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Introduction

We are pleased to present the Proceedings of the First Workshop on Sign Language Processing (WSLP
2025), held in conjunction with IJCNLP–AACL 2025 at IIT Bombay. This volume brings together
research contributions, shared-task system descriptions, and community perspectives that reflect the ra-
pidly growing interest in computational approaches to signed languages, particularly those that have
historically been under-resourced.
This workshop was conceived with a clear goal: to broaden the scope of sign language technology beyond
the few dominant datasets and to foreground linguistic, geographic, and community diversity. Indian Sign
Language (ISL)—one of the world’s largest and most vibrant sign languages—has long lacked large-
scale, publicly available resources. However, with recent efforts such as the iSign corpus and CISLR,
reproducible research and benchmark creation have become possible, enabling WSLP to establish the
first public leaderboards for ISL-to-English translation, isolated sign recognition, and word-presence
prediction.
These proceedings include ten accepted papers, covering a wide spectrum of themes:
- Creation of new multimodal and multilingual sign language datasets. - Motion-aware and pose-based
modelling for continuous sign language translation. - Cross-linguistic phonological analysis. - Data
augmentation strategies using large language models. - Lightweight real-time systems tailored to regional
languages and low-resource environments.
The workshop also featured a three-track shared task on Indian Sign Language, hosted on Codabench.
By releasing open datasets, encouraging pose-only, privacy-aware modelling, and lowering computa-
tional barriers, the shared task has set a new foundation for reproducible and equitable research in ISL
processing.
We are grateful to our invited speakers, Dr. Amit Moryossef and Dr. Andesha Mangla, whose talks
provided deep insight into the future of sign language technology, transcription systems, and the role of
ISL in Deaf education. Their contributions underscored the importance of bridging technical innovation
with linguistic expertise and community needs.
We also thank the IJCNLP–AACL 2025 Organizing Committee for their support, the reviewers for their
thoughtful evaluations, and the many participants whose enthusiasm and contributions made this work-
shop possible. Most importantly, we acknowledge the Deaf community and the ISL interpreters, educa-
tors, and linguists whose work and guidance remain central to the advancement of sign language techno-
logy.
We hope these proceedings will serve as a resource for researchers, developers, and community members
working toward inclusive, equitable, and deployable sign-language AI.

ISBN: 979-8-89176-304-3
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Sanjeet Singh, Abhinav Joshi, Keren Artiaga, Mohammed Hasanuzzaman, Facundo Manuel Quiroga,
Sabyasachi Kamila, and Ashutosh Modi
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Abstract

We organized the First Workshop on Sign Lan-
guage Processing (WSLP 2025), co-located
with IJCNLP-AACL 2025 at IIT Bombay, to
bring together researchers, linguists, and mem-
bers of the Deaf community and accelerate
computational work on under-resourced sign
languages.

Workshop accepted 10 papers (including 2 of-
ficial shared-task submissions) that introduced
new large-scale resources (continuous ISL fin-
gerspelling corpus, cross-lingual HamNoSys
corpora), advanced multilingual and motion-
aware translation models, explored LLM-based
augmentation and glossing strategies, and pre-
sented lightweight deployable systems for re-
gional languages such as Odia.

We ran a three-track shared task on Indian
Sign Language that attracted over 60 registered
teams and established the first public leader-
boards for sentence-level ISL-to-English trans-
lation, isolated word recognition, and word-
presence prediction.

By centring geographic, linguistic, and or-
ganiser diversity, releasing open datasets and
benchmarks, and explicitly addressing linguis-
tic challenges unique to visual-spatial lan-
guages, we significantly broadened the scope
of sign-language processing beyond the tradi-
tional European and East-Asian datasets, lay-
ing a robust foundation for inclusive, equitable,
and deployable sign-language AI in the Global
South.

1 Introduction

Sign languages are the primary means of commu-
nication for millions of Deaf and Hard-of-Hearing
individuals worldwide, yet they remain among the
most under-resourced modalities in natural lan-
guage processing (Yin et al., 2021; Moryossef et al.,
2020; Jiang et al., 2024). Unlike spoken languages,

which are produced and perceived sequentially,
sign languages are inherently visual-gestural and
multi-channel: manual features (handshape, ori-
entation, movement, location) combine simultane-
ously with non-manual markers (facial expressions,
head tilts, eye gaze, torso shifts) to convey lexical,
morphological, and syntactic information (Brentari,
2019).

Until recently, the absence of large, publicly
available video corpora with aligned translations
severely limited systematic research on Indian Sign
Language (ISL), one of the world’s major sign
languages. The release of the iSign (Joshi et al.,
2024) corpus in 2024—containing over 118,000
ISL–English sentence pairs—finally made repro-
ducible, large-scale experiments possible.

We therefore organized the First Workshop
on Sign Language Processing (WSLP 2025), co-
located with IJCNLP-AACL 2025 at IIT Bombay,
to capitalise on this breakthrough and to create
a dedicated venue for sign-language technology
in South Asia and beyond. We placed particular
emphasis on linguistic diversity, lightweight and
privacy-preserving modelling, and close collabora-
tion with the Deaf community.

A central component of the workshop was a
three-track shared task on ISL that we designed
to establish the first public benchmarks while en-
couraging approaches suitable for real-world de-
ployment in resource-constrained settings:

1. Task 1 – ISL → English Translation: end-to-
end translation of continuous signing (video
or pose sequences) into written English.

2. Task 2 – Isolated Word/Gloss Recognition:
classification of short, single-sign clips into
one of thousands of lexical categories.

3. Task 3 – Word Presence Prediction: binary
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decision on whether a query word appears any-
where in a full sentence video (a lightweight
sign-spotting formulation).

By supplying both raw video and pre-extracted
MediaPipe pose keypoints and hosting evaluation
on Codabench, we lowered barriers to entry and
enabled fair comparison across diverse modelling
choices. Fig. 2 shows an Indian Sign Language
(ISL) signer producing the sign alongside the cor-
responding pose-keypoint sequence extracted with
MediaPipe.

We accepted a total of 10 papers (8 main-
conference contributions and 2 official shared-
task submissions). These span new large-scale
resources (continuous ISL fingerspelling, cross-
lingual HamNoSys corpora), multilingual and
motion-aware translation architectures, LLM-
based data augmentation, glossing strategies, and
deployable regional systems (e.g., ISL-to-Odia).

This report summarises the workshop contribu-
tions, presents the official shared-task results, anal-
yses the most effective techniques, and outlines
immediate research directions for the community.

The rest of the paper is organised as follows. Sec-
tion 2 discusses a few prominent Continuous Sign
language datasets. Section 3 provides an overview
of the accepted papers. Section 4 describes the
shared task and its datasets. Section 5 discusses
linguistic and computational challenges, Section
6 discusses the conclusion and future work, while
Section 7 addresses diversity, inclusion, and ethical
considerations.

2 Related Work

Sign language translation (SLT) has been predomi-
nantly focused on a small number of datasets, such
as RWTH-PHOENIX-Weather 2014T (Camgöz
et al., 2018) for German Sign Language and CSL-
Daily (Zhou et al., 2021; Hu et al., 2023, 2021)
for Chinese Sign Language. This concentration
has led to disproportionate attention on these lan-
guages, creating a self-perpetuating cycle where
new projects prioritise these datasets for relevance
and impact. As a result, many other sign lan-
guages, including Indian Sign Language (ISL), re-
main severely under-resourced.

While a few studies have explored SLT beyond
these benchmarks, they are limited. For example,
Joshi et al. (2023) and Joshi et al. (2024) investi-
gated ISL, while Lin et al. (2023) examined Ameri-
can Sign Language (ASL). Comprehensive surveys

of SLT research can be found in Liang et al. (2023)
and Núñez-Marcos et al. (2023), which highlight
the field’s challenges, including data scarcity and
the need for multimodal approaches.

Table 1 summarises key continuous SLT datasets,
illustrating the diversity in hours, vocabulary size,
and signers across various sign languages.

This disparity in research focus is exactly what
motivated us to organise WSLP 2025. By cen-
tring on low-resource sign languages like ISL and
promoting collaborations, we aim to address these
imbalances and foster more equitable development
of sign-language technologies.

3 Overview of Accepted Papers

We accepted eight papers at WSLP 2025. The con-
tributions naturally cluster into four main thematic
areas:

Resource Creation and Linguistic Analysis We
received two papers that significantly expand pub-
licly available resources. One introduces the first
large-scale continuous fingerspelling corpus for In-
dian Sign Language, extracted from public news
broadcasts and validated by a professional ISL in-
terpreter. The other constructs a balanced 4,000-
sign HamNoSys corpus across British, German,
French, and Greek Sign Languages and presents
the first large-scale cross-linguistic phonological
similarity analysis using normalised edit distance.

Gloss-Related Translation Two papers push the
boundaries of low-resource glossing and transla-
tion. One systematically evaluates fine-tuning of
large pre-trained language models (T5, Flan-T5,
mBART, Llama) on multiple public gloss datasets,
establishing new state-of-the-art results and re-
vealing a stark performance asymmetry between
gloss-to-text and text-to-gloss directions. The sec-
ond shows that oversampling related high-resource
English→ASL gloss pairs dramatically improves
Spanish→Mexican Sign Language glossing, lifting
BLEU from 62 to 85 on a small 3,000-sentence
corpus.

Continuous Sign Language Translation and
Multilingual Modelling Three papers focus on
end-to-end translation. One proposes a motion-
aware architecture that explicitly incorporates op-
tical flow and achieves the current best published
BLEU-4 of 8.58 on the open-domain iSign test set.
The remaining two explore multilingual training
across German, Greek, Argentinian, and Indian
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When?Where? How?What?

Figure 1: An ISL signer demonstrating the simultaneous use of manual signs, facial non-manuals, and signing space.
Words (“What", "where", "How", and "when”) are expressed through coordinated handshape, movement, eye gaze,
and head tilt. (Joshi et al., 2024)

Year Dataset Sign Language Hours # Videos # Vocab # Signers Source

2020 GSL Greek 9.51 10,295 310 7 (Adaloglou et al., 2021)
2018 KETI Korean 28 14,672 419 14 (Ko et al., 2018)
2022 LSA-T Argentine 21.78 14,880 14,239 103 (Dal Bianco et al., 2022)
2021 How2Sign ASL 79 35,191 15,686 9 (Duarte et al., 2021)
2022 Open-ASL ASL 288 98,417 33,549 >200 (Shi et al., 2022)
2022 SP-10 Multilingual 14 16,700 79 – (Hilzensauer and Krammer, 2015)
2023 ISLTranslate Indian – 31,000 11,000 – (Joshi et al., 2023)
2024 iSign Indian 252 118,000 40,000 – (Joshi et al., 2024)
2021 BBC-Oxford British 1,467 – 2,281 39 (Albanie et al., 2021)
2021 SWISSTXT-NEWS Swiss-German 9 181 10,561 – (Camgöz et al., 2021)
2021 VRT-NEWS Flemish 9 120 6,875 – (Camgöz et al., 2021)
2010 SIGNUM German 55.3 33,210 450 25 (von Agris and Kraiss, 2010)

Table 1: Summary of a few prominent continuous sign language translation datasets

Sign Languages using unified pose representations;
they demonstrate that joint pre-training followed
by short language-specific fine-tuning outperforms
monolingual baselines on three of the four corpora,
and that LLM-based text-side paraphrasing yields
consistent gains on medium-scale datasets.

Regional and Deployable Systems One paper
presents a real-time 12-class ISL recognition sys-
tem that translates directly into Odia script using
a lightweight 2D CNN and MediaPipe pipeline.
With 98.33% accuracy and explicit optimisation
for low-resource devices, it is designed specifically
for rural and educational deployment contexts.

Below is a concise overview of the eight ac-
cepted papers: Table 2 provides brief overview
of accepted papers at the First Workshop on Sign
Language Processing (WSLP 2025).

Finetuning Pre-trained Language Models
for Bidirectional Sign Language Gloss to Text
Translation

This work presents the first large-scale bidi-
rectional evaluation of modern pre-trained lan-
guage models (T5, Flan-T5, mBART, and Llama)
on gloss-to-text and text-to-gloss translation. Us-
ing three established datasets (RWTH-PHOENIX-
Weather 2014T, SIGNUM, and ASLG-PC12), fine-
tuned PLMs consistently and significantly outper-
form Transformers trained from scratch, establish-
ing new state-of-the-art results. The study high-
lights a striking performance asymmetry: text-to-
gloss translation remains far more difficult than the

reverse direction, underscoring the value of lever-
aging massive textual pre-training for low-resource
sign-language tasks.

Cross-Linguistic Phonological Similarity
Analysis in Sign Languages Using HamNoSys

A balanced corpus of 4,000 signs (1,000 each
from British, German, French, and Greek Sign Lan-
guages) is encoded in HamNoSys. Normalised
edit distance is then used to compute intra- and
inter-language phonological similarity. The analy-
sis reveals both universal tendencies (e.g., frequent
handshapes and movement types) and language-
specific patterns in non-manual features and spatial
articulation, offering the first quantitative typolog-
ical insights into sign-language phonology at this
scale.

Enhancing Indian Sign Language Translation
via Motion-Aware Modeling

This paper benchmarks existing sign-language
translation architectures on Indian Sign Language
and introduces SpaMo-OF, a model that explic-
itly integrates dense optical-flow motion cues with
multi-scale spatial features. The approach achieves
a BLEU-4 score of 8.58 on the open-domain iSign
test set—currently the highest published result for
continuous ISL-to-English translation—and estab-
lishes a strong, reproducible baseline for future
work on ISL.

Continuous Fingerspelling Dataset for Indian
Sign Language

The first large-scale continuous fingerspelling
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corpus for ISL is released, comprising 1,308 real-
world segments (70.85 minutes, 14,814 charac-
ters) extracted from ISH News broadcasts with
synchronized on-screen text. Professional inter-
preter validation yields 90.67% exact-match ac-
curacy on a 150-sample subset. A ByT5-small
baseline achieves 82.91% character error rate af-
ter fine-tuning, and the dataset is made publicly
available to support transcription, localisation, and
generation tasks.

Multilingual Sign Language Translation with
Unified Datasets and Pose-Based Transformers

A single pose-based transformer is trained
jointly on four typologically diverse sign languages
(German, Greek, Argentinian, and Indian). A
simple two-stage training schedule—multilingual
pre-training followed by short language-specific
fine-tuning—outperforms monolingual baselines
on three of the four corpora and narrows the gap
on the fourth, providing clear evidence of effective
cross-lingual transfer in extremely low-resource
sign-language translation.

Augmenting Sign Language Translation
Datasets with Large Language Models

GPT-4 is used to generate high-quality para-
phrases of target-language sentences for text-
side data augmentation. On the medium-scale
PHOENIX14T corpus, augmentation raises BLEU-
4 from 9.56 to 10.33. Results are mixed on smaller
or heavier-tailed datasets, leading to a detailed anal-
ysis of when LLM-based augmentation is most ben-
eficial—primarily for corpora with richer, longer-
tail vocabularies.

Low-Resource Sign Language Glossing Prof-
its From Data Augmentation

Spanish-to-Mexican Sign Language glossing on
a tiny 3,000-sentence corpus is dramatically im-
proved (BLEU 62 → 85) simply by oversampling
related English-to-American Sign Language gloss
pairs at roughly 4× ratio. The study demonstrates
that cross-sign-language data augmentation is a
powerful, language-agnostic technique for extreme
low-resource scenarios.

Indian Sign Language Recognition and Trans-
lation into Odia

A real-time, lightweight 12-class ISL recogni-
tion system is developed using MediaPipe key-
points and a 2D CNN, achieving 98.33% accuracy
on a diverse custom dataset. Recognised signs are
mapped to Odia script via a curated dictionary and
displayed in a simple GUI. Explicitly optimised
for low-cost devices, the system targets rural class-

rooms and regional accessibility needs in Odisha.
Taken together, these eight contributions illus-

trate a vibrant, rapidly maturing research com-
munity that is increasingly focused on multilin-
gual modelling, pose-based efficiency, community-
driven resource creation, and deployable solutions
tailored to the linguistic and infrastructural realities
of the Global South.

4 Shared Task

A major highlight of WSLP 2025 was the three-
track shared task on Indian Sign Language pro-
cessing that we hosted on Codabench to ensure
transparent, reproducible evaluation. We deliber-
ately designed the tasks to cover the full spectrum
from isolated recognition to continuous translation
and sign spotting, while encouraging lightweight,
privacy-preserving models that can eventually run
on low-cost devices.

The shared task attracted strong interest: 33
teams registered for Task 1, 12 for Task 2, and
15 for Task 3. Given the specialised nature of the
domain and the non-trivial cost of training on large
video collections, only a subset of teams completed
the full submission cycle (August 15 – October 15,
2025). From these, we accepted two outstanding
system-description papers into the main workshop
proceedings.

The three tasks were as follows:
Task 1: ISL to English Translation Partici-

pants developed end-to-end systems that translate
continuous signing (raw video or pose sequences)
into written English sentences. The training data
were obtained from the public iSign corpus (Joshi
et al., 2024) (118,000 sentence pairs). We have
also released a new high-quality evaluation split,
scraped from public YouTube sources and manu-
ally cleaned, consisting of 5,278 sentence pairs for
validation and 5,252 for testing. Primary metrics
were BLEU-4, ROUGE-L, and chrF.

Task 2: Isolated Word/Gloss Recognition Sys-
tems classified short, single-sign clips into one of
several thousand lexical categories—an essential
building block for dictionaries, annotation tools,
and lookup applications. Following the methodol-
ogy of Joshi et al. (2022), we curated a new dataset
by scraping publicly available ISL YouTube con-
tent and manually cleaning it: The Dataset contains
4,398 training examples, 109 validation examples,
and 526 test examples. Evaluation used Top-1, Top-
5, and Top-10 accuracy.
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Paper Title Main Contribution / Task

Augmenting Sign Language Translation Datasets with
Large Language Models

LLM-based text-side paraphrasing for SLT augmentation
(PHOENIX14T, GSL, LSA-T)

Continuous Fingerspelling Dataset for Indian Sign Lan-
guage

First large continuous ISL fingerspelling corpus (1,308
segments, 70.85 min) + ByT5 baseline

Cross-Linguistic Phonological Similarity Analysis in
Sign Languages Using HamNoSys

4,000-sign HamNoSys corpus (BSL, DGS, LSF, GSL) +
edit-distance phonological analysis

Enhancing Indian Sign Language Translation via
Motion-Aware Modeling

SpaMo-OF architecture with optical flow; BLEU-4 8.58
on iSign (strongest ISL baseline)

Finetuning Pre-trained Language Models for Bidirec-
tional Sign Language Gloss to Text Translation .

Bidirectional PLM fine-tuning (T5, mBART, Llama) →
new SOTA on glosstext

Indian Sign Language Recognition and Translation into
Odia

Real-time 12-class ISL→Odia system (98.33% acc.) for
low-resource deployment

Low-Resource Sign Language Glossing Profits From
Data Augmentation

Cross-SL data augmentation (ASL→MSL glossing);
BLEU 62→85

Multilingual Sign Language Translation with Unified
Datasets and Pose-Based Transformers

Multilingual pose-based model (DE, EL, AR, IN SL);
outperforms monolingual on 3/4 corpora

Table 2: Overview of accepted papers at the First Workshop on Sign Language Processing (WSLP 2025)

Task 3: Word Presence Prediction (Sign Spot-
ting) Given a query word and a full sentence video
(or pose sequence), systems predicted whether the
query appears anywhere in the sentence. The
dataset, created by scraping ISL YouTube videos
and manually cleaned, inspired by Joshi et al.
(2024), comprises of 25,432 training pairs, 1,413
validation pairs, and 1,413 test pairs. The evalua-
tion metrics used were Accuracy, macro Precision,
Recall, and F1.

The two accepted shared-task papers represent
the top official submissions:

- For Task 2 (Isolated Word/Gloss Recognition),
the accepted paper used a lightweight pose-only
Temporal Convolutional Network and achieved
54.00% Top-1 and 78.00% Top-5 accuracy on the
4,361-class test set. - For Task 3 (Word Presence
Prediction), the accepted paper proposed an end-to-
end pose encoder with a binary classification head,
obtaining 61.88% accuracy and 60.00% macro F1.

Task 1 received no official system-description
paper, but several workshop contributions report
strong independent results on the same data.

Full details, baselines, leaderboards, and data
access are available at the official shared-task web-
site: https://exploration-lab.github.io/
ISL-Shared-Task/.

We believe the shared task not only produced
the first public, large-scale benchmarks for these
three core ISL subtasks but also confirmed the prac-
tical advantages of pose-only modelling for speed,
robustness, and privacy—advantages that will be
crucial for real-world deployment in classrooms
and rural areas across India.

5 Linguistic and Computational
Challenges of Indian Sign Language

Sign Languages, like all natural sign languages, dif-
fer fundamentally from spoken languages in their
visual-gestural modality (Sinha, 2017; Brentari,
2019). These differences are not merely super-
ficial—they profoundly affect data collection, an-
notation, modelling assumptions, and evaluation.
Below we outline the major linguistic and compu-
tational challenges that emerged repeatedly across
workshop/Shared task discussions and that any fu-
ture Indian Sign Language system must explic-
itly address. Fig. 1 shows an ISL signer demon-
strating the simultaneous use of manual signs,
facial non-manuals, and signing space. Words
(“What", "where", "How", and "when”) are ex-
pressed through coordinated handshape, movement,
eye gaze, and head tilt.

5.1 Visual-Spatial Grammar and
Simultaneous Articulation

Unlike spoken languages, which are produced and
perceived linearly, ISL exploits three-dimensional
signing space and multiple independent articula-
tors (two hands, head, torso, eyebrows, mouth, eye
gaze) (Sinha, 2017). A single utterance routinely
conveys information in parallel:

• The dominant hand may articulate a lexical
sign while the non-dominant hand functions
as a classifier depicting shape or location
(Sinha, 2017).

• Facial non-manuals simultaneously mark
questions, negation, conditionals, or intensity
(Sinha, 2017).
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Figure 2: An Indian Sign Language (ISL) signer producing the sign alongside the corresponding pose-keypoint
sequence extracted with MediaPipe Holistic (right).

• Eye gaze and head tilt establish and maintain
reference points in the signing space (Sinha,
2017).

Sequential architectures (Transformers, RNNs) that
dominate spoken-language NLP struggle to capture
these inherently parallel dependencies without ex-
plicit spatial modelling.

5.2 Use of Signing Space for Reference
Tracking

ISL heavily relies on spatial loci: entities (peo-
ple, objects, places) are assigned arbitrary loca-
tions in the signing space upon first mention and
subsequently referred to by pointing or verb direc-
tionality (Sinha, 2017). The same lexical sign can
change meaning entirely depending on its start and
end locus (e.g., GIVE from locus A to B vs. B to
A). This dynamic, discourse-dependent reference
system makes sentence-level training data highly
context-sensitive and complicates the creation of
truly parallel corpora.

5.3 Crucial Role of Non-Manual Features

Non-manual markers are not optional
prosody—they are grammatical (Sinha, 2017).
Raised eyebrows mark yes/no questions and
conditionals; furrowed brows mark wh-questions;
headshakes spread over entire clauses for negation.
Current pose-based pipelines (MediaPipe, Open-
Pose) capture hand and body keypoints accurately,
while discarding most facial information. As a re-
sult, even high-accuracy isolated-sign recognisers
often produce grammatically incorrect continuous
output.

5.4 Productive Morphology and Classifier
Constructions

ISL exhibits highly productive classifier predicates:
handshapes representing semantic classes (human,
vehicle, flat object, etc.) combine with motion,
location, and orientation morphemes to describe

complex spatial events (Sinha, 2017). A single
classifier construction can convey “two cars pass-
ing each other on a narrow bridge” without any
lexical signs. Standard tokenisation and vocabu-
lary strategies borrowed from spoken languages
collapse this rich morphology into rare or out-of-
vocabulary tokens.

5.5 Fingerspelling and Name Signs
Proper names, technical terms, and new vocabu-
lary are fingerspelled letter-by-letter (Sinha, 2017).
Fingerspelling sequences are fast, co-articulated,
and highly variable across signers. Moreover, once
introduced, names are immediately replaced by
arbitrary short signs—often based on physical char-
acteristics or initials (Sinha, 2017). This creates
extreme coreference complexity within a single
video.

5.6 Dialectal and Sociolectal Variation
India’s linguistic diversity extends to ISL: vocabu-
lary for numbers, colours, kinship terms, and food
varies significantly across regions (Delhi, Bengal,
Tamil Nadu, Kerala) (Jepson, 1991; Zeshan, 2003;
Johnson and Johnson, 2008; Zeshan et al., 2023).
Age, education, and degree of contact with Deaf
schools further influence signing style. Anecdotal
evidence suggests that around 75% of vocabulary is
similar nationwide, with the remaining 25% show-
ing high regional variation (Jepson, 1991; Zeshan,
2003; Johnson and Johnson, 2008; Zeshan et al.,
2023). A model trained primarily on Delhi-region
signers may perform poorly elsewhere.

5.7 Data Scarcity and Ethical Annotation
Even the largest public ISL corpus ((Joshi et al.,
2024), 118k sentences) is orders of magnitude
smaller than typical spoken-language corpora.
Gloss annotation requires fluent Deaf annotators,
who are scarce and expensive. Automatic align-
ment between video and text remains an open re-
search problem.
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These linguistic realities explain why direct ap-
plication of spoken-language architectures yields
disappointing results on ISL and why pose-
only models—despite their computational effi-
ciency—still fall short on grammatical correctness.
Addressing them will require hybrid approaches
that combine spatial graph networks, dedicated
non-manual feature extractors, classifier-aware to-
kenisation, and continued collaboration with Deaf
linguists and community members.

6 Conclusion and Future Directions
We believe the First Workshop on Sign Lan-
guage Processing marked a pivotal moment for
research on Indian Sign Language and other under-
resourced sign languages. By bringing together
10 high-quality papers, three competitive shared
tasks, and a diverse international community, we
established the first public benchmarks for continu-
ous ISL translation, isolated recognition, and sign
spotting, while releasing substantial new datasets
and reproducible baselines.

More importantly, we demonstrated that rapid
and meaningful progress is possible when linguistic
expertise, community-driven data collection, and
efficient pose-based modelling converge. By de-
liberately prioritising geographic and linguistic di-
versity, close collaboration with Deaf scholars, and
solutions viable in low-resource environments, we
have helped shift sign-language technology from
a narrow focus on a few high-resource languages
toward a genuinely inclusive, global endeavour.

Looking ahead, we see the most pressing chal-
lenges in integrating non-manual features, prop-
erly modelling spatial grammar and classifier con-
structions, expanding multi-dialect and multilin-
gual transfer, and developing evaluation protocols
grounded in native-signer judgements. Sustained
community involvement, privacy-preserving data
collection, and lightweight real-time systems re-
main essential if we are to translate research gains
into real-world impact in classrooms, homes, and
workplaces across India and beyond. We intend to
build on this momentum by establishing WSLP as
an annual venue that continues to drive equitable
and deployable sign-language technology.

