Adnan Qidwai


2025

pdf bib
PRAISE: Enhancing Product Descriptions with LLM-Driven Structured Insights
Adnan Qidwai | Srija Mukhopadhyay | Prerana Khatiwada | Dan Roth | Vivek Gupta
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Accurate and complete product descriptions are crucial for e-commerce, yet seller-provided information often falls short. Customer reviews offer valuable details but are laborious to sift through manually. We present PRAISE: Product Review Attribute Insight Structuring Engine, a novel system that uses Large Language Models (LLMs) to automatically extract, compare, and structure insights from customer reviews and seller descriptions. PRAISE provides users with an intuitive interface to identify missing, contradictory, or partially matching details between these two sources, presenting the discrepancies in a clear, structured format alongside supporting evidence from reviews. This allows sellers to easily enhance their product listings for clarity and persuasiveness, and buyers to better assess product reliability. Our demonstration showcases PRAISE’s workflow, its effectiveness in generating actionable structured insights from unstructured reviews, and its potential to significantly improve the quality and trustworthiness of e-commerce product catalogs.

pdf bib
INTERCHART: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information
Anirudh Iyengar Kaniyar Narayana Iyengar | Srija Mukhopadhyay | Adnan Qidwai | Shubhankar Singh | Dan Roth | Vivek Gupta
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics

We introduce InterChart, a diagnostic benchmark that evaluates how well vision-language models (VLMs) reason across multiple related charts, a task central to real-world applications such as scientific reporting, financial analysis, and public policy dashboards. Unlike prior benchmarks focusing on isolated, visually uniform charts, InterChart challenges models with diverse question types ranging from entity inference and trend correlation to numerical estimation and abstract multi-step reasoning grounded in 2–3 thematically or structurally related charts. We organize the benchmark into three tiers of increasing difficulty: (1) factual reasoning over individual charts, (2) integrative analysis across synthetically aligned chart sets, and (3) semantic inference over visually complex, real-world chart pairs. Our evaluation of state-of-the-art open- and closed-source VLMs reveals consistent and steep accuracy declines as chart complexity increases. We find that models perform better when we decompose multi-entity charts into simpler visual units, underscoring their struggles with cross-chart integration. By exposing these systematic limitations, InterChart provides a rigorous framework for advancing multimodal reasoning in complex, multi-visual environments.

2024

pdf bib
Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness
Srija Mukhopadhyay | Adnan Qidwai | Aparna Garimella | Pritika Ramu | Vivek Gupta | Dan Roth
Findings of the Association for Computational Linguistics: EMNLP 2024

Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models’ ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.