Graph Neural Networks (GNNs) have emerged as powerful models for learning from graph-structured data. However, GNNs lack the inherent semantic understanding capability of rich textual node attributes, limiting their effectiveness in applications. On the other hand, we empirically observe that for existing GNN models, no one can consistently outperforms others across diverse datasets. In this paper, we study whether LLMs can act as an ensembler for multi-GNNs and propose the LensGNN model. The model first aligns multiple GNNs, mapping the representations of different GNNs into the same space. Then, through LoRA fine-tuning, it aligns the space between the GNN and the LLM, injecting graph tokens and textual information into LLMs. This allows LensGNN to ensemble multiple GNNs and take advantage of the strengths of LLM, leading to a deeper understanding of both textual semantic information and graph structural information. The experimental results show that LensGNN outperforms existing models. This research advances text-attributed graph ensemble learning by providing a robust and superior solution for integrating semantic and structural information. We provide our code and data here: https://github.com/AquariusAQ/LensGNN.
Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer’s concerns but also improve their work. This raises the critical question of how to enhance authors’ comprehension of review comments. In this paper, we present SEAGraph a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the author’s thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors. By bridging the gap between reviewers’ critiques and authors’ comprehension, SEAGraph contributes to a more efficient, transparent, and collaborative scientific publishing ecosystem. Our code is available at https://anonymous.4open.science/r/seagraph/.
We describe our entry, C2L2, to the CoNLL 2017 shared task on parsing Universal Dependencies from raw text. Our system features an ensemble of three global parsing paradigms, one graph-based and two transition-based. Each model leverages character-level bi-directional LSTMs as lexical feature extractors to encode morphological information. Though relying on baseline tokenizers and focusing only on parsing, our system ranked second in the official end-to-end evaluation with a macro-average of 75.00 LAS F1 score over 81 test treebanks. In addition, we had the top average performance on the four surprise languages and on the small treebank subset.