Mangadoddi Srikar Vardhan


2025

pdf bib
Fine-Grained Detection of AI-Generated Text Using Sentence-Level Segmentation
L D M S Sai Teja | Annepaka Yadagiri | Partha Pakray | Chukhu Chunka | Mangadoddi Srikar Vardhan
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

Generation of Artificial Intelligence (AI) texts in important works has become a common practice that can be used to misuse and abuse AI at various levels. Traditional AI detectors often rely on document-level classification, which struggles to identify AI content in hybrid or slightly edited texts designed to avoid detection, leading to concerns about the model’s efficiency, which makes it hard to distinguish between human-written and AI-generated texts. A sentence-level sequence labeling model proposed to detect transitions between human- and AI-generated text, leveraging nuanced linguistic signals overlooked by document-level classifiers. By this method, detecting and segmenting AI and human-written text within a single document at the token-level granularity is achieved. Our model combines the state-of-the-art pre-trained Transformer models, incorporating Neural Networks (NN) and Conditional Random Fields (CRFs). This approach extends the power of transformers to extract semantic and syntactic patterns, and the neural network component to capture enhanced sequence-level representations, thereby improving the boundary predictions by the CRF layer, which enhances sequence recognition and further identification of the partition between Human- and AI-generated texts. The evaluation is performed on two publicly available benchmark datasets containing collaborative human and AI-generated texts. Our experimental comparisons are with zero-shot detectors and the existing state-of-the-art models, along with rigorous ablation studies to justify that this approach, in particular, can accurately detect the spans of AI texts in a completely collaborative text.

pdf bib
nits_teja_srikar at GenAI Detection Task 2: Distinguishing Human and AI-Generated Essays Using Machine Learning and Transformer Models
Sai Teja Lekkala | Annepaka Yadagiri | Mangadoddi Srikar Vardhan | Partha Pakray
Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)

This paper presents models to differentiate between human-written and AI-generated essays, addressing challenges posed by advanced AI models like ChatGPT and Claude. Using a structured dataset, we fine-tune multiple machine learning models, including XGBoost and Logistic Regression, along with ensemble learning and k-fold cross-validation. The dataset is processed through TF-IDF vectorization, followed by text cleaning, lemmatization, stemming, and part-of-speech tagging before training. Our team nits_teja_srikar achieves high accuracy, with DistilBERT performing at 77.3% accuracy, standing at 20th position for English, and XLM-RoBERTa excelling in Arabic at 92.2%, standing at 14th position in the official leaderboard, demonstrating the model’s potential for real-world applications.

pdf bib
CNLP-NITS-PP at GenAI Detection Task 3: Cross-Domain Machine-Generated Text Detection Using DistilBERT Techniques
Sai Teja Lekkala | Annepaka Yadagiri | Mangadoddi Srikar Vardhan | Partha Pakray
Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)

This paper presents a Cross-domain Machine-Generated Text Detection model developed for the COLING 2025 Workshop on Detecting AI-generated Content (DAIGenC). As large language models evolve, detecting machine-generated text becomes increasingly challenging, particularly in contexts like misinformation and academic integrity. While current detectors perform well on unseen data, they remain vulnerable to adversarial strategies, including paraphrasing, homoglyphs, misspellings, synonyms, whitespace manipulations, etc. We introduce a framework to address these adversarial tactics designed to bypass detection systems by adversarial training. Our team DistilBERT-NITS detector placed 7th in the Non-Adversarial Attacks category, and Adversarial-submission-3 achieved 17th in the Adversarial Attacks category.