In recent years, large language models (LLMs) have revolutionized the field of natural language processing. However, they often suffer from knowledge gaps and hallucinations. Graph retrieval-augmented generation (GraphRAG) enhances LLM reasoning by integrating structured knowledge from external graphs. However, we identify two key challenges that plague GraphRAG: (1) Retrieving noisy and irrelevant information can degrade performance and (2) Excessive reliance on external knowledge suppresses the model’s intrinsic reasoning.To address these issues, we propose GraphRAG-FI (Filtering & Integration), consisting of GraphRAG-Filtering and GraphRAG-Integration. GraphRAG-Filtering employs a two-stage filtering mechanism to refine retrieved information. GraphRAG-Integration employs a logits-based selection strategy to balance external knowledge from GraphRAG with the LLM’s intrinsic reasoning, reducing over-reliance on retrievals. Experiments on knowledge graph QA tasks demonstrate that GraphRAG-FI significantly improves reasoning performance across multiple backbone models, establishing a more reliable and effective GraphRAG framework.
Session-based recommendation systems have attracted growing interest for their ability to provide personalized recommendations based on users’ in-session behaviors. While ID-based methods have shown strong performance, they often struggle with long-tail items and overlook valuable textual information. To incorporate text information, various approaches have been proposed, generally employing a naive fusion framework. Interestingly, this approach often fails to outperform the best single-modality baseline. Further exploration indicates a potential imbalance issue in the naive fusion method, where the ID tends to dominate the training and the text is undertrained. This issue indicates that the naive fusion method might not be as effective in combining ID and text as once believed. To address this, we propose AlterRec, an alternative training framework that separates the optimization of ID and text to avoid the imbalance issue. AlterRec also designs an effective strategy to enhance the interaction between the two modalities, facilitating mutual interaction and more effective text integration. Extensive experiments demonstrate the effectiveness of AlterRec in session-based recommendation.
Knowledge graphs (KGs) facilitate a wide variety of applications. Despite great efforts in creation and maintenance, even the largest KGs are far from complete. Hence, KG completion (KGC) has become one of the most crucial tasks for KG research. Recently, considerable literature in this space has centered around the use of Message Passing (Graph) Neural Networks (MPNNs), to learn powerful embeddings. The success of these methods is naturally attributed to the use of MPNNs over simpler multi-layer perceptron (MLP) models, given their additional message passing (MP) component. In this work, we find that surprisingly, simple MLP models are able to achieve comparable performance to MPNNs, suggesting that MP may not be as crucial as previously believed. With further exploration, we show careful scoring function and loss function design has a much stronger influence on KGC model performance. This suggests a conflation of scoring function design, loss function design, and MP in prior work, with promising insights regarding the scalability of state-of-the-art KGC methods today, as well as careful attention to more suitable MP designs for KGC tasks tomorrow.
Knowledge graph completion (KGC) aims to predict unseen edges in knowledge graphs (KGs), resulting in the discovery of new facts. A new class of methods have been proposed to tackle this problem by aggregating path information. These methods have shown tremendous ability in the task of KGC. However they are plagued by efficiency issues. Though there are a few recent attempts to address this through learnable path pruning, they often sacrifice the performance to gain efficiency. In this work, we identify two intrinsic limitations of these methods that affect the efficiency and representation quality. To address the limitations, we introduce a new method, TAGNet, which is able to efficiently propagate information. This is achieved by only aggregating paths in a fixed window for each source-target pair. We demonstrate that the complexity of TAGNet is independent of the number of layers. Extensive experiments demonstrate that TAGNet can cut down on the number of propagated messages by as much as 90% while achieving competitive performance on multiple KG datasets.