Zhenyu Bi


2025

pdf bib
DEBATE, TRAIN, EVOLVE: Self‐Evolution of Language Model Reasoning
Gaurav Srivastava | Zhenyu Bi | Meng Lu | Xuan Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have improved significantly in their reasoning through extensive training on massive datasets. However, relying solely on additional data for improvement is becoming increasingly impractical, highlighting the need for models to autonomously enhance their reasoning without external supervision. In this paper, we propose Debate, Train, Evolve (DTE), a novel ground truth-free training framework that uses multi-agent debate traces to evolve a single language model. We also introduce a new prompting strategy Reflect-Critique-Refine, to improve debate quality by explicitly instructing agents to critique and refine their reasoning. Extensive evaluations on seven reasoning benchmarks with six open-weight models show that our DTE framework achieve substantial improvements, with an average accuracy gain of 8.92% on the challenging GSM-PLUS dataset. Furthermore, we observe strong cross-domain generalization, with an average accuracy gain of 5.8% on all other benchmarks, suggesting that our method captures general reasoning capabilities. Our framework code and trained models are publicly available at https://github.com/ctrl-gaurav/Debate-Train-Evolve.

pdf bib
CROSSAGENTIE: Cross-Type and Cross-Task Multi-Agent LLM Collaboration for Zero-Shot Information Extraction
Meng Lu | Yuzhang Xie | Zhenyu Bi | Shuxiang Cao | Xuan Wang
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) excel in generating unstructured text. However, they struggle with producing structured output while maintaining accuracy in zero-shot information extraction (IE), such as named entity recognition (NER) and relation extraction (RE). To address these challenges, we propose CROSSAGENTIE, a multi-agent framework that enhances zero-shot IE through multi-agent LLM collaboration. CROSSAGENTIE refines LLM predictions iteratively through two mechanisms: intra-group cross-type debate, which resolves entity-label conflicts through context-based evidence and confidence aggregation, and inter-group cross-task debate, where NER and RE mutually refine outputs via bidirectional feedback. Furthermore, we introduce template fine-tuning, distilling high-confidence multi-agent outputs into a single model, significantly reducing inference cost while preserving accuracy. Experiments across five NER and five RE datasets show that CROSSAGENTIE significantly outperforms state-of-the-art zero-shot baselines by a large margin. CROSSAGENTIE effectively addresses LLMs limitations in structured prediction with an effective and efficient approach for zero-shot information extraction.

pdf bib
OPTAGENT: Optimizing Multi-Agent LLM Interactions Through Verbal Reinforcement Learning for Enhanced Reasoning
Zhenyu Bi | Meng Lu | Yang Li | Swastik Roy | Weijie Guan | Morteza Ziyadi | Xuan Wang
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

Large Language Models (LLMs) have shown remarkable reasoning capabilities in mathematical and scientific tasks. To enhance complex reasoning, multi-agent systems have been proposed to harness the collective intelligence of LLM agents. However, existing collaboration structures are either predefined or rely on majority voting or round-table debates, which can suppress correct but less dominant agent contributions. Recent approaches model multi-agent systems as graph networks but optimize purely for agent performance, neglecting the quality of interactions. We hypothesize that effective agent communication is crucial for multi-agent reasoning and that debating quality plays a significant role. To address this, we propose OptAgent, a multi-agent verbal reinforcement learning algorithm that dynamically constructs and refines multi-agent collaboration structures. Our method defines action spaces and a feedback mechanism that evaluates communication robustness and coherence throughout the debate. The final decision is achieved through a majority vote over all the agents. We assess OptAgent on various reasoning tasks, including mathematical reasoning, creative writing, scientific reasoning, and numerical sorting. Results demonstrate that our approach significantly outperforms single-agent prompting methods and state-of-the-art multi-agent frameworks on diverse tasks.

pdf bib
SimAgents: Bridging Literature and the Universe Via A Multi-Agent Large Language Model System
Xiaowen Zhang | Zhenyu Bi | Patrick LaChance | Xuan Wang | Tiziana Di Matteo | Rupert Croft
Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: System Demonstrations

As cosmological simulations and their associated software become increasingly complex, physicists face the challenge of searching through vast amounts of literature and user manuals to extract simulation parameters from dense academic papers, each using different models, and formats. Translating these parameters into executable scripts remains a time-consuming and error-prone process. To improve efficiency in physics research and accelerate the cosmological simulation process, we introduce SimAgents, a multi-agent system designed to automate both parameter configuration from the literature and preliminary analysis for cosmology research. SimAgents is powered by specialized LLM agents capable of physics reasoning, simulation software validation, and tool execution. These agents collaborate through structured communication, ensuring that extracted parameters are physically meaningful, internally consistent, and software-compliant. We also construct a cosmological parameter extraction evaluation dataset by collecting over 40 simulations in published papers from Arxiv and leading journals that cover diverse simulation types. Experiments on the dataset demonstrate a strong performance of SimAgents, highlighting its effectiveness and potential to accelerate scientific research for physicists. Our demonstration video is available at: https://youtu.be/w1zLpm_CaWA. The complete system and dataset are publicly available at https://github.com/xwzhang98/SimAgents.

pdf bib
StoC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering
Zhenyu Bi | Daniel Hajialigol | Zhongkai Sun | Jie Hao | Xuan Wang
Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing

Multi-hop question answering (MHQA) requires a model to retrieve and integrate information from multiple passages to answer a complex question. Recent systems leverage the power of large language models and integrate evidence retrieval with reasoning prompts (e.g., chain-of-thought reasoning) for the MHQA task. However, the complexities in the question types (bridge v.s. comparison questions) and the reasoning types (sequential v.s. parallel reasonings) require more novel and fine-grained prompting methods to enhance the performance of MHQA under the zero-shot setting.In this paper, we propose StoC-ToT, a stochastic tree-of-thought reasoning prompting method with constrained decoding for MHQA and conduct a detailed comparison with other reasoning prompts on different question types and reasoning types. Specifically, we construct a tree-like reasoning structure by prompting the model to break down the original question into smaller sub-questions to form different reasoning paths. In addition, we prompt the model to provide a probability estimation for each reasoning path at each reasoning step. At answer time, we conduct constrained decoding on the model to generate more grounded answers and reduce hallucination. Experiments comparing StoC-ToT with on two MHQA datasets and five large language models showed that outperforms other reasoning prompts by a significant margin.

2024

pdf bib
AI for Science in the Era of Large Language Models
Zhenyu Bi | Minghao Xu | Jian Tang | Xuan Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

The capabilities of AI in the realm of science span a wide spectrum, from the atomic level, where it solves partial differential equations for quantum systems, to the molecular level, predicting chemical or protein structures, and even extending to societal predictions like infectious disease outbreaks. Recent advancements in large language models (LLMs), exemplified by models like ChatGPT, have showcased significant prowess in tasks involving natural language, such as translating languages, constructing chatbots, and answering questions. When we consider scientific data, we notice a resemblance to natural language in terms of sequences – scientific literature and health records presented as text, bio-omics data arranged in sequences, or sensor data like brain signals. The question arises: Can we harness the potential of these recent LLMs to drive scientific progress? In this tutorial, we will explore the application of large language models to three crucial categories of scientific data: 1) textual data, 2) biomedical sequences, and 3) brain signals. Furthermore, we will delve into LLMs’ challenges in scientific research, including ensuring trustworthiness, achieving personalization, and adapting to multi-modal data representation.