Po Chun Chen

Also published as: Po-Chun Chen


2025

pdf bib
Diverge to Induce Prompting: Multi-Rationale Induction for Zero-Shot Reasoning
Po-Chun Chen | Hen-Hsen Huang | Hsin-Hsi Chen
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

To address the instability of unguided reasoning paths in standard Chain-of-Thought prompting, recent methods guide large language models (LLMs) by first eliciting a single reasoning strategy. However, relying on just one strategy for each question can still limit performance across diverse tasks. We propose Diverge-to-Induce Prompting (DIP), a framework that first prompts an LLM to generate multiple diverse high-level rationales for each question. Each rationale is then elaborated into a detailed, step-by-step draft plan. Finally, these draft plans are induced into a final plan. DIP enhances zero-shot reasoning accuracy without reliance on resource-intensive sampling. Experiments show that DIP outperforms single-strategy prompting, demonstrating the effectiveness of multi-plan induction for prompt-based reasoning.

2024

pdf bib
Induct-Learn: Short Phrase Prompting with Instruction Induction
Po-Chun Chen | Sheng-Lun Wei | Hen-Hsen Huang | Hsin-Hsi Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have demonstrated capability in “instruction induction,” generating instructions from demonstrations (input-output pairs). However, existing methods often rely on large datasets or numerous examples, which is impractical and costly in real-world scenarios. In this work, we propose a low-cost, task-level framework called Induct-Learn. It induces pseudo instructions from a few demonstrations and a short phrase, adding a CoT process into existing demonstrations. When encountering new problems, the learned pseudo instructions and demonstrations with the pseudo CoT process can be combined into a prompt to guide the LLM’s problem-solving process. We validate our approach on the BBH-Induct and Evals-Induct datasets, and the results show that the Induct-Learn framework outperforms state-of-the-art methods. We also exhibit cross-model adaptability and achieve superior performance at a lower cost compared to existing methods.

2020

pdf bib
NTU_NLP at SemEval-2020 Task 12: Identifying Offensive Tweets Using Hierarchical Multi-Task Learning Approach
Po-Chun Chen | Hen-Hsen Huang | Hsin-Hsi Chen
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper presents our hierarchical multi-task learning (HMTL) and multi-task learning (MTL) approaches for improving the text encoder in Sub-tasks A, B, and C of Multilingual Offensive Language Identification in Social Media (SemEval-2020 Task 12). We show that using the MTL approach can greatly improve the performance of complex problems, i.e. Sub-tasks B and C. Coupled with a hierarchical approach, the performances are further improved. Overall, our best model, HMTL outperforms the baseline model by 3% and 2% of Macro F-score in Sub-tasks B and C of OffensEval 2020, respectively.

2017

pdf bib
Speaker Role Contextual Modeling for Language Understanding and Dialogue Policy Learning
Ta-Chung Chi | Po-Chun Chen | Shang-Yu Su | Yun-Nung Chen
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Language understanding (LU) and dialogue policy learning are two essential components in conversational systems. Human-human dialogues are not well-controlled and often random and unpredictable due to their own goals and speaking habits. This paper proposes a role-based contextual model to consider different speaker roles independently based on the various speaking patterns in the multi-turn dialogues. The experiments on the benchmark dataset show that the proposed role-based model successfully learns role-specific behavioral patterns for contextual encoding and then significantly improves language understanding and dialogue policy learning tasks.

2016

pdf bib
Using Wikipedia and Semantic Resources to Find Answer Types and Appropriate Answer Candidate Sets in Question Answering
Po-Chun Chen | Meng-Jie Zhuang | Chuan-Jie Lin
Proceedings of the Open Knowledge Base and Question Answering Workshop (OKBQA 2016)

This paper proposes a new idea that uses Wikipedia categories as answer types and defines candidate sets inside Wikipedia. The focus of a given question is searched in the hierarchy of Wikipedia main pages. Our searching strategy combines head-noun matching and synonym matching provided in semantic resources. The set of answer candidates is determined by the entry hierarchy in Wikipedia and the hyponymy hierarchy in WordNet. The experimental results show that the approach can find candidate sets in a smaller size but achieve better performance especially for ARTIFACT and ORGANIZATION types, where the performance is better than state-of-the-art Chinese factoid QA systems.