7 Diversity, Inclusion, and Ethical
Considerations

We explicitly designed WSLP 2025 to promote di-
versity, equity, and ethical practice in sign-language
technology.

By centring the shared task on Indian Sign Lan-
guage—one of the world’s largest yet most under-
resourced sign languages—and by encouraging
work on other non-dominant varieties (Mexican,
Argentinian, Greek, etc.), we deliberately broke
the historical dominance of a handful of European
and East-Asian datasets. The accepted papers and
shared-task submissions introduced new resources
and benchmarks that create tangible opportunities
for researchers from the Global South and for Deaf-
led innovation.

Our organizing committee itself reflects broad
geographic and institutional diversity, with mem-
bers based in India, Argentina, Ireland, and the
United Kingdom; several of us have long-standing
collaborations with Deaf communities and are
users of non-dominant sign languages. The au-
thors of the accepted papers come from India, Nige-
ria, Mexico, Argentina, Germany, and the United
States, ensuring a wide range of linguistic and
socio-cultural perspectives.

At the same time, we are keenly aware of several
limitations that remain common in this emerging
area:

- Current public ISL corpora are still heavily
biased toward educated, urban, northern-Indian
signers and specific domains; rural, elderly, and
regional-dialect signers remain severely under-
represented. - Automatic metrics (BLEU, accu-
racy) cannot capture grammatical correctness or
cultural appropriateness; large-scale native-signer
evaluation was not feasible this year. - Community
participation, while stronger than in many previous
efforts, was still limited mainly to dataset creation
and validation rather than full co-design.

We view these gaps not as shortcomings but as
clear priorities for future editions. We are com-
mitted to expanding representation, incorporating
non-manual features, developing signer-based eval-
uation protocols, and deepening participatory de-
sign with Deaf end-users through sustained part-
nership with the Indian Sign Language Research
and Training Centre (ISLRTC) and regional Deaf
associations.

8 Invited Talks

The workshop featured two invited talks that
bridged cutting-edge research with real-world
impact and community-grounded perspectives on
Indian Sign Language.
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Amit Moryossef
Bio. Dr. Amit Moryossef is a researcher and

entrepreneur in sign-language technology. He
completed his Ph.D. at Bar-Ilan University and a
postdoc at the University of Zurich. He founded
sign.mt, a real-time sign-language translation plat-
form that was recently acquired by Nagish, where
he currently leads research. His work has received
multiple best-paper awards at ACL and EMNLP.

Title of the talk: The Future of Sign Language
Translation is Transcription

Abstract. Sign Language Processing has long
been overlooked in mainstream language tech-
nology due to the challenges of bridging visual-
gestural languages with text-based AI. In this talk,
I will show how SignWriting—a universal tran-
scription system—creates a structured, scalable
bridge between video-based sign language input
and spoken-language text, redefining both trans-
lation from sign language and generation into it.
Leveraging this framework enables accurate, real-
time, and multilingual applications while cleanly
separating the roles of computer vision and natu-
ral language processing. This division allows re-
searchers to contribute within their own expertise
and paves the way for truly inclusive, bidirectional
sign-language AI.

Andesha Mangala (Assistant Professor, Indian
Sign Language Research and Training Centre,
Delhi)

Bio. Dr. Andesha Mangla is an Assistant Profes-
sor of Sign Linguistics at the Indian Sign Language
Research and Training Center (ISLRTC), a national
institute that aims to promote the use of ISL. She
completed her PhD in Linguistics from Delhi Uni-
versity, focusing on the role of ISL in deaf edu-
cation. She has around 15 years’ experience in
training ISL interpreters and deaf ISL teachers in
linguistics and English language, as well as devel-
oping resources related to Indian Sign Language,
including the ISL Dictionary and ISL translations
of NCERT textbooks. Her interest areas include
sign linguistics, ISL in deaf education and language
teaching.

Title of the talk: ISLRTC’s Contributions to
Indian Sign Language and Deaf Education

Abstract. The Indian Sign Language Research
and Training Centre (ISLRTC) is an autonomous
body under the Department of Empowerment of
Persons with Disabilities, Ministry of Social Jus-
tice and Empowerment, Govt. of India, dedicated
to the development and promotion of ISL. Since

its establishment in September 2015, ISLRTC has
undertaken many initiatives to train manpower in
ISL, develop ISL resources, increase ISL accessi-
bility and spread awareness about ISL amongst the
general public. ISLRTC’s activities aim to achieve
the mandates as given in the Rights of Persons with
Disabilities Act 2016 and the recommendations
of the National Education Policy 2020. Collab-
orations with government education bodies like
NCERT and NIOS have enabled large-scale de-
velopments to promote ISL in education, while
working with non-governmental organizations in-
cluding deaf-led organizations like India Signing
Hands and Deaf Enabled Foundation, have helped
to reach the deaf community. This talk aims to
describe the activities of ISLRTC in context of the
RPWD Act and NEP.
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Abstract

Sign language is a vital means of communi-
cation for the deaf and hard-of-hearing com-
munity. However, translating Indian Sign
Language (ISL) into regional languages like
Odia remains a significant technological chal-
lenge due to the languages rich morphology,
agglutinative grammar, and complex script.
This work presents a real-time ISL recogni-
tion and translation system that converts hand
gestures into Odia text, enhancing accessibil-
ity and promoting inclusive communication.
The system leverages MediaPipe for real-time
key-point detection and uses a custom-built
dataset of 1,200 samples across 12 ISL ges-
ture classes, captured under diverse Indian
backgrounds and lighting conditions to ensure
robustness. Both 2D and 3D Convolutional
Neural Networks (CNNs) were explored, with
the 2D CNN achieving superior performance
98.33% test accuracy compared to the 3D
CNNs 78.33%. Recognized gestures are trans-
lated into Odia using a curated gesture-to-
text mapping dictionary, seamlessly integrated
into a lightweight Tkinter-based GUI. Unlike
other resource-heavy systems, this model is
optimized for deployment on low-resource de-
vices, making it suitable for rural and ed-
ucational contexts. Beyond translation, the
system can function as an assistive learning
tool for students and educators of ISL. This
work demonstrates that combining culturally
curated datasets with efficient AI models can
bridge communication gaps and create region-
ally adapted, accessible technology for the
deaf and mute community in India.

1 Introduction

Communication is a fundamental aspect of hu-
man interaction. However, individuals with hear-
ing and speech impairments face significant barri-
ers in engaging in verbal communication with the
wider community. To overcome these challenges,

*Corresponding author: rakesh@iiit-bh.ac.in

sign language has been developed and adopted as
an effective visual-gestural medium of communi-
cation. Sign language comprises hand gestures,
movements, facial expressions, and body postures
to convey meaning. Several physical and dynamic
parameters, such as hand shape, hand orientation,
motion trajectory, spatial positioning, and non-
manual signals like facial expressions, play crucial
roles in forming meaningful signs.

Globally, there are over 200 distinct sign lan-
guages, each with its own grammatical rules
and syntactic structures (World Federation of the
Deaf). Indian Sign Language (ISL) is one such
rich and complex language that is widely used by
the deaf community across India. ISL is not a di-
rect manual representation of spoken Indian lan-
guages; rather, it possesses its own unique lin-
guistic features and visual grammar. Although
Indian Sign Language (ISL) serves as an effec-
tive communication medium for the deaf commu-
nity across India, communication gaps still arise
when regional languages-speakers are unfamiliar
with ISL. In regions like Odisha, where Odia is
the dominant spoken language, the absence of ac-
cessible translation systems between ISL and Odia
limits seamless interaction. This communication
barrier can hinder educational, social, and profes-
sional opportunities for hearing-impaired individu-
als when they engage with Odia-speaking commu-
nities.

The diversity of sign languages, along with re-
gional variations within ISL itself, further com-
plicates mutual understanding. Moreover, trans-
lating ISL into regional spoken languages like
Odia, which is predominantly used in the Indian
state of Odisha, can help bridge this gap and pro-
mote inclusivity. Developing a real-time ISL-to-
Odia translation system has the potential to em-
power hearing-impaired individuals by enabling
smoother interaction in academic, professional,
and social environments.
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Sign language recognition systems primarily
aim to track and interpret dynamic hand gestures
and poses. However, building an accurate recogni-
tion system introduces several challenges. Vision-
based sign recognition systems are prone to envi-
ronmental factors such as varying lighting condi-
tions, complex backgrounds, skin tone variations,
and occlusions, which can hinder accurate gesture
detection. To minimize these challenges and en-
sure robust gesture tracking, advanced computer
vision frameworks like MediaPipe Holistic, devel-
oped by Google, can be leveraged. MediaPipe
Holistic provides highly accurate real-time track-
ing of hand landmarks, pose, and facial key points,
which are essential for extracting reliable sign fea-
tures.

While several studies have successfully applied
CNNs for sign language recognition in American
Sign Language (ASL) (Natarajan et al., 2022) and
British Sign Language (BSL), limited research ex-
ists for Indian Sign Language (ISL) and its transla-
tion into regional languages like Odia. Given the
large hearing-impaired population in India and the
cultural relevance of Odia, an ISL-to-Odia transla-
tion system is both necessary and impactful.

Communication is a fundamental human right
that enables participation in educational, social,
and professional spheres. However, individuals
from the hearing and speech-impaired community
often face significant communication barriers, es-
pecially in multilingual regions like India. Most
existing technological solutions for sign language
recognition and translation predominantly focus
on translating ISL into English or Hindi. These
systems overlook the linguistic diversity of India
and fail to cater to regional languages such as Odia.
Considering that approximately 18.9% of persons
with disabilities in India reported hearing impair-
ments (Census of India, 2011), and with over 42.5
million Odia speakers nationwide (Census of In-
dia, 2011), there is a significant need for acces-
sible communication technologies tailored to this
linguistic group.

In Odisha, the absence of a real-time ISL-to-
Odia translation system poses a significant bar-
rier for the deaf and hard-of-hearing community.
Without accessible tools, effective communication
with Odia-speaking peers, educators, and service
providers remains limited, leading to social exclu-
sion, reduced educational access, and restricted
professional participation.

Real-time ISL-to-Odia translation is technically

challenging due to the complexity of sign lan-
guage, which involves dynamic hand gestures, fa-
cial expressions, and body movements. Accu-
rate, real-time translation requires advanced com-
puter vision and deep learning models capable
of handling spatial and temporal features. Chal-
lenges also include the lack of comprehensive
ISL-Odia datasets, difficulties in direct word map-
ping, and the need for lightweight models suit-
able for real-time use. To bridge this commu-
nication gap and promote inclusivity, there is a
pressing need for a robust ISL-to-Odia translation
system that can accurately recognize ISL gestures
and generate grammatically correct Odia text in
real time, enabling seamless interaction between
hearing-impaired and hearing individuals.

This work aims to address this unmet need by
developing a real-time ISL-to-Odia translator that
leverages MediaPipe Holistic for landmark detec-
tion, a convolutional neural network (CNN) for
gesture classification, and a custom ISL dataset.
The system ensures accurate and culturally aligned
translation, tailored to the linguistic and contextual
nuances of the Odia language.

2 Literature Review

One of the initial approaches we studied was based
on the VGG19 model (Shanavas et al., 2024), a
deep convolutional neural network known for its
high accuracy in image classification tasks. It
could process hand gestures at 30 frames per sec-
ond with an impressive accuracy of 95%, while
maintaining robustness against lighting and back-
ground variations. However, its single-modal na-
ture and focus on static image processing made
it less effective in highly dynamic environments
where sign gestures change rapidly over time, re-
ducing its reliability for real-time applications.

Another promising technique utilized a com-
bination of MediaPipe for extracting key facial,
hand, and pose landmarks, and Long Short-Term
Memory (LSTM) networks (Rehan and Mullick,
2023) for capturing temporal dependencies across
gesture sequences. This method demonstrated im-
proved understanding of dynamic sign gestures
and achieved an accuracy range of 91% to 93%.
Along with giving low accuracy, the system also
relied on a fixed 30-frame input sequence, which
limited its flexibility and responsiveness in real-
time interactive settings.

A separate approach leveraged OpenPose
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(Neyra-Gutiérrez and Shiguihara-Juárez, 2020) for
keypoint detection and applied neural network-
based summarization techniques for recognizing
Peruvian Sign Language (PSL). It achieved an ac-
curacy of 91.56% and was found to be computa-
tionally efficient. However, the model did not in-
corporate 3D keypoints or facial cues, resulting in
reduced expressiveness and context-awareness in
gesture interpretation. In another study, a hybrid
model combining 3D Convolutional Neural Net-
works with Support Vector Machines (SVM) was
employed to extract spatial and temporal features
from gesture sequences in Chinese Sign Language
(CSL) (Zhao et al., 2021). This method achieved
92.6% accuracy and showed strong capability in
modeling motion patterns. However, its slower
recognition speed and dependence on limited CSL
datasets made it less suitable for real-time deploy-
ment and regional language adaptation.

In (Himasree et al., 2024), the authors proposed
a novel Sparse Gabor Descriptor (SGD)-based
technique along with random forest for gesture
recognition with an accuracy of 94%. Similarly,
The system utilizes a Vision Transformer (ViT)
trained on a comprehensive video dataset to clas-
sify various sign language elements, while inte-
grating a sophisticated language model, PHI-1.5B,
to refine translated text for grammatical correct-
ness and structural integrity and achieved robust
and contextually relevant translation of ISL ges-
tures into textual representations in (P and Francis,
2024).

The system proposed in (Kondo et al., 2024)
employs the Mediapipe pose estimation library to
pinpoint the exact positions of finger joints within
video frames and converts these positions into
one-dimensional angular features. These features
are then organized sequentially to create a two-
dimensional input vector for the ViT model.

The authors proposed a progressive sign lan-
guage translation model to effectively separate
sign language users from the background and re-
duce environmental interference, thus significantly
improving the generalization ability in (Zou et al.,
2024).

In another work proposed in (Prabha et al.,
2024), the system focuses on breaking down video
input into individual image frames and building
three different models: EfficientNetV2, Efficient-
NetV2L, and ConvNeXtLarge algorithm. The
accuracy yielded by the three models Efficient-
Net_V2, EfficientNet_V2L and ConvNextLarge

are 94.20%, 92.54% and 95.21% respectively.
In order to identify an Isolated Sign Word (ISW)

in Continuous Sign Language Videos (CSLV), aka
Sign-Spotting, the authors proposed a Grammar-
Based Inductive Learning (GBIL) framework uti-
lizing a Grammar-Based Dictionary (GBD) that
comprises pre-defined syntactic structures of to-
kens for handshape, location, and movement re-
lated to every Isolated Sign Word. GBIL can im-
prove the cross-domain performance of sign spot-
ting by integrating a grammar logic-based infer-
ence on top of deep learning architectures in (Am-
perayani et al., 2024).

The authors presented R-SLR, a sign language
recognition system that can recognize the signs in
real-time in (Ghosh et al., 2024). R-SLR identifies
the hand in a video stream and extracts the region
of interest. We extract the features from the pre-
processed frames and classify the signs using the
pre-trained DenseNet 201 model. The model per-
formance is tested and it achieves 96.5% accuracy.

Recent research introduced an LSTM-based
model with MediaPipe Holistic for Bangla Sign
Language (BdSL) recognition (Das et al., 2025),
achieving 88.33% accuracy by extracting key-
points and analyzing temporal gesture sequences.
While effective for translating 100 isolated signs
in real-time, the system faces limitations in vocab-
ulary coverage, sentence formation, and sensitivity
to lighting conditions, restricting broader usability.

Traditional gesture recognition algorithms
(Badhe and Kulkarni, 2015) using FFT (Fast
Fourier Transform) and template matching
also showed promising accuracy (97.5%) for
ISL. However, their rigid architecture, limited
flexibility, and reliance on predefined gesture
templates made them less adaptable for dynamic
and continuous sign language input in real-world
settings.

After evaluating all these models, the approach
that stood out as the most relevant for our ob-
jectives was the CNN-based model tailored for
Indian Sign Language and American Sign Lan-
guage. This approach achieved the highest accu-
racy of 99.72% (Antad et al., 2024) among the
surveyed models. It used convolutional neural net-
works for real-time detection of hand gestures, of-
fering a practical blend of high performance, com-
putational efficiency, and ease of implementation.
The model’s proven effectiveness with ISL and its
adaptability to regional translation tasks made it
an ideal choice for the current stage of our project.
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Based on this comprehensive analysis, we con-
cluded that the CNN-based model best met the re-
quirements of our system. Its high accuracy, real-
time processing capability, and compatibility with
Indian Sign Language made it highly suitable for
building our ISL recognition and translation sys-
tem aimed at converting sign gestures into Odia
text, thereby enhancing communication accessibil-
ity for the Odia-speaking deaf community.

3 Proposed Solution

To build a robust and context-aware gesture recog-
nition system, we utilize OpenCV in combination
with MediaPipe Holistic to capture human body
landmarks in real time using a webcam. Medi-
aPipe Holistic provides comprehensive tracking
of facial features, body posture, and hand move-
ments, which is essential for accurately detecting
and interpreting sign language gestures.

The captured key pointscomprising coordinates
of various body, face, and hand landmarks are ex-
tracted frame-by-frame and stored in structured
files. These files form the basis of a custom dataset
specifically designed for gesture recognition tasks.
We focus on 12 commonly used ISL gestures: In-
dian, Language, Hello, Bye, Good Morning, Good
Evening, Thank You, Welcome, I, You, How Are
You, and Fine. Each gesture was recorded mul-
tiple times to capture variations in style, speed,
and hand positioning. The final dataset consists of
1,200 samples (100 per class), collected under di-
verse Indian backgrounds and lighting conditions,
and processed using Media Pipe for real-time key
point extraction. Figure 1 shows the mapping of
these commonly used gestures to Odia.

Figure 1: Common Indian Sign Language (ISL) Words
and Their Equivalent Odia Translations.

To make the model robust to real-world con-
ditions, all gestures are captured in complex In-
dian backgrounds, featuring variations in lighting,
background objects, and clothing. This ensures
the dataset reflects real-life environmental com-

plexity and improves the model’s ability to gener-
alize during real-time deployment.

This carefully curated and diverse dataset en-
ables the training of a reliable sign language recog-
nition model tailored for Indian cultural and visual
contexts.

The proposed system presents a comprehensive
and innovative approach to Indian Sign Language
(ISL) recognition and its translation into the Odia
language, with a strong focus on real-time applica-
bility and inclusivity. It leverages the synergy be-
tween MediaPipe and Convolutional Neural Net-
work (CNN) architectures for accurate gesture
recognition, followed by dictionary-based map-
ping for regional language translation.

The integration of Mediapipe and CNN archi-
tecture within the system follows a cohesive and
structured approach. Video frames captured by
the webcam are processed using Mediapipe to ex-
tract relevant landmarks and features correspond-
ing to facial expressions, body poses, and hand
gestures. These extracted features are then fed
into the CNN architecture for further analysis and
classification, resulting in the recognition of spe-
cific sign language gestures. The overall system
flow ensures seamless interaction between differ-
ent components, enabling efficient and accurate
sign language interpretation in real-time scenarios.
By leveraging the capabilities of Mediapipe and
CNN architecture, the system architecture demon-
strates a powerful and effective approach to sign
language recognition. Through continuous refine-
ment and optimization, the system aims to provide
enhanced support for individuals with hearing and
speech impairments, empowering them to commu-
nicate effectively and participate fully in society.

To build a robust ISL-to-text translation system,
a custom dataset was collected using a webcam
and the MediaPipe library, capturing a diverse set
of signs, including greetings, numbers, and alpha-
bets. MediaPipe enables real-time extraction of
normalized hand key-points, ensuring consistent
input that is unaffected by background or lighting
conditions. These key-points are preprocessed and
fed into deep learning models for gesture classifi-
cation. For model selection, both 2D CNN and 3D
CNN architectures were implemented and evalu-
ated to determine the one best suited to our perfor-
mance and system requirements.

We developed and compared two custom multi-
layered models, one comprising 2D CNN layers
and another comprising 3D CNN layers, to de-
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termine the optimal model for our sign language
translation system. This comparative approach al-
lowed us to identify the most computationally ef-
ficient architecture that maintains high accuracy
for real-time translation of sign language gestures,
balancing performance requirements with the tem-
poral modelling capabilities essential for captur-
ing sequential hand movements. The detailed ra-
tionale and architectural overview of the proposed
system is elaborated in Figure 2.

Figure 2: System Architectural Pipeline.

4 Results and Discussion

To assess the effectiveness of the proposed Indian
Sign Language (ISL) to Odia text conversion sys-
tem, we implemented and evaluated two distinct
deep learning models: a 3D Convolutional Neu-
ral Network (3D CNN) and a 2D Convolutional
Neural Network (2D CNN). Both were trained and
tested on a custom ISL gesture dataset comprising
12 classes, captured in diverse Indian backgrounds
to enhance real-world adaptability. The models
were assessed based on training accuracy, valida-
tion accuracy, test accuracy, generalization, con-
vergence speed, and deployment feasibility.

The 3D CNN was trained on short video se-
quences of 30 frames (84Œ20), allowing the
model to learn spatiotemporal dynamics of ges-
tures. The architecture consisted of stacked 3D
convolutional blocks with Conv3D, Batch Normal-
ization, MaxPooling3D, Dropout, and Dense lay-
ers. Despite its ability to capture temporal tran-
sitions, the 3D CNN demonstrated slower conver-
gence and lower generalization:

• Training Accuracy: 88.62%
• Validation Accuracy: 77.63%
• Test Accuracy: 78.33%
Although the model improved over 75 training

epochs, its validation and test accuracy (shown in
Figure 3 and Figure 4) lagged, showing signs of
overfitting. This outcome suggests that while 3D
CNNs are suited for motion-aware tasks, the ges-
ture variability and limited dataset size hinder their
generalization. Additionally, its large parameter
count (~570K) increased the risk of resource con-
sumption.

Figure 3: Training and Validation Accuracy of 3D-
CNN.

Figure 4: Training and Validation Loss of 3D-CNN.

Figure 5: Confusion Matrix of 3D-CNN.

The 3D CNN confusion matrix (shown in Fig-
ure 5) reveals several misclassifications despite
correct predictions in many categories. For in-
stance, it confuses “Good evening” with “Good
morning,” and one sample of “How are you” is
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misclassified, indicating challenges in capturing
fine-grained spatial features despite temporal mod-
elling. Key errors included confusing “Indian”
with “Bye”, “Good evening” with “Good morn-
ing”, “You” with “I” and “How are you” with
“Good evening”, along with two other isolated
misclassifications. These results indicate that the
model had difficulty distinguishing between ges-
tures with subtle spatial or temporal similarities,
leading to reduced accuracy in certain classes.

A more efficient 2D CNN was developed, uti-
lizing skeletal keypoint features (x, y, z coor-
dinates) extracted from each frame using Medi-
aPipe Holistic. These features were flattened and
treated as input for the model. The 2D CNN,
built using Conv2D, Batch Normalization, Max-
Pooling2D, Dropout, and Dense layers, showed re-
markable performance showing:

• Training Accuracy: 95.04%
• Validation Accuracy: 99.56%
• Test Accuracy: 98.33%

Figure 6: Training and Validation Accuracy of 2D-
CNN.

Figure 7: Training and Validation Loss of 2D-CNN.

Figure 6 and Figure 7 show the respective
graphs relating to training and validation accuracy
and loss obtained. The model not only converged
faster (within 50 epochs) but also generalized bet-
ter on unseen data. It was less prone to overfitting,
required fewer computational resources (~160K
parameters), and performed well under varying
lighting, orientation, and hand shape conditions
commonly found in Indian settings.

Figure 8: Confusion Matrix of 2D-CNN.

A confusion matrix (shown in Figure 8) re-
vealed minimal misclassifications, further proving
the 2D CNNs robustness. The 2D CNN also per-
formed well in predicting gestures such as “Bye”
(13/13), “Fine” (6/6), and “I” (6/6). It maintained
high accuracy for “Indian” and “Language”, and
showed good performance in static gestures like
“You” (3/3) and “How are you” (2/2). However, it
struggled slightly with “Good evening”, misclas-
sifying one instance as “Good morning”. More-
over, the system’s strong performance can be at-
tributed to the quality and diversity of the custom-
built dataset, tailored specifically for Indian ges-
ture styles.

The comparative analysis of the results as given
in Table 1 demonstrates that the 2D CNN outper-
forms the 3D CNN in terms of accuracy, general-
ization, training efficiency, and real-time applica-
bility. While 3D CNNs are conceptually power-
ful for capturing motion, their computational de-
mands and sensitivity to data variance limit their
performance on small to mid-sized datasets. The
2D CNN, however, demonstrated high reliability,
minimal errors, and fast training, making it ideal
for integration into the ISL to Odia text translation
system. This validates our system’s current imple-
mentation and supports the use of 2D CNNs for
practical sign language translation applications.

Furthermore, the successful end-to-end map-
ping of gestures to the Odia language not only fills
a significant gap in regional assistive technologies
but also represents the first known implementation
of direct Indian Sign Language to Odia conver-
sion using deep learning. The system sets a strong
precedent for future work in inclusive communi-
cation tools tailored for India’s diverse linguistic
landscape.
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Aspect 3D CNN 2D CNN
Training
Accuracy

88.62% 95.04%

Validation
Accuracy

77.63% 99.56%

Test
Accuracy

78.33% 98.33%

Model
Complexity

High (~570K
parameters)

Moderate
(~160K
parameters)

Training
Duration

75 epochs
(slow
convergence)

50 epochs
(fast
convergence)

Strengths

Captures motion
over time; useful
for complex
sequences

Lightweight,
highly accurate,
real-time ready

Weaknesses

Overfits easily,
resource-heavy,
and has lower
generalization

Limited
temporal
modelling

Suitability
for
Real-time
Deployment

Less suitable Highly suitable

Table 1: Comparative Analysis of Performance of 3D
CNN and 2D CNN Models for Gesture Recognition.

4.1 ISL to Odia Language Mapping

The model incorporates a feature that translates
ISL gestures into Odia script. This is achieved
through a direct mapping system using a pre-
defined dictionary of related Odia words. Each rec-
ognized ISL gesture is mapped to its correspond-
ing Odia word or phrase, enabling the system to
provide text output in Odia.

To facilitate this, the system uses a Tkinter-
based UI that allows users to seamlessly switch to
Odia translation. The UI displays the translated
Odia text, providing a smooth and intuitive way
for users to interact with the system. This fea-
ture enhances the user experience and ensures ef-
fective communication for Odia-speaking users in
the deaf and mute community. Figure 9 shows one
such demo translation.

