompt variations used for classification with
GPT-4o, it is observed that the prompt resulting in
the best scores depends on what CST is applied.
Although recall increases in all cases, the specific
prompt (P2) lead to degraded performance when no
CST was applied (i.e., CSTO) or when a high
threshold was used (i.e., CST80). For this zero-shot
approach, a medium CST combined with a specific
prompt (P2) results in the best scores, excelling on
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Figure 4: Results of classification with GPT-40. The
bars show F1-score, recall, and precision for each
confidence score threshold (CST) and compares the
scores of using a concise versus a specific prompt.

4.3 Chunking strategy

A comparison of the overall performance of each
shows that the best balance between maximized
true positives and minimized false positives is
achieved with the dataset of full-length text chunks
(dataset 1). The models fine-tuned and/or evaluated

on this dataset particularly excel on recall.
Although the margins vary, the summarized dataset
(dataset 3) resulted in the lowest F1 score for all
approaches. The methods in non-fine-tuned
settings do show an increase in precision for this
dataset compared to the others.

Recall Dataset 1 (Full chunks)

1.0 F1 B Dataset 2a (Sub-chunks, original)

B Precision B Dataset 2b (Sub-chunks, resolved)
Dataset 3 (Summarized chunks)

0.91
0.81

0.7

o ©
OO
0.61
(o]
0.5
0.4
RBC  NLI  FEM  LLM

Figure 5: Results of evaluating classification with
four different datasets: dataset 1 (full chunks), dataset
2a (sub- chunks), dataset 2b (sub-chunks with
resolved coreferences), and dataset 3 (summarized
chunks). The average performance metrics of the top
five sub-methods per approach, ranked by F1-score,
are plotted.

Comparing the two versions of the sub-chunk
dataset, no major differences in performance
between the original dataset (2a) and the one with
resolved coreferences (2b) are observed. For the
FEM approach, coreference resolution shows a
slight increase in evaluation scores. However, in
models become less capable of identifying relevant
items, hence a decrease in recall.

4.4 Data cleaning strategy

document type filter positively affects the F1 score
for all approaches, except for the fine-tuned
models. For this FEM approach, the results show
that the data strategy (i.e. filtered versus unfiltered
on document type) that outscores the other varies
per model and CST. This is expected, as applying
the filter lead to a more balanced dataset, typically
improving classification performance, but the size
of the training dataset decreases, meaning the
model has less examples to learn from. Of all
experiments conducted overall, both strategies
occur in the top 20 (sorted by F1 score). The
absolute numbers of a confusion matrix of the best-
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scoring variant of each filtering strategy® (see
outperforming data strategy”. The most suitable
choice depends on various design choices, as

further explored in the following section.
1.0 4
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Figure 6: Results of evaluating classification with two
different data strategies: with and without an applied
document type filter. The average performance

metrics of the top five methods per approach, ranked by
F1-score, are plotted.
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In this research, recall is prioritized over precision,
meaning that the ‘best’” method is not purely
determined based on F1 score. Setting a precision
threshold of 0.66 and sorting the results on recall
leads to a set of four FEM methods considered
most suitable to the task, each with its own
strength. An overview of these methods, including

Overall comparison

this selection are fine-tuned and applied on/to the
dataset of full chunks (dataset 1).

Table 3: Overview of four selected methods, referring
to models fine-tuned on specific dataset variants

Model Var. Prec. Rec. Comp.
Cost
ClimateBERT C.ST7O’ 0.673 0.871 -
Filtered
. CST60,
ClimateBERT Unfilt. 0.672 0.869 -/o
CSTO,
LegalBERT Filtered 0.671 0.855 -
. CST60,
EnvironBERT Unfilt. 0.694 0.848 0

5 Determined by setting a minimum precision of 0.66, then
sorting by recall (descending)

This selection shows that there are multiple
methods” that lead to satisfactory results. The
selected methods show comparable performance,
from where it is obtained that the two models fine-
tuned and evaluated on a filtered dataset variant are
most computationally efficient (measured by
duration of the fine-tuning process), the
EnvironmentalBERT-based method excels on
precision and F1 score, and the first ClimateBERT
model achieves the best recall.

5 Discussion

The main objective of this paper was to determine
the best classification method to identify
adaptation-relevant text chunks in large and
unstructured climate policy documents. The results
reveal that each approach comes with its own
strengths and weaknesses, but domain-specific
models fine-tuned on a labelled dataset showed the
best balance between ratio of correctly identified,
relevant items and minimized presence of
irrelevant items among those predicted as being
relevant. With F1 scores 0f 0.759, 0.758, 0.752, and
0.764 respectively, four fine-tuned models (listed
and multiple dataset variants, have proven their
potential for identifying relevant information
needed to track adaptation globally. These findings
align with those of , 1.e.,
that fine-tuned models outperform LLMs when
sufficient training data is available, and those of

, 1.e., that better scores are
achieved when such models have been pre-trained
and/or previously fine-tuned on domain-specific
data. In this research, where the labelled data has
been created, this supervised FEM approach is
considered most suitable, as it outperforms the
benchmarked RBC and NLI approaches by large
margins and shows small performance
advancements over the top-scoring zero-shot
method with GPT-4o. As the differences with the
latter are relatively minor, however (i.e., an F1
difference of 0.07), LLM-based zero-shot
classification has also demonstrated its potential.
Especially in future cases, when the resources to
(re-)create a labelled dataset are limited, this
approach may be a valid alternative. The results
have shown, however, that the chosen CST and
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prompt design can majorly affect the performance
of LLMs as classifiers, making this approach less
reliable and robust when there is no labelled dataset
available for validation.

What specific FEM and dataset variant should
be selected, however, depends on prioritization of
trade-offs. First, what CST is applied should be
taken into account for the final choice of method. A
low CST means that even chunks that are
somewhat relevant will be included in the eventual
dataset, which limits the possibility of missing out
on potentially relevant information. The
relatedness of the text in the final dataset, however,
likely improves when its content is relevant to
adaptation with high confidence. Using a medium
CST (i.e., 50-70) is, therefore, preferred, as this
balances out these (dis)advantages.

In contrast to prior studies which suggest that
performance of Transformer-based models
typically improves when text is relatively short and
consistent, the results show that for all approaches,
the best scores were achieved using the full chunk
dataset. Applying coreference resolution to the
short text splits did not solve the ‘missing context’
problem, showing negligible differences, nor did
automated summarization overcome the challenge
of dealing with longer text lengths. This
emphasizes the importance of context information,
which likely connects to adaptation’s conceptual
indistinctness described by

. Using the full chunks (dataset 1) is,
therefore, preferred here. Determining whether a
document type filter should be applied, however,
turned out a greater challenge. The main advantage
of filtering the dataset on document type is that it
limits the size (by more than 20%) of the dataset,
positively affecting computational cost, and that it
improves class balance. This, depending on the
sub-method, results in an increased recall,
compensating for the small ratio of relevant chunks
that are missed out on by applying the filter.

Determining the overall best method requires an
optimal trade-off between precision and recall.
Although capturing all relevant information is
crucial, ensuring sufficient precision to minimize
the presence of irrelevant information and, with
that, improve the quality of the evidence base,
should not be ignored. Therefore, a precision
minimum of 0.66 was set, after which the results
were ranked by recall. In addition, computational
cost also plays a role in determining the optimal

method. For establishing the adaptation evidence
base, therefore, the ClimateBERT model fine-tuned
3) is considered the most appropriate choice.
These findings underscore the potential of state-
of-the-art NLP methods to narrow down relevant
policy information at large scale, which may also
be interesting to explore in other (policy) domains.
Other suggested future research directions involve
successive steps in establishing an NLP-driven
adaptation tracking framework by, e.g., further
unpacking and structuring the unstructured climate
policy texts by identifying and -categorizing
adaptation-specific (policy) elements.

6 Conclusion

This work has revealed important methodological
considerations for classification of adaptation
policy texts. For an automated framework for
identifying relevant information, with the aim of
creating a dataset of adaptation policy and, with
that, increasing accessibility of information needed
to track progress, a fine-tuned Climate BERT model
has shown optimal performance. This method
ensures a sufficient balance between correctly
identified text, minimized missed items, and
maximization of irrelevant items filtered out. To
boost performance, label confidence should be
taken into account during manual labelling.
Following, items labelled with a confidence score
of less than 60% should be excluded. Also,
documents should be filtered to include only those
that are known to contain adaptation-relevant
information and should be split based on
Markdown structure and semantic meaning, with
an average of 10 paragraphs per splits. The exact
length is determined by the semantic splitter,
ideally with a range of 2,000-8,000 characters.

Limitations

The discussed work comes with several limitations.
First, the text chunks were automatically parsed
from the original PDFs and non-English text was
machine-translated. The data may, therefore,
contain parsing and/or translation errors,
potentially affecting the results. Second, relevance
labels and confidence scores were assigned by
human annotators, making them exposed to
subjectivity. This was also observed in the inter-
annotator agreement, where the annotators
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disagreed in 17% of the cases. Considering this,
despite extensive training, the labels and scores
may not always reflect true certainty, highlighting
the ambiguity of the classification task and the
challenge of aligning Al predictions with human
judgment. Third, the automatically generated
summaries (dataset 3) were not extensively
reviewed and no alternative methods or models for
summarization  were  explored,  limiting
comprehensive assessment of the potential of this
approach. Fourth, only two prompt variations were
evaluated, which were based on prompt
engineering principles and
may not reflect the full potential of the zero-shot
LLM approach.

