Katherine Luna


2025

pdf bib
CultureGuard: Towards Culturally-Aware Dataset and Guard Model for Multilingual Safety Applications
Raviraj Bhuminand Joshi | Rakesh Paul | Kanishk Singla | Anusha Kamath | Michael Evans | Katherine Luna | Shaona Ghosh | Utkarsh Vaidya | Eileen Margaret Peters Long | Sanjay Singh Chauhan | Niranjan Wartikar
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

The increasing use of Large Language Models (LLMs) in agentic applications highlights the need for robust safety guard models. While content safety in English is well-studied, non-English languages lack similar advancements due to the high cost of collecting culturally aligned labeled datasets. We present CultureGuard, a novel solution for curating culturally aligned, high-quality safety datasets across multiple languages. Our approach introduces a four-stage synthetic data generation and filtering pipeline: cultural data segregation, cultural data adaptation, machine translation, and quality filtering. This pipeline enables the conversion and expansion of the Nemotron-Content-Safety-Dataset-V2 English safety dataset into eight distinct languages: Arabic, German, Spanish, French, Hindi, Japanese, Thai, and Chinese. The resulting dataset, Nemotron-Safety-Guard-Dataset-v3, comprises 386,661 samples in 9 languages and facilitates the training of Llama-3.1-Nemotron-Safety-Guard-8B-v3 via LoRA-based fine-tuning. The final model achieves state-of-the-art performance on several multilingual content safety benchmarks. Furthermore, we show our moderately multilingual fine-tuning enables robust cross-lingual transfer and strong zero-shot generalization to unseen languages. We also benchmark the latest open LLMs on multilingual safety and observe that these LLMs are more prone to give unsafe responses when prompted in non-English languages. This work advances multilingual LLM safety by enabling the development of culturally aware safety guard models.

2024

pdf bib
APE: Active Learning-based Tooling for Finding Informative Few-shot Examples for LLM-based Entity Matching
Kun Qian | Yisi Sang | Farima Bayat† | Anton Belyi | Xianqi Chu | Yash Govind | Samira Khorshidi | Rahul Khot | Katherine Luna | Azadeh Nikfarjam | Xiaoguang Qi | Fei Wu | Xianhan Zhang | Yunyao Li
Proceedings of the Fifth Workshop on Data Science with Human-in-the-Loop (DaSH 2024)

Prompt engineering is an iterative procedure that often requires extensive manual effort to formulate suitable instructions for effectively directing large language models (LLMs) in specific tasks. Incorporating few-shot examples is a vital and effective approach to provide LLMs with precise instructions, leading to improved LLM performance. Nonetheless, identifying the most informative demonstrations for LLMs is labor-intensive, frequently entailing sifting through an extensive search space. In this demonstration, we showcase a human-in-the-loop tool called ool (Active Prompt Engineering) designed for refining prompts through active learning. Drawing inspiration from active learning, ool iteratively selects the most ambiguous examples for human feedback, which will be transformed into few-shot examples within the prompt.