5 Conclusion and Future Scope

This work presents a comprehensive system for
recognizing Indian Sign Language (ISL) gestures
and translating them into the Odia language, aim-

Figure 9: A Demo Translation Result.

ing to empower the deaf and hard-of-hearing com-
munity in Odisha. By integrating computer vi-
sion and deep learning techniques, the system suc-
cessfully identifies hand gestures corresponding to
commonly used ISL signs and maps them to their
respective Odia translations.

The core of the current system utilizes Medi-
aPipe Holistic to extract precise hand landmark co-
ordinates, which are then processed using a Con-
volutional Neural Network (CNN). This combina-
tion enables efficient recognition of hand gestures
captured in real time. This prototype demonstrates
the potential for bridging communication gaps and
improving accessibility for the hearing-impaired
population, particularly those in Odia-speaking re-
gions. Furthermore, it serves as a helpful learn-
ing tool for new individuals to learn sign language,
promoting wider awareness and understanding.

In terms of model architecture, we plan to en-
hance temporal feature extraction using a deeper
LSTM-based framework, consisting of multiple
stacked LSTM layers followed by dense layers
with ReLU activations for high-level feature ab-
straction and classification. This architecture,
proven effective in prior ISL-related work, will
enable our system to understand the sequence
and flow of gestures more accurately, which is
vital for real-time translation. We also aim to
extend the system from isolated gesture recogni-
tion to sentence-level or continuous ISL transla-
tion. This will involve modelling temporal de-
pendencies over extended gesture sequences, dy-
namic segmentation of signs, and restructuring of
the translated output to form grammatically cor-
rect Odia sentences. This advancement will sig-
nificantly improve the usability of the system in
natural communication contexts.

Additionally, plans are underway to integrate
the system with Odia speech synthesis, allowing
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the translated Odia text to be converted into voice
output. This feature will make the tool more ac-
cessible, especially for users with additional liter-
acy or visual impairments. In the long term, the
system can be embedded into real-time video chat
platforms to support inclusive conversations be-
tween deaf users and Odia-speaking individuals,
both in-person and online.
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Abstract

Glossing is the task of translating from a writ-
ten language into a sequence of glosses, i.e.,
textual representations of signs from some sign
language. While glossing is in principle ’just’ a
machine translation (MT) task, sign languages
still lack the large parallel corpora that exist
for many written language pairs and underlie
the development of dedicated MT systems. In
this work, we demonstrate that glossing can be
significantly improved through data augmenta-
tion. We fine-tune a Spanish transformer model
both on a small dedicated corpus 3,000 Span-
ish–Mexican Sign Language (MSL) gloss sen-
tence pairs, and on a corpus augmented with an
English–American Sign Language (ASL) gloss
corpus. We obtain the best results when we
oversample from the ASL corpus by a factor
of 4, achieving a BLEU increase from 62 to
85 and a TER reduction from 44 to 20. This
demonstrates the usefulness of combining cor-
pora in low-resource glossing situations.

1 Introduction

Sign languages (SLs) are visual-gestural languages
and the primary means of communication for Deaf
communities (Schönström, 2021). Although they
serve as a crucial bridge between hearing and deaf
people, they remain a understudied area in natural
language processing (NLP), which represents an
obstacle to diversity and equity (UNESCO General
Conference, 2003).

SLs do not have a standardized form in the writ-
ten modality. Researchers often represent signs
through glosses: is a notation system used to trans-
late sign language into written form. It is written in
uppercase letters and aims to represent the syntactic
structure and functioning of the sign language with-
out the interference of spoken language grammar
(see Table 1). Glossing helps to describe the se-
mantic, syntatic, and morphological characteristics
of SL (Burad, 2008).

Spanish
↔
MSL

Yo quiero
comer man-
zana (I want to
eat apple)

YO MAN-
ZANA COMER
QUERER (I AP-
PLE EAT WANT)

English
↔
ASL

She is studying
at the library
today

TODAY SHE
STUDY LI-
BRARY

Table 1: Examples of utterances in written language
(left) and glossed sign language (right). MSL: Mexican
Sign Language, ASL: American Sign Language.

Sign Language Translation (SLT) is the task
of translating between sign languages and writ-
ten or spoken languages. Some approaches trans-
late directly between the two modalities (Camgoz
et al., 2018; Hamidullah et al., 2024) but many ap-
proaches use glosses as an intermediate representa-
tion that breaks up the difficult task into more man-
ageable steps (Chen et al., 2022; Mesch and Wallin,
2015). Glosses, due to their textual nature, also fit
naturally into the framework of machine translation
for written languages (Müller et al., 2023).

SLT represents a major challenge in the NLP
community due to the scarcity of high quality data,
particularly parallel corpora. According to (Sen-
nrich and Zhang, 2019), around 1 million parallel
sentences are required to effectively train a typical
Neural Machine Translation (NMT) model. Exist-
ing SL corpora fall far short of this scale: The
widely used RWTH-PHOENIX-Weather 2014T
(Camgoz et al., 2018) corpus, based on German
Sign Language (DGS) weather forecast broadcasts,
contains 8,257 parallel German to DGS glosses sen-
tences. ASLG-PC12 (Othman and Jemni, 2012) is
an English-American Sign Language (ASL) gloss
parallel corpus, containing approximately 87,710
aligned sentence pairs.

In this work, we consider Mexican Sign Lan-
guage (MSL), the main language used throughout
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Mexico among a large segment of the deaf popula-
tion (Bickford, 1991). It has its own grammatical
structure and lexicon, distinct from spoken Span-
ish. In the NLP community, it remains highly un-
derrepresented due to the absence of corpora. To
date, only one parallel corpus is publicly available
(Lara-Ortiz et al., 2025). It contains 3000 aligned
sentence pairs of Spanish and glossed MSL. Our
research questions (RQs) in this situation are:

RQ1 What performance do we achieve for Spanish-
to-MSL glossing with a standard NMT model
in this low-resource situation?

RQ2. How does this compare to a knowledge-based
baseline translation model?

RQ3. Can we improve this setup with data augmen-
tation based on other language pairs?

RQ1 simply establishes the state of affairs for fine-
tuning a Transformer-based NLM on the task, using
what is currently considered the standard setup for
dedicated Machine Translation. Under the assump-
tion that this does not work well, we investigate
two different directions. RQ2 asks whether NMT
is the most reasonable approach and compares it
a simple knowledge-based approach that observes
that the use of symbols as glosses (cf. Table 1)
can be approximated by lemmatization. RQ3 stays
with the NMT paradigm and combines the Spanish-
MSL corpus with a larger English-ASL corpus. In
doing so, we build on a recent body of work which
shows that data augmentation can be crucial in low-
resource scenarios to improve the performance of
NN models in general (Li et al., 2022) and of NMT
models specifically (Haddow et al., 2022).

2 Background: Sign Languages

Sign languages are human languages that arise in
Deaf communities and are transmitted primarily
through the visual-gestural modality. They ex-
hibit the full range of linguistic structure found
in spoken languages, including phonology (e.g.,
handshape, location, movement, orientation), mor-
phology (e.g., classifier constructions), and syn-
tax (e.g., topicalization). Crucially, sign languages
are not derived from or subordinate to the spoken
languages of their surrounding communities; for
example, American Sign Language (ASL) is ge-
nealogically unrelated to English. Cross-linguistic
variation among sign languages provides rich data
for typological and theoretical inquiry.

Due to the difficulty of reducing sign languages
to a written representation, corpora for SLs are
much sparser than for spoken/written languages:
Most major corpora contain only thousands to tens
of thousands of sentences (Kopf et al., 2022).

SLs used in this study. In our study, we focus
on the languages already shown in Table 1, namely
Mexican Sign Language (MSL) and American Sign
Language (ASL). Although ASL and MSL and
ASL are distinct SLs with different lexicons and
grammars, they are both derived from French Sign
Language (LSF) and share structural similarities,
such as SOV word order – in contrast to Spanish
and English SVO word order. For example, the
sentence Yo como manzana (I eat apple) in MSL
becomes YO MANZANA COMER (I APPLE EAT)
and its counterpart in ASL gloss stays the same.
Due to these similarities, an MSL glossing model
should learn generalizable patterns when the train-
ing data is augmented with English-ASL glosses.

For MSL, we use the the first and only pub-
licly available parallel corpus for Spanish and MSL
glosses (Lara-Ortiz et al., 2025). The corpus con-
sists of 3000 aligned sentence pairs and features
simplified gloss annotations. The MSL side is
characterized by very short and highly compressed
gloss sequences. MSL utterances cluster strongly
around 1–5 tokens, with a median close to 3 tokens.
This contrasts with the Spanish side, which shows a
broader and slightly longer distribution (median ≈
4 tokens). For ASL, we use the ASLG-PC12 corpus
(Othman and Jemni, 2012) due to its size (87,710
sentence pairs). It is also widely used for gloss
translation tasks in NLP (Cao et al., 2022). Specifi-
cally, we used a subset of ASL-PCG12 considering
sentences with less than 7 tokens per sentence in
the ASL glosses part to reduce the distributional
mismatch with our SPA–MSL data. This filtering
serves as a normalization step that ensures that
the augmented training data are more consistent
with the linguistic properties of the MSL sequences
present in our primary dataset. Under this condi-
tion, 16,900 pairs of English-ASL are left over.
A manual inspection of the added ASL samples
shows that they come from institutional proceed-
ings (e.g., “opening of the sitting”, “documents
received”, “there were two further issues raised”).
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3 Methodology

3.1 Base Model for Spanish-Mexican Sign
Language Glossing (RQ1)

Our base model for translation from Spanish to
MSL glosses (Base Model below) is based on
BARTO (Bidirectional and Auto-Regressive Trans-
former for Paraphrasing in Spanish) (Araujo et al.,
2024), a Transformer pre-trained on large-scale
Spanish dataset. BARTO uses the BART archi-
tecture (Lewis et al., 2020), an Encoder-Decoder
sequence-to-sequence model trained for paraphras-
ing. In the absence of NMT models for sign lan-
guages, paraphrasing models like BART(O) repre-
sent a reasonable starting point for glossing, since
they are trained to reformulate sentences while pre-
serving their core meaning. BARTO in particular
is well suited for our task, given the lexical similar-
ity between Spanish and MSL glosses, since it is
pre-trained on Spanish corpora.

However, Spanish and MSL differ significantly
in syntax: while Spanish typically follows a
Subject-Verb-Object (SVO) structure, MSL often
adopts Subject-Object-Verb (SOV) patterns. Mor-
phologically, MSL glosses do not encode verb con-
jugations, gender, or number. For these reasons, we
fine-tune BARTO using a parallel corpus of 3,000
Spanish–MSL sentence pairs. During fine-tuning,
BARTO learns to suppress inflectional morphology
and produce outputs that conform to MSL syntax.

3.2 Knowledge-Based Baseline (RQ2)

We also consider a baseline (Baseline (Lem) be-
low). It builds on the observation (cf. Table 1) that
the symbols used for glossing are generally lemmas
of the written language used in the same language
community as the sign language. This suggests that
simple lemmatization should represent an informed
baseline for ’translating’ the written language into
glosses that can account for the change in lexical
material but not the reordering that also takes place.

Concretely, we employ the Spanish lemma-
tizer provided by decision tree-based TreeTagger
(Schmid, 1995) package which computes both part-
of-speech tags and lemmas. We employ a small
number of postprocessing steps to make the lemma
sequence more like sign language glosses: (a),
we remove all articles, auxiliaries, reflexive pro-
nouns, and prepositions (which are generally omit-
ted in the gloss sequences); (b) we replace femi-
nine nouns with ending a by the masculine noun
followed by mujer (woman), again following the

MSL conventions, such as abuela (grandmother)
→ abuelo (grandfather) + mujer (woman); (c) plu-
rals like niños (boys) → niño ellos (they), following
a similar convention for plurals; (d) we restore all
adjectives, which the lemmatizer changes to mas-
culine, to their original forms. As stated above, we
do not adjust word order, and the output still has
predominantly the Spanish default SVO structure.
The lemmatizer can be improved with rule-based
reordering, but this would re- quire a full hand-
crafted grammar for MSL (e.g., systematic SOV
reordering) beyond the scope of this study

3.3 Data Augmentation (RQ3)

Finally, we experiment with a family of models that
take the Base Model (fine-tuned on 3k sentence
pairs in Spanish – MSL glosses) and incremen-
tally incorporate parallel samples from the English-
ASL dataset. As stated above, this experiment tests
whether knowledge from a different SL can benefit
the translation of another (cross-lingual transfer)
despite syntactic differences.

Specifically, we add 3000, 6000 and 9000 ASL
gloss sentence pairs – i.e., the same amount as
for the original language pair and 2 and 3 times
as much, respectively. This leads us to data-
augmented models we designate as DA Model
(3+3k), (3+6k), (3+9k). The MSL and ASL
datasets were simply concatenated.

4 Experimental Setup

To ensure robust evaluation, we partitioned each
dataset into 10 equally sized subsets and carried out
a variant of 10-fold cross validation, varying the
combination of training (80%), validation (10%),
and test (10%) subsets across five runs. For exam-
ple, in the base model using 3000 Spanish-MSL
gloss pairs, 2400 samples were used for training
and 300 each for validation and testing in each run.

Before training, all data were preprocessed: text
was lowercased, extra spaces were removed, punc-
tuation was preserved, and input sequences were
tokenized using Sentence Piece tokenization, pro-
vided by BARTO. For all experiments, we used the
Hugging Face with the following training config-
uration: a learning rate of 10−4, weight decay of
0.01, and a total of 30 training epochs. The batch
size was set to 32 for training and 64 for evalua-
tion. An evaluation was performed at the end of
each epoch. We enabled half-precision training to
reduce memory usage and speed up computation.
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Generation was performed during the evaluation.
We evaluate our models with the standard MT

metrics BLEU-1 through BLEU-4 (higher is better)
and TER (lower is better). This enables us to mea-
sure both glossing quality at the level of individual
tokens as well as overall quality.

Our experimental results are shown in Table 2,
and example translations in Table 3. We now re-
consider the research questions from Section 1.

5 Results

RQ1: Performance of the Base Model. The
base model achieves a BLEU-1 score of 0.62, in-
dicating a reasonable unigram performance. The
BLEU-n scores however decline substantially for
higher n (e.g., BLEU-4=0.35), indicating that the
model struggles with longer phrases. This is also
shown by the pretty high TER score of 44.2. The
examples in Table 3 confirm that the parallel corpus
that is available for Spanish–MSL glosses is not
sufficient for the model to acquire the syntactic pat-
terns of MSL, neither regarding function words nor
word order – the output still looks largely Spanish.

RQ2: Performance of the Baseline. The
lemmatizer-based baseline achieves a BLEU-1
score of 0.79, surpassing the base model consider-
ably in unigram precision. This demonstrates again
the proximity of glosses in MSL to Spanish lemmas
– and in fact, the Baseline outperforms the Base
model also substantially on the TER metric. How-
ever, the Baseline is basically unable to produce
correct longer n-grams, which is expected, since it
does not even attempt to capture the word order dif-
ferences between Spanish and MSL glosses. Table
3 confirms that the Baseline does a fair job for very
short sentences (such as pair 2) but not otherwise.

RQ3: Performance of the Data-Augmented
Model. The DA model now also outperforms the
Lemmatizer baseline on all metrics. However, we
observe a clear behavior of diminishing returns:
increasing the training corpus to 3+6=9k yields
a smaller improvement, and a final increase to
3+9=12k sees essentially unchanged performance.
The TER results mirror the behavior we find for
BLEU, as do the example translations in Table 3:
there is a clear improvement from the base model to
the DA mode in terms of syntactic pattern, but then
little further adaptation. This is expected, since
mixing in more ASL data ultimately causes the
model to optimize more towards ASL glossing. In-

deed, we consider it a positive result that the AD
model’s performance on MSL glossing remains
stable: Other studies on multi-lingual MT using a
comparable setup found that results on a language
pair can suffer when too much data for another
language pair is added (Johnson et al., 2017).

6 Conclusions

In this paper, we have considered the translation
from a written language into sign language glosses,
a task that is both important from an equity point
of view and difficult to capture with our current
standard neural models due to the lack of large
corpora. Indeed, our base model does worse than
a lemmatizer baseline according to some metrics.
Augmenting the training data with a gloss corpus
for another (closely related) sign language yields
a fair increase in glossing quality, but with dimin-
ishing returns for the addition of more data. These
findings are largely in agreement with findings
of data augmentation methods across a range of
tasks (Li et al., 2022) but still do not yield a sat-
isfactory answer to the question of how glossing
can be further improved in such low-resource sce-
narios. Avenues for future research include the
creation of synthetic data (see Perea-Trigo et al.
(2024) for a rule-based approach) with the chal-
lenge of achieving a natural distribution, or alter-
natively the combination of a lemmatization-based
approach—which is very good at generating the
correct lexical material—with a reordering strategy
to match the sign language’s syntactic patterns, e.g.,
inspired by traditional statistical MT (Durrani et al.,
2011). Exploring augmentation with an unrelated
language pair, such as German–DGS, also repre-
sents a promising direction. Moreover, evaluating
additional sequence-to-sequence architectures such
as mT5, mBART, and other multilingual pretrained
models remains an open line of research.
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port provided by the German Academic Exchange
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7 Limitations

In our study, we considered only two sign lan-
guages (with a focus on one of them, namely Mex-
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Metric Base Model
(3k)

Baseline (Lem) DA Model
(3+3k)

DA Model
(3+6k)

DA Model
(3+9k)

BLEU-1 0.62 ± 0.072 0.79 ± 0.068 0.78 ± 0.076 0.84 ± 0.044 0.84 ± 0.045
BLEU-2 0.53 ± 0.106 0.39 ± 0.103 0.69 ± 0.104 0.76 ± 0.063 0.76 ± 0.061
BLEU-3 0.44 ± 0.132 0.17 ± 0.098 0.60 ± 0.105 0.67 ± 0.084 0.67 ± 0.080
BLEU-4 0.35 ± 0.1432 0.08 ± 0.140 0.48 ± 0.097 0.55 ± 0.098 0.55 ± 0.097
TER 44.2 ± 9.56 34.5 ± 10.19 28.7 ± 12.19 21.0 ± 6.76 21.0 ± 6.37

Table 2: Results for Mexican Sign language glossing with the Base, Baseline and Data-Augmented Models

Original
(Spanish)

Ellas viven en México
(They live in Mexico)

La niña está loca
(The girl is crazy)

Tu amiga es distraída
(Your friend (female) is
distracted)

Original
(MSL gloss)

MÉXICO ELLAS
VIVIR
(Mexico they live)

NIÑO MUJER
LOCA
(Boy woman
crazy)

AMIGO MUJER TUYA DIS-
TRAÍDA ASÍ
(Friend woman yours distracted
[PARTICLE])

Base Model Ellas viven en México La niña be loca Tu amiga es distraída
Baseline (Lem) Ellas vivir México Niño mujer loca Tuya amigo mujer distraída
DA Model (3+3k) México ellas vivir Niño mujer loca Amiga tuya distraída así
DA Model (3+6k) México ellas vivir Niña loca Amigo mujer tuya distraída
DA Model (3+9k) México ellas vivir Niño mujer loca Amigo mujer tuya distraída así

Table 3: Three example sentence pairs with translations by the different models

ican Sign Language), and only a single neural lan-
guage model. It remains to be tested to what extent
these results generalize to other sign languages and
to other NLMs.

8 Ethical Considerations

This project was carried out with the awareness and
support of the Grupo Promotor de la LSM, a group
of Mexican Deaf people and MSL interpreters,
whose participation ensured alignment with com-
munity perspectives. However, the group cannot
represent the full diversity of Mexican Sign Lan-
guage (MSL), and the dataset may not capture all
regional or sociolinguistic variations. Moreover,
glossing inherently simplifies the grammatical rich-
ness of MSL. Finally, it is important to note that
this dataset and any translation systems built from it
should complement, but never replace, the work of
professional interpreters, since misuse could neg-
atively impact accessibility and the rights of the
Deaf community.
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Abstract

Sign language translation (SLT) is a challeng-
ing task due to the scarcity of labeled data
and the heavy-tailed distribution of sign lan-
guage vocabularies. In this paper, we ex-
plore a novel data augmentation approach for
SLT: using a large language model (LLM) to
generate paraphrases of the target language
sentences in the training data. We experi-
ment with a Transformer-based SLT model
(Signformer) on three datasets spanning Ger-
man, Greek, and Argentinian Sign Languages.
For models trained with augmentation, we
adopt a two-stage regime: pre-train on the
LLM-augmented corpus and then fine-tune
on the original, non-augmented training set.
Our augmented training sets, expanded with
GPT-4-generated paraphrases, yield mixed re-
sults. On a medium-scale German SL corpus
(PHOENIX14T), LLM augmentation improves
BLEU-4 from 9.56 to 10.33. In contrast, a
small-vocabulary Greek SL dataset with a near-
perfect baseline (94.38 BLEU) sees a slight
drop to 92.22 BLEU, and a complex Argen-
tinian SL corpus with a long-tail vocabulary
distribution remains around 1.2 BLEU despite
augmentation. We analyze these outcomes in
relation to each dataset’s complexity and to-
ken frequency distribution, finding that LLM-
based augmentation is more beneficial when
the dataset contains a richer vocabulary and
many infrequent tokens. To our knowledge,
this work is the first to apply LLM paraphras-
ing to SLT, and we discuss these results with
respect to prior data augmentation efforts in
sign language translation.

1 Introduction

Sign Language Translation (SLT) aims to convert
sign language video into spoken language text,
bridging communication between deaf signers and
hearing people. It is a multimodal task at the in-
tersection of computer vision and natural language
processing, and has seen steady progress in recent
years (Camgoz et al., 2018, 2020). However, SLT
remains extremely challenging due to the scarcity
of large-scale parallel sign-video-to-text datasets
(Bragg et al., 2019). Datasets that do exist tend to
be limited in domain and have a heavy-tailed vocab-
ulary distribution, with many words appearing only
a few times (or even once) in the corpus. For exam-
ple, the popular RWTH-PHOENIX-Weather 2014T
(Phoenix14T) German SL dataset (Camgoz et al.,
2018) has a relatively small vocabulary (under 3k
words) and a high mean word frequency, making it
easier for models to achieve relatively good BLEU
scores compared to broader-domain corpora. In
contrast, newer, more diverse SLT datasets feature
much larger vocabularies and a majority of low-
frequency tokens, resulting in very low baseline
translation performance. The combination of spar-
sity and long-tail token distribution poses a major
hurdle for training effective SLT models. A quanti-
tative summary of these differences including vo-
cabulary size and the proportion of singletons that
drive long-tail effects is provided in Table 2.

Data augmentation is a common strategy to ad-
dress low-resource settings. In spoken language
machine translation, methods like back-translation
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and paraphrasing are commonly used to boost per-
formance in low-resource scenarios (Sennrich et al.,
2016; Hu et al., 2021). In the context of sign lan-
guage, prior work has explored various augmen-
tation techniques. Moryossef et al. (2021) gener-
ate synthetic gloss–text pairs from monolingual
spoken text and report relative gains of +19.7%
BLEU on NCSLGR (Neidle and Vogler, 2012) and
+10.4% on PHOENIX14T (Camgoz et al., 2018).
More recently, (Walsh et al., 2025) leveraged Sign
Language Production models to generate new sign
video samples (either via skeletal pose manipula-
tion or video GANs), yielding up to 19% relative
improvement in BLEU score. These approaches
augment data on the sign language input (either at
the gloss or video level). By contrast, our focus is
on augmenting the text output of the training pairs
using modern LLMs.

Large language models have demonstrated re-
markable capabilities in producing paraphrases and
diversifying text while preserving meaning. We
investigate whether an LLM (GPT-4 in our case)
can be used to automatically create multiple para-
phrased translations for each sign video, thereby
enlarging the effective training set and exposing
the translation model to a richer variety of expres-
sions. Our hypothesis is that this can alleviate the
impact of rare words and rigid sentence patterns in
SLT training data. To our knowledge, this idea has
not been explored in prior SLT research, although
LLMs have been integrated into SLT pipelines in
other ways (e.g., using pretrained text models for
the translation decoder (Wong et al., 2024)).

We conduct experiments on three datasets cov-
ering different sign languages and levels of com-
plexity: (1) Phoenix14T (German Sign Language)
(Camgoz et al., 2018), a weather forecast domain
corpus; (2) a Greek Sign Language (GSL) corpus of
educational video translations (Voskou et al., 2023);
and (3) an Argentinian Sign Language (LSA) cor-
pus derived from the LSA-T dataset (Bianco et al.,
2022). We augment each training set by generating
three paraphrases per original sentence using GPT-
4 (with prompts instructing the model to preserve
semantics and most words while varying word or-
der). For augmented models, we first train on the
augmented corpus and then fine-tune on the origi-
nal sentences only. We employ a Transformer trans-
lation model based on the Signformer architecture
(Yang, 2024). We compare our augmented models
against baselines trained solely on the original data.

Our main contributions can be summarized

as follows: (1) We introduce LLM-based target-
output paraphrasing as a data augmentation tech-
nique for sign language translation and release
four augmented versions of SLT datasets (cover-
ing DGS, GSL, LSA and ISL). (2) We present an
empirical evaluation of this augmentation across
datasets of varying vocabulary size and complexity,
showing that its impact differs markedly: from a
modest BLEU-4 improvement in one case to negli-
gible or even slight negative effects in others. We
analyze these outcomes and provide hypotheses
linking them to dataset properties such as vocab-
ulary breadth and frequency of singletons. All of
our code and datasets are publicly available 1.

2 Related Work

Sign Language Translation. Early SLT systems
followed a two-stage approach: first performing
continuous sign language recognition to predict
an intermediate gloss sequence, then translating
glosses to text (Camgoz et al., 2018). Glosses are
textual labels (often one per sign) that approximate
the signed content. While glosses simplify the
translation problem, creating gloss annotations is
labor-intensive and glosses cannot capture all nu-
ances (facial expressions, classifier constructions,
etc.). To avoid these limitations, recent research
has shifted toward gloss-free SLT, building end-
to-end models that map video directly to spoken
language text (Camgoz et al., 2020; Chen et al.,
2022). Gloss-free SLT is considerably more chal-
lenging, typically yielding lower accuracy than
gloss-based methods, but it is more scalable since
it requires only video-text pairs. Modern gloss-free
approaches often employ transformer architectures
and have begun incorporating large pretrained mod-
els. For example, the Sign2GPT system (Wong
et al., 2024) uses a pretrained CLIP visual encoder
and a GPT-style language model for decoding, with
lightweight adapters, achieving state-of-the-art re-
sults on Phoenix14T and CSL-Daily (Chinese Sign
Language). (Yang, 2024) introduced Signformer,
a transformer that eschews any pretrained compo-
nents and is extremely lightweight (0.57M param-
eters for a smaller variant), yet it reached compet-
itive performance (second place on Phoenix14T
gloss-free leaderboard). Our work builds on a
Signformer-like architecture, but using a sequence
of body pose keypoints as input.