Following these limitations, future work should
enhance validity by, e.g., delving further into
annotation consistency, evaluating alternative
summarization models, and full-scale evaluation of
more than these two prompt variations to assess
whether the practical results align with prompt
design theory.
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Appendix B.  NLI task types

Table 5: Overview of tasks included in the NLI-based
classification experiments

Labels Task type
Adaptation Binary
Adaptation policy Binary
Climate change adaptation  Binary

Multi-class (>0.5)
Multi-class (>0.6)
Multi-class (>0.7)

Adaptation, Mitigation

Appendix C. Confusion matrix data
strategy

Table 6: Confusion matrix of classification results on
the test set in absolute numbers. Each cell shows the

Appendices results of the filtered (L) versus unfiltered (R) data
. strategy.
Appendix A. Table of nomenclature &Y
For a clear overview of the terms used throughout Predicted label
the paper, one can refer to table 4. Any combination B A NA
f the different Ilevel .2, LLM-based 3
of the different levels ~(eg ase = A 83 /87 /13
classification with GPT-40 on the filtered variant of 2
dataset 1) is referred to as a method. Any = | NA 40/42 188 /301
combination of levels 2 up to and including 5, for a
given approach, is called a sub-method.
Table 4: Table of nomenclature
Level Name Example(s) Applies to...
Method (any combination of the different levels)
1 Approach RBC, NLI, FEM, LLM n/a

Sub-method (any combination of a setup and dataset variant, a method for a given approach)
Setup (levels 2 and 3; any combination of a model, query, task (type), and/or prompt)

2 Model BART-large-mnli, ClimateBERT, GPT-40 NLL FEM, LLM
or Query Baseline query, data-driven query RBC
3 Task (type) Labels (‘adaptation’, ‘mitigation’), task type (multi-class) NLI
or Prompt P1 (concise), P2 (specific) LLM
Dataset variant (levels 4 and 5; any combination of a dataset and data strategy)
4 Dataset Dataset 1 (full chunks), dataset 2b (sub-chunks, resolved) all
5 Data strategy CSTO0, CST70, filtered, unfiltered all
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Abstract

Personal Carbon Footprint (PCF) Estimation
is crucial for raising individual environmental
awareness by linking daily activities to their
environmental impact. However, existing tools
are limited by fragmented scenarios and labor-
intensive manual data entry. We present PCCT,
an LLM-powered system that combines conver-
sational understanding with emission knowl-
edge grounding for PCF Estimation. We ad-
dress two key challenges: (1) resolving incom-
plete activity information across turns through
knowledge-guided and context-aware tracking,
and (2) accurately mapping emission factors
using multi-step LLM inference and vector-
based similarity search. The system dynam-
ically combines knowledge-guided activity ex-
traction, and context-aware memory manage-
ment, generating accurate carbon footprint es-
timates. We validate the effectiveness with
the CarbonDialog-1K benchmark, comprising
1,028 annotated user activity narratives. Experi-
mental results demonstrate that our method out-
performs baseline systems in accuracy, while
subjective evaluations show superior appropri-
ateness, usability, efficiency, and naturalness.

1 Introduction

Personal Carbon Footprint (PCF) estimation plays
a pivotal role in fostering individual environmen-
tal awareness by translating daily activities into
environmental impacts (Mancini et al., 2016; Lan-
nelongue et al., 2021). Current tools, though ef-
fective in narrow domains like transportation track-
ing, face systemic limitations: (1) they rely on
fragmented scenario definitions that hinder cross-
domain analysis and (2) demand laborious manual
data entry, which prevents long-term user engage-
ment (Scrucca et al., 2021; Dreijerink and Paradies,
2020; Chen et al., 2016).

Recently, large language models (LLMs) have
demonstrated impressive semantic understanding

* Corresponding author

and reasoning capabilities (Radford et al., 2019;
Mann et al., 2020; Bi et al., 2024). These advance-
ments offer a promising path toward passive carbon
footprint estimation through conversational inter-
faces. We inquire how to accurately calculate the
PCF from the casual conversations by leveraging
the LLM’s capabilities?

In order to calculate the PCF, we need two parts:
the user’s activity parameters and the emission fac-
tor accordingly (Mariette et al., 2022). The first
challenge arises from the progressive nature of con-
versational data. Users tend to describe their activi-
ties across multiple conversation turns with varying
levels of detail and precision. For example, a user
might initially mention "driving to work" and later
specify "in an electric car for 15 kilometers." This
requires the system to reason over the conversation
history and Emission Factor database and infer the
missing information or ask the user for clarification
when necessary (Tu et al., 2024). Even with com-
plete parameters, matching activities to emission
factors (EFs) (Solazzo et al., 2021) is a challenging
task (Balaji et al., 2023; Wood et al., 2017; Oehlert
et al., 2022). Traditional practitioners either rely
on manually curated mappings from millions of
entries of EF database, which are time-consuming
and prone to errors or use coarse-grained rule-based
systems that are not scalable and accurate (Scrucca
et al., 2021). This demands precise integration of
domain knowledge and context-aware reasoning
(Deng et al., 2023).

In this work, we propose a Progressive Contex-
tual Carbon Tracking (PCCT) framework. Fig-
ure 2 presents our framework architecture. The
PCCT framework consists of three components
that work together to process multi-turn conversa-
tions about daily activities: (1) Knowledge-Guided
Progressive Activity Extraction, which identifies
user activities while leveraging emission factor
knowledge to guide the extraction process; (2)
Context-Aware Memory Management, which main-
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tains structured representations of activities and pa-
rameters across conversation turns; and (3) Carbon
Footprint Calculation. To validate performance, we
construct the CarbonDialog-1K benchmark con-
taining 1,028 annotated user activity narratives with
ground-truth emission values. Experimental com-
parisons against a rule-based expert system demon-
strate our method’s superior accuracy across all
metrics. Complementary user studies reveal 30%
higher engagement rates compared to conventional
carbon tracking tools.
Our contributions are as follows:

* We propose a Progressive Contextual Carbon
Tracking (PCCT) framework that calculates
carbon footprint progressively in dialogues
guided by knowledge. To our knowledge, this
work represents the first use of LLMs for PCF
estimation from conversations.

* We introduce CarbonDialog-1K to facilitate
the research on carbon footprint estimation
from natural language.

» Extensive experimental results demonstrate
our system’s superior performance in accuracy
and usage effectiveness.

2 Related work

2.1 Carbon Footprint Calculation

Carbon footprint calculation has been a corner-
stone of environmental research (Wiedmann and
Minx, 2008), focusing on quantifying the green-
house gas emissions associated with various activi-
ties, products, and organizations. Early methodolo-
gies, such as life cycle assessment (LCA), provided
frameworks for calculating emissions across sup-
ply chains and industrial processes (Agyei Boakye
et al., 2023; Chen et al., 2021). These approaches
were later adapted to assess the environmental im-
pact of individual actions, giving rise to the concept
of Personal Carbon Footprint (PCF). The calcula-
tion of PCF involves translating daily activities,
such as transportation, energy consumption, and
dietary habits, into measurable emissions. Tradi-
tional methods rely on structured data inputs, often
requiring users to manually provide detailed in-
formation such as vehicle type, fuel consumption,
and travel distance (Scrucca et al., 2021). Some
work is proposed to facilitate this process, enabling
emissions tracking in specific domains such as com-
muting and household energy use (Dreijerink and

Paradies, 2020; Balaji et al., 2023). However, these
approaches are limited by their fragmented nature,
as they often fail to account for cross-domain ac-
tivities or incomplete user inputs. Recent advance-
ments have attempted to address these limitations
by integrating automated data collection methods,
such as GPS tracking for transportation emissions
(Chen et al., 2016; Gately et al., 2017) and smart
meter integration for energy usage (Miao et al.,
2024). Despite these improvements, existing tools
remain labor-intensive and lack the flexibility to
handle diverse and complex user activities, leading
to low user engagement and long-term abandon-
ment.

2.2 NLP Techniques for Carbon Footprint
Estimation

The application of Natural Language Processing
(NLP) techniques to estimate carbon footprints has
gained significant attention in recent years, driven
by the need for scalable and automated solutions
to address the challenges of environmental impact
assessment (Murphy, 1998). Traditional methods
rely on manual annotation or supervised classifica-
tion approaches (Sousa and Wallace, 2006), which
require large labeled datasets. Recent works have
explored to automate the estimation process. For in-
stance, term frequency-inverse document frequency
(TF-IDF) features are employed to classify compa-
nies into American Industry Classification System
(NAICS) codes based on web-scraped text data
(Wood et al., 2017; Oehlert et al., 2022). While ef-
fective, these methods are limited by their reliance
on large labeled datasets and their inability to gener-
alize to unseen or zero-shot scenarios. CaML auto-
mates the Economic Input-Output based Life Cycle
Assessment (EIO-LCA) (Hendrickson et al., 1998)
process by using semantic text similarity match-
ing with the pre-trained model SBERT (Reimers
and Gurevych, 2019) to screen and rank product
and industry sector matches (Balaji et al., 2023).
However, despite the progress made, current NLP-
based approaches still struggle to perform accurate
carbon emission calculations due to their inade-
quate context-aware reasoning capabilities, which
fail to fully capture the complex relationships in
environmental data.

3 Dataset Construction

To enable research on carbon footprint estimation
through natural conversations, we construct a com-
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prehensive dataset containing 1,028 multi-turn di-
alogues (CarbonDialog-1K) through a two-stage
process: (1) building a daily activity emission fac-
tor database and (2) generating natural multi-turn
dialogues. Rather than collecting real-world con-
versations and manually annotating them, we adopt
a reverse engineering approach (Wang et al., 2015)
to ensure comprehensive coverage and calculation
accuracy.

3.1 Activity-EF Database Construction

The first stage focuses on building a comprehen-
sive database of emission factors (EFs) for daily
activities. We first collect a diverse set of daily
activities that potentially contribute to personal car-
bon footprints. To ensure comprehensive coverage,
we leverage large language models to generate a
wide range of activities in 6 categories: transporta-
tion, energy consumption, food and beverages, con-
sumer goods, services, and entertainment. For each
activity, we query the Climatiq API' to obtain stan-
dardized emission factors.

Given the significant regional variations in emis-
sion factors due to differences in energy mix, infras-
tructure, and economic development, we focus on
activities with well-documented emission factors in
selected regions (New Zealand, United Kingdom,
and Germany, China, and United States).

3.2 Dialogue Generation

We then adopt the Activity-EF Database to generate
dialogues through a reverse engineering approach.
We first construct the ground truth activities and
their carbon footprints, then generate dialogues that
would lead to these calculations. The process con-
sists of three main phases: (1) activity set construc-
tion, (2) narrative and parameter generation, and
(3) progressive dialogue synthesis. Algorithm 1
formalizes this process.

For each dialogue, we first sample 3-5 activi-
ties from the database that are compatible both
logically (e.g., avoiding conflicting transportation
modes) and regionally (sharing the same region for
consistent emission factors). Each activity is then
assigned temporal context and enriched with nec-
essary parameters required by its emission factor
calculation:

"https://www.climatiq.io, Climatiq maintains a
database of emission factors from authoritative sources such as
government environmental agencies and research institutions.

