Gokul S Krishnan


2025

pdf bib
Where Should I Study? Biased Language Models Decide! Evaluating Fairness in LMs for Academic Recommendations
Krithi Shailya | Akhilesh Kumar Mishra | Gokul S Krishnan | Balaraman Ravindran
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

Large Language Models (LLMs) are increasingly used as daily recommendation systems for tasks like education planning, yet their recommendations risk perpetuating societal biases. This paper empirically examines geographic, demographic, and economic biases in university and program suggestions from three open-source LLMs: LLaMA-3.1-8B, Gemma-7B, and Mistral-7B. Using 360 simulated user profiles varying by gender, nationality, and economic status, we analyze over 25,000 recommendations. Results show strong biases: institutions in the Global North are disproportionately favored, recommendations often reinforce gender stereotypes, and institutional repetition is prevalent. While LLaMA-3.1 achieves the highest diversity, recommending 481 unique universities across 58 countries, systemic disparities persist. To quantify these issues, we propose a novel, multi-dimensional evaluation framework that goes beyond accuracy by measuring demographic and geographic representation. Our findings highlight the urgent need for bias consideration in educational LMs to ensure equitable global access to higher education.

2019

pdf bib
Coherence-based Modeling of Clinical Concepts Inferred from Heterogeneous Clinical Notes for ICU Patient Risk Stratification
Tushaar Gangavarapu | Gokul S Krishnan | Sowmya Kamath S
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

In hospitals, critical care patients are often susceptible to various complications that adversely affect their morbidity and mortality. Digitized patient data from Electronic Health Records (EHRs) can be utilized to facilitate risk stratification accurately and provide prioritized care. Existing clinical decision support systems are heavily reliant on the structured nature of the EHRs. However, the valuable patient-specific data contained in unstructured clinical notes are often manually transcribed into EHRs. The prolific use of extensive medical jargon, heterogeneity, sparsity, rawness, inconsistent abbreviations, and complex structure of the clinical notes poses significant challenges, and also results in a loss of information during the manual conversion process. In this work, we employ two coherence-based topic modeling approaches to model the free-text in the unstructured clinical nursing notes and capture its semantic textual features with the emphasis on human interpretability. Furthermore, we present FarSight, a long-term aggregation mechanism intended to detect the onset of disease with the earliest recorded symptoms and infections. We utilize the predictive capabilities of deep neural models for the clinical task of risk stratification through ICD-9 code group prediction. Our experimental validation on MIMIC-III (v1.4) database underlined the efficacy of FarSight with coherence-based topic modeling, in extracting discriminative clinical features from the unstructured nursing notes. The proposed approach achieved a superior predictive performance when benchmarked against the structured EHR data based state-of-the-art model, with an improvement of 11.50% in AUPRC and 1.16% in AUROC.