1Url anonimized for review purposes.
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Data Augmentation in SLT. The scarcity of
sign-to-text data has motivated various augmen-
tation strategies. Aside from simple video augmen-
tations (e.g., mirroring, spatial jitter) commonly
used in sign recognition, researchers have proposed
more complex methods for SLT. On the sign in-
put level, one approach is to generate synthetic
training examples using sign language production
models. (Stoll et al., 2020) and others have de-
veloped techniques to create sign animations or
videos from text; however, the visual quality and
realism of generated signs can be limiting. Recent
work by (Walsh et al., 2025) took a step forward
by employing (i) skeleton-based motion synthe-
sis and stitching, and (ii) generative adversarial
models (SignGAN, SignSplat) to produce artificial
sign video variations, yielding relative improve-
ments in BLEU of up to ∼19% on benchmark SLT
datasets. Complementarily, in sign language recog-
nition (SLR), dynamic sign generation has also
proven effective: works like Rios et al. (2025) in-
troduce HandCraft, a lightweight generator that
produces synthetic sign sequences and, through
synthetic-data pretraining, establishes new state-
of-the-art results on LSFB and DiSPLaY—further
supporting the value of sign-level augmentation
for recognition. On the text output, data augmen-
tation is less explored in SLT. (Moryossef et al.,
2021) augmented the text output of a gloss-to-text
translator by creating paraphrase pairs from mono-
lingual data with heuristic rules, effectively expand-
ing data via pseudo-gloss generation. In broader
NLP, LLMs like GPT-3/4 have been used to gen-
erate paraphrases or new training samples for low-
resource tasks (Davoodi et al., 2022). In this work,
we apply a similar idea specifically to SLT: us-
ing an LLM to rephrase ground-truth translations
in order to introduce lexical and syntactic variety.
This approach does not require any additional sign
data and thus is complementary to sign-level aug-
mentation methods. We compare our results with
prior augmentation approaches and discuss scenar-
ios where text augmentation might be preferable or
vice versa.

3 Methodology

3.1 Model Architecture

Our baseline model is inspired by Signformer
(Yang, 2024), a recent transformer-based SLT
model designed for efficiency. We adopt a sim-
plified version of Signformer in which, instead of

feeding in spatio-temporal visual embeddings (e.g.,
CNN features from video frames), we use pose
keypoints extracted from each video frame. Specif-
ically, we utilize the MediaPipe Holistic (Maia
et al., 2025) model to obtain 2D coordinates of
the signer’s body, hands, and face key landmarks
for each frame. These pose landmarks (in total,
we use 33 body pose points, 21 points for each
hand, and a subset of facial landmarks relevant
to mouth and eyebrows) are concatenated into a
feature vector per frame, yielding a time-series of
pose features. We then project this pose feature
vector into the model’s embedding space via a lin-
ear layer. This serves as the input to the encoder.
By using skeleton data, we drastically reduce the
input dimensionality and remove background noise,
potentially enabling faster training and inference
suitable for edge devices (Yang, 2024). However,
this comes at the cost of losing some visual infor-
mation (like detailed appearance, color, or subtle
gestures not captured by keypoints). Prior findings
suggest pose-based approaches may slightly lag
behind image-based models in translation quality,
especially on unconstrained content (Zelezný et al.,
2025). We acknowledge this trade-off; indeed, our
model’s absolute BLEU scores are lower than state-
of-the-art results that use full video frames (see
Section 5). Nonetheless, the relative comparisons
(with vs. without augmentation) remain meaningful
within our setup.

3.2 LLM-Based Data Augmentation
To augment the training data, we employ GPT-4 as
a paraphrase generator. For each video-sentence
pair (V, T ) in the original training set (where T is
the ground-truth spoken language translation of the
sign video V ), we generate N = 3 additional sen-
tences T ′

1, T
′
2, T

′
3 that convey the same meaning as

T . We design a prompt to guide GPT-4 to produce
high-quality paraphrases that preserve semantics
and key vocabulary. The prompt (shown in figure 1)
attempts to generate paraphrases that are close to
the original sentence in vocabulary and style, while
introducing some variation (particularly in word
order and occasional synonyms). The constraint to
reuse 70% of words is intended to prevent GPT-4
from rephrasing too freely and possibly introduc-
ing unfamiliar vocabulary that might confuse the
translation model. We adjusted the prompt for each
target language (e.g., Spanish for LSA, Greek for
GSL, etc.) accordingly.

For each original sign video V , we thus obtain 3
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translations: the original T and three paraphrases
T ′
1, T

′
2, T

′
3. During training we materialize these

as 4 separate examples (V, T ), (V, T ′
1), (V, T ′

2),
(V, T ′

3) (i.e., V is repeated four times with each
textual variant). Figure 1 summarizes the overall
augmentation pipeline. As concrete illustrations
of the augmentation, Table 1 shows three training
instances from RWTH-Phoenix datasets and their
LLM generated paraphrases.

3.3 Training Schedule
We compare two conditions:

• Baseline: train the model on the original (non-
augmented) training set only.

• +Augmentation:

– Stage1: pre-train on the augmented cor-
pus (original targets + three GPT-4 para-
phrases per instance).

– Stage2: fine-tune on the original train-
ing set only, to realign the decoder dis-
tribution with the reference phrasing and
reduce drift toward rare paraphrastic vari-
ants. Unless otherwise stated, all hyper-
parameters are kept identical across con-
ditions; early stopping is performed on
the same development set.

4 Datasets and Evaluation

We evaluate our approach on three sign language
translation datasets that differ notably in linguistic
diversity, recording conditions, and lexical struc-
ture—factors that strongly influence how data aug-
mentation behaves.

The PHOENIX14T dataset (Camgoz et al.,
2018) contains weather broadcast recordings in
German Sign Language (DGS) with corresponding
German text. It is a real-world corpus characterized
by consistent domain-specific phrasing and limited
topic variation. Although this repetitiveness simpli-
fies translation, the naturally recorded conditions
introduce visual variability across signers and ses-
sions, maintaining a moderate level of linguistic
and visual complexity.

In contrast, the GSL dataset (Adaloglou et al.,
2020) is recorded under controlled laboratory con-
ditions, featuring a small group of signers repeat-
edly performing a restricted set of predefined sen-
tences. As a result, it exhibits low linguistic and
visual variability, with high redundancy across sam-
ples and virtually no rare tokens. This simplicity

allows models to easily memorize sentence struc-
tures and reach near-perfect BLEU scores, but at
the cost of generalization.

Finally, the LSA-T dataset (Bianco et al., 2022)
comprises real-world videos from diverse sources,
with a wide range of signers, lighting, and signing
styles. Its naturalistic, spontaneous signing and
extensive Spanish vocabulary make it a far more
challenging dataset. The high proportion of sin-
gletons and irregular phrasing create a long-tail
distribution, resulting in sparse lexical coverage
and low baseline translation accuracy. This makes
LSA-T particularly valuable for testing augmenta-
tion strategies aimed at mitigating data scarcity and
improving robustness under realistic conditions.

Together, these datasets span a spectrum from
controlled and repetitive to unconstrained and di-
verse, providing an ideal testbed for assessing how
LLM-based paraphrasing interacts with varying
levels of linguistic and visual complexity. Table 2
quantitavely describes mentioned datasets.

For all datasets, we preprocessed the videos with
MediaPipe to extract pose sequences, as described
above. We then normalized coordinate values and
frame rates for input to the model (following steps
similar to (Železný et al., 2023)). The text was low-
ercased and tokenized; we built a separate vocabu-
lary for each language (German, Greek, Spanish)
with a size of 5,000 tokens, ensuring coverage of
all training words. We evaluate translation qual-
ity using case-insensitive BLEU-4 (Papineni et al.,
2002) on the test set.

5 Results and Analysis

Table 3 reports BLEU-4 on the test sets for the
Baseline vs. the two-stage +Augmentation setup.

Overall trends. Phoenix14T shows a small but
consistent gain (+0.77 BLEU). Given its moder-
ately rich yet formulaic domain, exposing the de-
coder to paraphrastic re-orderings appears to im-
prove generalization beyond memorized templates,
and the subsequent fine-tuning on original refer-
ences helps keep the output close to the evaluation
style. In contrast, the GSL subset starts with an ex-
ceptionally high baseline (94.38 BLEU), indicating
substantial overlap and low linguistic variability
between training and test. In this near-saturated
regime, even with our final fine-tuning stage, aug-
mentation slightly hurts (92.22 BLEU): the decoder
learns alternative, semantically valid phrasings that
do not exactly match the single reference, and the
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Figure 1: LLM-augmented SLT pipeline. For each video–text pair (V, T ) we use an LLM to generate three
paraphrases (T ′

1, T
′
2, T

′
3) that preserve meaning while introducing limited lexical/syntactic variety. We then adopt a

two-stage regime: (i) pre-train on the augmented corpus (all T and T ′
i ), (ii) fine-tune on the original targets T only.

At test time, the model translates directly from the sign input to text.

Original (reference) LLM paraphrases
tiefdruckgebiete bestimmen unser wetter
low-pressure areas determine our weather

• Unser Wetter wird von Tiefdruckgebieten bestimmt.
Our weather is determined by low-pressure areas.
• Die Bestimmung unseres Wetters erfolgt durch Tiefdruckgebiete.
The determination of our weather is due to low-pressure areas.

auch mit den temperaturen geht es aufwärts
the temperatures are also rising

• Auch die Temperaturen steigen an.
The temperatures are also increasing.
• Die Temperaturen gehen ebenfalls nach oben.
The temperatures are also going up.

eine gewitterfront überquert deutschland von
west nach ost
a thunderstorm front crosses Germany from
west to east

• Eine Gewitterfront zieht von Westen nach Osten über Deutschland.
A thunderstorm front moves from west to east across Germany.
• Von Westen nach Osten überquert eine Gewitterfront Deutschland.
From west to east, a thunderstorm front crosses Germany.

Table 1: Original training references paired with their GPT-4 paraphrases from the PHOENIX14T dataset.

fine-tune does not fully eliminate these variants. Fi-
nally, the reduced LSA-T subset remains extremely
low (around 1.2 BLEU) in both settings; paraphras-
ing largely preserves the same rare content words
(by design of our prompt) and thus does not miti-
gate the core issue: severe data sparsity on the sign
inputs and a very heavy-tailed token distribution.

Data characteristics matter. The observed util-
ity of LLM paraphrasing correlates with vocabu-
lary breadth and the prevalence of infrequent to-
kens. When the dataset offers enough lexical va-
riety (Phoenix14T), paraphrastic exposure helps
the model handle word-order and light lexical al-
ternations encountered at test time. When the task
is artificially simple (our GSL subset), increased
output variety degrades single-reference BLEU de-
spite the final fine-tune. When the vocabulary is
extremely sparse (our reduced LSA-T subset), para-
phrasing the target alone does not address full cov-
erage: many content signs/words are never learned
well enough for the decoder to benefit from the text

augmentation.

On pose inputs. Our absolute Phoenix14T scores
(around 10 BLEU) are well below SOTA that
use full video features and/or gloss supervision
(22–24 BLEU). Likely contributors include our
small model size, reliance on 2D pose keypoints
(which may miss mouthing and subtle facial cues),
and the absence of an intermediate gloss stage
(Yang, 2024; Maia et al., 2025). Nevertheless,
within this consistent pose-based setup, the two-
stage augmentation policy yields the relative effects
summarized above.

6 Conclusion

We presented a study on augmenting SLT training
data by generating paraphrase variations of the tar-
get text using an LLM, combined with a two-stage
training schedule that pre-trains on augmented text
and then fine-tunes on the original data. Across
multiple sign languages, this strategy yields a mod-
est improvement on a medium-complexity dataset
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Statistic PHOENIX14T (DGS) GSL LSA-T (LSA)
Language (target) German Greek Spanish
Sign language DGS GSL LSA
Real-world footage Yes No Yes
No. of signers 9 7 103
Duration [h] 10.71 9.51 21.78
Samples (clips) 7,096 10,295 8,459
Unique sentences 5,672 331 8,102
% unique sentences 79.93% 3.21% 95.79%
Vocabulary size (types) 2,887 N/A 14,239
Singletons (types with count=1) 1,077 0 7,150
% singletons 37.3% 0% 50.21%
Resolution 210×260 848×480 1920×1080
FPS 25 30 30

Table 2: Corpus statistics for the three datasets used in our experiments. The bottom block highlights lexical
properties related to long-tail behavior (vocabulary size and proportion of singletons).

Dataset Baseline (BLEU-4) +Augmentation (BLEU-4)
PHOENIX14T (DGS) 9.56 10.33
GSL (Greek) 94.38 92.22
LSA (Spanish) 1.18 1.19

Table 3: Test BLEU-4 for baseline vs. LLM-augmented training on three datasets.

(Phoenix14T), but negligible or negative effects on
extremely simple (GSL subset) or extremely sparse
(reduced LSA-T subset) settings. These results sug-
gest that LLM-based target output augmentation
is not a one-size-fits-all solution; its usefulness de-
pends on properties like vocabulary diversity and
data sufficiency.

In addition, we demonstrated a pose-based SLT
modeling approach that, while not achieving SOTA
accuracy, allowed us to efficiently experiment with
data augmentation. An interesting avenue for fu-
ture work is to combine sign level and output text
augmentation: e.g., use sign synthesis to generate
new training signs for existing sentences, and si-
multaneously use text paraphrasing to generate new
sentences for existing signs. Such a combination
could address both the lack of visual-sign varia-
tions and the lack of linguistic variations. Another
direction is to apply our augmentation in a scenario
with multiple reference translations for evaluation;
we hypothesize this would show clearer gains of
the method, as single-reference BLEU can penalize
legitimate paraphrases even after fine-tuning.

Finally, while we used a powerful proprietary
LLM (GPT-4) to generate our paraphrases, it would
be valuable to investigate if similar benefits can
be obtained with open-source LLMs or simpler
neural paraphrasers, and test different variations
of the prompt, which would make this approach
more accessible and reproducible for the research
community.
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Abstract
Sign languages are highly diverse across coun-
tries and regions, yet most Sign Language
Translation (SLT) work remains monolingual.
We explore a unified, multi-target SLT model
trained jointly on four sign languages (German,
Greek, Argentinian, Indian) using a standard-
ized data layer. Our model operates on pose
keypoints extracted with MediaPipe, yielding
a lightweight and dataset-agnostic representa-
tion that is less sensitive to backgrounds, cloth-
ing, cameras, or signer identity while retaining
motion and configuration cues. On RWTH-
PHOENIX-Weather 2014T, Greek Sign Lan-
guage Dataset, LSA-T, and ISLTranslate, naive
joint training under a fully shared parameteri-
zation performs worse than monolingual base-
lines; however, a simple two-stage schedule:
multilingual pre-training followed by a short
language-specific fine-tuning, recovers and sur-
passes monolingual results on three datasets
(PHOENIX14T: +0.15 BLEU-4; GSL: +0.74;
ISL: +0.10) while narrowing the gap on the
most challenging corpus (LSA-T: −0.24 vs.
monolingual). Scores span from BLEU-4≈ 1
on open-domain news (LSA-T) to > 90 on con-
strained curricula (GSL), highlighting the role
of dataset complexity. We release our code to
facilitate training and evaluation of multilingual
SLT models.

1 Introduction

Sign Language Translation (SLT) aims to con-
vert sign language videos into spoken or written
language text, helping bridge communication be-
tween deaf and hearing communities. SLT re-

search has concentrated mostly on single-language
benchmarks. Most notably, German Sign Lan-
guage (DGS) with RWTH-PHOENIX-Weather
2014T has typically been used as baseline (Camgoz
et al., 2018). Subsequently, transformer-based ap-
proaches demonstrated steady improvements (Cam-
goz et al., 2020), yet the diversity of sign languages
and the scarcity of labeled data make it impractical
to build and maintain one system per language. In
contrast, multilingual modeling has transformed
spoken/written machine translation (MT): a sin-
gle shared model with target-language control to-
kens can learn to translate among many languages
and even generalize in low-resource settings (John-
son et al., 2017). Bringing these ideas into SLT
is promising but still relatively new. Recent work
has shown the feasibility of multilingual SLT with
architectural mechanisms to regulate parameter
sharing across languages (Yin et al., 2022), and
with clustering strategies to mitigate interference
by grouping related languages (Zhang et al., 2025);
in parallel, scaling data and directions is begin-
ning to push SLT beyond narrow domains (Zhang
et al., 2024). However, evaluation setups differ:
some studies prefer many-to-one (many sign lan-
guages → one spoken language) for comparability,
while others explore many-to-many configurations
with multiple spoken targets, leaving open how far
a fully shared, standard architecture can go when
each sign language is translated into its own spoken
language.

We address this question by training a sin-
gle multilingual SLT model across four sign
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languages: DGS in RWTH-PHOENIX-Weather
2014T (DGS→German) (Camgoz et al., 2018),
the Greek Sign Language Dataset (GSL→Greek)
(Adaloglou et al., 2020), LSA-T (Argentinian
Sign Language; LSA→Spanish) (Bianco et al.,
2023), and ISLTranslate (Indian Sign Language;
ISL→English) (Joshi et al., 2023). In this work we
adapt Signformer (Yang, 2024) to operate on pose
keypoints (hands, body, selected facial landmarks)
extracted with MediaPipe (Lugaresi et al., 2019) in-
stead of on CNN-derived visual embeddings. This
choice yields a lightweight pipeline and can en-
courage cross-lingual transfer over motion patterns,
albeit at the cost of some visual nuance in fine
handshape/face details (for which robustness tech-
niques continue to improve (Moryossef, 2024)).
Practically, we unify data preparation across these
corpora using an open-source library that standard-
izes formats and preprocessing, lowering barriers
to multilingual experimentation.1

Our contributions can be listed as:

• A multi-target multilingual SLT model that
translates each sign language into its native
spoken language within a single, fully shared
Transformer with no language-specific rout-
ing, complementing prior multilingual SLT
designs that add sharing controls (Yin et al.,
2022; Zhang et al., 2025).

• A unified, open-source data layer that har-
monizes formats and preprocessing across
RWTH-PHOENIX-Weather 2014T, Greek El-
ementary, LSA-T, and ISLTranslate, enabling
streamlined multilingual training and evalu-
ation (Bianco, 2025; Camgoz et al., 2018;
Adaloglou et al., 2020; Bianco et al., 2023;
Joshi et al., 2023).

• A pose-keypoint adaptation of Signformer
(Yang, 2024) that replaces frame-based en-
coders with MediaPipe/BlazePose landmarks
(Lugaresi et al., 2019; Bazarevsky et al.,
2020), producing an efficient model suitable
for cross-lingual sharing and deployment.

• An empirical study of multilingual trans-
fer on four typologically and domain-diverse
sign languages, showing that multilingual
pre-training plus light language-specific fine-
tuning surpasses monolingual baselines on
PHOENIX14T, GSL, and ISL, and narrows

1Url anonimized for review purposes.

(but does not close) the gap on LSA-T, con-
sistent with trends observed as SLT scales
(Zhang et al., 2024).

2 Related Work

Research on Sign Language Translation (SLT) be-
gan with the introduction of RWTH-PHOENIX-
Weather 2014T and the first end-to-end baselines by
Camgoz et al. (2018), which established the now-
standard formulation of translating continuous sign
video directly into spoken/written text. Subsequent
transformer-based architectures advanced the state
of the art by better modeling long-range tempo-
ral dependencies and jointly learning recognition
and translation objectives (Camgoz et al., 2020).
More recently, efforts to scale SLT in both data and
directions highlighted that broader, multi-domain
supervision can yield sizeable gains, especially
when training setups move beyond a single sign
language and a single target (Zhang et al., 2024).
Nevertheless, the field has remained predominantly
monolingual, in large part because sign corpora are
scarce, heterogeneous, and difficult to align across
languages, which complicates the construction of
unified training pipelines and fair evaluation.

In contrast, multilingual modeling has been a
defining trend in spoken/written neural machine
translation (NMT). A single Transformer with
a shared subword vocabulary and simple target-
language control tokens can successfully learn
many-to-many mappings, facilitate transfer for low-
resource pairs, and even enable zero-shot general-
ization (Johnson et al., 2017). This paradigm natu-
rally motivates multilingual SLT, where the model
could amortize learning across sign languages that
share articulatory patterns (e.g., hand trajectories,
mouthings) or pragmatic structures, while still spe-
cializing to language-specific phenomena through
conditioning.

Early steps toward multilingual SLT made this
connection explicit. Yin et al. (2022) proposed and
systematically explored many-to-one, one-to-many,
and many-to-many setups, reporting that naive full
sharing can cause interference, and that architec-
tural controls (e.g., language-aware routing) help
balance sharing versus specialization. Building on
this line, Zhang et al. (2025) showed that automat-
ically clustering sign languages into families and
training family-specific models can further miti-
gate negative transfer while preserving the benefits
of multilingual supervision. In parallel, work on
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scaling SLT emphasized the importance of enlarg-
ing both data and translation directions, reinforc-
ing that multilinguality, when properly managed,
acts as both regularizer and data multiplier (Zhang
et al., 2024). Against this backdrop, our study
intentionally opts for a simpler design choice: a
fully shared, standard Transformer without routing
or family modules, paired with target-language to-
kens, to isolate how far basic parameter sharing can
go in a multi-target configuration where each sign
language maps to its native spoken language (akin
to multilingual NMT) (Johnson et al., 2017).

Finally, the feasibility of multilingual SLT also
hinges on the availability of diverse corpora beyond
PHOENIX14T. Recent datasets such as the Greek
Sign Language Dataset (Adaloglou et al., 2020),
LSA-T for Argentinian Sign Language (Bianco
et al., 2023), and ISLTranslate for Indian Sign Lan-
guage (Joshi et al., 2023) broaden the linguistic and
domain coverage for SLT research. Yet these re-
sources differ in annotation conventions, domains,
and difficulty, complicating joint training. This mo-
tivates standardized preprocessing layers and uni-
fied data schemas, which we leverage to train and
evaluate a single pose-based model across multiple
sign languages within one coherent framework.

3 Methodology

3.1 Datasets and Data Processing

Our study spans four SLT corpora with diverse lan-
guages, domains, and collection protocols: RWTH-
PHOENIX-Weather 2014T (Camgoz et al., 2018),
Greek Sign Language Dataset (GSL) (Adaloglou
et al., 2020), LSA-T (Bianco et al., 2023), and
ISLTranslate (Joshi et al., 2023). To make joint
training feasible and comparable across languages,
we standardize all datasets through a unified
schema that normalizes splits, text preprocessing,
and video-to-sequence conversion.

Concretely, videos are sampled at a consistent
frame rate and processed with MediaPipe to ex-
tract 2D landmarks for hands, upper body, and
selected facial regions (Lugaresi et al., 2019). We
apply temporal smoothing and torso-based normal-
ization to reduce jitter and scale variance, then se-
lect a subset of ∼150 features per frame (priori-
tizing hands/arms and a small set of facial cues)
that best capture manual articulations and gram-
matical markers. Text targets are normalized and
tokenized with a shared subword vocabulary. Fig-
ure 1 illustrates how the multilingual training set is

formed by concatenating all corpora and converting
each video to a pose-keypoint sequence, and, as a
side benefit, using pose keypoints instead of raw
frames also reduces sensitivity to dataset-specific
nuisances (e.g., backgrounds, lighting, clothing,
camera/viewpoint, signer appearance), promoting
more invariant cross-corpus sharing while preserv-
ing motion/configuration cues.

3.2 Training Procedure

We adopt a two-stage schedule designed to leverage
cross-lingual transfer while preserving language-
specific nuances:

Stage 1 (Multilingual pre-training): we train
a single fully shared model on the union of all
datasets. To avoid overfitting to high-resource sub-
sets, mini-batches are balanced by oversampling
lower-resource languages, and early stopping is
triggered on a macro-averaged validation BLEU
across languages. The objective is standard cross-
entropy over subword targets; we do not use gloss
supervision.

Stage 2 (Language-specific fine-tuning): start-
ing from the multilingual checkpoint, we fine-tune
one model per language with a lower learning
rate, which reliably recovers (and sometimes sur-
passes) the monolingual baselines. Throughout,
the target-language token conditions the decoder
so that the same parameters handle DGS→German,
GSL→Greek, LSA→Spanish, and ISL→English
within one architecture (Johnson et al., 2017). The
full workflow is summarized in Figure 2.

3.3 Model Architecture

Our model builds on Signformer (Yang, 2024),
a compact Transformer sequence-to-sequence ar-
chitecture. We replace the original frame-based
convolutional tokenization with a pose-based en-
coder: each frame’s selected keypoints (hands, up-
per body, facial cues) are concatenated into a vector
of dimension din≈ 150, normalized, and linearly
projected to the model embedding space. Unlike
multilingual SLT systems that introduce language-
specific routing or adapters (Yin et al., 2022), we
keep all parameters shared, emphasizing simplicity
and parameter efficiency. Figure 3 illustrates the
model’s architecture.

Beyond efficiency, the pose-based encoder acts
as an inductive bias toward signer and background
invariant features, encouraging cross-lingual shar-
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Figure 1: Multilingual dataset construction. Each corpus (PHOENIX14T, GSL, LSA-T, ISLTranslate) is standardized
via a unified schema, then each video is converted into a sequence of MediaPipe keypoints (hands/body/face).
The resulting pose sequences are concatenated into one multilingual training set with target-language tokens for
multi-target decoding.

Figure 2: Monolingual training vs Two-stage multilingual training. Stage 1: joint pre-training of a fully shared
Signformer on the concatenation of PHOENIX14T, GSL, LSA-T, and ISLTranslate with target-language tokens.
Stage 2: light fine-tuning on each language’s data starting from the multilingual checkpoint.

ing without overfitting to visual artefacts that differ
across datasets.

4 Experiments and Results

We evaluate three training regimes: (i) Monolin-
gual baselines—one pose-based Signformer per
dataset; (ii) a Multilingual joint model trained
naively on the concatenation of all corpora; and
(iii) Multilingual + fine-tuning, where the joint
model is lightly adapted to each language. We
report case-insensitive BLEU-4 (Papineni et al.,
2002), following standard SLT practice (Camgoz
et al., 2018, 2020). Table 1 summarizes results for
all four datasets.