Algorithm 1 Dialogue Generation

1: Input: Activity-EF database £, Sample size N
2: Qutput: Dialogue dataset D
3: fort =1to N do

4: Select region r randomly

5: n < RandActivityNum()

6 A, + SampleActivities(n, &, r)

7 for each activity a € A, do

8 Assign temporal context to a
9: D, <+ GenerateDescription(a)
10: P, < GenerateParameter(a)

11: C, + CalculateCarbonFootprint(a)
12: end for

13: C, < SumCarbonFootprint({C, })

14: A, < GroupActivities(A,)

15: T <+ ToDialogue(A,, {Dg, Pa, Cy}, C)
16: D+ DU{T,C,}

17: end for

18: return D

n
COe = P x EF, (D)
i=1
where P; represents the activity parameter (e.g.,
distance traveled, fuel consumed) and E'F; is the
corresponding emission factor from our database.
The selected activities are then transformed into
natural narratives using LLMs, with parameters
strategically distributed across multiple dialogue
turns. Then, we break an activity’s description into
multiple turns. This design mirrors typical human
conversation patterns, where users often begin with
basic activity descriptions before gradually adding
specific details. Table 1 shows an example dialogue
constructed through this process.

3.3 Quality Control

We implement a comprehensive quality control
pipeline integrating automated filtering, manual
review, and LL.M-assisted validation. Initially, au-
tomatic filters exclude anomalous data by remov-
ing: 1) activities with emission factors beyond three
standard deviations from category means, indica-
tive of industrial rather than personal behavior; 2)
parameter outliers exceeding typical personal us-
age scenarios (e.g., flights over 20,000 km, meals
exceeding $500); and 3) activities incompatible
with personal carbon footprints (e.g., industrial pro-
duction, commercial shipping).

Subsequently, we validate remaining activities
via a hybrid approach, combining manual verifi-
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User: Hi, I'd like to track my carbon footprint for today.
System: Hello! I'll help you track your carbon footprint. Please tell me about your activities

for today.

User: I swung by a cafe on my way to work and picked up a coffee and pastry for $5. Then I took

a taxi to the city centre. That's all.

System: Thank you. I've recorded the cafe purchase. For the taxi ride, I'll need to know the
distance traveled. Could you tell me how long was your taxi ride?

User: The taxi ride was about 5km.

System: Thank you. Here's your carbon footprint breakdown:
1. Cafe purchase: $5 x 1.1224 kg/NZD = 5.612 kg COe

2. Taxi ride: 5km x 0.018894 kg/km =
Total Carbon Footprint: 5.71 kg COe

0.09447 kg COe

Would you like to add any other activities?

Table 1: Example dialogue from our dataset showing users tend to describe their activities progressively across
multiple turns and the system ask for missing information incrementally and calculate the carbon footprint when all

information is provided.

Metric Value
Total Dialogues 1,028
Unique Activities 196
Avg. Turns / Dialogue 6.96 (£3.47)
Avg. Activities / Dialogue 2.64 (£0.82)

Avg. COe / Dialogue 16.65 (£13.82) kg

Table 2: Main statistics of the dataset

cation (20% of the dataset) with LLLM-based val-
idation (80%), examining activity compatibility,
parameter reasonableness, and calculation accu-
racy. The LLM-based validation achieves 89%
consistency with human evaluators on a test set
of 50 dialogues. Overall, our process filters out ap-
proximately 10% of initial dialogues, significantly
enhancing dataset quality.

3.4 Dataset Statistics

Table 2 presents the key statistics of our dataset.
The final dataset comprises 1,028 multi-turn con-
versations distributed across seven regions (New
Zealand, United Kingdom, Germany, France,
United States, China, and Global). Figure 1 shows
the distribution of activities across six major cat-
egories. Food & Beverages represents the largest
category with 784 activities, followed by Consumer
Goods (598) and Transportation (528). For aver-
age emissions, Energy and Services categories con-
tribute the highest average emissions.

The comprehensive annotation and diverse ac-
tivity coverage make this dataset valuable for ad-
vancing research in conversational carbon footprint
estimation. The dataset will be made publicly avail-
able to support further research in this important

Number of Activities
-8 Avg. COse
12,87 12.85

Number of Activities
IS
Average COze Emissions (kg)

0
Food & Beverages  Consumer Goods  Transportation Energy Services Entertainment

Figure 1: Category-wise distribution of activities and
their carbon footprint. The bars (blue) show the number
of activities in each category, while the line (red) shows
the average CO-e emissions per activity.

area2 .

4 Method

Our approach addresses the challenges of carbon
footprint calculation through natural conversations
by introducing a Progressive Contextual Carbon
Tracking (PCCT) framework. Figure 2 presents
our framework architecture.

The PCCT framework consists of three compo-
nents that work together to process multi-turn con-
versations about daily activities: (1) Knowledge-
Guided Progressive Activity Extraction, which
identifies user activities while leveraging emission
factor knowledge to guide the extraction process;
(2) Context-Aware Memory Management, which
maintains structured representations of activities
and parameters across conversation turns; and (3)

Dataset available at: https://github.com/shuginlee/
Chat2CarbonFootprint.git
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Turn 1: After work, I treated myself
to a delicious chocolate snack.

'

Carbon

Activit p
Great choice! What's the weight ’ ExtractiZn Footprint
of that chocolate? — v Calculation
[Tur‘n 2: It's around 200g. } ‘
i Memory Al Finished - Response
The emission for chocolate is o Updating Generation
4.3 co2e kg/kg x 0.2kg = 0.86 kg
[ o ] id: 0 id: 0
s Activity:  eat chocolate
Activity:  eat chocolate T e
N Matched term: chocolate ) i
Turn n: That's all for today P e > Param:  (weight: 0.2
(User marked Finished) EF: 4.3co2e kg/kg EF:
id: 1 w4 @ Used LLMs

User Dialogue o -
- Used Activity-EF

Turn 1's Memory Turn 2's Memory Database

Figure 2: Overview of our Progressive Contextual Carbon Tracking (PCCT) framework. The system processes user
inputs through three main components: (1) Activity Extraction, which identifies activities and parameters guided by
Activity-EF Database, (2) Memory Updating, which maintains a context memory of previously extracted activities
and their parameters, enabling incremental updates and refinements as new information becomes available, (3)

Carbon Footprint Calculation.

Carbon Footprint Calculation

4.1 Knowledge-Guided Progressive Activity
Extraction

A key challenge in conversational carbon footprint
calculation is that users tend to describe their ac-
tivities progressively across multiple turns, often
with varying levels of detail and precision. For
example, a user might initially mention "driving
to work" and later specify "in an electric car for
15 kilometers." This natural communication pat-
tern creates the challenge of correctly identifying
and updating activities with their parameters across
multiple turns. Our knowledge-Guided approach
addresses these challenges through a bidirectional
interaction between LLMs and activity-emission
factor database.

We develop a progressive extraction process
where emission factor knowledge guides param-
eter identification (Figure 3). The system first uses
LLMs to recognize activity descriptions from user
utterances. These descriptions are then matched
against our emission factor database, which identi-
fies the most relevant emission factors along with
their required parameters. For example, if a user
mentions "driving to work," the system identifies
potential emission factors that might require param-
eters such as distance and passengers.

4.1.1 Efficient Emission Factor Retrieval

A critical support component for our knowledge-
guided approach is an efficient retrieval system that

Activity-Emission
- Factor Database

Vector-Based
Activit Paramerter
"y Extraction
Matching

) & )

Figure 3: Knowledge-Guided Progressive activity ex-
traction process. The system maintains awareness of
previously extracted activities and their parameters, en-
abling it to identify both new activities and updates to
existing ones.

Activity
Recognition

can quickly match described activities with appro-
priate emission factors. Matching activities with
emission factors from large databases is typically
time-consuming and requires professional exper-
tise(Balaji et al., 2023). To address this challenge,
we implement a vector-based retrieval system using
FAISS library (Douze et al., 2024).

The retrieval system operates in two stages.
Firstly, we construct offline index by pre-
computing dense vector representations for all
emission factors in our database, incorporating both
activity descriptions and their associated parame-
ters. Next, during conversation, extracted activi-
ties are encoded into the same vector space and
matched against the pre-built indices. This enables
sub-second retrieval of relevant emission factors,
even from databases containing thousands of en-
tries which guides the subsequent parameter extrac-
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tion stage.

4.2 Context-Aware Memory Management

To maintain a structured representation of all ex-
tracted information across turns, our memory mod-
ule maintains two interconnected components: 1)
Activity Registry maintains all identified activities
with their emission factor mappings, tracking the
state of each activity (complete or partially spec-
ified); 2) Parameter Registry tracks all extracted
parameters for each activity and maintains all miss-
ing information. This including their values, units,
extraction confidence, and source turn information.

In each turn, the activity extraction module iden-
tifies incremental activity information and updates
the memory rather than creating duplicates. It pro-
vides a complete view of missing parameters, en-
abling targeted follow-up questions; and it main-
tains extraction confidence scores that help priori-
tize which missing information is most critical to
obtain.

4.3 Carbon Footprint Calculation

The final component of our framework transforms
the structured activity and parameter information
into accurate carbon footprint calculations. Once
the system has collected sufficient information
about the user’s activities, it applies the appropriate
emission factors to calculate the carbon footprint.
For each activity, the system applies the appro-
priate emission factor to the validated parameters,
calculating the carbon footprint using the formula:
COze = Y71 | P; x EF; where P; represents the
activity parameter (e.g., distance traveled) and E'F;
is the corresponding emission factor.

After the calculation for each activity, the system
generates detailed explanations of the calculation
process, breaking down the contribution of each ac-
tivity to the total carbon footprint and gives advice.

5 Objective Experiments

We conduct objective experiments to evaluate the
effectiveness of our PCCT framework against base-
line approaches. Our evaluation focuses on three
key aspects: activity recognition accuracy, parame-
ter extraction completeness, and carbon footprint
calculation accuracy.

5.1 Experimental Setup

Dataset. We evaluate all systems using our
CarbonDialog-1K dataset. For testing, we use a

randomly selected subset of 560 dialogues, ensur-
ing balanced coverage across activity categories
and regions. The remaining dialogues are used for
system development and parameter tuning.

Metrics. We assess system performance using
several key metrics. For activity recognition, we
measure the F1-score for correctly identifying activ-
ities from user descriptions. Parameter extraction
performance is evaluated using both the F1-score
for parameter identification and the Missing Crit-
ical Parameter Rate (MCPR) for missing critical
parameters. Finally, to assess emission calculation
accuracy, we compute the Mean Absolute Error
(MAE) in kg COge and Mean Absolute Percentage
Error (MAPE).

