Lei Ding


2025

pdf bib
Adaptive Coopetition: Leveraging Coarse Verifier Signals for Resilient Multi-Agent LLM Reasoning
Wendy Yaqiao Liu | Rui Jerry Huang | Anastasia Miin | Lei Ding
The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

Inference-time computation is a critical yet challenging paradigm for enhancing the reasoning performance of large language models (LLMs). While existing strategies improve reasoning stability and consistency, they suffer from notable limitations: self-correction often reinforces the model’s initial biases, and Multi-Agent Collaboration (MAC) often fails due to the lack of efficient coordination mechanisms, leading to collective errors. Although high-performing verifiers can detect reasoning errors, making them reliable requires substantial training. To address these challenges, we introduce a novel inference-time framework - **Adaptive Coopetition (AdCo)** - in which LLM agents utilize **an adaptive, UCB-based ‘coopetition’ mechanism**. At each round, agents leverage coarse verifier signals to determine whether to collaborate or compete, further iteratively refining their reasoning based on peer feedback. Without relying on high-performance verifiers, our adaptive strategy achieves significant performance gains on mathematical reasoning benchmarks, yielding **a 20% relative improvement** over baselines on the more challenging dataset. Our approach remains robust and consistent in terms of accuracy under different sample sizes and configurations. This adaptive, signal-guided ‘coopetition’ framework enhances reasoning robustness by leveraging bothmodel knowledge diversity and reasoning trace measure, while also promoting uncertainty-driven exploration, especially when participants have comparable capabilities. From this perspective, our work offers a fresh lens on inference-time computation and paves the way for more resilient multi-agent LLM systems.

2024

pdf bib
SoftDedup: an Efficient Data Reweighting Method for Speeding Up Language Model Pre-training
Nan He | Weichen Xiong | Hanwen Liu | Yi Liao | Lei Ding | Kai Zhang | Guohua Tang | Xiao Han | Yang Wei
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The effectiveness of large language models (LLMs) is often hindered by duplicated data in their extensive pre-training datasets. Current approaches primarily focus on detecting and removing duplicates, which risks the loss of valuable information and neglects the varying degrees of duplication. To address this, we propose a soft deduplication method that maintains dataset integrity while selectively reducing the sampling weight of data with high commonness. Central to our approach is the concept of “data commonness”, a metric we introduce to quantify the degree of duplication by measuring the occurrence probabilities of samples using an n-gram model. Empirical analysis shows that this method significantly improves training efficiency, achieving comparable perplexity scores with at least a 26% reduction in required training steps. Additionally, it enhances average few-shot downstream accuracy by 1.77% when trained for an equivalent duration. Importantly, this approach consistently improves performance, even on rigorously deduplicated datasets, indicating its potential to complement existing methods and become a standard pre-training process for LLMs.

pdf bib
Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding
Yue Fan | Lei Ding | Ching-Chen Kuo | Shan Jiang | Yang Zhao | Xinze Guan | Jie Yang | Yi Zhang | Xin Eric Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Graphical User Interfaces (GUIs) are central to our interaction with digital devices and growing efforts have been made to build models for various GUI understanding tasks. However, these efforts largely overlook an important GUI-referring task: screen reading based on user-indicated points, which we name the Screen Point-and-Read (ScreenPR) task. Currently, this task is predominantly handled by rigid accessible screen reading tools, in great need of new models driven by advancements in Multimodal Large Language Models (MLLMs). In this paper, we propose a Tree-of-Lens (ToL) agent, utilizing a novel ToL grounding mechanism, to address the ScreenPR task. Based on the input point coordinate and the corresponding GUI screenshot, our ToL agent constructs a Hierarchical Layout Tree. Based on the tree, our ToL agent not only comprehends the content of the indicated area but also articulates the layout and spatial relationships between elements. Such layout information is crucial for accurately interpreting information on the screen, distinguishing our ToL agent from other screen reading tools. We also thoroughly evaluate the ToL agent against other baselines on a newly proposed ScreenPR benchmark, which includes GUIs from mobile, web, and operating systems. Last but not least, we test the ToL agent on mobile GUI navigation tasks, demonstrating its utility in identifying incorrect actions along the path of agent execution trajectories. Code and data: https://screen-point-and-read.github.io.

pdf bib
Debiasing with Sufficient Projection: A General Theoretical Framework for Vector Representations
Enze Shi | Lei Ding | Linglong Kong | Bei Jiang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Pre-trained vector representations in natural language processing often inadvertently encode undesirable social biases. Identifying and removing unwanted biased information from vector representation is an evolving and significant challenge. Our study uniquely addresses this issue from the perspective of statistical independence, proposing a framework for reducing bias by transforming vector representations to an unbiased subspace using sufficient projection. The key to our framework lies in its generality: it adeptly mitigates bias across both debiasing and fairness tasks, and across various vector representation types, including word embeddings and output representations of transformer models. Importantly, we establish the connection between debiasing and fairness, offering theoretical guarantees and elucidating our algorithm’s efficacy. Through extensive evaluation of intrinsic and extrinsic metrics, our method achieves superior performance in bias reduction while maintaining high task performance, and offers superior computational efficiency.