Two clear trends emerge. First, naive joint
training under a fully shared parameterization in-

Dataset Monolingual Joint +Fine-tune
PHOENIX14T (DGS→De) 9.56 4.27 9.71
GSL Dataset (GSL→Gr) 94.38 63.07 95.12
LSA-T (LSA→Es) 1.18 0.48 0.94
ISL-Translate (ISL→En) 2.61 0.59 2.71

Table 1: BLEU-4 on test sets for monolingual baselines,
a single multilingual joint model, and multilingual pre-
training followed by language-specific fine-tuning. Best
per row in bold.

curs sizeable drops relative to monolingual train-
ing (PHOENIX14T: −5.29; GSL: −31.31; LSA-T:
−0.70; ISL: −2.02 BLEU), indicating capacity di-
lution and cross-language interference when mix-
ing heterogeneous sign languages without stronger
sharing controls. Second, the two-stage sched-
ule is crucial: brief, low–learning-rate fine-tuning
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Figure 3: Overview of the adapted Signformer archi-
tecture (originally taken from (Yang, 2024)) for multi-
lingual SLT using pose keypoints as input. Instead of
frame-based visual tokens, each frame’s concatenated
hand, upper-body, and selected facial landmarks (after
normalization and linear projection) feed the encoder. A
shared decoder, conditioned on a target-language token,
generates the translation.

largely restores and, on three datasets, surpasses
monolingual performance (PHOENIX14T +0.15,
GSL +0.74, ISL +0.10 vs. monolingual), while
LSA-T remains challenging (joint → FT: +0.46,
ending −0.24 below monolingual). These out-
comes mirror multilingual MT and SLT scaling
results—multilingual pre-training acts as a regular-
izer and data multiplier, but sensitive adaptation
is required to realize gains across languages and
domains (Johnson et al., 2017; Zhang et al., 2024).

Dataset complexity and representation effects.
The spread in BLEU-4 reflects intrinsic differences
across corpora. GSL’s curriculum-oriented con-
tent and constrained phrasing may partly explain
its very high scores, whereas LSA-T’s news-style,
open-domain content, signer variability, and po-
tential annotation/pose-estimation noise make it
considerably harder. Moreover, pose-based in-
puts—while enabling compact, deployable mod-
els—trade some fine-grained appearance cues (e.g.,
subtle handshapes, facial expression nuances) for
efficiency, which can widen the gap to video-based
SOTA on the most challenging settings (Yang,
2024). Still, the fact that PHOENIX14T and
GSL not only recover but slightly surpass monolin-
gual baselines after multilingual pre-training sug-
gests that shared motion/configuration patterns are
learnable with keypoints when paired with light
language-specific adaptation.

5 Conclusion

We presented a multi-target multilingual SLT sys-
tem that translates DGS→German, GSL→Greek,
LSA→Spanish, and ISL→English within a single,
fully shared Transformer, enabled by a unified data
layer and pose-based inputs. Naive joint training
alone is insufficient—performance drops on all four
datasets—but a simple two-stage schedule (multi-
lingual pre-training followed by brief language-
specific fine-tuning) reliably recovers and sur-
passes monolingual baselines on PHOENIX14T,
GSL, and ISL, while narrowing (though not clos-
ing) the gap on LSA-T. These findings echo multi-
lingual MT and recent SLT scaling results: cross-
lingual transfer is beneficial, but careful adaptation
is necessary to mitigate interference (Johnson et al.,
2017; Zhang et al., 2024).

Relative to prior multilingual SLT that com-
monly evaluates many-to-one into a single target
language, our study emphasizes a multi-target con-
figuration aligned with each dataset’s native spoken
language and demonstrates that a compact, pose-
based Signformer can serve as an effective back-
bone for this setting. While pose inputs may un-
derperform on unconstrained domains like LSA-T,
they enable lightweight, privacy-friendly models.
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Abstract

Fingerspelling enables signers to represent
proper nouns and technical terms letter-by-
letter using manual alphabets, yet remains
severely under-resourced for Indian Sign Lan-
guage (ISL). We present the first continuous
fingerspelling dataset for ISL, extracted from
the ISH News YouTube channel, in which fin-
gerspelling is accompanied by synchronized
on-screen text cues. The dataset comprises
1,308 segments from 499 videos, totaling 70.85
minutes and 14,814 characters, with aligned
video-text pairs capturing authentic coartic-
ulation patterns. We validated the dataset
quality through annotation using a proficient
ISL interpreter, achieving a 90.67% exact
match rate for 150 samples. We further estab-
lished baseline recognition benchmarks using
a ByT5-small encoder-decoder model, which
attains 82.91% Character Error Rate after fine-
tuning. This resource supports multiple down-
stream tasks, including fingerspelling transcrip-
tion, temporal localization, and sign genera-
tion. The dataset is available at the follow-
ing link: https://kirandevraj.github.io/
ISL-Fingerspelling/.

1 Introduction

Sign languages serve as the primary communica-
tion medium for over 70 million deaf individuals
worldwide, yet technological support for these lan-
guages remains vastly underrepresented compared
to spoken languages. Fingerspelling serves as a crit-
ical bridging mechanism in sign languages, allow-
ing signers to spell words from spoken languages
letter-by-letter using a dedicated manual alpha-
bet (Padden and Gunsauls, 2003). While American
Sign Language (ASL) has benefited from substan-
tial datasets, with recent collections encompassing
millions of characters and hundreds of hours of
data that enable significant advances in recognition
accuracy (Georg et al., 2024), research on ISL fin-
gerspelling recognition has been severely limited

by the absence of comparable resources.
The structure of manual alphabets varies across

sign languages; some employ one-handed config-
urations (such as the American Sign Language),
while others utilize two-handed systems (such as
the ISL). Despite being a subset of the broader
sign language lexicon, fingerspelling plays a sub-
stantial role in communication. Recognition of
fingerspelled sequences presents significant com-
putational challenges owing to two primary factors:
first, the movements are characterized by rapid,
subtle articulations with extensive co-articulation
between consecutive letters, making visual parsing
difficult (Patrie and Johnson, 2011); second, finger-
spelling predominantly encodes out-of-vocabulary
items, including proper nouns, technical terminol-
ogy, and domain-specific vocabulary, which lack
established sign equivalents, limiting the applicabil-
ity of lexicon-based recognition approaches (Pad-
den and Gunsauls, 2003). This signifies a dedicated
focus on fingerspelling.

The development of automated ISL finger-
spelling recognition systems has been severely con-
strained by the absence of large-scale standardized
benchmark datasets. Although ASL benefits from
substantial resources such as FSboard (Georg et al.,
2024) with over 3 million characters and ChicagoF-
SWild+ (Shi et al., 2019) with 55,232 sequences
from 260 signers, existing ISL datasets primarily
focus on isolated sign recognition or continuous
sentence-level translation tasks(Joshi et al., 2023,
2024), with limited attention to fingerspelling as a
distinct recognition challenge.

To address this critical gap in ISL processing
resources, we present the first dedicated bench-
mark dataset for continuous Indian Sign Language
fingerspelling recognition, comprising 1,308 finger-
spelling segments extracted from 499 ISH News
YouTube videos. The dataset totals 70.85 minutes
of video data across 1,308 annotated segments con-
taining 14,814 characters, capturing authentic coar-
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Figure 1: ISH News fingerspelling example showing eight frames of the word "formaldehyde." The side panel
displays letters (F-O-R-M-A-L-D-E) that are sequentially synchronized with the signer’s hand configurations. These
visual cues serve as our annotation source.

ticulation patterns in naturalistic signing contexts.
We establish baseline recognition results using a
ByT5-small encoder-decoder transformer model,
achieving 82.91% Character Error Rate after fine-
tuning and providing reference performance met-
rics for future research. We have made our dataset
and annotations publicly available to facilitate re-
producible research and support the broader devel-
opment of ISL processing technologies for deaf
and hard-of-hearing communities.

2 Related Works

Fingerspelling recognition has been extensively
studied for American Sign Language using
datasets such as ChicagoFSVid (Kim et al., 2016),
ChicagoFSWild (Shi et al., 2018), ChicagoF-
SWild+ (Shi et al., 2019) with 55,232 sequences
from 260 signers, and FSboard (Georg et al., 2024)
with over 3 million characters. Recent work has
extended to fingerspelling span detection in longer
videos (Shi et al., 2022; R et al., 2022), enabling
automatic localization of fingerspelling segments.
In contrast, Indian Sign Language fingerspelling re-
search has primarily focused on image-based hand-
shape classification (Suchithra et al., 2025; Langote
et al., 2024), recognizing static handshapes from
single frames rather than addressing temporal dy-
namics in continuous sequences.

Indian Sign Language research has witnessed
significant growth with several dataset contribu-
tions. Large-scale translation datasets include
iSign (Joshi et al., 2024) with 118k video-English
pairs and ISLTranslate (Joshi et al., 2023) with
31k pairs from educational videos. Isolated sign
recognition is supported by INCLUDE (Sridhar
et al., 2020) (263 signs, 4,287 videos), ISL-
CSLTR (Elakkiya and Natarajan, 2021) (700

sentence videos, 1,036-word vocabulary), and
CISLR (Joshi et al., 2022) (7,050 videos, 4,765
words). However, fingerspelling has been severely
underexplored. Existing fingerspelling datasets are
exclusively image-based, focusing on isolated al-
phabet recognition: ISL Fingerspelling (Dongare
et al., 2025) provides 14K images, ISL Skele-
tal (Johnson et al., 2023) contains 3.6K images
per letter, ISL Hand Gesture (Biswas, 2024) offers
14.3K images, and Static Gestures of ISL (Singh
et al., 2022) include 102K images. None of these
captures the temporal dynamics, coarticulation pat-
terns, or continuous sequences necessary for realis-
tic fingerspelling transcription. We address this gap
with the first continuous ISL fingerspelling dataset.

3 Fingerspelling Benchmark

3.1 Dataset Creation

We created a continuous fingerspelling dataset from
the ISH News YouTube channel by leveraging nat-
urally occurring fingerspelling instances in news
videos. The channel employs a distinctive visual
cue system where fingerspelling segments, typ-
ically proper nouns such as person names and
place names, are accompanied by synchronized
on-screen text that displays each letter sequen-
tially below a contextual image, timed to match
the signer’s fingerspelling gestures (Figure 1). We
identified 499 unique videos containing these vi-
sual cues from which we extracted 1,308 finger-
spelling instances. Using the ELAN annotation
tool (Brugman and Russel, 2004; Max Planck In-
stitute for Psycholinguistics, 2023), we manually
marked the temporal boundaries of each finger-
spelling segment around the start and end of the
text animation and associated them with the cor-
responding words or phrases from the visual cues.
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Dataset Type & Size

ISL Fingerspelling (Dongare et al., 2025) 14K images
ISL Skeletal (Johnson et al., 2023) 3.6K img/letter
ISL Hand Gesture (Biswas, 2024) 14.3K images
Static Gestures (Singh et al., 2022) 102K images

Continuous ISL Fingerspelling (Ours) 1,308 seg.
14,814 chars

Table 1: Comparison with existing ISL fingerspelling
datasets. Prior work focuses on static images of isolated
letters, while our dataset provides continuous video se-
quences.

This approach enables annotation of continuous
fingerspelling sequences from authentic YouTube
content.

Video Processing: Following temporal bound-
ary annotation, we preprocessed the video seg-
ments to isolate the signer region and remove ex-
traneous visual elements such as the side panel
containing text cues. For each annotated segment,
we first extracted the corresponding video clips
based on marked timestamps. We then employed
YOLOv8 (Varghese and M, 2024) person detec-
tion on randomly sampled frames to identify the
signer’s bounding box and select the rightmost de-
tected person (signers consistently appear on the
right side of the frame in ISH News videos). To en-
sure robust cropping across varying camera angles
and signer movements, we aggregated bounding
boxes across multiple sampled frames using me-
dian coordinates. Finally, we applied these com-
puted crop coordinates to extract signer-only video
segments, producing 1,308 preprocessed clips con-
taining the signer performing fingerspelling ges-
tures without on-screen text overlays or back-
ground elements. This preprocessing ensures that
models trained on our dataset focus on visual sign-
ing features rather than textual cues.

3.2 Dataset statistics

The dataset comprises 1,308 fingerspelling seg-
ments extracted from 499 videos, totaling 70.85
minutes of signing content from 3 unique signers.
Among these videos, 408 video IDs overlapped
with the iSign (Joshi et al., 2024) sentence-level
translation dataset, whereas 91 were not previously
included in iSign. The extracted segments con-
tain 14,814 characters total. Alphabets constituted
92.64% (13,724 characters), reflecting the predom-
inantly textual nature of fingerspelling in proper
nouns. Spaces accounted for 6.82% (1,011 char-
acters), separating multi-word names and phrases.

Validation Outcome Count

Exact match 136
Signer skipped space 7
Signer made error 5
Too fast to verify 2

Total 150

Table 2: Interpreter validation results on 150 randomly
sampled segments after correcting validator transcrip-
tion errors.

Numbers appear minimally at 0.17% (25 charac-
ters), corresponding to occasional numeric refer-
ences in names or titles. Other characters comprise
0.36% (54 characters), and primarily include pe-
riods used in abbreviations and initials, hyphens
in compound names, and occasional parentheses.
Table 1 compares our dataset with existing ISL fin-
gerspelling resources, highlighting the shift from
static image-based datasets to continuous video
sequences.

3.3 Annotation Validation

To validate the reliability of the cue-based annota-
tions, we conducted validation on 150 randomly
sampled segments (totaling 8.20 minutes) with a
proficient Indian Sign Language interpreter. The
interpreter independently transcribed each segment
by watching fingerspelling gestures without access
to visual cues. In the first round, we identified
discrepancies between the cue-based annotations
and interpreter transcriptions in 27 cases. Upon
closer examination in the second round, we deter-
mined that 13 discrepancies resulted from valida-
tor transcription errors, which we corrected. The
remaining 14 cases reflected actual issues in the
source videos or extraction process, as detailed in
Table 2. After corrections, 136 of 150 segments
(90.67%) achieved exact match with the interpreter
validation, confirming the overall reliability of the
cue-based annotation approach.

3.4 Fingerspelling Tasks

Our dataset supports three key tasks in sign lan-
guage processing: Transcription converts con-
tinuous fingerspelling video segments into char-
acter sequences, handling coarticulation, signing
speed variations, and ambiguous handshapes. In
Section 4, we establish baseline benchmarks for
this task. Temporal Localization identifies finger-
spelling segment boundaries within longer videos.
Our annotations provide temporal boundaries for
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cue-accompanied fingerspelling instances. The to-
tal number of hours of these 499 videos is 20. Gen-
eration produces signing videos from text with
realistic handshapes and transitions. Our dataset
can serve as a reference for fingerspelling.

4 Models, Experiments and Results

4.1 Baseline Models

Experimental Setup We conduct two experiments
to evaluate fingerspelling recognition performance.
First, we evaluated a model pretrained on the iSign
dataset (Joshi et al., 2024) in a zero-shot setting on
our fingerspelling test set to assess transfer learning
from general ISL to fingerspelling. During iSign
pre-training, all video IDs overlapping with our fin-
gerspelling dataset were excluded from the training
data to prevent data leakage. Second, we fine-tuned
the pretrained model on fingerspelling-specific data.
We split our fingerspelling dataset based on video
ID overlap with iSign: 1,104 segments from videos
present in iSign served as the training set, while
204 segments from videos not in iSign formed the
test set. The model performance was evaluated
using the Character Error Rate (CER).
Model Architecture We adopt the modeling ap-
proach from FLEURS-ASL and FSboard (Georg
et al., 2024), using a ByT5-small encoder-decoder
Transformer. We extracted 75 keypoints (33 body
pose, 21 per hand) from MediaPipe Holistic (Lu-
garesi et al., 2019; Grishchenko and Bazarevsky,
2020) at 15 Hz, yielding 225-dimensional vec-
tors (75 keypoints × 3 coordinates). The iSign
dataset provides poses in pose-format (Moryossef
et al., 2021). Preprocessing included shoulder-
distance normalization for scale invariance, down-
sampling to 15 Hz, zero-filling for missing key-
points, and padding/truncation to fixed sequence
length. We selected ByT5 over subword models
because of its character-level tokenization in fin-
gerspelling (Tanzer, 2024). The landmarks were
projected through a two-layer feedforward network
with layer normalization and dropout into the 1472-
dimensional input space of the transformer.
Training We employ a two-stage training strategy:
Stage 1 freezes the ByT5 parameters while training
only the pose embedding projection for 40 epochs
with a learning rate of 1e-4 and batch size of 16,
followed by Stage 2 which unfreezes all parameters
for end-to-end fine-tuning for 20 epochs with a
reduced learning rate of 1e-5 and batch size of
4. We used the AdamW optimizer with gradient

Evaluation Set CER (%)

Pretrained on iSign (zero-shot)
Test (204 seg.) 432.44
Full dataset (1,308 seg.) 433.06

Fine-tuned on fingerspelling (1,104 train)
Test (204 seg.) 82.91

Table 3: ByT5-small model performance on finger-
spelling transcription. The model was evaluated in zero-
shot (pretrained only on iSign) and fine-tuned settings.
Test set contains segments from videos not in iSign.

clipping, gradient accumulation (steps=2), and 500-
step warmup. Training was performed on two RTX
4090 GPUs, completing in approximately 18 hours.

4.1.1 Results
Table 3 presents our baseline results under two
evaluation conditions. Without fine-tuning on
fingerspelling-specific data, the model pretrained
only on general ISL achieved a CER of 432.44%
on the test set and 433.06% on the full dataset,
demonstrating extremely limited zero-shot transfer
capability. After fine-tuning on the fingerspelling
training split, performance improved substantially
to 82.91% CER, representing an 80.8% relative
reduction in error rate. This large performance
gap indicates that while learned visual representa-
tions from general ISL provide some foundation,
fingerspelling recognition requires domain-specific
adaptation because of its distinct character-level
structure and rapid hand movements. The post-
fine-tuning CER of 82.91% establishes a baseline
for future work, although it remains substantially
higher than the state-of-the-art ASL fingerspelling
results (e.g., FSboard achieves 10% CER (Georg
et al., 2024)), highlighting the unique challenges
and data scarcity for ISL fingerspelling recognition.

5 Conclusion

We present the first continuous fingerspelling
dataset for Indian Sign Language, comprising
1,308 video segments from 499 videos totaling
70.85 minutes and 14,814 characters. Our base-
line ByT5-small model achieved 82.91% CER after
fine-tuning, establishing initial benchmarks while
revealing substantial room for improvement. Fu-
ture work should prioritize expanding dataset scale
and signer diversity, investigating transfer learning
from larger fingerspelling datasets, and developing
improved methods to handle coarticulation patterns
in ISL fingerspelling.
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Limitations and Ethical Considerations

5.1 Limitations

Our cue-based extraction achieves 90.67% exact
match with expert validation after correcting val-
idator errors, with remaining discrepancies from
signer errors in videos (5 cases), missing spaces
(7 cases), and overly rapid signing (2 cases). The
dataset’s reliance on ISH News videos with a lim-
ited number of professional signers constrains de-
mographic diversity and may reduce generaliza-
tion to casual or regional signing styles. Temporal
boundaries were manually annotated by the first
author based on observed correspondence between
visual cues and fingerspelling gestures, introducing
potential subjectivity in boundary placement. The
predominance of proper nouns and news-related
terminology may limit model performance in tech-
nical jargon or conversational fingerspelling. The
relatively small scale (1,308 segments, 70.85 min-
utes) limits the training of large-scale models and
the comprehensive evaluation across diverse finger-
spelling scenarios.

5.2 Ethical Considerations

We used publicly available ISH News YoutTube
videos, with 407 of 499 videos already in the iSign
dataset (Joshi et al., 2024) (which obtained ISH
News permission for research use) and the remain-
ing 92 videos featuring identical signers and set-
tings. Sign language videos capture facial expres-
sions and body postures, enabling signer identifica-
tion and raising privacy concerns despite publicly
available nature and institutional permissions. Pro-
fessional broadcast signers do not represent full
ISL community diversity, including regional vari-
ations and casual signing styles. Models trained
on these broadcast-quality data should not be de-
ployed in accessibility applications without exten-
sive community validation, as generalization gaps
could harm deaf users.
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Abstract

Sign language translation (SLT) has witnessed
rapid progress in the deep learning community
across several sign languages, including Ger-
man, American, British, and Italian. However,
Indian Sign Language (ISL) remains relatively
underexplored. Motivated by recent efforts to
develop large-scale ISL resources, we investi-
gate how existing SLT models perform on ISL
data. Specifically, we evaluate three approaches:
(i) training a transformer-based model, (ii) lever-
aging visual-language pretraining, and (iii) tun-
ing a language model with pre-trained visual
and motion representations. Unlike existing
methods that primarily use raw video frames,
we augment the model with optical flowmaps to
explicitly capture motion primitives, combined
with a multi-scale feature extraction method for
encoding spatial features (SpaMo-OF). Our ap-
proach achieves promising results, obtaining
a BLEU-4 score of 8.58 on the iSign test set,
establishing a strong baseline for future ISL
translation research.

1 Introduction

Sign languages bridge the communication gap be-
tween deaf and hearing communities. The World
Health Organization1 predicts that by 2050, over
700 million people will experience disabling hear-
ing loss. This growing prevalence highlights the ur-
gent need for assistive technologies that can support
inclusion and accessibility. Sign language transla-
tion (SLT) has emerged as a promising research
area, with extensive studies on German, Ameri-
can, and British Sign Languages, largely enabled
by the availability of large-scale datasets such as
PHOENIX-2014T (German) (Camgoz et al., 2018),
How2Sign (Duarte et al., 2021) and OpenASL (Shi
et al., 2022) (American), and BOBSL (British) (Al-
banie et al., 2021). SLT methods in the literature

1https://www.who.int/news-room/fact-sheets/
detail/deafness-and-hearing-loss

typically fall into two categories: gloss-based and
gloss-free. Gloss supervision (Camgoz et al., 2020;
Chen et al., 2022) has been shown to improve trans-
lation quality, but many datasets lack gloss annota-
tions due to their high cost. The shortage of trained
sign language experts and the expense of annota-
tion have therefore pushed the community toward
gloss-free approaches (Lin et al., 2023; Gong et al.,
2024; Wong et al., 2024; Jang et al., 2025; Hwang
et al., 2025).

Figure 1: Overall architecture of our SLT framework.

All existing studies have primarily focused on de-
veloping translation systems for well-resourced sign
languages such as German, Chinese, American, and
British. In contrast, low-resource sign languages
like Indian Sign Language (ISL) remain largely
overlooked. The recent release of large-scale ISL
datasets such as ISLTranslate (Joshi et al., 2023)
and iSign (Joshi et al., 2024), together with the un-
derperformance of ISL when using existing models,
motivates us to examine whether recent architec-
tures that perform well on other sign languages can
also generalize to ISL. To this end, we evaluate
three representative approaches for SLT: (i) training
transformers from scratch (Camgoz et al., 2020),
(ii) visual-language pretraining using contrastive
learning (Zhou et al., 2023), and (iii) finetuning
Large Language Models (LLMs) with multi-scale
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spatial features and motion features extracted us-
ing a pre-trained backbone. We further adopt the
recently proposed SpaMO model (Hwang et al.,
2025), which achieves state-of-the-art results on
several SLT benchmarks but has not yet been ap-
plied to ISL. SpaMO leverages multi-scale fea-
ture extraction from input video frames to improve
downstream translation performance. We extend it
by incorporating optical flow features, which sig-
nificantly improve results on the iSign dataset by
better capturing motion cues in signed gestures. To
ensure reliable evaluation, we curated a noise-free
subset of iSign and conducted experiments on this
data.

Our main contributions are as follows: i) We con-
duct the first systematic evaluation of three repre-
sentative SLT approaches on Indian Sign Language.
ii) We enhance translation performance by aug-
menting SpaMO with optical flow features to cap-
ture motion primitives alongside multi-scale spatial
features. iii) We curate and release a carefully se-
lected subset of iSign to enable robust evaluation
for future ISL translation research. The dataset
can be accessed using the following link https:
//github.com/Analroy/SpaMo-OF.git.

2 Related Work

The SLT framework has evolved from RNN-based
to Transformer-based architectures (Camgoz et al.,
2018, 2020), where sequential models take CNN-
based features as input. More recent approaches
to building better translation systems focus on cap-
turing richer representations, such as pose features
or a combination of pose and RGB features (Chen
et al., 2022), as well as sign-aware representations
(Hu et al., 2021, 2023). To learn stronger sign-
specific representations, (Zhou et al., 2023) pro-
posed pretraining the visual encoder, while (Lin
et al., 2023) employed contrastive pretraining of the
visual encoder using pseudo-gloss supervision. Re-
cent advances in LLMs have also attracted attention
(Gong et al., 2024; Wong et al., 2024; Chen et al.,
2024), as researchers explore leveraging large-scale
pretrained models and adapting them to domain-
specific data using parameter-efficient methods
such as LoRA (Hu et al., 2022). In contrast to these
resource-intensive pretraining approaches, (Hwang
et al., 2025) demonstrated that multi-scale features
and motion features extracted from a frozen model,
when aligned to the LLM space, can achieve im-
proved translation performance by applying LoRA

tuning only to the language model.

3 Method

We aim to translate a sign language video V =
[f1, f2, . . . , fT ] into a spoken language sentence
Y = [w1, w2, . . . , wS ] by leveraging complemen-
tary spatial and motion features, aligning them with
textual representations, and decoding them with an
LLM. The overall pipeline is illustrated in Fig.1.

3.1 Feature Extraction
Spatial Features: A Vision Transformer captures
multiscale spatial representations S2 (Shi et al.,
2025) from input frames, following (Hwang et al.,
2025). These features encode detailed hand shapes
and body postures across scales.
Motion Features: To explicitly capture temporal
dynamics, we combine:
Optical Flow: Computed using Global Motion Ag-
gregation (GMA) (Jiang et al., 2021), which ro-
bustly handles occluded hand movements (Fig. 2).
VideoMAE Primitives: VideoMAE (Tong et al.,
2022) processes 16-frame segments to learn higher-
level motion patterns.

Figure 2: Optical flow map extraction using the GMA.

3.2 Cross-Modal Alignment
Spatial and motion features are projected into the
textual embedding space via an alignment module
(Hwang et al., 2025), consisting of a linear layer,
1D TCN, and MLP. To bridge the modality gap,
we warm up this module with softmax-based con-
trastive learning (Radford et al., 2021; Jia et al.,
2021), aligning embeddings of matching sign-text
pairs while pushing apart mismatched ones. Only
the alignment module is updated, preserving the
LLM’s language capabilities and providing well-
initialized features for SLT training.

3.3 Language Modeling
Aligned visual and motion features are fed into a
multilingual LLM fine-tuned with LoRA to gener-
ate the target sentence Y . To focus the LLM on
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the SLT task, we employ a task-specific prompt
(Hwang et al., 2025) that provides a clear instruc-
tion, e.g., “Translate the given sentence into Indian,”
along with multilingual reference translations (e.g.,
Hindi, French, Spanish) sampled from the training
set. The prompt template is shown in Appendix A.
Each reference is formatted as [SRC] = [TRG],
enabling in-context learning while preventing direct
exposure to the target sentence by shuffling pairs
during training. At test time, a translation pair from
the training set serves as the reference.

