Extracting relations from scientific literature is a fundamental task in biomedical NLP because entities and relations among them drive hypothesis generation and knowledge discovery. As literature grows rapidly, relation extraction (RE) is indispensable to curate knowledge graphs to be used as computable structured and symbolic representations. With the rise of LLMs, it is pertinent to examine if it is better to skip tailoring supervised RE methods, save annotation burden, and just use zero shot RE (ZSRE) via LLM API calls. In this paper, we propose a benchmark with seven biomedical RE datasets with interesting characteristics and evaluate three Open AI models (GPT-4, o1, and GPT-OSS-120B) for end-to-end ZSRE. We show that LLM-based ZSRE is inching closer to supervised methods in performances on some datasets but still struggles on complex inputs expressing multiple relations with different predicates. Our error analysis reveals scope for improvements.
In this paper, we study the applicability of Bayesian Parametric and Non-parametric methods for user clustering in an E-commerce search setting. To the best of our knowledge, this is the first work that presents a comparative study of various Bayesian clustering methods in the context of product search. Specifically, we cluster users based on their topical patterns from their respective product search queries. To evaluate the quality of the clusters formed, we perform a collaborative query recommendation task. Our findings indicate that simple parametric model like Latent Dirichlet Allocation (LDA) outperforms more sophisticated non-parametric methods like Distance Dependent Chinese Restaurant Process and Dirichlet Process-based clustering in both tasks.
This paper describes our efforts in tackling Task 5 of SemEval-2020. The task involved detecting a class of textual expressions known as counterfactuals and separating them into their constituent elements. Our final submitted approaches were an ensemble of various fine-tuned transformer-based and CNN-based models for the first subtask and a transformer model with dependency tree information for the second subtask. We ranked 4-th and 9-th in the overall leaderboard. We also explored various other approaches that involved classical methods, other neural architectures and incorporation of different linguistic features.
The purpose of this research is to address the problem of extracting information from travel itineraries and discuss the challenges faced in the process. Business-to-customer emails like booking confirmations and e-tickets are usually machine generated by filling slots in pre-defined templates which improve the presentation of such emails but also make the emails more complex in structure. Extracting the relevant information from these emails would let users track their journeys and important updates on applications installed on their devices to give them a consolidated over view of their itineraries and also save valuable time. We investigate the use of an HMM-based named entity recognizer on such emails which we will use to label and extract relevant entities. NER in such emails is challenging as these itineraries offer less useful contextual information. We also propose a rich set of features which are integrated into the model and are specific to our domain. The result from our model is a list of lists containing the relevant information extracted from ones itinerary.