Aitaro Yamamoto


2025

pdf bib
Graph-Structured Trajectory Extraction from Travelogues
Aitaro Yamamoto | Hiroyuki Otomo | Hiroki Ouchi | Shohei Higashiyama | Hiroki Teranishi | Hiroyuki Shindo | Taro Watanabe
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Human traveling trajectories play a central role in characterizing each travelogue, and automatic trajectory extraction from travelogues is highly desired for tourism services, such as travel planning and recommendation. This work addresses the extraction of human traveling trajectories from travelogues. Previous work treated each trajectory as a sequence of visited locations, although locations with different granularity levels, e.g., “Kyoto City” and “Kyoto Station,” should not be lined up in a sequence. In this work, we propose to represent the trajectory as a graph that can capture the hierarchy as well as the visiting order, and construct a benchmark dataset for the trajectory extraction. The experiments using this dataset show that even naive baseline systems can accurately predict visited locations and the visiting order between them, while it is more challenging to predict the hierarchical relations.

pdf bib
Did the Writer Actually Visit the Location? Analysis of Location Reviews from Visit Experience
Aitaro Yamamoto | Hiroki Ouchi | Kota Tsubouchi | Tatsuo Yamashita | Ryo Tsujimoto | Yuki Matsuda | Hirohiko Suwa
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

We investigate the characteristics of location review texts written on the basis of actual visit experiences or without any visit experiences. Specifically, we formalize this as a binary classification task and propose a data construction framework that labels reviews as Visit or NotVisit by linking them with users’ GPS-based movement data. We train a logistic regression model on the dataset and evaluate it alongside human annotators and a large language model (LLM). The results show that the task is more challenging for humans and LLMs than for the simple trained model.

2024

pdf bib
Arukikata Travelogue Dataset with Geographic Entity Mention, Coreference, and Link Annotation
Shohei Higashiyama | Hiroki Ouchi | Hiroki Teranishi | Hiroyuki Otomo | Yusuke Ide | Aitaro Yamamoto | Hiroyuki Shindo | Yuki Matsuda | Shoko Wakamiya | Naoya Inoue | Ikuya Yamada | Taro Watanabe
Findings of the Association for Computational Linguistics: EACL 2024

Geoparsing is a fundamental technique for analyzing geo-entity information in text, which is useful for geographic applications, e.g., tourist spot recommendation. We focus on document-level geoparsing that considers geographic relatedness among geo-entity mentions and present a Japanese travelogue dataset designed for training and evaluating document-level geoparsing systems. Our dataset comprises 200 travelogue documents with rich geo-entity information: 12,171 mentions, 6,339 coreference clusters, and 2,551 geo-entities linked to geo-database entries.