4 Experiments

4.1 Datasets
We used the following datasets in our experiments.

German Sign Language (DGS): The RWTH-
PHOENIX-2014T (Phoenix-14T) dataset (Camgoz
et al., 2018) is the standard benchmark for DGS
translation. It contains 7,096 training, 519 valida-
tion, and 642 test samples, each aligned with Ger-
man sentences. The dataset covers weather forecast
scenarios interpreted by professional sign language
interpreters on television and includes a vocabulary
of 2,887 words.

Indian Sign Language (ISL): iSign (Joshi et al.,
2024) is a recently introduced large-scale dataset
for ISL, comprising over 127k sentence-aligned
signing videos collected from diverse real-world
contexts.

4.2 Balanced Subset Construction from iSign
(ISL)

We retain only sentences containing 5–15 words,
reducing the dataset from 127k to 76k samples. Sen-
tences shorter than 4 words are excluded, as very
short translations primarily produce low BLEU-
1/BLEU-2 scores. When such samples constitute
a large portion of the data, the averaged BLEU-4
score no longer reflects meaningful translation qual-
ity. Similarly, extremely long sentences, i.e., those
with more than 15 words (which have 310 frames
on average and up to 2370 frames) are also removed,
as their excessive frame counts introduce variabil-
ity and noise, making model training unstable and
inefficient.

From this pool, we construct a balanced subset
of 10K samples (avg. 200 frames/sample) as fol-
lows: (i) Word frequency grouping: vocabulary
is split into rare (<5 occurrences), mid-frequency
(5–50), and common (>50). (ii) Sample prioritiza-
tion: sentences with rare or mid-frequency words

are preferentially selected to ensure coverage of un-
derrepresented words. (iii) Subset construction:
samples are chosen until the 10K quota is met, fill-
ing any gap with random draws. (iv) Vocabulary
coverage: this guarantees diversity and balance,
supporting more effective training.

4.3 Evaluation Metrics

To assess the quality of sign language transla-
tions, we employ standard evaluation metrics com-
monly used in the machine translation literature:
BLEU (Papineni et al., 2002) and ROUGE-L (Lin
and Och, 2004). BLEU measures n-gram precision
by comparing predicted translations with ground-
truth references, and we report scores fromBLEU-1
through BLEU-4 using the SacreBLEU2.

4.4 Contending Methods

We evaluate the following SLT models:
SLT (GF) (Camgoz et al., 2020): It is a

transformer-based model that jointly learns sign
recognition and translation in an end-to-end man-
ner, using CTC loss for alignment. We use the GF
framework of this model.

GFSLT-VLP (Zhou et al., 2023): It is a gloss-
free framework that combines CLIP-based con-
trastive learning with masked self-supervised objec-
tives, enabling robust cross-modal representations
and strong translation without gloss annotations.

SpaMo (Hwang et al., 2025): It uses off-the-
shelf visual encoders for spatial andmotion features,
combined with language prompts and a lightweight
visual-text alignment stage before SLT supervision.

4.5 Implementation Details

We follow the architecture and training setup of
SpaMo (Hwang et al., 2025) for spatial–motion fea-
ture extraction, cross-modal fusion, and language
modeling. Spatial features are obtained from CLIP
ViT-L/14 (Radford et al., 2021), while motion rep-
resentations are enhanced with optical flow maps
estimated using global motion averaging (GMA)
(Jiang et al., 2021), followed by VideoMAE-L/16
(Tong et al., 2022) over 16-frame clips with a stride
of 8. For the language model, we employ Flan-
T5-XL (Chung et al., 2024) with LoRA adaptation,
using a 1K-step warm-up on both Phoenix-14T and
iSign. All experiments are conducted on a single
NVIDIA A100 GPU.

2https://github.com/mjpost/sacrebleu
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4.6 Results

We present our experimental results in Table 1, com-
paring three existing models and our approach on
the Phoenix-14T and iSign-10k datasets.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGH-L

Phoenix-14T

SLT (GF) 44.99 32.14 24.62 20.00 45.32
GFSLT-VLP 39.52 29.15 22.54 18.23 38.60

SpaMo 46.41 33.15 25.22 20.18 42.21
SpaMo-OF

(ours) 38.06 25.26 18.58 14.72 33.52

iSign-10k

SLT (GF) 9.84 2.87 1.33 0.73 9.08
GFSLT-VLP 9.24 4.10 2.56 1.93 9.24

SpaMo 25.42 12.90 9.13 7.35 16.23
SpaMo-OF

(ours) 27.91 15.00 10.67 8.58 18.98

Table 1: Performance of SLT methods on the Phoenix-
14T and iSign-10k test sets, reported in BLEU and
ROUGE-L.

Results on Phoenix-14T: We used the prepro-
cessed data from (Camgoz et al., 2020) to conduct
experiments with SLT(GF). For the other models,
we had to prepare the dataset in the appropriate for-
mat. The findings, shown in Table 1, indicate that
(Hwang et al., 2025) achieves the best performance,
with a BLEU-4 score of 20.18. Incorporating opti-
cal flowmaps (SpaMo-OF) results in a performance
drop.

Results on iSign-Full: We conducted experi-
ments only with SLT (GF) (Camgoz et al., 2020)
for this dataset. We preprocessed the dataset in
a manner consistent with Phoenix-14T. Features
were extracted from the signing videos using Ef-
ficientNet (Tan and Le, 2019). But this yielded
poor performance (BLEU-4: 0.32), similar to the
trend reported by (Joshi et al., 2024). Given that the
dataset contains over 127k samples, further exper-
imentation with other models proved impractical
within our resources due to the substantial compu-
tational resources required.

Results on iSign-10k: Our experiments on the
iSign-10k subset suggest that incorporating opti-
cal flow maps enables the model to leverage oc-
cluded motion cues more effectively, as captured
by GMA (Jiang et al., 2021). As shown in Table 1,
our method achieves a BLEU-4 score of 8.58, the
highest among all evaluated approaches.

As part of our ablation study, we examined the
effect of in-context examples on both datasets and
observed marginal performance gains, with three in-
context examples yielding the best BLEU-4 scores.

We further evaluated the impact of in-context exam-
ples during test time. Detailed results are provided
in Appendix B.

4.7 Qualitative Evaluation of Translation
Results

The translation system achieves mixed performance
with near-perfect accuracy on simple sentences with
common vocabulary but struggles with sentences
containing numbers and technical references. A
few examples of correct and incorrect translations
produced by SpaMo-OF on iSign-10k test set are
shown in Table 2. More qualitative examples and
detailed error cases are provided in Appendix C.

Ground Truth: when he began to sing, the air became warm.
Generated: when he began to sing, the air became warm.

Ground Truth: once a farmer and his wife lived in a village with their small son.
Generated: once a farmer and his wife lived in a village with their small son.

Ground Truth: soldiers were paid regular salaries and maintained by
the king throughout the year.

Generated: soldiers were paid regular salaries and maintained by
the king throughout the year.

Ground Truth: do you have a pet, a cat or a dog?
Generated: do you have a pet, a cat or a dog?

Ground Truth: she was also a certified flight instructor. after qualifying as a pilot,
Generated: kalpana was born in karnal, haryana.

Ground Truth: story, mittu and the yellow mango.
Generated: the peacock is blue and green.

Ground Truth: many people feel bewildered by the speed of technological innovation.
Generated: the company is aiming to become a global player in the industry.

Ground Truth: look at figure 7.25a and b carefully.
Generated: identify the parts of the pistol with the help of figure 7.24.

Table 2: Translation examples from the iSign-10k test
set using SpaMo-OF. Blue indicates partial matches; top
rows show correct outputs, while bottom rows illustrate
common errors.

5 Conclusion

This work presented the first systematic evaluation
of representative SLT models on Indian Sign Lan-
guage, highlighting the challenges of extending
methods successful in well-resourced languages
to a low-resource setting. We have shown that cu-
rating a clean, balanced subset of iSign is critical
for reliable evaluation and that augmenting SpaMo
with optical flow features yields notable improve-
ments, achieving a BLEU-4 score of 8.58. Our
results suggest that dataset quality, rather than scale
alone, is key to translation performance, and that
motion-aware representations play an essential role
in modeling signed communication. Future efforts
should focus on constructing cleaner benchmarks
and designing models that more effectively inte-
grate spatial and motion primitives to advance ro-
bust ISL translation.
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Limitations

Our work is limited by computational resources,
which prevented training on the full iSign dataset
(127k+ samples). We relied on a curated 10k subset
for feasibility. Optical flow computation also adds
overhead, limiting scalability. Additionally, the cu-
rated subset may not capture the full linguistic diver-
sity of ISL. Future work should explore more effi-
cient architectures and larger, more diverse datasets
to improve performance and generalization.
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Appendix

A Prompt Template

In this section, we describe the prompt template
used in our experiments for sign language transla-
tion. To facilitate multilingual in-context learning,
we leverage the Google Translate API3 to translate
Indian Sign Language (ISL) sentences into multi-
ple target languages (Hindi, Spanish, and French),
enabling the model to benefit from cross-lingual
cues.

Sign Video Input: [Extracted Sign Feature]

Instruction: Translate the given sentence into Indian.

In-context Examples:
पेड़ का रगं क्या ह?ै

¿Cuál es el color del árbol?

Quelle est la couleur de l’arbre?

Table 3: Example of the prompt format used in our
experiment.

B Ablation Study

Table 4 shows the impact of varying the number of
in-context examples during training on the Phoenix-
14T and iSign-10k datasets. We observe that in-
creasing the number of examples leads to consistent,
albeit modest, gains across all BLEU and ROUGE
metrics. Interestingly, the best performance—re-
flected in the highest BLEU-4 and ROUGE-L
scores—is achieved with three in-context examples,
indicating that a small amount of contextual guid-
ance can effectively enhance the model’s ability to
align signs with corresponding text.

3https://cloud.google.com/translate?hl=en
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No. of
in-context
examples

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

Phoenix-14T

0 35.14 22.03 15.65 12.20 29.38
1 33.52 20.68 14.41 11.02 28.93
2 35.79 22.99 16.51 12.91 31.31
3 37.45 24.37 18.01 14.41 32.63

iSign-10k

0 26.61 14.67 10.67 8.73 17.75
1 26.22 13.79 9.89 8.08 16.93
2 26.26 13.98 10.06 8.23 16.94
3 27.95 15.37 11.03 8.92 18.99

Table 4: Performance with varying numbers of in-
context examples during training (all models tested with
zero in-context examples).

Table 5 examines the effect of in-context exam-
ples during testing, with all models trained using
three examples. For Phoenix-14T (German), the
in-context examples are in English, Spanish, and
French, while for iSign-10k (ISL), they are in Hindi,
Spanish, and French. The results indicate that pro-
viding a small number of in-context examples can
slightly improve performance. Notably, for iSign-
10k, including Hindi examples at test time appears
to enhance translation quality, suggesting that using
a language closely related to the target output can
help the model better generalize, whereas adding
more examples beyond two does not consistently
yield further gains.

No. of
in-context
examples

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

Phoenix-14T

0 35.70 22.87 16.63 13.15 31.34
1 37.63 24.60 18.10 14.37 32.82
2 37.30 24.22 17.77 14.18 32.37
3 37.45 24.37 18.01 14.41 32.63

iSign-10k

0 27.91 15.00 10.67 8.58 18.98
1 28.11 15.51 11.22 9.12 19.07
2 28.14 15.62 11.25 9.09 18.93
3 27.95 15.37 11.03 8.92 18.99

Table 5: Performance with varying numbers of in-
context examples during testing (all models trained with
3 in-context examples).

C Qualitative Evaluation of Translation
Results

Tables 6, 7, and 8 provide additional translation
examples drawn from iSign-10k test set, with gen-
erated sentences produced using SpaMo-OF. The

tables contain both high-quality and poor-quality
system outputs. Blue highlighting indicates exact
word matches between ground truth and generated
text, revealing the system’s binary performance pat-
tern with either extensive lexical preservation or
complete semantic divergence.

Ground Truth: why did the farmer’s wife strike the mongoose with her basket?
Generated: why did the farmer’s wife strike the mongos with her basket?

Ground Truth: saida’s mother had been ailing for a long time. fever, cough.
Generated: saida’s mother had been ailing for a long time. fever, cough.

Ground Truth: what did raja nanda do to anger the court of gautamiputra?
Generated: prashastis and what they tell us?

Ground Truth: in the city of madurai, there was a craftsperson named chandragupta.
Generated: between 2,200 and 1900 years ago. between 2,200 and 1900 years ago.

Ground Truth: taxes on crops were the most important. this was because most people were farmers.
Generated: usually the tax was fixed at 1/6th of what was produced.

Ground Truth: connect the dots to write a circle.
Generated: say which one will float and which one will sink.

Ground Truth: the mauryan rulers did not try to control these changes.
Generated: 9 years after becoming king, I conquered.

Ground Truth: when people began writing on cloth.
Generated: trace the river indus and its tributaries in the map.

Ground Truth: including craftspersons and merchants. in addition,
Generated: for instance, inscriptions from matura mention goldsmiths.

Ground Truth: a poor shepherd once lived in iran. though uneducated,
Generated: a poor shepherd once lived in iran. he became famous for his piousness.

Table 6: Additional translation examples showing mixed
quality patterns including near-matches, entity disam-
biguation failures, instruction drift, and complete se-
mantic divergence. Blue highlights exact word matches
between ground truth and generated text.

Ground Truth: he was ordered to explain why he always carried an iron chest.
Generated: he was ordered to explain why he always carried an iron chest.

Ground Truth: but an old blanket was all that came out.
Generated: but an old blanket was all that came out.

Ground Truth: now the synopsis of the next part of the story.
Generated: now the synopsis of the next part of the story.

Ground Truth: which had to flee from its post. the rays got through.
Generated: which had to flee from its post. the rays got through.

Ground Truth: day by day, i float my paper boats.
Generated: day by day, i float my paper boats.

Ground Truth: we apologize for any inconvenience caused during the repairs.
Generated: we apologize for any inconvenience caused by the late arrival of train.

Ground Truth: the little group of travellers scattered in fear but swami haridas called them together.
Generated: the little group of travellers scattered in fear but swami haridas called them together.

Ground Truth: there once lived a bird and two newborn babies blue in a forest.
Generated: there once lived a bird and two newborn babies in a forest.

Ground Truth: question number five. did she repent her hasty action?
Generated: question number five. did she repent her hasty action?

Ground Truth: frankly, i don’t like to leave the child alone with the mongoose.
Generated: i don’t like to leave the child alone with the mongoose.

Table 7: Translation examples demonstrating high-
quality outputs with perfect or near-perfect semantic
preservation, minor lexical variations, and contextual
consistency. Blue indicates exact word-level matches
between ground truth and generated text.
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Content Type Example Ground Truth Generated

High Performance: Narrative & Simple Sentences

Narrative Story introduction once a farmer and his wife lived in a village with their small son. once a farmer and his wife lived in a village with their small son.

Narrative Story continuity there once lived a bird and two newborn babies in a forest. there once lived a bird and two newborn babies in a forest.

Historical Factual statement soldiers were paid regular salaries and maintained by the king throughout the year. soldiers were paid regular salaries and maintained by the king throughout the year.

Question Direct question do you have a pet, a cat or a dog? do you have a pet, a cat or a dog?

Low Performance: Educational & Instructional Content

Instruction Drawing activity connect the dots to write a circle. say which one will float and which one will sink.

Technical Ref. Figure reference look at figure 7.25a and b carefully. identify the parts of the pistol with the help of figure 7.24.

Historical Ed. Context instruction when people began writing on cloth. trace the river indus and its tributaries in the map.

Entity Ref. Historical query what did raja nanda do to anger the court of gautamiputra? prashastis and what they tell us?

Educational Historical context in the city of madurai, there was a craftsperson named chandragupta. between 2,200 and 1900 years ago. between 2,200 and 1900 years ago.

Biographical Career context she was also a certified flight instructor. after qualifying as a pilot, kalpana was born in karnal, haryana.

Table 8: Translation performance across content types in iSign-10k test set using SpaMo-OF. Blue indicates exact
matches. Top section shows perfect translations on narrative and simple content while bottom section reveals failures
on relatively more complex content.
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Abstract

This paper presents a lightweight and effi-
cient baseline for isolated Indian Sign Lan-
guage (ISL) word recognition developed for
the WSLP-AACL-2025 Shared Task.We pro-
pose a two-stage framework combining skele-
tal landmark extraction via MediaPipe Holis-
tic with a Temporal Convolutional Network
(TCN) for temporal sequence classification.
The system processes pose-based input se-
quences instead of raw video, significantly
reducing computation and memory costs.
Trained on the WSLP-AACL-2025 dataset
containing 4,398 isolated sign videos across
4,361 word classes, our model achieves 54%
top-1 and 78% top-5 accuracy.

1 Introduction

Sign Language serves as a primary means of
communication for millions of deaf and hard-of-
hearing individuals across the world. However,
the lack of mutual intelligibility between signers
and non-signers continues to pose substantial bar-
riers in education, healthcare, employment, and
daily communication. While human interpreters
provide an effective bridge, their limited availabil-
ity and high cost restrict widespread accessibil-
ity. Automated Sign Language Recognition (SLR)
systems thus hold significant potential to enhance
social inclusion by enabling real-time, scalable
translation between sign and spoken languages.

Recent progress in computer vision and deep
learning has revitalized research in automatic
sign language understanding. Unlike spoken lan-
guages, which rely on one-dimensional acous-
tic signals, sign languages are inherently mul-
timodal—integrating hand configurations, body
posture, facial expressions, and spatial-temporal
dynamics to convey meaning. This multidimen-
sional structure makes SLR a particularly chal-
lenging problem in visual sequence modeling.
Conventional frame-based models often struggle

to capture the fine-grained temporal dependencies
and spatial variations inherent to signing. Conse-
quently, developing models that effectively learn
temporal patterns, remain robust to inter-signer
variability, and generalize across diverse signing
conditions is a key research objective.

Despite these advances, Sign Language Recog-
nition remains a challenging task due to its inher-
ently temporal and highly variable nature. Each
sign involves dynamic motion sequences that dif-
fer across signers in speed, articulation, and re-
gional style, while transitions between signs often
blur semantic boundaries. Moreover, annotated
datasets for Indian Sign Language (ISL) are lim-
ited in size and diversity, constraining the train-
ing of data-intensive deep models. These chal-
lenges call for lightweight architectures capable of
capturing long-range temporal dependencies using
compact representations.

Motivated by these challenges this study, we
address the problem of isolated Indian Sign Lan-
guage (ISL) word recognition as part of the
WSLP-AACL-2025 Shared Task. The goal is to
design and train an efficient recognition pipeline
that performs reliably despite the limited avail-
ability of labeled samples per class. Our work
explores a lightweight, pose-based approach us-
ing MediaPipe Holistic for landmark extraction
and Temporal Convolutional Networks (TCNs) for
temporal modeling, aiming to balance recognition
accuracy, computational efficiency, and real-time
deployability on assistive devices.

2 Related Work

Research in Sign Language Recognition (SLR)
has evolved from handcrafted visual features to
deep neural architectures capable of modeling
complex spatio-temporal dynamics. Early vision-
based approaches (Tamura and Kawasaki, 1988)
relied on geometric and motion descriptors, often
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combined with Hidden Markov Models (HMMs)
(Starner and Pentland, 1995; Starner et al., 1998)
for real-time American Sign Language (ASL)
recognition. Subsequent works enhanced tem-
poral modeling through parallel HMMs to miti-
gate co-articulation effects (Vogler and Metaxas,
1999), and through hybrid CNN–HMM architec-
tures for continuous signing (Koller et al., 2015).

With the rise of deep learning, pose-based rep-
resentations have gained prominence for their ro-
bustness and computational efficiency. MediaPipe
Holistic (Lugaresi et al., 2019) enabled real-time
extraction of body and hand landmarks, facili-
tating lightweight recognition pipelines. Lever-
aging such pose data, transformer-based models
have demonstrated strong performance for iso-
lated sign recognition (Alyami et al., 2024), while
recurrent GRU-based architectures have been suc-
cessfully applied to Indian Sign Language (ISL)
recognition (Subramanian et al., 2022). More re-
cent studies explore Temporal Convolutional Net-
works (TCNs) with dilated causal convolutions
for efficient temporal reasoning (Xu et al., 2023),
and correlation networks enhanced with spatial-
temporal attention for continuous SLR (Hu et al.,
2023).

Reviewing the literature reflects a paradigm
shift toward pose-based and temporally aware ar-
chitectures that balance recognition accuracy with
real-time deployability, forming the foundation for
the approach adopted in this work.

3 Methodology

The proposed Indian Sign Language (ISL) word
recognition system adopts a two-stage frame-
work integrating pose-based feature extraction
with temporal modeling. In the first stage, skele-
tal landmarks are extracted from each video frame
using MediaPipe Holistic (Lugaresi et al., 2019).
This pipeline provides 33 pose landmarks and 21
landmarks per hand, resulting in 75 keypoints per
frame, each with (x, y, z) coordinates, yielding a
225-dimensional feature vector. This representa-
tion retains essential kinematic information while
substantially reducing input dimensionality com-
pared to raw RGB frames.

In the second stage, the extracted pose se-
quences are processed by a Temporal Convolu-
tional Network (TCN) designed to capture tempo-
ral dependencies across sign sequences. Unlike re-
current networks, TCNs leverage 1D convolutions

Figure 1: Overview of the proposed Pose-based TCN
pipeline for ISL Word Recognition.

along the temporal axis, enabling full paralleliza-
tion during training and inference. The network
maps normalized and padded pose sequences di-
rectly to sign word labels in an end-to-end manner,
achieving a balance between recognition accuracy
and computational efficiency suitable for real-time
applications.

The overall model design emphasizes three
principles: (i) robustness to intra-class and inter-
signer variations, (ii) effective temporal model-
ing through dilated causal convolutions, and (iii)
lightweight representation enabling deployment
on resource-limited assistive devices. The model
architecture is illustrated in Figure 1. Each tem-
poral block consists of two dilated Conv1D layers
followed by causal chomp, ReLU activation, and
dropout, with residual connections to stabilize gra-
dient flow. The network input is a tensor of shape
(T × 225), where T = 128 is the temporal length.
Four temporal blocks with exponentially increas-
ing dilation rates are stacked, followed by global
average pooling along the temporal dimension and
a fully connected layer for classification across N
sign classes.
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3.1 Temporal Convolutional Network
Architecture

Temporal Convolutional Networks (TCNs) serve
as a parallelizable alternative to recurrent architec-
tures for sequence modeling. A TCN operates us-
ing 1D convolutions over time, where causal con-
volutions ensure that each timestep prediction de-
pends only on the current and past frames. Dilated
convolutions enlarge the receptive field exponen-
tially with minimal parameter overhead, allowing
efficient long-range temporal modeling. Residual
connections are incorporated to mitigate vanish-
ing gradient problems and facilitate deeper net-
work training. This architecture preserves tempo-
ral causality while providing high throughput suit-
able for real-time recognition.

3.2 Dataset and Preprocessing Pipeline

We employ the WSLP-AACL-2025 Shared Task
Word Recognition dataset (Lab, 2025), consist-
ing of 4,398 short video clips of isolated sign lan-
guage words performed by a single signer in con-
trolled and semi-controlled settings. The dataset
spans 4,361 unique word classes, forming an ex-
treme few-shot learning scenario: 80% of classes
contain two or fewer samples, the median sample
count per class is one, and the maximum is five.
Videos range from 2–5 seconds at 30 FPS, with
resolutions between 320p and 1080p. Following
integrity checks, the dataset is divided into 3,517
training and 879 validation samples using a fixed
random seed for reproducibility.

Pose extraction is performed using MediaPipe
Holistic configured in non-static mode with detec-
tion and tracking confidences set to 0.3. For each
frame, 75 landmarks with (x, y, z) coordinates are
extracted and normalized relative to the frame di-
mensions and depth. Missing landmarks are re-
placed with zeros. Frames are resized to a width
of 320 pixels, every third frame is skipped to re-
duce redundancy, and each sequence is truncated
or padded to 128 frames. The resulting pose ten-
sors of shape (128 × 75 × 3) are stored in NPZ
format for training.

3.3 Implementation Details

The TCN comprises four temporal blocks with
hidden channel sizes [128, 128, 256, 256], kernel
size 3, and dilation rates [1, 2, 4, 8]. A dropout
rate of 0.3 is applied within each block. Train-
ing uses the AdamW optimizer with learning rate

10−3, weight decay 0.01, β = (0.9, 0.999), and
ϵ = 10−8. The learning rate is adaptively reduced
using a plateau scheduler (factor 0.5, patience 3,
minimum learning rate 10−6). Early stopping
based on validation accuracy prevents overfitting.

The objective function is the categorical cross-
entropy loss, defined as:

L = −
N∑

k=1

yk · log(ŷk) (1)

where yk denotes the one-hot encoded ground
truth and ŷk represents the predicted probability
corresponding to the kth sign.

This configuration achieves a balance between
temporal modeling capacity, generalization on
few-shot classes, and computational efficiency
suitable for shared-task benchmarking and real-
time deployment.

4 Results

The proposed pose-based Temporal Convolutional
Network achieved a top-1 classification accuracy
of 54% on the validation set. Corresponding pre-
cision, recall, and F1-scores were observed to lie
consistently within the 52–54% range, indicating
balanced performance across most sign classes de-
spite the highly imbalanced few-shot nature of the
dataset.

A Top-5 accuracy of approximately 78% further
demonstrates that the correct class frequently ap-
peared among the top predicted candidates, high-
lighting the model’s capacity to capture semanti-
cally relevant temporal patterns even when the top
prediction was incorrect.

An examination of prediction confidence distri-
butions revealed that correctly classified samples
exhibited moderate confidence levels, whereas
lower confidence was typically associated with vi-
sually or temporally ambiguous gestures, signer
variation, or partial landmark occlusions. These
findings suggest that while the model effec-
tively learns generalizable temporal representa-
tions from pose trajectories, performance remains
constrained by limited per-class data and subtle
intra-class motion variations.

