The widespread dissemination of toxic content on social media poses a serious threat to both online environments and public discourse, highlighting the urgent need for detoxification methods that effectively remove toxicity while preserving the original semantics.However, existing approaches often struggle to simultaneously achieve strong detoxification performance, semantic preservation, and robustness to out-of-distribution data. Moreover, they typically rely on costly, manually annotated parallel corpora while showing poor data efficiency.To address these challenges, we propose GEM, a two-stage training framework that jointly optimizes Model Generalization, Data Efficiency, and Semantic Preservation.We first perform supervised fine-tuning on a small set of high-quality, filtered parallel data to establish a strong initialization. Then, we leverage unlabeled toxic inputs and a custom-designed reward model to train the LLM using Group Relative Policy Optimization.Experimental results demonstrate that our method effectively mitigates the trade-offs faced by previous work, achieving state-of-the-art performance with improved generalization and significantly reduced dependence on annotated data. Our code is available at https://github.com/allacnobug/Detoxification-of-Text.
The rapid growth of social media platforms has raised significant concerns regarding online content toxicity. When Large Language Models (LLMs) are used for toxicity detection, two key challenges emerge: 1) the absence of domain-specific toxicity knowledge leads to false negatives; 2) the excessive sensitivity of LLMs to toxic speech results in false positives, limiting freedom of speech. To address these issues, we propose a novel method called *MetaTox*, leveraging graph search on a meta-toxic knowledge graph to enhance hatred and toxicity detection. First, we construct a comprehensive meta-toxic knowledge graph by utilizing LLMs to extract toxic information through a three step pipeline. Second, we query the graph via retrieval and ranking processes to supplement accurate, relevant toxicity knowledge. Extensive experiments and case studies across multiple datasets demonstrate that our MetaTox boosts overall toxicity detection performance, particularly in out-of-domain settings. In addition, under in-domain scenarios, we surprisingly find that small language models are more competent. Our code is available at https://github.com/YiboZhao624/MetaTox.
Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer’s concerns but also improve their work. This raises the critical question of how to enhance authors’ comprehension of review comments. In this paper, we present SEAGraph a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the author’s thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors. By bridging the gap between reviewers’ critiques and authors’ comprehension, SEAGraph contributes to a more efficient, transparent, and collaborative scientific publishing ecosystem. Our code is available at https://anonymous.4open.science/r/seagraph/.