Baseline System. Our goal is to estimate per-
sonal carbon footprint (PCF) from open-ended,
multi-domain text-based dialogues. To evaluate
this, we compare PCCT with a rule-based calcula-
tor (RBC) that uses keyword matching and fixed
templates to compute emissions from structured in-
puts. This reflects conventional carbon tools based
on forms or explicit prompts. GPS-based track-
ers focus mainly on transport, require continuous
sensing and device integration, and cover a limited
range of activities. As they are not comparable to
general-purpose, text-based dialogue systems, we
exclude them from our evaluation.

Implementation Details. Our PCCT implemen-
tation uses a combination of LLMs and vector sim-
ilarity search. For the LLM component, we employ
the DeepSeek-V3 model (Liu et al., 2024) for ac-
tivity extraction and parameter identification. The
vector similarity search uses FAISS (Douze et al.,
2024) with 768-dimensional embeddings from sen-
tence transformer (Reimers and Gurevych, 2019)
for emission factor retrieval.

5.2 Results and Analysis

5.2.1 Opverall Performance

Table 3 presents the overall performance compari-
son between our PCCT system and the rule-based
baseline.

The results demonstrate that PCCT significantly
outperforms the rule-based approach across all
metrics. Our system achieves a substantial im-
provement in activity recognition and parame-
ter extraction. This can be attributed to the
knowledge-augmented activity extraction that ef-
fectively matches user descriptions with standard-
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System Activity F1 (%) Parameter F1 (%) MCPR (%) MAE (kg COze) MAPE (%)
Rule-Based Calculator 30.8 18.5 45.0 9.7 74.3
PCCT (Ours) 74.2 75.5 15.5 4.8 39.6

Table 3: Overall performance comparison of PCCT vs. Rule-based Calculator. Our system outperforms the
rule-based calculator across all metrics. MCPR reveals the missing rate of critical parameter. MAPE reveals relative

error of carbon footprint.

Category MAPE (%)
RBC PCCT
Transportation 55.8 28.5
Food & Beverages  68.5 4.3
Consumer Goods 95.8 45.8
Entertainment 85.5 38.5
Services 115.6 58.6
Energy 95.4 65.4

Table 4: Category-level performance comparison sorted
by MAPE (lower values indicate better performance)

ized emission factors, (2) the context-aware mem-
ory management that maintains coherent informa-
tion across turns, and (3) the progressive parameter-
gathering strategy that ensures the completeness of
critical information.

The improved activity recognition and parame-
ter extraction directly translate to calculation ac-
curacy, with PCCT achieving a 50% lower Mean
Absolute Error (MAE: 4.8 vs 9.7 kg COqe) and a
reduction of 34.7 percentage points in Mean Ab-
solute Percentage Error (MAPE: 39.6% vs 74.3%).
Importantly, while the rule-based system can only
attempt calculations for the small subset of activ-
ities where it successfully extracts all parameters
(18.5% of cases), PCCT maintains high accuracy
while handling a much broader range of activities
and conversation patterns.

5.2.2 Category-level Performance

A detailed analysis of performance across different
activity categories reveals significant variations in
calculation accuracy, as shown in Table 4.

Our analysis reveals several important patterns
that highlight the effectiveness of our knowledge-
augmented approach:

Transportation activities show the highest ac-
curacy for both systems, with PCCT achieving the
lowest MAPE (28.5%). The well-defined parame-
ter requirements (primarily distance) benefit from
our progressive extraction approach, allowing the
system to focus on gathering specific, critical infor-
mation.

Food & Beverages and Consumer Goods show
moderate error rates with PCCT (MAPE: 42-46%).
These categories represent the most frequent activ-
ities in our dataset, they demonstrate the value of
our retrieval system.

Energy and Services present the greatest chal-
lenges for both systems, with the highest error rates
even with PCCT (MAPE: 58-65%). These cate-
gories involve inducing parameters that the users
may not themselves know, and the system may not
have access to. For example, the amount of elec-
tricity consumed by a service may not be known,
therefore this brings in more uncertainty.

The performance gap between PCCT and RBC
is consistent across all categories, with PCCT re-
ducing MAPE by 48-57%. Note that the rule-based
system’s MAPE values are only applicable to the
small subset of activities where it successfully ex-
tracted all critical parameters (Activity F1: 30.8%,
Parameter F1: 18.5%). Therefore, the performance
gap between PCCT and RBC is even larger for
these categories.

These results demonstrate that while certain ac-
tivity types remain challenging for carbon foot-
print calculation, PCCT’s integrated approach of
knowledge-augmented extraction, context-aware
memory, and progressive parameter gathering sig-
nificantly improves accuracy across all categories.

6 Subjective Experiments

To further evaluate the effectiveness of our sys-
tem in comparison to the baseline system carbon
footprint calculation methods, we conducted a con-
trolled subjective experiment.

6.1 Experiment Design

We recruited 20 participants, including environ-
mental enthusiasts, general users, and sustainability
researchers, to calculate their carbon footprint for
10 predefined daily activities of varying complex-
ity. Participants used our system, a conversational
interface that guided them through activity details,
resolved incomplete information, and provided car-
bon footprint estimates with confidence bounds.
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They also used traditional tools like spreadsheets or
online calculators requiring manual data entry. Par-
ticipants rated their experience on a 7-point Likert
scale for usability (Zwakman et al., 2020), appro-
priateness (Torrey et al., 2013; Peng et al., 2019),
efficiency (Siro et al., 2022), and naturalness (CAO
et al., 2023), and provided qualitative feedback
through semi-structured interviews. Task comple-
tion time, result accuracy, and user engagement
metrics (e.g., errors, frustration) were recorded.

6.2 Results

Usability. Our system received higher usability
ratings (mean = 4.6, SD = 0.5) than the baseline
system (mean = 3.2, SD = 0.8). Users praised the
intuitive interface of our syetem, while the baseline
system users found data entry frustrating.

Appropriateness. Both methods scored similarly
(Our system: mean =4.7, SD = 0.4; The baseline
system: mean =4.5, SD = 0.6), though our system’s
context-aware explanations were appreciated.

Efficiency. Our system was more efficient (mean
=4.5, SD = 0.5) than the baseline system (mean =
2.8, SD = 0.9), with task completion times of 12
minutes vs. 28 minutes.

Naturalness. Our system scored higher on nat-
uralness (mean = 4.8, SD = 0.3) compared to the
baseline system (mean = 2.5, SD = 0.7), with its
conversational interface being a key factor.

6.3 Statistical Analysis

A two-way ANOVA confirmed significant differ-
ences between methods (F'(1,236) = 45.3, p <
0.001) and dimensions (F'(3,236) = 12.7, p <
0.001), with an interaction effect (F'(3,236) = 8.2,
p < 0.001). Post-hoc tests showed our system
outperformed the baseline system in usability, ef-
ficiency, and naturalness (p < 0.001), but not in
appropriateness (p > 0.05).

6.4 Qualitative Feedback

Participants praised our system for its intuitive, con-
versational interface and transparency, with one
noting, "It was so easy to use—I didn’t need prior
knowledge of carbon emissions," and another ap-
preciating its guidance and confidence-bound esti-
mates. In contrast, the baseline system users found
data entry and emission factor lookup tedious and
error-prone, with comments like, "I spent more
time looking up emission factors than calculating,"

and frustration over the lack of guidance. Many
wished for explanatory features similar to our sys-
tem. Feedback highlighted our system’s strengths
in usability, transparency, and engagement while
revealing inefficiencies in rule-based system.

7 Conclusion

We introduce PCCT, a novel framework for calcu-
lating personal carbon footprints through natural
conversations. By integrating knowledge-guided
activity extraction, context-aware memory manage-
ment, and progressive parameter gathering, PCCT
bridges the gap between casual dialogue and pre-
cise carbon footprint estimation. Experimental re-
sults demonstrate PCCT’s significant advantages
over traditional approaches, achieving substantial
improvements in both automated understanding
and calculation accuracy. Our subjective experi-
ments further validate PCCT’s practical value, with
users particularly appreciating its intuitive interface
and conversational guidance. Our work establishes
a promising direction for making carbon footprint
estimation more accessible through natural interac-
tions.

Limitations

While PCCT demonstrates promising results in per-
sonal carbon footprint estimation, several limita-
tions should be acknowledged:

First, the accuracy of our system heavily depends
on the quality and coverage of the emission factor
database. For emerging or region-specific activi-
ties, the system may struggle to find appropriate
emission factors, potentially leading to less accu-
rate calculations. This limitation is particularly
evident in service-related activities where standard-
ized emission factors are often lacking. Second,
our evaluation, while comprehensive, is limited to
a curated benchmark dataset and controlled user
studies. Real-world deployment may present ad-
ditional challenges, such as handling extremely
rare activities and adapting to regional variations in
emission factors, and maintaining consistent perfor-
mance across different user demographics. Third,
the PCCT pipeline relies on LLM inference, which
itself incurs a non-negligible carbon cost. Future
work will fine-tune an expert model to a 7 B param-
eter variant, further reducing inference emissions.
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Abstract

Accurately synthesizing climate evidence into
concise statements is crucial for policy mak-
ing and fostering public trust in climate sci-
ence. Recent advancements in Large Language
Models (LLMs), particularly the emergence
of reasoning-optimized variants, which excel
at mathematical and logical tasks, present a
promising yet untested opportunity for scien-
tific evidence synthesis. We evaluate state-
of-the-art reasoning LLMs on two key tasks:
(1) contextual confidence classification, assign-
ing appropriate confidence levels to climate
statements based on evidence, and (2) fac-
tual summarization of climate evidence, gen-
erating concise summaries evaluated for co-
herence, faithfulness, and similarity to expert-
written versions. Using a novel dataset of
612 structured examples constructed from the
Sixth Assessment Report (AR6) of the Intergov-
ernmental Panel on Climate Change (IPCC),
we find reasoning LLMs outperform general-
purpose models in confidence classification by
8 percentage points in accuracy and macro-
F1 scores. However, for summarization tasks,
performance differences between model types
are mixed. Our findings demonstrate that rea-
soning LLMs show promise as auxiliary tools
for confidence assessment in climate evidence
synthesis, while highlighting significant lim-
itations in their direct application to climate
evidence summarization. This work estab-
lishes a foundation for future research on the
targeted integration of LLMs into scientific
assessment workflows. Code and data are
publicly available at https://github.com/
YuchenglLu-NYU/LLMClimateSynthesis.

