Jonathan Fürst


2025

pdf bib
Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs
Gaye Colakoglu | Gürkan Solmaz | Jonathan Fürst
Findings of the Association for Computational Linguistics: EMNLP 2025

This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study investigates the sub-problems and methods within these core challenges, such as input representation, chunking, prompting, selection of LLMs, and multimodal models. It examines the effect of different design choices through LayIE-LLM, a new, open-source, layout-aware IE test suite, benchmarking against traditional, fine-tuned IE models. The results on two IE datasets show that LLMs require adjustment of the IE pipeline to achieve competitive performance: the optimized configuration found with LayIE-LLM achieves 13.3–37.5 F1 points more than a general-practice baseline configuration using the same LLM. To find a well-working configuration, we develop a one-factor-at-a-time (OFAT) method that achieves near-optimal results. Our method is only 0.8–1.8 points lower than the best full factorial exploration with a fraction (~2.8%) of the required computation. Overall, we demonstrate that, if well-configured, general-purpose LLMs match the performance of specialized models, providing a cost-effective, finetuning-free alternative. Our test-suite is available at https://github.com/gayecolakoglu/LayIE-LLM

pdf bib
Multi-Modal Data Exploration via Language Agents
Farhad Nooralahzadeh | Yi Zhang | Jonathan Fürst | Kurt Stockinger
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

International enterprises, organizations, and hospitals collect large amounts of multi-modal data stored in databases, text documents, images, and videos. While there has been recent progress in the separate fields of multi-modal data exploration as well as in database systems that automatically translate natural language questions to database query languages, the research challenge of querying both structured databases and unstructured modalities (e.g., texts, images) in natural language remains largely unexplored.In this paper, we propose M2EX, a system that enables multi-modal data exploration via language agents. Our approach is based on the following research contributions: (1) Our system is inspired by a real-world use case that enables users to explore multi-modal information systems. (2) M2EX leverages an LLM-based agentic AI framework to decompose a natural language question into subtasks such as text-to-SQL generation and image analysis and to orchestrate modality-specific experts in an efficient query plan. (3) Experimental results on multi-modal datasets, encompassing relational data, text, and images, demonstrate that our system outperforms state-of-the-art multi-modal exploration systems, excelling in both accuracy and various performance metrics, including query latency, API costs, and planning efficiency, thanks to the more effective utilization of the reasoning capabilities of LLMs.