Hongyi Wen


2025

pdf bib
Reveal and Release: Iterative LLM Unlearning with Self-generated Data
Linxi Xie | Xin Teng | Shichang Ke | Hongyi Wen | Shenji Wan
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language model (LLM) unlearning has demonstrated effectiveness in removing the influence of undesirable data (also known as forget data). Existing approaches typically assume full access to the forget dataset, overlooking two key challenges: (1) Forget data is often privacy-sensitive, rare, or legally regulated, making it expensive or impractical to obtain (2) The distribution of available forget data may not align with how that information is represented within the model. To address these limitations, we propose a “Reveal-and-Release” method to unlearn with self-generated data, where we prompt the model to reveal what it knows using optimized instructions. To fully utilize the self-generated forget data, we propose an iterative unlearning framework, where we make incremental adjustments to the model’s weight space with parameter-efficient modules trained on the forget data. Experimental results demonstrate that our method balances the tradeoff between forget quality and utility preservation.

pdf bib
An Analysis of Large Language Models for Simulating User Responses in Surveys
Ziyun Yu | Yiru Zhou | Chen Zhao | Hongyi Wen
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

Using Large Language Models (LLMs) to simulate user opinions has received growing attention. Yet LLMs, especially trained with reinforcement learning from human feedback (RLHF), are known to exhibit biases toward dominant viewpoints, raising concerns about their ability to represent users from diverse demographic and cultural backgrounds. In this work, we examine the extent to which LLMs can simulate human responses to cross-domain survey questions and propose two LLM-based approaches: chain-of-thought (COT) prompting and Diverse Claims Generation (CLAIMSIM), which elicits viewpoints from LLM parametric knowledge as contextual input. Experiments on the survey question answering task indicate that, while CLAIMSIM produces more diverse responses, both approaches struggle to accurately simulate users. Further analysis reveals two key limitations: (1) LLMs tend to maintain fixed viewpoints across varying demographic features, and generate single-perspective claims; and (2) when presented with conflicting claims, LLMs struggle to reason over nuanced differences among demographic features, limiting their ability to adapt responses to specific user profiles.