1 Introduction

Climate science involves complex systems, intri-
cate modeling approaches, and specialized termi-
nology that create significant barriers to public un-
derstanding (Sterman, 2011; Somerville and Has-
sol, 2011; Bernauer and McGrath, 2016). De-
spite overwhelming scientific consensus on climate

change, this complexity hinders widespread aware-
ness and informed decision-making, even among
policymakers responsible for addressing this global
challenge (Pidgeon and Fischhoff, 2011). The ex-
tensive body of scientific evidence, while providing
nuanced understanding of the systems and causal
mechanisms driving climate change, simultane-
ously complicates efforts to communicate clear,
actionable information—a fundamental challenge
at the intersection of science, policy, and public
engagement (van Eck, 2023). Large Language
Models (LLMs) offer promising capabilities for
addressing this communication gap. With their
ability to process and synthesize vast amounts of
text data, LLMs could potentially serve as power-
ful tools for distilling complex climate science into
accessible formats (To et al., 2024; Bulian et al.,
2024a). However, the nuanced nature of scien-
tific evidence in climate research, with its inher-
ent uncertainties and complex causal relationships,
presents challenges that may exceed the capabili-
ties of general-purpose LLMs (Bulian et al., 2024b).
Recent developments in Al have produced special-
ized reasoning-optimized LL.Ms, which are explic-
itly designed to perform multi-step logical anal-
ysis and incorporate chain-of-thought processes
that mirror analytical reasoning. These models are
trained using reinforcement learning techniques to
improve their ability to handle complex logical and
mathematical problems (Cheng et al., 2025). In this
study, we evaluate two state-of-the-art (SOTA) rea-
soning LLMs: DeepSeek-R1 (DeepSeek-Al et al.,
2025) and OpenAI’s 03-mini (OpenAl, 2025)." As
a baseline, we also perform the same two tasks on

'We selected 03-mini over OpenAlI’s flagship reasoning
model ol-pro and ol due to availability and cost considera-
tions. At the time of writing, o1-pro is not available as an API,
whereas o1 costs $60.00 per million output tokens, including
reasoning tokens, compared to 03-mini’s $4.40 and DeepSeek-
R1’s regular price of $2.19 (discount price $0.55). These cost
differences have significant implications for practical applica-
tions in research and deployment settings.
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GPT-40, one of the most widely used and capa-
ble general-purpose LLMs available. Our research
makes three key contributions:

* We develop a focused dataset of 612 struc-
tured examples derived from the IPCC ARG,
specifically designed for evaluating climate
science evidence synthesis. Though modest in
size, this curated resource offers high-quality
pairs of scientific evidence bases with expert-
written summaries and standardized confi-
dence levels, providing a specialized bench-
mark for both classification and generative
tasks in climate communication.

* To our knowledge, we conduct the first evalu-
ation of reasoning LLMs for climate evidence
synthesis, assessing their ability to assign ap-
propriate confidence levels to climate state-
ments based on presented evidence. More-
over, we show that the strong performance
of LL.Ms is not the result of pure memoriza-
tion by benchmarking against “no evidence”
prompts, where we provide reference to spe-
cific sections in IPCC ARG6 but withhold ac-
tual evidences in context.

* We evaluate these models’ summarization
abilities on complex climate evidence, reveal-
ing important insights about the distinct skills
required for effective scientific communica-
tion versus classification tasks. This analysis
highlights the specific capabilities needed for
translating scientific evidence into accessible
formats for policymakers and the public.

These contributions collectively advance our under-
standing of how Al systems might address the criti-
cal challenge of communicating climate science
more effectively, potentially facilitating greater
public understanding and more informed policy-
making in this crucial domain.

2 Related Work

Climate Science and NLP The application of
NLP techniques to climate science has gained in-
creasing popularity in recent years (Stammbach
et al., 2024). Incorporating artificial intelligence
in the assessment and communication of climate
statements is among the most important research
directions within the Climate NLP research pro-
gram. Costa et al. (2024) introduced ClimateQ&A,

a dataset and LL.M-based assistant that answers cli-
mate and biodiversity-related questions grounded
in scientific reports from the IPCC and IPBES,
which builds upon previous related works (Morio
and Manning, 2023; De-Gol et al., 2023; Muccione
et al., 2024; Schimanski et al., 2024; Mullappilly
et al., 2023).

However, research specifically focusing on cli-
mate evidence synthesis and assessment remains
nascent. Joe et al. (2024) conducted a prelimi-
nary evaluation of GPT-40’s capabilities for climate
change evidence synthesis and systematic assess-
ments, but primarily focused on information ex-
traction rather than comprehensive evidence evalu-
ation. Similarly, Li et al. (2024b) extracted climate
change statements in IPCC reports to understand
patterns of confidence levels and evidence types,
while Lacombe et al. (2023) developed CLIMA-
TEX, which assessed statements from IPCC AR6
reports without their supporting evidence bases.
These works emphasized information retrieval ca-
pabilities of general-purpose LL.Ms rather than evi-
dence synthesis or confidence attribution.

Our work differs significantly by evaluating mod-
els’ abilities to not only extract climate knowledge
but to synthesize evidence and assign appropri-
ate confidence levels—tasks more directly aligned
with scientific communication needs. Further-
more, we specifically examine reasoning-optimized
LLMs, which have not previously been evaluated
for climate evidence synthesis tasks.

Reasoning LLMs Recent advancements in
LLMs have led to specialized variants designed
specifically for reasoning tasks. These models in-
corporate architectural innovations and targeted
training methodologies to enhance their logical and
multi-step reasoning capabilities. DeepSeek-R1
and OpenAl’s 03-mini represent SOTA examples
in this class of models, balancing exceptional per-
formance with computational efficiency.

The broader landscape of reasoning in LLMs
has been extensively studied. Huang and Chang
(2023) provides a comprehensive survey of reason-
ing capabilities in LLMs, identifying key method-
ologies that enable more sophisticated logical anal-
ysis. Notably, Wei et al. (2022) demonstrated that
chain-of-thought prompting significantly enhances
reasoning performance across various benchmarks.
Both DeepSeek-R1 and OpenAI’s 03-mini incor-
porates explicit chain-of-thought in their reason-
ing. Additionally, Sun et al. (2024) categorizes
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various reasoning frameworks in foundation mod-
els, emphasizing the unique strengths of models
optimized for reasoning tasks. Xu et al. (2025)
surveyed the application of reinforcement learning
(RL) in improving LLMs’ reasoning capacity, a
training technique employed by both DeepSeek-R1
and o03-mini.

Despite these advances, the application of rea-
soning LLMs to scientific evidence synthesis re-
mains relatively unexplored, particularly in do-
mains like climate science where uncertainty quan-
tification and nuanced interpretation are essential
for effective communication and policy guidance.

Evidence Synthesis with LLMs The task of syn-
thesizing scientific evidence and assigning appro-
priate confidence levels has traditionally been per-
formed by human experts following established
protocols (IPCC, 2010; Mastrandrea et al., 2011).
Recent work by (Van Veen et al., 2023; Peng et al.,
2023; Delgado-Chaves et al., 2025) explored the
use of LLMs for evidence synthesis in medical
contexts, finding promising capabilities while ac-
knowledging significant challenges remain, espe-
cially regarding trust and robustness. However,
evidence synthesis in the climate domain remains
largely unexplored. Reasoning LLMs, with their
enhanced capabilities for logical analysis, represent
a particularly promising approach for addressing
the unique challenges of climate evidence synthe-
sis, where nuanced interpretation of evidence is
essential for effective science communication and
policy guidance.

3 Dataset

The Intergovernmental Panel on Climate
Change (IPCC) Sixth Assessment Report (AR6)
IPCC ARG represents the most comprehensive syn-
thesis of climate science to date, compiled by hun-
dreds of leading scientists and approved by 195
member governments. Published between 2021
and 2023, ARG consists of contributions from
three Working Groups covering the physical sci-
ence basis (IPCC AR6 WGI Masson-Delmotte
et al. (2021)), impacts and adaptation (IPCC AR6
WGII Portner et al. (2022)), and mitigation of
climate change (IPCC AR6 WGIII Shukla et al.
(2022)), along with a Synthesis Report that in-
tegrates findings across all components. A dis-
tinguishing feature of the IPCC ARG is its rigor-
ously structured format that follows a systematic
evidence-to-conclusion framework. Each section

presents detailed evidence bases drawn from peer-
reviewed literature, followed by carefully crafted
summary statements with explicitly assigned confi-
dence levels. These confidence assessments follow
a standardized methodology (Mastrandrea et al.,
2011) that combines scientific agreement and evi-
dence quality, producing calibrated language that
expresses varying degrees of certainty (see Figure
5 in Appendix B for details). This structured ap-
proach makes ARG an ideal source for systematic
extraction of evidence-conclusion pairs with asso-
ciated confidence assessments. Figure 1 illustrates

m an anthropogenic influence on the frequency or other
aspects of 55Ws has not yet been robustly detected. Thera is.fa_w
confidance in the ability of modals to simulate any such trends aver
the historical period because of large natural interannual variability

and also due to substantial common biases in the simulated mean
state affecting the simulated frequency of S5Ws,

Figure 1: Example conclusion from IPCC AR6 WGI

a sample conclusion from the the Sudden Strato-
spheric Warming Activity subsection from Chapter
3 Human Influence on the Climate System from
IPCC AR6 WGI Masson-Delmotte et al. (2021).
Figure 7 in the Appendix shows the subsection,
which includes section header, evidence bases, and
conclusion in its original layout.

The report’s consistent organization enables reli-
able parsing of the relationship between supporting
evidence and resulting conclusions. Each finding
is traceable to its underlying evidence base 2, with
transparent reasoning that connects specific climate
observations, model outputs, and scientific theories
to summary statements. This evidence-conclusion
structure, combined with standardized confidence
metrics, provides a gold-standard dataset for evalu-
ating how effectively LLMs can process complex
scientific information, determine appropriate confi-
dence levels, and generate accurate summaries that
preserve key scientific content while maintaining
appropriate expressions of certainty.

Data Extraction Process We follow a three-
step procedure to extract evidence-conclusion data
pairs.

*Note that evidences presented in these subsections are
already summaries with interpretations produced by climate
experts, much like the exposition of literature in the related
work or literature review sections of any scientific publication.
That being said, for future research, one might be interested
in retrieving the original, source research articles and having
LLMs synthesizing from ground up.
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1. Document Preprocessing: We converted
PDF files to Markdown format using MinerU
(Wang et al., 2024), a SOTA open-source PDF
information extraction tool.> Given the ex-
tensive length of ARG reports, we segmented
them into manageable chunks based on the
reports’ table of contents. We incorporated
one-page overlaps between segments to pre-
vent information loss at section boundaries,
as often one section begins on the same page
where the previous section ends.

