Jiaqi Tan


2025

pdf bib
SEAGraph: Unveiling the Whole Story of Paper Review Comments
Jianxiang Yu | Jiaqi Tan | Zichen Ding | Jiapeng Zhu | Jiahao Li | Yao Cheng | Qier Cui | Yunshi Lan | Yao Liu | Xiang Li
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer’s concerns but also improve their work. This raises the critical question of how to enhance authors’ comprehension of review comments. In this paper, we present SEAGraph a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the author’s thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors. By bridging the gap between reviewers’ critiques and authors’ comprehension, SEAGraph contributes to a more efficient, transparent, and collaborative scientific publishing ecosystem. Our code is available at https://anonymous.4open.science/r/seagraph/.

2024

pdf bib
Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis
Jianxiang Yu | Zichen Ding | Jiaqi Tan | Kangyang Luo | Zhenmin Weng | Chenghua Gong | Long Zeng | RenJing Cui | Chengcheng Han | Qiushi Sun | Zhiyong Wu | Yunshi Lan | Xiang Li
Findings of the Association for Computational Linguistics: EMNLP 2024

In recent years, the rapid increase in scientific papers has overwhelmed traditional review mechanisms, resulting in varying quality of publications. Although existing methods have explored the capabilities of Large Language Models (LLMs) for automated scientific reviewing, their generated contents are often generic or partial. To address the issues above, we introduce an automated paper reviewing framework SEA. It comprises of three modules: Standardization, Evaluation, and Analysis, which are represented by models SEA-S, SEA-E, and SEA-A, respectively. Initially, SEA-S distills data standardization capabilities of GPT-4 for integrating multiple reviews for a paper. Then, SEA-E utilizes standardized data for fine-tuning, enabling it to generate constructive reviews. Finally, SEA-A introduces a new evaluation metric called mismatch score to assess the consistency between paper contents and reviews. Moreover, we design a self-correction strategy to enhance the consistency. Extensive experimental results on datasets collected from eight venues show that SEA can generate valuable insights for authors to improve their papers.