Open-source AI libraries are foundational to modern AI systems, yet they present significant, underexamined risks spanning security, licensing, maintenance, supply chain integrity, and regulatory compliance. We introduce LibVulnWatch, a system that leverages recent advances in large language models and agentic workflows to perform deep, evidence-based evaluations of these libraries. Built on a graph-based orchestration of specialized agents, the framework extracts, verifies, and quantifies risk using information from repositories, documentation, and vulnerability databases. LibVulnWatch produces reproducible, governance-aligned scores across five critical domains, publishing results to a public leaderboard for ongoing ecosystem monitoring. Applied to 20 widely used libraries—including ML frameworks, LLM inference engines, and agent orchestration tools—our approach covers up to 88% of OpenSSF Scorecard checks while surfacing up to 19 additional risks per library, such as critical RCE vulnerabilities, missing SBOMs, and regulatory gaps. By integrating advanced language technologies with the practical demands of software risk assessment, this work demonstrates a scalable, transparent mechanism for continuous supply chain evaluation and informed library selection.
A stereotype is a generalised claim about a social group. Such claims change with culture and context and are often phrased in everyday language, which makes them hard to detect: the State of the Art Large Language Models (LLMs) reach only 68% macro-F1 on the yes/no task “does this sentence contain a stereotype?”. We present HEARTS, a Holistic framework for Explainable, sustAinable and Robust Text Stereotype detection that brings together NLP and social-science. The framework is built on the Expanded Multi-Grain Stereotype Dataset (EMGSD), 57201 English sentences that cover gender, profession, nationality, race, religion and LGBTQ+ topics, adding 10% more data for under-represented groups while keeping high annotator agreement (𝜅 = 0.82). Fine-tuning the lightweight ALBERT-v2 model on EMGSD raises binary detection scores to 81.5% macro-F1, matching full BERT while producing 200× less CO2. For Explainability, we blend SHAP and LIME token level scores and introduce a confidence measure that increases when the model is correct (𝜌 = 0.18). We then use HEARTS to assess 16 SOTA LLMs on 1050 neutral prompts each for stereotype propagation: stereotype rates fall by 23% between model generations, yet clear differences remain across model families (LLaMA > Gemini > GPT > Claude). HEARTS thus supplies a practical, low-carbon and interpretable toolkit for measuring stereotype bias in language.