5 Summary

This work presents an efficient baseline for iso-
lated Indian Sign Language (ISL) recognition by
integrating MediaPipe-based pose estimation with
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Temporal Convolutional Networks (TCNs). The
proposed system achieved 54% validation accu-
racy on a challenging few-shot multi-class dataset,
highlighting the effectiveness of skeleton-based
representations in capturing essential gesture dy-
namics. The TCN architecture, leveraging di-
lated causal convolutions, successfully modeled
long-range temporal dependencies while retaining
computational efficiency through its fully paral-
lelizable design. Preprocessing strategies such as
frame skipping and resolution reduction reduced
computational cost by nearly 70% with mini-
mal performance degradation, demonstrating the
approach’s suitability for real-time deployment.
Representing each frame through 75 key land-
marks achieved an input size reduction of approx-
imately 4,000× relative to raw video frames, sig-
nificantly enhancing inference speed without com-
promising discriminative power. The proposed
pipeline establishes a compact and practical foun-
dation for the recognition of ISL in low-resource
and assistive environments. Future work can ex-
tend this baseline by exploring richer temporal at-
tention mechanisms, synthetic data augmentation,
and integration of facial and contextual cues to fur-
ther enhance recognition accuracy and system ro-
bustness.
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Abstract
This paper presents a cross-linguistic anal-
ysis of phonological similarity in sign
languages using symbolic representations
from the Hamburg Notation System (Ham-
NoSys). We construct a dataset of 1000
signs each from British Sign Language
(BSL), German Sign Language (DGS),
French Sign Language (LSF), and Greek
Sign Language (GSL), and compute pair-
wise phonological similarity using normal-
ized edit distance over HamNoSys strings.
Our analysis reveals both universal and
language-specific patterns in handshape us-
age, movement dynamics, non-manual fea-
tures, and spatial articulation. We explore
intra and inter-language similarity distri-
butions, phonological clustering, and co-
occurrence structures across feature types.
The findings offer insights into the struc-
tural organization of sign language phonol-
ogy and highlight typological variation
shaped by linguistic and cultural factors.

1 Introduction
Sign languages (SLs) are complex visual-
gestural languages that convey meaning
through a combination of hand configurations,
movements, orientations, and spatial locations
(Sinha, 2009). Unlike spoken languages, sign
languages lack a standardized written form
(Langer et al., 2014), making computational
analysis and cross-linguistic comparison par-
ticularly challenging. One of the founda-
tional aspects of sign language linguistics is
phonology-the study of minimal visual units
that distinguish signs. Phonological modeling
in sign languages has been a growing area of
interest in computational linguistics and sign
language processing. Early work focused on
rule-based systems and handcrafted features
to capture phonological components such as
handshape, location, and movement (Stokoe,

1960; Brentari, 1998). These approaches laid
the foundation for formal linguistic analysis
but lacked scalability and cross-linguistic gen-
eralization.

This paper addresses the problem of iden-
tifying signs that are phonologically similar
within and across multiple sign languages.
Specifically, we focus on four major sign lan-
guages: British Sign Language (BSL), Ger-
man Sign Language (DGS), French Sign Lan-
guage (LSF), and Greek Sign Language (GSL).
For each language, we construct a dataset of
1000 signs, each annotated with its phonologi-
cal structure using the Hamburg Notation Sys-
tem (HamNoSys) (Prillwitz and für Deutsche
Gebärdensprache und Kommunikation Gehör-
loser, 1989). We compute pairwise phonolog-
ical similarity between all sign pairs using a
normalized edit distance over their HamNoSys
representations, resulting in a 1000×1000 sim-
ilarity matrix per language.

Unlike prior work that focuses on building
computational models for sign recognition or
translation (Cihan Camgoz et al., 2017; Cam-
goz et al., 2018; Stoll et al., 2020; Saunders
et al., 2020; Chen et al., 2022), our objec-
tive is to perform a detailed analytical study
of phonological similarity patterns. We ex-
plore intra-language and inter-language simi-
larity distributions, identify phonological clus-
ters, and investigate the structural properties
of the resulting similarity matrices. Our find-
ings offer insights into the phonological orga-
nization of signs and provide a foundation for
future work in multilingual sign language pro-
cessing.

1.1 Overview of HamNoSys
The Hamburg Notation System (HamNoSys)
(Prillwitz and für Deutsche Gebärden-
sprache und Kommunikation Gehörloser,
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Figure 1: Phonological representation (using Ham-
NoSys) of the word “ACCEIDENT” across differ-
ent languages.

1989) has emerged as a powerful tool for
representing sign language phonology in a
language-independent manner. It has been
used in various applications, including sign
synthesis (Hanke, 2004), avatar animation
(Efthimiou et al., 2009), and sign language
corpora annotation (Crasborn and Zwitser-
lood, 2008). It encodes the phonological
structure of signs using a linear sequence
of symbols that describe the following key
features (See figure 2 for sample Hamnosys
based phonological features):

Handshape: The configuration of the fin-
gers and palm (e.g., FlatOpen, Fist, Claw).

Location: The spatial region of the body
where the sign is articulated (e.g., Chest,
Forehead, NeutralSpace).

Orientation: The direction the palm and
fingers face during the sign (e.g., Inward,
Outward, Downward).

Movement: The trajectory, type, and
repetition of motion (e.g., UpDown, Circle,
Sideways).

Apart from these, there are non-manual fea-
tures representing facial expressions, head and
body posture, and eye gaze. Each sign is

represented as a structured string of Ham-
NoSys symbols, allowing for symbolic com-
parison and computational processing. For
example figure 1 depicts the sign representa-
tion for the word “Accident”. Note that every
language has its own phonological patterns of
representing the same concept. Also, see Ap-
pendix A for explanation of each HamNoSys
symbols.

Although these signs differ only in the move-
ment component, such a variation can lead to
a different meaning. HamNoSys enables the
isolation and comparison of these phonologi-
cal components, making it a powerful tool for
cross-linguistic phonological analysis.

In this study, we leverage HamNoSys to
compute phonological similarity between signs
using a normalized edit distance metric. This
approach allows us to quantify how similar two
signs are based on their symbolic phonological
structure, independent of signer-specific or vi-
sual noise.

2 Related Work

Recent studies have explored the use of Ham-
NoSys for computational tasks. For exam-
ple, Morrissey (2008) used HamNoSys and
its SiGML encoding as the intermediate rep-
resentation in a spoken-to-sign language MT
pipeline, while Efthimiou et al. (2010) lever-
aged it for multilingual sign language re-
sources. Sugandhi et al. (2020) proposed a
HamNoSys-based avatar generation approach
for text-to-ISL translation. Several other ef-
forts have continued this line of research:
Neves et al. (2020) developed a conversion
toolkit from HamNoSys to SiGML to sup-
port avatar animation; Walsh et al. (2022)
introduced transformer baselines for directly
translating spoken language text to Ham-
NoSys sequences, demonstrating advantages
over gloss-only representations; and Bhagwat
et al. (2024) presented a Marathi↔ISL trans-
lation pipeline adopting HamNoSys as an in-
termediate phonetic layer for synthesis. Foun-
dational descriptions such as Hanke (2004)
further highlight HamNoSys as a machine-
readable phonetic notation beneficial for MT
and sign avatar generation.

In the domain of sign similarity, Ormel
et al. (2010) proposed methods for measur-
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Figure 2: Examples of HamNoSys for hand shape, orientation, location and movement (Hanke, 2010)

ing phonological distance using feature-based
representations, but their work was limited
to small datasets and single-language settings.
More recent work has explored neural mod-
els for sign similarity (Camgoz et al., 2020),
though these approaches often rely primarily
on visual features without explicit phonologi-
cal grounding. To address this gap, Williams
et al. (2017) operationalized phonological sim-
ilarity by quantifying shared manual param-
eters, demonstrating psycholinguistic corre-
lates of such similarity measures. Further
advances have integrated phonological struc-
ture into neural models: Tavella et al. (2022)
introduced the WLASL-LEX dataset anno-
tated with phonological properties and showed
that graph-based neural networks can recog-
nize phonological features at scale; Rodriguez
et al. (2023) proposed a phonological distance
metric (“phdist”) over fourteen phonological
specifications in NGT and used it to analyze
deep sign embeddings; and Kezar et al. (2023)
demonstrated that incorporating phonological
representations improves isolated sign recogni-
tion performance on the Sem-Lex benchmark.
These works highlight increased attention to-
ward phonologically grounded representations
in computational modelling of sign similarity.

Our work differs in that it focuses on sym-
bolic phonological similarity across multiple
sign languages using HamNoSys. By con-
structing large-scale similarity matrices and
performing analytical studies, we aim to un-
cover structural patterns in sign language
phonology that are both linguistically mean-
ingful and computationally tractable.

3 Dataset Construction
The dataset used in this study is derived from
the publicly available Dicta-Sign Language
Resources (Efthimiou et al., 2012), a multi-
lingual repository of sign language data devel-
oped as part of the Dicta-Sign project. The

resource provides a curated list of over 1000
concepts, each annotated with corresponding
signs and phonological representations in four
European sign languages: British Sign Lan-
guage (BSL), German Sign Language (DGS),
French Sign Language (LSF), and Greek Sign
Language (GSL).

For each of the four languages, we selected
1000 signs corresponding to a shared set of con-
cepts. Each sign is associated with a Ham-
NoSys transcription that encodes its phono-
logical structure, including handshape, loca-
tion, orientation, and movement. These sym-
bolic representations serve as the foundation
for computing phonological similarity.

To quantify phonological similarity, we com-
pute the normalized Levenshtein distance (Yu-
jian and Bo, 2007) between HamNoSys strings.
Given two signs i and j with HamNoSys repre-
sentations Hi and Hj , the similarity score Sij

is defined as:

Sij = 1− dlev(Hi,Hj)

max(|Hi|, |Hj |)
(1)

where dlev denotes the Levenshtein edit dis-
tance between the two strings, and |Hi| is the
length of the string. This results in a similar-
ity score in the range [0, 1], where 1 indicates
identical phonological structure.

For each language, we construct a 1000 ×
1000 similarity matrix S(l) capturing all pair-
wise phonological similarities. These matri-
ces form the basis for the analytical tasks de-
scribed in the next section.

4 Analysis and Results

We present a comprehensive analysis of phono-
logical similarity patterns within and across
four sign languages: British Sign Language
(BSL), German Sign Language (DGS), French
Sign Language (LSF), and Greek Sign Lan-
guage (GSL). Each language’s dataset consists
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Figure 3: Intra-language phonological similarity
distributions for BSL, DGS, LSF, and GSL.

of 1000 signs, and a 1000×1000 similarity ma-
trix was computed using normalized edit dis-
tance over HamNoSys representations.

4.1 Intra-Language Similarity
Distributions

Figure 3 shows the distribution of similarity
scores within each language. All distributions
are left-skewed, indicating that most sign pairs
are moderately dissimilar, with a smaller pro-
portion of highly similar signs. Notably, DGS
and LSF exhibit slightly higher concentra-
tions of high-similarity pairs, suggesting more
phonologically compact lexicons.

HandUsage_bsl HandUsage_dgs HandUsage_lfs HandUsage_gsl

Two-hand asymmetric Two-hand symmetric One-hand

Figure 4: Intra-language hand-usage frequency for
BSL, DGS, LSF, and GSL.

4.2 Phonological Clustering
To explore the internal structure of each lan-
guage’s phonological space, we applied hier-
archical clustering on each similarity matrix.
Figure 5 show the resulting clusters (only for
the sake of clear visualization, we show the
clustering results on a 100×100 subset). Clear
block structures emerge, indicating the pres-
ence of phonological families—groups of signs

that share similar handshapes, locations, or
movements.

Language Mean Std Dev Min Max
BSL 0.115 0.084 0.000 1.000
DGS 0.112 0.106 0.000 1.000
LSF 0.122 0.085 0.000 1.000
GSL 0.118 0.075 0.000 1.000

Table 1: Summary statistics of phonological simi-
larity scores

Table 1 present the mean, standard devia-
tion, and range of similarity scores for each
language. LSF and GSL show the highest aver-
age similarity, while DGS exhibits the widest
spread, indicating greater phonological diver-
sity.

4.3 One-hand vs Two-hand Sign
Analysis

The Figure 4 presents the distribution of signs
based on hand usage—categorized into one-
handed signs, two-handed symmetric signs,
and two-handed asymmetric signs—across
British Sign Language (BSL), German Sign
Language (DGS), French Sign Language
(LSF), and Greek Sign Language (GSL). A
clear trend emerges: all four languages pre-
dominantly use two-handed signs, with sym-
metric and asymmetric configurations being
nearly equally represented. For instance, BSL
shows a near-even split between symmetric
(461) and asymmetric (462) two-handed signs,
while LSF and GSL lean slightly toward sym-
metric usage. In contrast, one-handed signs
are significantly less frequent, especially in
LSF and GSL (only 25 each), whereas DGS
shows a relatively higher count (159), suggest-
ing a greater preference or flexibility for one-
handed articulation in German Sign Language.
This distribution highlights both universal ten-
dencies and language-specific variations in sign
formation, which may reflect linguistic, cul-
tural, or ergonomic factors influencing sign lan-
guage structure.

4.4 Phonological analysis across
language

Table 2 showing the top 5 handshapes, move-
ments, non-manual signs, and sign locations
across British Sign Language (BSL), German
Sign Language (DGS), French Sign Language
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Figure 5: Phonological similarity using k-means clustering across languages. Same colored points belong
to same cluster.

(LSF), and Greek Sign Language (GSL). The
data reveals both shared and language-specific
preferences in phonological features across the
four sign languages.

Handshapes (HS): The handshapes
hamthumboutmod, hamflathand, and hamfin-
ger2 appear consistently across all languages
with hamthumbacrossmod appearing in BSL,
LSF, and GSL, indicating a core set of
frequently used configurations. BSL and LSF
favor hamthumboutmod most prominently.
DGS and GSL show a high preference for
hamflathand. DGS uniquely includes hamfist
in its top 5, suggesting a more frequent use of
closed hand configurations.

Movements (MOV): Universal domi-
nance: hamrepeatfromstart is the most fre-
quent movement across all four languages,
highlighting repetition as a common linguistic
strategy. hammoved and hammoveo are con-
sistently present, but their ranks vary. GSL
shows a higher frequency of hamfast, possi-
bly reflecting a faster signing tempo or stylis-
tic variation. LSF and GSL include ham-
repeatfromstartseveral, suggesting more com-

plex repetition patterns.
Non-Manual Features (NMA): BSL,

LSF, and GSL emphasize hamshoulders and
hamchest, indicating upper torso involvement.
Moreover, GSL shows the highest counts
for hamchest and hamshoulders, suggesting
strong reliance on torso-based non-manual
cues. DGS has lower counts overall and in-
cludes hamchin and hamhead, pointing to
more facial involvement.

Sign Locations (LOC): hambetween
(likely referring to the space between hands or
between signer and viewer) is dominant in BSL
and GSL, suggesting spatial articulation is cen-
tral. DGS and LSF favor hampalml and ham-
palmd, indicating signs are often articulated
near the palm or lower body. hamsymmlr
and hamextfingeru appear across multiple lan-
guages, reflecting symmetrical and extended
finger placements.

These patterns suggest that while there
is a shared phonological core across sign
languages—especially in handshapes and
movements suggesting inter-language phono-
logical similarity—each language exhibits
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unique tendencies in non-manual features and
spatial articulation. This supports the idea
that sign languages, though visually grounded,
are shaped by distinct linguistic and cultural
norms.

Category Features BSL DGS LSF GSL
HS hamthumboutmod 666 216 543 646

hamthumbacrossmod 464 0 490 631
hamflathand 448 343 350 656
hamfinger2 345 219 326 445
hamfinger2345 298 0 0 401
hamfist 0 208 0 0
hamfingerstraightmod 0 269 289 0

MOV hamrepeatfromstart 232 298 260 232
hammoved 210 211 187 216
hammoveo 134 105 115 165
hammover 134 103 115 0
hammoveu 109 0 0 0
hammoveor 0 81 0 0
repeatfromstartseveral 0 0 125 160

NMA hamshoulders 341 91 376 456
hamchest 259 81 377 495
hamshouldertop 99 0 115 135
hamneck 75 0 0 0
hamstomach 66 0 48 75
hamchin 0 58 0 0
hamhead 0 27 0 0
hamlips 0 25 56 49

LOC hambetween 903 0 318 937
hampalml 543 401 494 543
hampalmd 509 317 498 491
hamextfingeru 462 0 448 413
hamsymmlr 375 330 320 552
hamextfingerol 0 336 0 0

Table 2: Frequency distribution of the most fre-
quent sign language phonological features across
languages.

4.5 Intra-Phonological Co-occurrences
Insights derived from the co-occurrence (point-
wise mutual information, PMI) table across
four sign languages—BSL, DGS, LSF, GSL—
focusing on phonological feature interactions
revels that Across all languages, high PMI
values are observed between compound or
modified handshapes (e.g., hamthumbout-
mod, hamceeopen, hamfingerside), indicat-
ing that these handshapes frequently co-occur
in signs with complex articulatory configura-
tions. DGS shows strong co-occurrence be-
tween hamfingerpad and hamthumbball (PMI
= 5.59±0.035), suggesting a preference for pre-
cision grip-like configurations. LSF and GSL
both show high PMI between hamceeopen and
hamfingerside, indicating a shared structural
tendency toward open, lateral hand articula-
tions. GSL also exhibits strong co-occurrence

between hamceeopen and hamfingernail, hint-
ing at a visual emphasis on finger extension
and orientation.

The highest PMI values in hand-location
category are found in LSF (hamextfingerdi-
hamextfingeri, PMI = 6.91±0.043) and
DGS (hamarmextended-hamextfingerdi, PMI
= 5.91±0.037), suggesting frequent use of ex-
tended arm and finger configurations in spatial
articulation. GSL shows strong co-occurrence
between hamarmextended and hamextfingerir
(PMI = 5.59±0.035), indicating a preference
for distal articulation zones. Across all lan-
guages, combinations involving hamhandback,
hamwristback, and hamextfinger variants sug-
gest a consistent use of backward or lateral
orientations in sign production.

Movement features show the highest
PMI values overall, with DGS (hamclockdr-
hamclocku, PMI = 9.91±0.061) and GSL
(hamcircleil-hamstirccw, PMI = 8.91±0.055)
demonstrating highly structured temporal
motion patterns. Circular and clock-like
movements (hamcircle, hamclock, hamstir)
dominate across all languages, indicating a
shared visual rhythm in sign articulation.
These patterns suggest that cyclic and
directional movements are central to sign
semantics and may serve as phonological
markers for verb or action-related signs.

Non-manual features show lower PMI val-
ues overall, indicating more diffuse or context-
dependent usage. BSL shows the strongest
co-occurrence (hameyes-hamnose, PMI =
4.30±0.027), suggesting facial articulation
plays a significant role in sign contrast.
LSF and GSL show moderate co-occurrence
between hamchin, hamhead, and hamneck,
pointing to a layered use of facial and neck
gestures. DGS shows relatively low PMI val-
ues, possibly reflecting a more manual-centric
phonological system or less reliance on facial
features.

4.6 Inter-Phonological Co-occurrence
As depicted in Table 3 We also analyze how
different category of phonological features in-
teract among themselves. For example, how
handshapes interact with movements, or loca-
tions in a particular language’s signing space.
We found BSL and GSL show higher co-
occurrence between hamthumboutmod and
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BSL DGS LSF GSL
Type Pairs Freq Pairs Freq Pairs Freq Pairs Freq
HS + hamthumboutmod-

hampalml
259 hamflathand-

hamextfingerol
122 hamthumboutmod-

hampalml
211 hamthumboutmod-

hambetween
259

LOC hamthumboutmod-
hambetween

249 hamflathand-
hampalml

107 hamthumbacrossmod-
hampalmd

180 hamthumboutmod-
hamsymmlr

248

hamthumboutmod-
hamsymmlr

227 hamflathand-
hampalmd

102 hamthumboutmod-
hampalmd

172 hamflathand-
hambetween

229

hamthumboutmod-
hampalmd

208 hamfist-hampalml 97 hamthumbacrossmod-
hamextfingeru

165 hamflathand-
hamsymmlr

229

hamthumbacrossmod-
hamextfingeru

190 fingerstraightmod-
hamsymmlr

97 hamthumbacrossmod-
hampalml

143 hamthumboutmod-
hampalml

225

HS+ hamthumboutmod-
hamrepeatfromstart

111 hamfingerstraightmod-
hamrepeatfromstart

89 hamthumboutmod-
hamrepeatfromstart

104 hamthumboutmod-
hamrepeatfromstart

90

NMA hamthumboutmod-
hammoved

99 hamfist-
hamrepeatfromstart

75 hamthumbacrossmod-
hamrepeatfromstart

91 hamthumbacrossmod-
hamrepeatfromstart

87

hamthumbacrossmod-
hamrepeatfromstart

95 hamflathand-
hamrepeatfromstart

65 hamfingerstraightmod-
hamrepeatfromstart

79 hamflathand-
hamrepeatfromstart

86

hamflathand-
hamrepeatfromstart

75 fingerstraightmod-
hammoved

62 hamthumboutmod-
hammoved

79 hamthumboutmod-
hamfast

84

hamfinger2-
hamrepeatfromstart

67 hamfinger2-
hamrepeatfromstart

62 hamthumbacrossmod-
hammoved

75 hamthumboutmod-
hammoved

79

HS+ hamthumboutmod-
hamshoulders

166 hamthumboutmod-
hamchest

29 hamthumboutmod-
hamchest

163 hamthumbacrossmod-
hamshoulders

181

NMA hamthumboutmod-
hamchest

139 hamfinger2345-
hamchest

25 hamthumboutmod-
hamshoulders

137 hamthumboutmod-
hamchest

173

hamthumbacrossmod-
hamshoulders

101 fingerstraightmod-
hamshoulders

22 hamthumbacrossmod-
hamshoulders

133 hamflathand-
hamchest

166

hamflathand-
hamshoulders

99 hamflathand-
hamshoulders

22 hamflathand-
hamchest

113 hamthumboutmod-
hamshoulders

159

hamflathand-
hamchest

90 hamthumboutmod-
hamshoulders

21 hamthumbacrossmod-
hamchest

105 hamthumbacrossmod-
hamchest

155

MOV+hamrepeatfromstart-
hampalml

119 hamrepeatfromstart-
hampalml

124 hamrepeatfromstart-
hampalml

108 hamrepeatfromstart-
hambetween

135

LOC hamrepeatfromstart-
hambetween

113 hamrepeatfromstart-
hamsymmlr

101 hamrepeatfromstart-
hamextfingeru

100 hamrepeatfromstart-
hamsymmlr

124

hammoved-
hamsymmlr

90 hammoved-hampalml 92 hamrepeatfromstart-
hampalmd

92 hamrepeatfromstart-
hampalml

113

hamrepeatfromstart-
hamextfingeru

88 hamrepeatfromstart-
hamextfingerol

90 hammoved-hampalml 83 hamfast-hambetween 113

hammoved-
hampalml

88 hammoved-
hamextfingerol

79 hammoved-hampalmd 78 hammoved-
hambetween

112

MOV+hamrepeatfromstart-
hamshoulders

76 hammoved-
hamshoulders

35 hammoved-
hamshoulders

81 hammoved-hamchest 93

NMA hammoved-
hamshoulders

56 hamrepeatfromstart-
hamshoulders

20 hamrepeatfromstart-
hamshoulders

78 hamrepeatfromstart-
hamchest

88

hammoved-hamchest 53 hamrepeatfromstart-
hamchin

20 hammoved-hamchest 73 hammoved-
hamshoulders

81

hamrepeatfromstart-
hamchest

53 hamrepeatfromstart-
hamchest

20 hamrepeatfromstart-
hamchest

65 hamhalt-
hamshoulders

80

hammover-
hamshoulders

34 hammoved-hamchest 13 repeatfromstartseveral
hamshoulders

53 hamrepeatfromstart-
hamshoulders

77

NMA+hamshoulders-
hambetween

168 hamshoulders-
hamsymmlr

46 hamshoulders-
hampalml

148 hamchest-
hambetween

260

LOC hamshoulders-
hampalml

151 hamchin-hampalml 42 hamshoulders-
hampalmd

146 hamchest-
hamsymmlr

236

hamshoulders-
hamsymmlr

142 hamchin-
hamextfingerul

37 hamchest-hampalmd 140 hamshoulders-
hamsymmlr

235

hamchest-
hambetween

137 hamchest-hampalml 35 hamchest-hampalml 129 hamshoulders-
hambetween

229

hamshoulders-
hampalmd

121 hamshoulders-
hamextfingeruo

34 hamchest-
hamextfingero

122 hamchest-hampalml 206

Table 3: Frequency distributions of co-occurrences of phonological features across different sign languages.
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spatial locations like hampalml, hambetween,
and hamsymmlr, suggesting that this hand-
shape is highly versatile and frequently used
in central signing space. DGS favors combi-
nations like hamflathand-hamextfingerol and
hamflathand-hampalml, indicating a prefer-
ence for flat hand configurations in extended
or lateral orientations. LSF shows similar
patterns to BSL, with hamthumboutmod and
hamthumbacrossmod frequently paired with
hampalml and hampalmd, reflecting a bal-
anced use of thumb-based handshapes in mid-
body locations.

Across all languages, hamrepeatfromstart
is the most frequent movement paired
with dominant handshapes (hamthumbout-
mod, hamthumbacrossmod, hamflathand), re-
inforcing its role as a core phonological mo-
tion. BSL and LSF show strong pairings of
hamthumboutmod with both hamrepeatfrom-
start and hammoved, suggesting a dynamic
use of thumb-based signs. GSL includes ham-
fast in its top co-occurrences, indicating a
tendency toward rapid articulation in certain
handshape-movement combinations.

BSL, LSF, and GSL show strong co-
occurrence between hamthumboutmod and
upper-torso cues, while GSL uniquely fa-
vors hamthumbacrossmod-hamshoulders
and hamflathand-hamchest, reflecting rich
manual–non-manual integration. DGS, with
lower overall frequencies and modest pairings
like hamfinger2345-hamchest, suggests a more
manual-centric system.

hamrepeatfromstart usually co-occurs with
hampalml, hambetween, and hamsymmlr
across all languages, confirming its central
role in spatially anchored sign articulation.
GSL shows strong pairings of hamfast with
hambetween, suggesting a preference for fast,
centrally located signs. BSL, DGS and
LSF include extended finger orientations (like
hamextfingeru, hamextfingerol) in frequent
pairings, indicating a nuanced use of direc-
tional movement.

Co-occurrence between hamrepeatfromstart
and hamshoulders or hamchest is common in
BSL, LSF, and GSL, reinforcing the idea that
repetitive movements are often accompanied
by expressive non-manual cues. GSL shows
the highest integration, with hammoved-
hamchest and hamrepeatfromstart-hamchest

appearing frequently, suggesting a significant
coupling of motion and torso-based expression.
DGS shows lower frequencies and more facial-
centric pairings (e.g., hamrepeatfromstart-
hamchin), indicating a different balance of ar-
ticulatory features.

BSL and GSL show high co-occurrence be-
tween hamshoulders and hambetween, sug-
gesting that upper-body non-manual features
are often used in central signing space.
LSF shows high frequencies for hamchest-
hampalml and hamshoulders-hampalmd, indi-
cating a preference for mid-body articulation
zones. DGS includes more facial and lateral
pairings (e.g., hamchin-hampalml, hamchin-
hamextfingerul), reflecting a more distributed
use of non-manual features.

