Khondoker Ittehadul Islam


2025

pdf bib
Reveal-Bangla: A Dataset for Cross-Lingual Multi-Step Reasoning Evaluation
Khondoker Ittehadul Islam | Gabriele Sarti
Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025)

Language models have demonstrated remarkable performance on complex multi-step reasoning tasks. However, their evaluation has been predominantly confined to high-resource languages such as English. In this paper, we introduce a manually translated Bangla multi-step reasoning dataset derived from the English Reveal dataset, featuring both binary and non-binary question types. We conduct a controlled evaluation of English-centric and Bangla-centric multilingual small language models on the original dataset and our translated version to compare their ability to exploit relevant reasoning steps to produce correct answers. Our results show that, in comparable settings, reasoning context is beneficial for more challenging non-binary questions, but models struggle to employ relevant Bangla reasoning steps effectively. We conclude by exploring how reasoning steps contribute to models’ predictions, highlighting different trends across models and languages.

2022

pdf bib
EmoNoBa: A Dataset for Analyzing Fine-Grained Emotions on Noisy Bangla Texts
Khondoker Ittehadul Islam | Tanvir Yuvraz | Md Saiful Islam | Enamul Hassan
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

For low-resourced Bangla language, works on detecting emotions on textual data suffer from size and cross-domain adaptability. In our paper, we propose a manually annotated dataset of 22,698 Bangla public comments from social media sites covering 12 different domains such as Personal, Politics, and Health, labeled for 6 fine-grained emotion categories of the Junto Emotion Wheel. We invest efforts in the data preparation to 1) preserve the linguistic richness and 2) challenge any classification model. Our experiments to develop a benchmark classification system show that random baselines perform better than neural networks and pre-trained language models as hand-crafted features provide superior performance.

2021

pdf bib
SentNoB: A Dataset for Analysing Sentiment on Noisy Bangla Texts
Khondoker Ittehadul Islam | Sudipta Kar | Md Saiful Islam | Mohammad Ruhul Amin
Findings of the Association for Computational Linguistics: EMNLP 2021

In this paper, we propose an annotated sentiment analysis dataset made of informally written Bangla texts. This dataset comprises public comments on news and videos collected from social media covering 13 different domains, including politics, education, and agriculture. These comments are labeled with one of the polarity labels, namely positive, negative, and neutral. One significant characteristic of the dataset is that each of the comments is noisy in terms of the mix of dialects and grammatical incorrectness. Our experiments to develop a benchmark classification system show that hand-crafted lexical features provide superior performance than neural network and pretrained language models. We have made the dataset and accompanying models presented in this paper publicly available at https://git.io/JuuNB.