Shashwat Bhardwaj


2025

pdf bib
Leveraging the Cross-Domain & Cross-Linguistic Corpus for Low Resource NMT: A Case Study On Bhili-Hindi-English Parallel Corpus
Pooja Singh | Shashwat Bhardwaj | Vaibhav Sharma | Sandeep Kumar
Findings of the Association for Computational Linguistics: EMNLP 2025

The linguistic diversity of India poses significant machine translation challenges, especially for underrepresented tribal languages like Bhili, which lack high-quality linguistic resources. This paper addresses the gap by introducing Bhili-Hindi-English Parallel Corpus (BHEPC), the first and largest parallel corpus worldwide comprising 110,000 meticulously curated sentences across Bhili, Hindi, and English. The corpus was created with the assistance of expert human translators. BHEPC spans critical domains such as education, administration, and news, establishing a valuable benchmark for research in low resource machine translation. To establish a comprehensive Bhili Machine Translation benchmark, we evaluated a wide range of proprietary and open-source Multilingual Large Language Models (MLLMs) on bidirectional translation tasks between English/Hindi and Bhili. Comprehensive evaluation demonstrates that the fine-tuned NLLB-200 distilled 600M variant model outperforms others, highlighting the potential of multilingual models in low resource scenarios. Furthermore, we investigated the generative translation capabilities of multilingual LLMs on BHEPC using in-context learning, assessing performance under cross-domain generalization and quantifying distributional divergence. This work bridges a critical resource gap and promotes inclusive natural language processing technologies for low-resource and marginalized languages globally.

pdf bib
GARuD: Guided Alignment of Representations using Distillation for Ultra-Low-Resource Languages
Debarchan Basu | Shashwat Bhardwaj | Vaibhav Sharma | Pooja Singh | Sandeep Kumar
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

The vast majority of the world’s languages, particularly low-resource and indigenous ones like Bhili, remain critically underserved by modern language technologies. The primary bottleneck is the lack of large-scale corpora required for standard pre-training. To address this gap, we introduce cross-lingual contrastive distillation, a novel and data-efficient, compute-efficient paradigm for creating powerful language models without a massive monolingual corpus. Our method adapts a pre-existing multilingual model (MuRIL) by using a fixed, expert teacher model (HindBERT) to distill semantic knowledge from a related high-resource language (Hindi) via a contrastive objective on a modest parallel corpus. Through comprehensive experiments, we show that our resulting model, GARuD-Bhili, significantly outperforms strong zero-shot and MLM-only baselines on a suite of evaluations, including intrinsic language modeling, downstream sentiment analysis, and cross-lingual benchmarks (Tatoeba, XNLI). Our work presents a generalizable and scalable blueprint for linguistic empowerment, offering a practical pathway to develop robust language technologies for other underserved languages globally.