Juyeon Kim
2025
ControlMed: Adding Reasoning Control to Medical Language Model
Sung-Min Lee
|
Siyoon Lee
|
Juyeon Kim
|
Kyoungmin Roh
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
Reasoning Large Language Models (LLMs) with enhanced accuracy and explainability are increasingly being adopted in the medical domain, as the life-critical nature of clinical decision-making demands reliable support. Despite these advancements, existing reasoning LLMs often generate unnecessarily lengthy reasoning processes, leading to significant computational overhead and response latency. These limitations hinder their practical deployment in real-world clinical environments. To address these challenges, we introduce ControlMed, a medical language model that enables users to actively control the length of the reasoning process at inference time through fine-grained control markers. ControlMed is trained through a three-stage pipeline: 1) pre-training on a large-scale synthetic medical instruction dataset covering both direct and reasoning responses; 2) supervised fine-tuning with multi-length reasoning data and explicit length-control markers; and 3) reinforcement learning with model-based reward signals to enhance factual accuracy and response quality. Experimental results on a variety of English and Korean medical benchmarks demonstrate that our model achieves similar or better performance compared to state-of-the-art models. Furthermore, users can flexibly balance reasoning accuracy and computational efficiency by controlling the reasoning length as needed. These findings demonstrate that ControlMed is a practical and adaptable solution for clinical question answering and medical information analysis.
2024
Text2Chart31: Instruction Tuning for Chart Generation with Automatic Feedback
Fatemeh Pesaran Zadeh
|
Juyeon Kim
|
Jin-Hwa Kim
|
Gunhee Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) have demonstrated strong capabilities across various language tasks, notably through instruction-tuning methods. However, LLMs face challenges in visualizing complex, real-world data through charts and plots. Firstly, existing datasets rarely cover a full range of chart types, such as 3D, volumetric, and gridded charts. Secondly, supervised fine-tuning methods do not fully leverage the intricate relationships within rich datasets, including text, code, and figures. To address these challenges, we propose a hierarchical pipeline and a new dataset for chart generation. Our dataset, Text2Chart31, includes 31 unique plot types referring to the Matplotlib library, with 11.1K tuples of descriptions, code, data tables, and plots. Moreover, we introduce a reinforcement learning-based instruction tuning technique for chart generation tasks without requiring human feedback. Our experiments show that this approach significantly enhances the model performance, enabling smaller models to outperform larger open-source models and be comparable to state-of-the-art proprietary models in data visualization tasks.
Search
Fix author
Co-authors
- Jin-Hwa Kim 1
- Gunhee Kim 1
- Sung-Min Lee 1
- Siyoon Lee 1
- Fatemeh Pesaran Zadeh 1
- show all...