2. Argument Identification: We parsed each
Markdown file using header tags (#) to iden-
tify distinct sections. To ensure the extrac-
tion of genuine evidence-conclusion pairs, we
applied filtering criteria to identify argumen-
tative sections. A section was classified as
containing an argument if it: (1) consisted of
three or more paragraphs, and (2) concluded
with a paragraph containing one of the follow-
ing concluding phrases: “in summary”, “to
summarize”, “in conclusion”, “overall,”*, “to
conclude”, “in short”, or “to sum up”. While
this approach may have excluded some valid
evidence-conclusion pairs, it prioritized data
quality over quantity.

3. Confidence Level Extraction: We identi-
fied and extracted the confidence levels as-
sociated with each conclusion. For conclu-
sions containing multiple assessments with
distinct confidence levels, we segmented the
conclusion paragraph into individual state-
ments. For example, the statement “To con-
clude, atmospheric aerosols sampled by ice
cores, influenced by northern mid-latitude
emissions, show positive trends from 1700 un-
til the last quarter of the 20th century and de-
creases thereafter (high confidence), but there
is low confidence in observations of system-
atic changes in other parts of the world in
these periods” was divided into two separate
conclusions with their respective confidence
levels. Since there are too few “very low” and
“very high” confidence conclusions at the end
of the process, we keep only conclusions with

*MinerU allows the extraction of pictures. However, we
choose to disregard these pictures for the sake of fairness in
comparison. While GPT-4o allows pictures as inputs, reason-
ing LLM APIs do not currently take pictures as input.

*The > comma after overall is important to reduce false
positives.

LR N3

“low”, “medium”, or “high” confidence.

We deliberately employed a rule-based parsing
strategy rather than relying on LLMs for data ex-
traction to avoid potential issues of content hallu-
cination or misrepresentation. Previous research
by (Huang et al., 2023; Mohamed et al., 2025) has
demonstrated that LLMs can inadvertently intro-
duce factual distortions or fabricate content when
processing scientific text, which could compromise
dataset integrity. Our rule-based approach ensures
reproducibility and maintains the original scientific
meaning of the extracted evidence-conclusion pairs.
After all, part of the purpose this paper is to evalu-
ate LLMs’s capacity to digest scientific text. Below
is an example evidence excerpt extracted from this
process (from WGI 3.3.3.4 Sudden Stratospheric
Warming Activity, excerpt in support of the conclu-
sion shown in Figure 1):

Sudden stratospheric warmings (SSWs)
are stratospheric weather events associ-
ated with anomalously high temperatures
at high latitudes persisting from days to
weeks .....

Seviour et al. (2016) found that
stratosphere-resolving CMIP5 models,
on average, reproduce the observed fre-
quency of vortex splits (one form of
SSWs) but with a wide range of model-
specific biases ......

Some studies find an increase in the fre-
quency of SSWs under increasing green-
house gases ......

Dataset Characteristics Our extraction process
yielded a compact dataset of 612 distinct “argu-
ments” (evidence-conclusion pairs) from the IPCC
ARG reports. Each data point in our dataset con-
tains the following features: (1) source information
(Working Group report identifier and subsection
header), (2) evidence bases (the supporting sci-
entific content preceding the conclusion), (3) full
conclusion paragraph, (4) individual conclusion
statements (when a conclusion paragraph contains
multiple assessments), and (5) the confidence level
explicitly assigned to each individual conclusion
statement (ranging from “low” to “high”). For the
confidence classification task, we additionally cre-
ated a field called "masked conclusion" where the
original confidence level expressions were replaced
with <MASKED>, allowing for evaluation of models’
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ability to assign appropriate confidence levels with-
out worrying about the potential bias paraphrasing
introduces.

Distribution of Confidence Levels

87

high medium low
Confidence Level

Figure 2: Confidence Level Distribution

Figure 2 shows that most conclusions have con-
fidence, reflecting the scientific rigor of IPCC re-
ports and the growing consensus in climate science
(Cook et al., 2016). The distribution of confidence
levels in our dataset is in line with what Lacombe
et al. (2023); Li et al. (2024b) have observed in
their climate statements datasets.

Figure 3 plots the distribution of the length of ev-
idence texts, measured in tokens using the c1100k
base tokenizer, where the average length is 1654
tokens. In contrast, the average length of individ-
ual conclusion statements is only 62 tokens. This
substantial difference (approximately 27:1 ratio)
highlights the condensation of information required
when synthesizing evidence into concise conclu-
sions, making this a challenging task for LLMs.

Distribution of Evidence Lengths

3000
Number of Tokens

Figure 3: Evidence Length Distribution

4 Methods

Contextual confidence classification To rigor-
ously evaluate the performance differences be-
tween reasoning-optimized LLMs and general-
purpose LLMs, while also controlling for potential
memorization effects, we developed three distinct
prompting strategies:

1. Zeroshot Contextual: Models are provided
with evidence bases and conclusion state-
ments (with confidence levels masked), then
asked to classify the appropriate confidence
level according to IPCC standards without any
examples.

2. Fewshot Contextual: Similar to the zero-shot
approach, but with three randomly selected ex-
amples demonstrating low, medium, and high
confidence classifications to provide models
with context on the task.

3. Reference Only: Models are given only the
conclusion statements, source metadata (i.e.,
the working group report and subsection), and
standard definitions of the confidence levels-
without any supporting evidence or examples.
This setup serves as a control condition to test
whether models are relying on memorization
of the IPCC reports rather than reasoning over
evidence.’

For all prompting strategies, we instructed mod-
els to select from three confidence levels ("low,"
"medium," or "high") based on the IPCC’s stan-
dardized confidence assessment framework (Mas-
trandrea et al., 2011). Details about prompts are
found in Appendix A.

Factual Summarization In the summarization
task, models were given evidence bases and one
example evidence-conclusion pair and then asked
to generate concise summary statements that faith-
fully reflect the evidence while assigning appropri-
ate confidence levels. Summaries are compared
against the full conclusion, not the individual con-
clusions. This task evaluates models’ ability to
both synthesize complex scientific information and
accurately represent uncertainty—two critical com-
ponents of scientific communication.

Evaluation Metrics For the confidence clas-
sification task, we used accuracy and macro-
averaged F1 score as our primary metrics. Macro-
F1 is the primay metric to look at since confidence
levels are somewhat imbalanced in our dataset (as
shown in Figure 2).

5In the absence of a custom-trained LLM explicitly ex-
cluding IPCC AR6 materials, we concede that we cannot
definitively rule out memorization. Our evaluation design
instead aims to approximate this distinction by comparing per-
formance across content-based and reference-only conditions
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For factual summarization task, we adopt three
commonly used metrics: ©

1. ROUGE (Lin, 2004). ROUGE computes the
overlap of n-grams between model-generated
summaries and expert-written conclusions
from the IPCC, providing a basic measure
of content coverage.We report ROUGE-1
(unigram overlap) and ROUGE-L (longest
common subsequence), using the F1 variant,
which is the harmonic mean of precision (how
much of the candidate matches the reference)
and recall (how much of the reference is cov-
ered by the candidate).

2. BERTScore (Zhang et al., 2020). BERTScore
improves upon ROGUE by measuring se-
mantic similarity between generated and
expert-written conclusions beyond exact word
matches, using contextual embeddings from
pretrained language models. We use the ver-
sion based on RoBERTa-Large (Liu et al.,
2019) and report the F1 score, which is stan-
dard practice in BERTScore evaluations.

3. G-Eval (Liu et al., 2023). with GPT-40. G-
Eval leverages LLLMs with structured prompts
and promises to provide human-like assess-
ment of summary quality. We use a cus-
tomized prompt tailored to our scientific ev-
idence synthesis context to focus on rele-
vance, faithfulness, and appropriateness of
confidence levels of LLM-generated conclu-
sions.

Unlike the evaluation of classification tasks, which
benefits from clear-cut ground truth, reliable eval-
uation of summarization task remains an ongoing
area of research (Zhang et al., 2025). We choose
our evaluation metrics to balance surface-level cov-
erage (ROUGE), semantic similarity (BERTScore),
and more human-aligned quality judgments (G-
Eval), given the lack of climate-specific summariza-
tion evaluation metrics. While it would be valuable

®We included FACTCC (Kryscinski et al., 2020) in ear-
lier versions but removed it in the final version for two rea-
sons. First, FACTCC was trained on news-style summariza-
tion datasets and may not generalize well to scientific domains
like climate synthesis, where factual consistency involves nu-
anced reasoning and domain-specific terminology. Second, we
observed potential implementation issues where FACTCC re-
turned nearly identical scores across model outputs (up to the
4th decimal point), whereas other evaluation metrics, though
close, showed more meaningful variance. This suggests that
FACTCC was not a reliable discriminator in our setting.

to adapt existing metrics, such as BERTScore or
FACTCC, using domain-specific models like Cli-
mateBERT (Webersinke et al., 2022), we leave this
to future work.

5 Classification Results

Table 1 presents the performance of both reasoning-
optimized LLMs (DeepSeek-R1 and 03-mini) and a
general-purpose LLM (GPT-40) on the confidence
classification task across different prompting strate-
gies. For context, random guessing on this three-
class problem would yield an expected accuracy of
33.3%, while majority class guessing (predicting
"high" confidence for all examples, which consti-
tutes approximately 55% of our dataset) would
result in an accuracy of 55% with a macro-F1 score
of 0.24.

Reasoning LLMs Outperform General-Purpose
Models Both reasoning-optimized LLMs con-
sistently outperform GPT-40 across all prompt-
ing strategies. In the zero-shot contextual set-
ting, DeepSeek-R1 and 03-mini achieve macro-F1
scores of 65% and 63% respectively, compared to
57% for GPT-40, representing a performance gap
of 8 percentage points between DeepSeek-R1 and
GPT-40. This advantage persists in the few-shot
contextual setting, where reasoning models main-
tain a 7 percentage point lead. The accuracy scores
follow a similar pattern.

Interestingly, the few-shot approach did not con-
sistently improve performance over zero-shot for
any of the models. While 03-mini increased its F1
score from 63% to 68%, DeepSeek-R1 decreased
from 65% to 63%. One potential explanation is con-
text length limitations. Including three complete
evidence-conclusion pairs in addition to the task
instructions may have caused information overload,
making it difficult for the models to effectively pro-
cess the lengthy context.

