While recent work has begun to uncover the internal strategies that Large Language Models (LLMs) employ for simple arithmetic tasks, a unified understanding of their underlying mechanisms is still lacking. We extend recent findings showing that LLMs represent numbers in a digit-wise manner and present evidence for the existence of digit-position-specific circuits that LLMs use to perform simple arithmetic tasks, i.e. modular subgroups of MLP neurons that operate independently on different digit positions (units, tens, hundreds). Notably, such circuits exist independently of model size and of tokenization strategy, i.e. both for models that encode longer numbers digit-by-digit and as one token.Using Feature Importance and Causal Interventions, we identify and validate the digit-position-specific circuits, revealing a compositional and interpretable structure underlying the solving of arithmetic problems in LLMs. Our interventions selectively alter the model’s prediction at targeted digit positions, demonstrating the causal role of digit-position circuits in solving arithmetic tasks.
Large language models (LLMs) exhibit strong multilingual abilities, yet the neural mechanisms behind language-specific processing remain unclear. We analyze language-specific neurons in Llama-3.1-8B, Mistral-Nemo-12B, and Aya-Expanse-8B & 32B across 21 typologically diverse languages, identifying neurons that control language behavior. Using the Language Activation Probability Entropy (LAPE) method, we show that these neurons cluster in deeper layers, with non-Latin scripts showing greater specialization. Related languages share overlapping neurons, reflecting internal representations of linguistic proximity.Through language arithmetics, i.e. systematic activation addition and multiplication, we steer models to deactivate unwanted languages and activate desired ones, outperforming established replacement approaches. These interventions effectively guide behavior across five multilingual tasks: language forcing, translation, QA, comprehension, and NLI. Manipulation is more successful for high-resource languages, while typological similarity improves effectiveness. We also demonstrate that neuron steering enhances downstream performance and reveal internal "fallback" mechanisms for language selection when neurons are progressively deactivated. Our code is made publicly available at https://github.com/d-gurgurov/Language-Neurons-Manipulation.
Multilingual language models excel across languages, yet how they internally encode grammatical tense remains largely unclear. We investigate how decoder-only transformers represent, transfer, and control tense across eight typologically diverse languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. We construct a synthetic tense-annotated dataset and combine probing, causal analysis, feature disentanglement, and model steering to LLaMA-3.1 8B. We show that tense emerges as a distinct signal from early layers and transfers most strongly within the same language family. Causal tracing reveals that attention outputs around layer 16 consistently carry cross-lingually transferable tense information. Leveraging sparse autoencoders in this subspace, we isolate and steer English tense-related features, improving target-tense prediction accuracy by up to 11%% in a downstream cloze task.
Document-level neural machine translation (NMT) has outperformed sentence-level NMT on a number of datasets. However, document-level NMT is still not widely adopted in realworld translation systems mainly due to the lack of large-scale general-domain training data for document-level NMT. We examine the effectiveness of using Paracrawl for learning document-level translation. Paracrawl is a large-scale parallel corpus crawled from the Internet and contains data from various domains. The official Paracrawl corpus was released as parallel sentences (extracted from parallel webpages) and therefore previous works only used Paracrawl for learning sentence-level translation. In this work, we extract parallel paragraphs from Paracrawl parallel webpages using automatic sentence alignments and we use the extracted parallel paragraphs as parallel documents for training document-level translation models. We show that document-level NMT models trained with only parallel paragraphs from Paracrawl can be used to translate real documents from TED, News and Europarl, outperforming sentence-level NMT models. We also perform a targeted pronoun evaluation and show that document-level models trained with Paracrawl data can help context-aware pronoun translation.