Koki Natsumi


2025

pdf bib
Agreement-Constrained Probabilistic Minimum Bayes Risk Decoding
Koki Natsumi | Hiroyuki Deguchi | Yusuke Sakai | Hidetaka Kamigaito | Taro Watanabe
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

Minimum Bayes risk (MBR) decoding generates high-quality translations by maximizing the expected utility of output candidates, but it evaluates all pairwise scores over the candidate set; hence, it takes quadratic time with respect to the number of candidates. To reduce the number of utility function calls, probabilistic MBR (PMBR) decoding partially evaluates quality scores using sampled pairs of candidates and completes the missing scores with a matrix completion algorithm. Nevertheless, it degrades the translation quality as the number of utility function calls is reduced. Therefore, to improve the trade-off between quality and cost, we propose agreement-constrained PMBR (AC-PMBR) decoding, which leverages a knowledge distilled model to guide the completion of the score matrix. Our AC-PMBR decoding improved approximation errors of matrix completion by up to 3 times and achieved higher translation quality compared with PMBR decoding at a comparable computational cost on the WMT’23 En↔De translation tasks.

2024

pdf bib
Document-level Translation with LLM Reranking: Team-J at WMT 2024 General Translation Task
Keito Kudo | Hiroyuki Deguchi | Makoto Morishita | Ryo Fujii | Takumi Ito | Shintaro Ozaki | Koki Natsumi | Kai Sato | Kazuki Yano | Ryosuke Takahashi | Subaru Kimura | Tomomasa Hara | Yusuke Sakai | Jun Suzuki
Proceedings of the Ninth Conference on Machine Translation

We participated in the constrained track for English-Japanese and Japanese-Chinese translations at the WMT 2024 General Machine Translation Task. Our approach was to generate a large number of sentence-level translation candidates and select the most probable translation using minimum Bayes risk (MBR) decoding and document-level large language model (LLM) re-ranking. We first generated hundreds of translation candidates from multiple translation models and retained the top 30 candidates using MBR decoding. In addition, we continually pre-trained LLMs on the target language corpora to leverage document-level information. We utilized LLMs to select the most probable sentence sequentially in context from the beginning of the document.