Memorization Is Not the Primary Driver of Per-
formance Given that the IPCC AR6 was pub-
lished in 2023, and the knowledge cutoff dates for
all tested models extend beyond this date, a natural
concern is whether models are simply retrieving
memorized content rather than performing genuine
reasoning. The reference-only condition allows us
to investigate this possibility by providing models
with only the conclusion statement and retrieval-
relevant information (working group and section
reference) without the actual text of supporting evi-
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dence.

The results reveal several important patterns.
First, all models experience a performance drop
in the reference-only condition compared to the
contextual conditions, with GPT-40 showing the
steepest decline (17 percentage points from zero-
shot to reference-only). This suggests that access to
evidence is indeed crucial for the task for all mod-
els. Second, even in the reference-only condition,
reasoning models maintain accuracies of 57-58%,
substantially above both random and majority-class
baselines, while GPT-40’s performance drops to
41%, only marginally better than a random classi-
fier and below the majority class baseline.

The relatively strong performance of reasoning
models even without evidence suggests they may
be better at leveraging minimal contextual cues to
retrieve information or perhaps applying general
reasoning principles to scientific uncertainty assess-
ment. However, the significant performance gap
between contextual and reference-only conditions
across all models indicates that genuine evidence
evaluation, rather than pure memorization, drives
the superior performance observed in the contex-
tual settings.

Performance Inference Cost Trade-off While
reasoning LLMs demonstrate superior perfor-
mance, this advantage comes with significant com-
putational costs. DeepSeek-R1 and 03-mini con-
sume substantially more tokens during inference
compared to GPT-4o0, as shown in Figure 4. This
difference stems from reasoning models’ explicit
chain-of-thought inference-time scaling processes,
where they generate extensive internal reasoning
before producing a final answer.” In contrast,
GPT-40 produces just 2 tokens: the prediction

"Interestingly, performance appears to correlate with to-
kens consumed during inference. In fewshot settings, models
actually spend fewer tokens on reasoning, as if the additional
input tokens from demonstrations crowded out the model’s
chain-of-thoughts.

Token Usage Comparison Across Models and Tasks
1090

GPT-40
929 03-mini
DS-R1

988

Average Token Usage

2 2 2
zeroshot fewshot reference_only
Task Type

Figure 4: Token Cost Comparison

Note: The bars for GPT-40 are barely visible as it uses
only 2 tokens per classification.

token and the EOS token. In practice, however,
the more pressing concern is latency. Inference
on DeepSeek-R1 took significantly longer than
any other model, requiring over 12 hours to com-
plete 612 requests sent asynchronously. While
this largely reflects DeepSeek server’s capacity and
load constraints, the pattern holds even among Ope-
nAl models. 03-mini required approximately four
times longer to complete identical tasks compared
to GPT-4o.

6 Summarization Results

DeepSeek-R1 seems to have a slight edge but rea-
soning LLMs in general do not. As shown in
Table 2, DeepSeek-R1 slightly outperforms other
models on lexical and semantic similarity met-
rics, achieving higher scores on ROUGE-1 (0.22),
ROUGE-L (0.19), and BERTScore (0.84) com-
pared to 03-mini and GPT4o. Similarly, the differ-
ences in G-Eval are minimal. Notably, the other
reasoning LLM o03-mini, while clearly outperform-
ing GPT-4o in classification tasks, shows negligible
differences in summarization performance. We are
inclined to believe that reasoning LLMs may not
hold a general advantage in summarization tasks,
and DeepSeek-R1’s better performance may be
idiosyncratic. One possible explanation for this
phenomenon is that reasoning LLMs are primarily

Model Zeroshot Contextual Fewshot Contextual Reference Only
ACC F1 ACC F1 ACC F1
DS-R1  0.66 0.65 0.65 0.63 0.57 0.54
03-mini  0.65 0.63 0.63 0.68 0.58 0.60
GPT-40 0.58 0.57 0.57 0.56 0.41 0.41

Table 1: Classification Results. The table shows accuracy (ACC) and macro-averaged F1 (F1) scores for DeepSeek-
R1, 03-mini, and GPT-40 in Zeroshot Contextual, Fewshot Contextual, and Reference only prompting settings.
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Model ROGUE-1 ROGUE-L BERTScore G-Eval G-Eval G-Eval
F1 F1 F1 F1 Faithfulness Relevance Confidence
DS-R1 0.22 0.19 0.84 4.80 4.90 4.94
03-mini 0.14 0.12 0.82 4.74 4.86 4.98
GPT-4o 0.14 0.13 0.82 4.76 4.88 4.87

Table 2: Performance comparison of models on climate evidence summarization tasks. ROGUE-1 and ROUGE-L
measures lexical overlap, BERTScore captures semantic similarity, and G-Eval metrics assess human-aligned quality
dimensions including faithfulness, relevance, and appropriateness of confidence assessment. Higher scores indicate
better performance across all metrics. Detailed evaluation prompts are provided in Appendix A.

trained to solve mathematical and logical tasks, not
for open-ended, generative tasks like summariza-
tion.

Evaluation Biases Another possible explanation
for our results lies in evaluation biases. Unlike
classification tasks where evaluation is straightfor-
ward, in summarization tasks, apart from using
ROGUE, we rely on pretrained language models
themselves as evaluators. Recent studies such as Li
et al. (2024a) and Gu et al. (2025) highlight several
concerns with the use of LLMs as judges, including
various forms of bias. For example, BERTScore is
implemented with general-purpose pretrained lan-
guage models, which are likely affected by domain
shift in our climate science setting. Similarly, re-
cent work (Panickssery et al., 2024) suggests that
LLM-based evaluators may favor outputs gener-
ated by architectures similar to their own. This
could partly explain why more advanced reasoning
LLMs do not show clear advantages under G-Eval,
especially since the evaluator used is GPT-4o itself.
That said, it is noteworthy that DeepSeek-R1,
despite likely having less architectural similarity
to GPT-40 than 03-mini, achieves the best overall
G-Eval scores. While this complicates the interpre-
tation, it also suggests that other factors, such as
training data or output style, may influence evalua-
tion outcomes. Addressing all of these issues is be-
yond the scope of this paper, and we welcome fur-
ther work to develop more robust, domain-sensitive
evaluation frameworks for summarization tasks.

7 Conclusion

Our evaluation of reasoning-optimized LLMs for
climate evidence synthesis reveals both promis-
ing capabilities and important limitations. These
models demonstrate significant advantages in con-
textual confidence classification, outperforming
general-purpose LLMs by 8 percentage points in
accuracy and macro-F1 scores when assigning con-

fidence levels to climate statements. This suggests
potential utility as auxiliary tools for confidence
assessment in scientific workflows.

However, in factual summarization tasks, reason-
ing LLLMs show minimal and inconsistent advan-
tages over general-purpose models. Despite their
enhanced logical capabilities, they struggle with the
nuanced requirements of scientific summarization
when evaluated on relevance, faithfulness, confi-
dence level assignment, which fares much worse
than expert-written summaries.

These findings indicate that current reasoning
LLMs can potentially contribute to specific aspects
of climate evidence synthesis while highlighting
the continued necessity of human expertise for sum-
marization tasks. Future work should focus on de-
veloping specialized models for scientific synthesis
and exploring human-AlI collaborative frameworks
that leverage the complementary strengths of both.
Ultimately, a targeted approach to integrating these
technologies into scientific assessment will be es-
sential to maintain rigor while enhancing efficiency.

8 Limitations

We acknowledge that our research faces several
limitations.

First, our evidence base excludes visual data
such as graphs, charts, and images, which often
contain critical climate information in IPCC reports.
This omission potentially limits the comprehensive-
ness of our evaluation, as multi-modal reasoning
capabilities would be necessary for complete as-
sessment of climate evidence.

Second, we rely on prompt-based approaches
without domain-specific adaptation or fine-tuning.
While this allows for assessment of off-the-shelf
model capabilities, it likely underestimates the po-
tential performance of models specifically adapted
to climate science terminology and reasoning pat-
terns.
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Third, our evaluation metrics for summarization
tasks, despite careful design, may be susceptible to
"LLM-as-judge" biases. Models evaluating other
models’ outputs could share fundamental limita-
tions or biases, potentially inflating quality assess-
ments of machine-generated summaries compared
to expert evaluation.

Finally, our study represents a point-in-time as-
sessment of rapidly evolving technologies. The
performance gaps and capabilities identified may
change significantly as reasoning LL.Ms continue
to develop. Future work should address these lim-
itations through multi-modal evidence inclusion,
domain adaptation techniques, and more robust
human-in-the-loop evaluation frameworks.

9 Ethical Considerations

This research evaluates LLMs on existing IPCC
assessment data without involving human subjects
or generating new climate recommendations. We
acknowledge that Al tools for scientific synthe-
sis raise important considerations regarding trans-
parency, accountability, and potential automation
bias. While our work demonstrates potential utility
in specific tasks, we emphasize that these technolo-
gies should supplement rather than replace expert
judgment in climate assessment.
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A Appendix: Prompt Details

Following DeepSeek’s recommendation for
data cleaning and general analysis tasks,® we
set temperate at 1 for DeepSeek-R1 (and also
GPT-40). For 03-mini, we set reasoning effort to
be “medium”.

Reference Only Prompt is adapted from Lacombe
et al. (2023). Contextual prompts (zeroshot and
fewshot) and summarization prompt are produced
with the help of meta-prompts by OpenAL°® G4
Eval Prompt is adapted from Liu et al. (2023) and
OpenAl'?

Reference Only Prompt

You are a knowledgeable climate science as-
sistant trained to assess the confidence level
associated with various statements about cli-
mate change. You will be presented with
a statement about climate science, climate
impacts, or climate change mitigation re-
trieved from the IPCC AR6 WGI, WGII, or
WGIII assessment reports.

You will be given the subsection header
from where the statement is from. Climate
scientists have evaluated that statement as
low confidence, medium confidence, or
high confidence, based on evidence (type,
amount, quantity, consistency) and agree-
ment among their peers.

What is their confidence level? Respond
*only* with one of the following words:
’low’, "'medium’, "high’.

Reference: {WG}, {header}
Statement: {conclusion_statement}
Output:

8https://api—docs.deepseek.com/quick_start/
parameter_settings

*https://platform.openai.com/docs/guides/
prompt-generation

10https://cookbook.openai.com/examples/
evaluation/how_to_eval_abstractive_summarization

Contextual Prompt

Analyze the provided scientific text *evi-
dence excerpt* and predict the <MASKED>
confidence level of the *conclusion state-
ment* based on contextual evidence.
Avoid external knowledge. Rely only on
the provided text. Base your evaluation
on the type, quantity, consistency, and
agreement of presented evidences.
Respond *only* with one of the following
words: ’low’, 'medium’, "high’.

Example One
Evidence Excerpt:
{evidence_excerpt}
Conclusion Statement:
{conclusion_statement}
Output:
{true_confidence}

Example Two
Evidence Excerpt:
{evidence_excerpt}
Conclusion Statement:
{conclusion_statement }
Output:
{true_confidence}

Example Three
Evidence Excerpt:
{evidence_excerpt}
Conclusion Statement:
{conclusion_statement }
Output:
{true_confidence}

Input:

Evidence Excerpt:
{evidence_excerpt}
Conclusion Statement:
{conclusion_statement}
Output:
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Summarization Prompt

You are a scientific analyst summarizing
key findings from scientific literature.
Given a passage of scientific evidence,
synthesize the information concisely while
preserving quantitative details, uncertainty
assessments, and key conclusions.

Guidelines:

1. Focus on the core scientific claims,
ensuring clarity and accuracy.

2. Include key findings with numerical data
and confidence levels when appropriate.

3. Be concise, your answer should not be
longer than one paragraph.

4. Avoid speculation. Use only the provided
information; exclude external knowledge.
5. Use precise and neutral language.

Example Input: {evidence_excerpt}

Example Output: {conclusion}

Input: {evidence_excerpt}

Output:

G4 Eval Prompt

Scientific Conclusion Evaluation You are
an expert evaluator assessing the quality
of LLM-generated scientific conclusions.
Your task is to evaluate how well a model
has synthesized scientific literature accord-
ing to specific criteria. For each submission,
you will be provided with:

1. The original scientific passage

2. The LLM-generated conclusion

3. The expected guidelines for the conclu-
sion

Evaluation Criteria (Score each on a scale
of 1-5):

{criteria}

Evaluation Process: {steps}

Now evaluate: Original Passage: {passage}
LLM-Generated Conclusion: {conclusion}
{guideline_section }

Your evaluation must follow this exact for-
mat: Evaluation:

-Relevance: Score: X/5

-Faithfulness: Score: X/5

-Confidence Level Appropriateness: Score:
X/5

G4 Eval Prompt - Relevance

Relevance

* 5: Perfectly captures the core scientific
findings and key quantitative details

* 4. Identifies most important findings but
misses minor details

* 3: Captures some key findings but omits
several important elements

* 2: Focuses primarily on peripheral infor-
mation rather than central findings

* 1: Fails to identify the main scientific find-
ings
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High agreement High a
Limited evidence Medium

Medium agrsemsnr Medium ag'reemenr
Limited evidence Medium evidence

Agreement

Low agreement Low agreement
Limited evidence | Medium evidence

Low agreement
Robust evidence

Confidence
Scale

Evidence (type, amount, quality, consistency) s

Figure 5: Confidence Evaluation Matrix from (Mastrandrea et al., 2011)

G4 Eval Prompt - Faithfulness

Faithfulness

* 5: Completely faithful to the original text
with no misrepresentations or distortions

* 4. Largely faithful with only minor inac-
curacies that don’t affect the core meaning
* 3: Generally faithful but contains some
misrepresentations of moderate importance
*2: Contains significant misrepresentations
or fabricated information

* 1: Fundamentally misrepresents the sci-
entific content or contradicts the original
text

\

G4 Eval Prompt - Confidence Level Ap-
propriateness

Confidence Level Appropriateness

* 5: All confidence levels expressed in con-
clusion statement strictly follow from scien-
tific text

* 4: Contain confidence level statements
with minor inaccuracies or somewhat dubi-
ous nature

* 3: Preserves some uncertainty statements
but omits or misrepresents others

*2: Significantly understates or overstates
confidence in findings

* 1: Completely misrepresents or omits crit-
ical uncertainty statements and confidence
levels

. J

B Appendix: Figures from IPCC AR6
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Confidence Scale

Evidence >

Chapter 3

human influence on histarical blocking activity. The fow confidence
statemeants are due to the limited number of studies available. The
shift of the Southem Hemisphere jet is comrelated with modulations
of tha SAM (Section 3.7.2). There is medium confidence in modal
performance regarding the simulation of the extratropical jets, storm
track and blocking activity, with increased resolution somatimes
corresponding to better performance, but important shortcomings
remain, particularly for the Eurc-Atlantic sector of the Northem
Hemisphere. Nonetheless, synthesizing across Sections 3.3.3.1-
3.3.3.3, there is high confidence that CMIP& modals capture the
general characteristics of the tropospheric large-scale drculation.
3.3.34  Sudden Sratospheric Warming Activity

Sudden stratospheric warmings (55Ws) are stratospheric weather
avents associated with anomalously high temperatures at high
latitudes persisting from days to weeks, Saction 2.3.1.4.5 discusses
the definition and observational aspects of 55Ws. 55Ws are oftan
associatad with anomalous weather conditions, for exampla, wintar
cold spells, in the lower atmosphere (e.g., Butler et al., 2015; Baldwin
atal, 2021).

Saviour et al. (2016) found that stratosphere-resolving CMIPS
modals, on average, reproduce the observed frequency of vortex
splits {one form of $5Ws) but with a wide range of modekspecific
biases. Models that produce a better mean stata of the polar vortex
also tend to produce a more realistic S5W frequency (Seviour
ot al, 2016). The mean sea loval pressure anomalies occurring in
CMIPS model simulations when an 55W is underway, however,
differ substantially from those in reanalyses (Seviour et al,
2016). Unlike stratosphere-resolving models, models with limited
stratospheric resalution, which make up more than half of the
CMIPS ensemble, underestimate the frequency of S5Ws (Osprey
at al, 2013; ). Kim et al, 2017). Taguchi (2017) found a general
underestimation in CMIPS models of the frequency of ‘major’ 55Ws
{which are associated with a break-up of the polar vortex), an
aspect of an under-representation in those models of dynamical
wvariability in the stratosphera. Wu and Reichler (2020) found that
finer vertical resolution in the stratosphere and a model top above
the stratopausa tend to be associated with a maore realistic S5W
frequency in CMIPS and CMIPE models.

Some studies find an increase in the frequency of 55Ws under
increasing greenhouse gases (e.g., Schimanke et al, 2013; Young
ot al, 2013; L Kim et al, 2017). However, this behaviour is not
robust across ensambles of chemistry-climate models (Mitchell et al,,
2012; Ayarzagiena et al, 2018; Rao and Garfinkel 2021). There is
an absence of studies specifically focusing on simulated trends in
55Ws during recent dacades, and the short record and substantial
decadal variability yields few confidance in any observed tends in
tha occumence of SW events in the Northemn Hemisphere wintar
{Saction 2.3.1.4.5). Such an absence of a rend and large variability
would also be consistent with a recent reconstruction of SSWs
axtending back to 1850, based on sea level pressure obsarvations
{Domeisen, 2019), although this time series has limitations as itis not
based on direct observations of S5Ws.
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Figure 6: Confidence and likelihood scales for communicating degree of certainty in key findings of the IPCC ARS,
adapted from (Mastrandrea et al., 2011)

Human Influence on the Climate System

In summary, an anthropogenic influence on the fraquency or other
aspects of S5Ws has not yet been robustly detectad. Thara is.fo_w
confidence in the ability of modals to simulate any such trends awver
the histarical pariod becausz of large natural interannual variability
and also due to substantial common biases in the simulated mean
state affecting the simulated frequency of S5Ws.

34 Human Influence on the Cryosphere
3.4 Sea lce
3410 Arctic Sea lce

Tha ARS conduded that "anthropogenic forcings are very likely to have
contributed to Anctic sea ioe loss since 1979 (Bindoff et al,, 2013), based
onstudies showing that models can reproduce the observed decline only
when induding anthropoganic forcings, and formal attribution studies,
Since the beginning of the modem satellite era in 1979, Northam
Hemisphere sea ice extant has exhibited significant dedines in all
maonths with tha lamgest reduction in September (see Saction 2.32.1.1,
and Figures 3.20 and 3.21 for more details on observed changes). The
racont Arctic sea ice loss during summer is unprecedanted sinca 1850
high confidenca), but as in AR5 and SROCC thera remaire only meaium
confidence that tha recant reduction is unigue during at laast the past
1000 years dua to sparse ahsarvations (Sections 2.3.2.1.1 and 9.3.1.1).
CMIPS madels also simulate Morthem Hamisphere sea ice loss aver the
satollite ara but with large differances amaong models (e.g., Massonnet
etal, 2012; Stroeve et al,, 2012). The ervielope of simulated ice loss
acmss model simulations encompasses the observed change, atthough
chservations fall near the low end of the CMIPS and CMIPE distributions
of trends (Figure 3.20), CMIP& models on average better capture the
observed Arctic sea ice decline, albeitwith large intermodel spread. Motz
et al (2020) found that CMIPE modek better reproduce the sensitivity
of Arctic sea ice area to CO; emissions and global warmming than earlier
CMIP models although the modals” underastimation of this sensitivity
remains. Dawy and Outten (2020) also found that CMIPE models can
simulate the seasonal cycle of Arctic sea ice extent and volume better
than CMIPS modeks. For the assessment of physical processes associatad
with changes in Arctic sea ice, see Section 9.3.1.1,

Since ARS, there have been several new detection and attribution
studies on Arctic sea ica, While tha attributian literature has mostly used
sea ice extent (SIE), it is closely proportional to sea ice area (514 Notz,
2014), which is assessad in Chapters 2 and 9 and shown in Figures 3.20
and 3.21. Kirchmaier-Young et al. (2017) compared the obsarved time
saries of the September SIE over the period 13782012 with those from
different large ensemble simulations which provide a robust sampling
of intemal climate variability (CanESM2, CESM1, and CMIPS) using an
optimal fingerprinting tachnique. They detacted anthropogenic signals
which wara saparabla from tha response to natural fordng due to solar
imadiance variations and volcanic asrosol, supporting pravious findings
{Figure 3.21; Min et al,, 2008h; Kay et al, 2011; Notz and Marotzke,
2012; Notz and Stroowve, 2016). Using selected CMIPS madels and
three independently derived sets of ohsarvations, Mueller et al. (2018)
detected fingerprints from greenhousa gases, natural and other
anthropegenic forcings simultaneously in the September Arctic SIE over

Figure 7: Example Section from [IPCC AR6
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