In summary we observe that BSL and GSL
exhibit strong centralization in signing space,
with frequent use of hambetween and up-
per torso non-manuals. DGS shows a more
distributed and facially oriented phonologi-
cal structure, with lower integration of non-
manuals and more lateral articulations. LSF
balances manual and non-manual features
with a preference for mid-body locations and
thumb-based handshapes. These patterns re-
veal universal tendencies and regional varia-
tions in phonological feature co-occurrence, of-
fering insights into the structural and cultural
shaping of sign languages.

5 Conclusion

We analyzed phonological similarity across
four sign languages using HamNoSys-based
symbolic representations. By comparing
1000 signs per language, we identified con-
sistent patterns in handshape, movement,
and spatial usage, along with notable differ-
ences in non-manual features and articula-
tion styles. Co-occurrence analysis revealed
strong intra- and inter-feature dependencies,
suggesting both universal phonological struc-
tures and geo-linguistic variation. LSF and
DGS show higher internal consistency, and
sign clustering reveals phonological families—
laying the groundwork for multilingual sign
language modeling and cross-linguistic phono-
logical transfer. All these observations are
based on raw frequency counts; formal statis-
tical testing will be included in future work.
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A HamNoSys Explanations
Table 4 shows the detailed explanation and category of what each HamNoSys symbol means
along with its unicode (Neves et al., 2020).

HamNoSys Unicode Explanation Category
hamspace 0020 Space separator (used to separate symbols or words). Other
hamexclaim 0021 Punctuation marker (e.g., exclamation, comma, full stop, ques-

tion) for transcriptions.
Other

hamcomma 002C Punctuation marker (e.g., exclamation, comma, full stop, ques-
tion) for transcriptions.

Other

hamfullstop 002E Punctuation marker (e.g., exclamation, comma, full stop, ques-
tion) for transcriptions.

Other

hamquery 003F Punctuation marker (e.g., exclamation, comma, full stop, ques-
tion) for transcriptions.

Other

hamaltbegin 007B Alternative/parenthetical markers used to bracket alternate
transcriptions or metadata.

Other

hammetaalt 007C Alternative/parenthetical markers used to bracket alternate
transcriptions or metadata.

Other

hamaltend 007D Alternative/parenthetical markers used to bracket alternate
transcriptions or metadata.

Other

hamfist E000 Fist handshape (closed hand). Hand Shapes
hamflathand E001 Flat handshape (palm and fingers extended and close together,

like a flat hand).
Hand Shapes

hamfinger2 E002 Two-finger configuration (usually index+middle extended). Hand Shapes
hamfinger23 E003 Two adjacent fingers extended (index+middle) in non-spread

configuration.
Hand Shapes

hamfinger23spread E004 Two adjacent fingers extended and spread apart (index+middle
spread).

Hand Shapes

hamfinger2345 E005 Fingers 2 5 extended (index through little finger), excluding
thumb.

Hand Shapes

hampinch12 E006 Pinch-like handshape (thumb and one or more fingers pinching
together).

Hand Shapes

hampinchall E007 Pinch-like handshape (thumb and one or more fingers pinching
together).

Hand Shapes

hampinch12open E008 Pinch-like handshape (thumb and one or more fingers pinching
together).

Hand Shapes

hamcee12 E009 C-shaped hand configuration (curved hand like letter ’C’). Hand Shapes
hamceeall E00A C-shaped hand configuration (curved hand like letter ’C’). Hand Shapes
hamceeopen E00B C-shaped hand configuration (curved hand like letter ’C’). Hand Shapes
hamthumboutmod E00C Thumb pointed outwards (thumb extended away from palm) a

thumb position modifier.
Hand Shapes

hamthumbacrossmod E00D Thumb lying across the palm or fingers a thumb position modi-
fier.

Hand Shapes

hamthumbopenmod E00E Thumb held open (not tucked in) modifier for thumb openness. Hand Shapes
hamfingerstraightmod E010 Handshape specifying particular fingers extended. Hand Shapes
hamfingerbendmod E011 Handshape specifying particular fingers extended. Hand Shapes
hamfingerhookmod E012 Handshape specifying particular fingers extended. Hand Shapes
hamdoublebent E013 Modifier for double-bent or double-hooked finger shapes (com-

plex finger bend).
Hand Shapes

hamdoublehooked E014 Modifier for double-bent or double-hooked finger shapes (com-
plex finger bend).

Hand Shapes

hamextfingeru E020 Finger direction marker extended finger points up (used to show
finger orientation).

Location/Orientation

hamextfingerur E021 Finger direction marker extended finger points up-right (used to
show finger orientation).

Location/Orientation
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HamNoSys Unicode Explanation Category
hamextfingerr E022 Finger direction marker extended finger points right

(used to show finger orientation).
Location/Orientation

hamextfingerdr E023 Finger direction marker extended finger points down-
right (used to show finger orientation).

Location/Orientation

hamextfingerd E024 Finger direction marker extended finger points down
(used to show finger orientation).

Location/Orientation

hamextfingerdl E025 Finger direction marker extended finger points down-left
(used to show finger orientation).

Location/Orientation

hamextfingerl E026 Finger direction marker extended finger points left (used
to show finger orientation).

Location/Orientation

hamextfingerul E027 Finger direction marker extended finger points up-left
(used to show finger orientation).

Location/Orientation

hamextfingerol E028 Finger direction marker extended finger points out-left
(used to show finger orientation).

Location/Orientation

hamextfingero E029 Finger direction marker extended finger points out/away
(used to show finger orientation).

Location/Orientation

hamextfingeror E02A Finger direction marker extended finger points out-right
(used to show finger orientation).

Location/Orientation

hamextfingeril E02B Finger direction marker extended finger points in-left
(used to show finger orientation).

Location/Orientation

hamextfingeri E02C Finger direction marker extended finger points in/toward
(used to show finger orientation).

Location/Orientation

hamextfingerir E02D Finger direction marker extended finger points in-right
(used to show finger orientation).

Location/Orientation

hamextfingerui E02E Finger direction marker extended finger points up-in
(used to show finger orientation).

Location/Orientation

hamextfingerdi E02F Finger direction marker extended finger points down-in
(used to show finger orientation).

Location/Orientation

hamextfingerdo E030 Finger direction marker extended finger points down-out
(used to show finger orientation).

Location/Orientation

hamextfingeruo E031 Finger direction marker extended finger points up-out
(used to show finger orientation).

Location/Orientation

hampalmu E038 Palm orientation indicator (which way the palm faces:
up/down/left/right or variants).

Location/Orientation

hampalmur E039 Palm orientation indicator (which way the palm faces:
up/down/left/right or variants).

Location/Orientation

hampalmr E03A Palm orientation indicator (which way the palm faces:
up/down/left/right or variants).

Location/Orientation

hampalmdr E03B Palm orientation indicator (which way the palm faces:
up/down/left/right or variants).

Location/Orientation

hampalmd E03C Palm orientation indicator (which way the palm faces:
up/down/left/right or variants).

Location/Orientation

hampalmdl E03D Palm orientation indicator (which way the palm faces:
up/down/left/right or variants).

Location/Orientation

hampalml E03E Palm orientation indicator (which way the palm faces:
up/down/left/right or variants).

Location/Orientation

hampalmul E03F Palm orientation indicator (which way the palm faces:
up/down/left/right or variants).

Location/Orientation

hamhead E040 Head (general) indicates head as location or non-manual
articulator.

Non-Manual Features

hamheadtop E041 Top of the head (specific location). Non-Manual Features
hamforehead E042 Forehead (location; often for non-manuals like eyebrow

movement).
Other

hameyebrows E043 Eyebrows (non-manual feature raise/lower etc). Non-Manual Features
hameyes E044 Eyes (gaze direction or eye activity). Non-Manual Features
hamnose E045 Nose (facial location). Non-Manual Features
hamnostrils E046 Nostrils (specific part of nose). Other
hamear E047 Ear (location). Other
hamearlobe E048 Earlobe (location). Other
hamcheek E049 Cheek (facial location). Other
hamlips E04A Lips / mouth area (non-manual/mouthings). Non-Manual Features
hamtongue E04B Tongue (mouth articulation reference). Other
hamteeth E04C Teeth (mouth reference). Other
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HamNoSys Unicode Explanation Category
hamchin E04D Chin (location reference). Non-Manual Features
hamunderchin E04E Under-chin (location). Other
hamneck E04F Neck (location / non-manual). Non-Manual Features
hamshouldertop E050 Top of the shoulder (location). Non-Manual Features
hamshoulders E051 Shoulders (body reference). Non-Manual Features
hamchest E052 Chest (body location). Non-Manual Features
hamstomach E053 Stomach/abdomen area (location). Non-Manual Features
hambelowstomach E054 Lower stomach/abdomen (location). Other
hamlrbeside E058 Location: left/right beside (side position next to body). Other
hamlrat E059 Location: left/right at (side location marker) indicates side-

relative placement.
Other

hamcoreftag E05A Coreference tag (used for referencing another element or anchor
in notation).

Location/Orientation

hamcorefref E05B Coreference reference (points to a previously defined anchor or
location).

Location/Orientation

hamneutralspace E05F Neutral signing space in front of the signer (space away from
body).

Location/Orientation

hamupperarm E060 Upper arm (location reference). Other
hamelbow E061 Elbow (location). Other
hamelbowinside E062 Inner side of the elbow (specific location). Other
hamlowerarm E063 Lower arm / forearm (location). Other
hamwristback E064 Back of the wrist (location). Location/Orientation
hamwristpulse E065 Wrist pulse area (location). Location/Orientation
hamthumbball E066 Bulbous part of thumb (thumb pad/ball) used as a location

reference.
Hand Shapes

hampalm E067 Palm orientation indicator (which way the palm faces:
up/down/left/right or variants).

Location/Orientation

hamhandback E068 Back of hand (dorsal side). Location/Orientation
hamthumbside E069 Thumb-related handshape or modifier. Hand Shapes
hampinkyside E06A Pinky-side (ulnar side) of hand. Location/Orientation
hamthumb E070 Thumb-related handshape or modifier. Hand Shapes
hamindexfinger E071 Index finger (reference) used as location/orientation reference. Other
hammiddlefinger E072 Middle finger used as location/orientation reference. Other
hamringfinger E073 Ring finger used as location/orientation reference. Other
hampinky E074 Little finger / pinky used as location/orientation reference. Location/Orientation
hamfingertip E075 Handshape specifying particular fingers extended. Hand Shapes
hamfingernail E076 Handshape specifying particular fingers extended. Hand Shapes
hamfingerpad E077 Handshape specifying particular fingers extended. Hand Shapes
hamfingermidjoint E078 Handshape specifying particular fingers extended. Hand Shapes
hamfingerbase E079 Handshape specifying particular fingers extended. Hand Shapes
hamfingerside E07A Handshape specifying particular fingers extended. Hand Shapes
hamwristtopulse E07C Top/inner wrist near the pulse location reference. Location/Orientation
hamwristtoback E07D From wrist top toward back of wrist orientation reference. Location/Orientation
hamwristtothumb E07E Thumb-related handshape or modifier. Location/Orientation
hamwristtopinky E07F Orientation/position from wrist toward pinky side. Location/Orientation
hammoveu E080 Hand movement direction: up (linear path in that direction). Movements
hammoveur E081 Hand movement direction: up-right (linear path in that direc-

tion).
Movements

hammover E082 Hand movement direction: right (linear path in that direction). Movements
hammovedr E083 Hand movement direction: down-right (linear path in that di-

rection).
Movements

hammoved E084 Hand movement direction: down (linear path in that direction). Movements
hammovedl E085 Hand movement direction: down-left (linear path in that direc-

tion).
Movements

hammovel E086 Hand movement direction: left (linear path in that direction). Movements
hammoveul E087 Hand movement direction: up-left (linear path in that direc-

tion).
Movements

hammoveol E088 Hand movement direction: out-left (linear path in that direc-
tion).

Movements

hammoveo E089 Hand movement direction: out/away (linear path in that direc-
tion).

Movements

hammoveor E08A Hand movement direction: out-right (linear path in that direc-
tion).

Movements

hammoveil E08B Hand movement direction: in-left (linear path in that direction). Movements
hammovei E08C Hand movement direction: in/toward (linear path in that direc-

tion).
Movements
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HamNoSys Unicode Explanation Category
hammoveir E08D Hand movement direction: in-right (linear path in that direc-

tion).
Movements

hammoveui E08E Hand movement direction: up-in (linear path in that direction). Movements
hammovedi E08F Hand movement direction: down-in (linear path in that direc-

tion).
Movements

hammovedo E090 Hand movement direction: down-out (linear path in that direc-
tion).

Movements

hammoveuo E091 Hand movement direction: up-out (linear path in that direc-
tion).

Movements

hamcircleo E092 Circular movement path around out/away (circle in that orien-
tation).

Movements

hamcirclei E093 Circular movement path around in/toward (circle in that orien-
tation).

Movements

hamcircled E094 Circular movement path around down (circle in that orienta-
tion).

Movements

hamcircleu E095 Circular movement path around up (circle in that orientation). Movements
hamcirclel E096 Circular movement path around left (circle in that orientation). Movements
hamcircler E097 Circular movement path around right (circle in that orienta-

tion).
Movements

hamcircleul E098 Circular movement path around up-left (circle in that orienta-
tion).

Movements

hamcircledr E099 Circular movement path around down-right (circle in that ori-
entation).

Movements

hamcircleur E09A Circular movement path around up-right (circle in that orienta-
tion).

Movements

hamcircledl E09B Circular movement path around down-left (circle in that orien-
tation).

Movements

hamcircleol E09C Circular movement path around out-left (circle in that orienta-
tion).

Movements

hamcircleir E09D Circular movement path around in-right (circle in that orienta-
tion).

Movements

hamcircleor E09E Circular movement path around out-right (circle in that orien-
tation).

Movements

hamcircleil E09F Circular movement path around in-left (circle in that orienta-
tion).

Movements

hamcircleui E0A0 Circular movement path around up-in (circle in that orienta-
tion).

Movements

hamcircledo E0A1 Circular movement path around down-out (circle in that orien-
tation).

Movements

hamcircleuo E0A2 Circular movement path around up-out (circle in that orienta-
tion).

Movements

hamcircledi E0A3 Circular movement path around down-in (circle in that orienta-
tion).

Movements

hamfingerplay E0A4 Handshape specifying particular fingers extended. Hand Shapes
hamnodding E0A5 General HamNoSys element (specific meaning depends on con-

text).
Other

hamswinging E0A6 General HamNoSys element (specific meaning depends on con-
text).

Movements

hamtwisting E0A7 General HamNoSys element (specific meaning depends on con-
text).

Movements

hamstircw E0A8 General HamNoSys element (specific meaning depends on con-
text).

Movements

hamstirccw E0A9 General HamNoSys element (specific meaning depends on con-
text).

Movements

hamreplace E0AA General HamNoSys element (specific meaning depends on con-
text).

Other
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HamNoSys Unicode Explanation Category
hammovecross E0AD Hand movement direction: directional movement (linear path in

that direction).
Movements

hammoveX E0AE Hand movement direction: directional movement (linear path in
that direction).

Movements

hamnomotion E0AF General HamNoSys element (specific meaning depends on con-
text).

Other

hamclocku E0B0 Clockwise/counterclockwise circular motion indicated by clock
position ’u’.

Movements

hamclockul E0B1 Clockwise/counterclockwise circular motion indicated by clock
position ’ul’.

Movements

hamclockl E0B2 Clockwise/counterclockwise circular motion indicated by clock
position ’l’.

Movements

hamclockdl E0B3 Clockwise/counterclockwise circular motion indicated by clock
position ’dl’.

Movements

hamclockd E0B4 Clockwise/counterclockwise circular motion indicated by clock
position ’d’.

Movements

hamclockdr E0B5 Clockwise/counterclockwise circular motion indicated by clock
position ’dr’.

Movements

hamclockr E0B6 Clockwise/counterclockwise circular motion indicated by clock
position ’r’.

Movements

hamclockur E0B7 Clockwise/counterclockwise circular motion indicated by clock
position ’ur’.

Movements

hamclockfull E0B8 Full circular clockwise motion (full rotation). Movements
hamarcl E0B9 Short arced movement (a small curved path). Movements
hamarcu E0BA Short arced movement (a small curved path). Movements
hamarcr E0BB Short arced movement (a small curved path). Movements
hamarcd E0BC Short arced movement (a small curved path). Movements
hamwavy E0BD Wavy oscillating movement (smooth wave-like motion). Movements
hamzigzag E0BE Zig-zag oscillating movement (sharp alternating motion). Other
hamellipseh E0C0 Elliptical (oval) movement path, specifying orientation of ellipse. Movements
hamellipseur E0C1 Elliptical (oval) movement path, specifying orientation of ellipse. Movements
hamellipsev E0C2 Elliptical (oval) movement path, specifying orientation of ellipse. Movements
hamellipseul E0C3 Elliptical (oval) movement path, specifying orientation of ellipse. Movements
hamincreasing E0C4 Movement or parameter increasing (e.g., amplitude growing). Other
hamdecreasing E0C5 Movement or parameter decreasing (e.g., amplitude shrinking). Other
hamsmallmod E0C6 Modifier: small (subtle / small-amplitude) movement. Other
hamlargemod E0C7 Modifier: large (wide / large-amplitude) movement. Other
hamfast E0C8 Modifier: fast speed. Movements
hamslow E0C9 Modifier: slow speed. Movements
hamtense E0CA Modifier: tense or stiff quality of movement/hand. Movements
hamrest E0CB Rest position (hold without motion). Movements
hamhalt E0CC Abrupt stop / halt in motion. Movements
hamclose E0D0 Hand closing or coming together (close action). Other
hamtouch E0D1 Touch/contact action (hand touches another part). Other
haminterlock E0D2 Hands interlocking (fingers interlaced) action. Other
hamcross E0D3 Crossing hands or crossing motion/placement. Other
hamarmextended E0D4 Arm is extended away from body (extended-arm posture). Location/Orientation
hambehind E0D5 Placed or moved behind body or another body-part. Other
hambrushing E0D6 Brushing motion (light stroke across surface). Other
hamrepeatfromstart E0D8 Repetition operator indicates repeating the movement or se-

quence.
Movements

hamrepeatfromstartseveral E0D9 Repetition operator indicates repeating the movement or se-
quence.

Movements

hamrepeatcontinue E0DA Repetition operator indicates repeating the movement or se-
quence.

Movements

hamrepeatcontinueseveral E0DB Repetition operator indicates repeating the movement or se-
quence.

Movements
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HamNoSys Unicode Explanation Category
hamrepeatreverse E0DC Repetition operator indicates repeating the movement or

sequence.
Movements

hamalternatingmotion E0DD Alternating motion (hands or fingers alternate in action). Movements
hamseqbegin E0E0 Sequence/grouping marker: begins/ends a sequence, par-

allel group, or fusion of actions.
Other

hamseqend E0E1 Sequence/grouping marker: begins/ends a sequence, par-
allel group, or fusion of actions.

Other

hamparbegin E0E2 Sequence/grouping marker: begins/ends a sequence, par-
allel group, or fusion of actions.

Other

hamparend E0E3 Sequence/grouping marker: begins/ends a sequence, par-
allel group, or fusion of actions.

Other

hamfusionbegin E0E4 Sequence/grouping marker: begins/ends a sequence, par-
allel group, or fusion of actions.

Other

hamfusionend E0E5 Sequence/grouping marker: begins/ends a sequence, par-
allel group, or fusion of actions.

Other

hambetween E0E6 Spatial relation: between (e.g., movement or placement
between hands or body parts).

Location/Orientation

hamplus E0E7 Plus symbol: combines or adds elements (used in com-
posite descriptions).

Other

hamsymmpar E0E8 Symmetry operator: indicates two-handed symmetry
(how attributes mirror across hands).

Location/Orientation

hamsymmlr E0E9 Symmetry operator: indicates two-handed symmetry
(how attributes mirror across hands).

Location/Orientation

hamnondominant E0EA Marker referring to the non-dominant hand (used to de-
scribe NDH behaviour).

Location/Orientation

hamnonipsi E0EB Marker meaning non-ipsilateral / opposite-side reference
(side-related indicator).

Location/Orientation

hametc E0EC Placeholder: ’etc.’ or miscellaneous/other elements not
explicitly listed.

Other

hamorirelative E0ED Orientation/relative reference marker (indicates orienta-
tion relative to something else).

Location/Orientation

hammime E0F0 Mime or pantomime marker indicates mimed action
rather than lexical sign.

Non-Manual Features

Table 4: Explanations of HamNoSys symbols
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Abstract

Automatic Sign Language Recognition (ASLR)
has emerged as a vital field for bridging the gap
between deaf and hearing communities. How-
ever, the problem of sign-to-sign retrieval or
detecting a specific sign within a sequence of
continuous signs remains largely unexplored.
We define this novel task as Sign Language
Spotting. In this paper, we present a first step to-
ward sign language retrieval by addressing the
challenge of detecting the presence or absence
of a query sign video within a sentence-level
gloss or sign video. Unlike conventional ap-
proaches that rely on intermediate gloss recog-
nition or text-based matching, we propose an
end-to-end model that directly operates on pose
keypoints extracted from sign videos. Our ar-
chitecture employs an encoder-only backbone
with a binary classification head to determine
whether the query sign appears within the target
sequence. By focusing on pose representations
instead of raw RGB frames, our method sig-
nificantly reduces computational cost and mit-
igates visual noise. We evaluate our approach
on the Word Presence Prediction dataset from
the WSLP 2025 shared task, achieving 61.88%
accuracy and 60.00% F1-score. These results
demonstrate the effectiveness of our pose-based
framework for Sign Language Spotting, estab-
lishing a strong foundation for future research
in automatic sign language retrieval and verifi-
cation. Code is available at this repository.

1 Introduction

Sign language, which globally consists of more
than 300 different sign languages (United Nations,
2023), was developed to address the need for ef-
fective communication for the deaf and hearing-
impaired population (Tunga et al., 2021). Each
sign language comprises a complex combination of
hand gestures, facial expressions, and body move-
ments that collectively encode the semantics and
grammatical structures of spoken languages (Tang
et al., 2025; Rastgoo et al., 2024). However, there

is still a challenge and a communication gap be-
tween the deaf and hearing community (Das et al.,
2024), (Venugopalan and Reghunadhan, 2021).
Previous works have focused on sign language
translation(SLT) where researchers have attempted
to translate sign language either as RGB or poses
to either text(that is word word-level semantically
meaningful) (Yin and Read, 2020; Kan et al., 2022)
or glosses (Zhou et al., 2023; Low, 2025).

Sign language recognition(SLR) could be iso-
lated and continuous SLR. Isolated sign language
(ISLR) (Kumari and Anand, 2024; Baihan et al.,
2024; Ren et al., 2025) translation involves word-
level focuses on recognizing individual signs in
isolation, treating each sign as an independent clas-
sification problem. In contrast, Continuous Sign
Language Recognition (CSLR) (Wang et al., 2025;
Jian He et al., 2025; Zheng et al., 2023; Low, 2025)
involves sentence-level SL, which addresses a more
challenging task of translating continuous sign-
ing sequences into semantically correct sentences
or gloss annotations, requiring models to handle
temporal dependencies, co-articulation effects, and
variable-length sequences.

While significant progress has been made in
recognition and translation, the ability to search,
retrieve, or verify specific signs within continu-
ous signing videos remains underexplored. This
capability- known as sign spotting - is critical for
applications such as SL retrieval, dictionary lookup,
and educational tools. This requires robust sign
spotting capabilities, that is, the ability to locate
and identify specific signs within continuous sign-
ing videos. Traditional approaches to this problem
have relied on text-based intermediate representa-
tions.

For word spotting for CLSR, researchers have at-
tempted to spot words using Large Language Mod-
els (LLMs). (Walsh et al., 2023) proposed using
LLMs such as BERT and Word2Vec to leverage
alignment to improve isolated signs from continu-
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ous signs. Their approach solves text gloss map-
ping using LLMs; their model provides an effective
method, which was evaluated on MeieneDGS (Kon-
rad et al., 2020) and BOBSL(Albanie et al., 2021).

Recent work on sign spotting addresses the chal-
lenge of SLT by decomposing it into modular
stages. Spotter+GPT (Jian He et al., 2025) pro-
poses an approach to eliminate the need for SLT-
specific end-to-end training, significantly reduc-
ing computational costs. Their approach extracts
I3D motion and ResNeXt-101 handshape features,
matches them to a sign dictionary using DTW and
cosine similarity, and passes spotted signs, which
are the top-k glosses, to GPT for sentence gener-
ation. While Spotter+GPT demonstrates the ef-
fectiveness of modular SLT, our work addresses a
fundamentally different task: word presence verifi-
cation.

In this paper, we introduce a novel end-to-end
video-to-video sign spotting framework that elimi-
nates the need for textual or gloss-based interme-
diates. Given a query sign video and a sentence-
level sign video, our model determines whether the
query sign is present within the sentence. We adopt
an encoder-only architecture with a binary classifi-
cation head, operating directly on pose keypoints
rather than RGB frames. This design reduces com-
putational complexity and suppresses visual noise
while maintaining discriminative spatial-temporal
information. We evaluate our approach on the
Word Presence Prediction dataset from the WSLP
2025 shared task1. To the best of our knowledge,
this work represents the first study to address sign
language spotting purely through video-to-video
matching, establishing a foundation for future re-
search in automatic sign language retrieval, verifi-
cation, and search.

2 Methodology

We propose a video-to-video sign spotting archi-
tecture that jointly models visual–semantic align-
ment and binary word presence prediction. The
framework learns robust cross-modal representa-
tions that generalize across signers and sentence
contexts. Our approach consists of three main com-
ponents: pose extraction, feature encoding, and
presence prediction, as illustrated in Figure 1.

1https://exploration-lab.github.io/WSLP/task/

2.1 Pose Extraction

We use MediaPipe (Lugaresi et al., 2019) to con-
vert RGB video sequences to pose-based represen-
tations, allowing for a more generalized, efficient,
and resilient architecture. For each frame, Medi-
aPipe estimates the pose keypoints of the signer
in the video. Following (Johnny et al., 2025), we
extract holistic pose features containing 42 hand
keypoints (21 per hand), 8 body keypoints, and 19
facial landmarks. As suggested by (Johnny et al.,
2025), we used only the hand and body features in
this study.

2.2 Problem formulation

Given a sentence sequence Xs ∈ RTs×F and a
query sequence Xq ∈ RTq×F , where Ts and Tq

denote the temporal lengths of the sentence and
query sequences respectively, and F represents the
dimensionality of the pose features, the objective is
to determine whether the query sign appears within
the sentence.

Let f(Xs,Xq; θ) be a parameterized model,
where θ denotes the set of learnable parame-
ters. The model outputs a probability score ŷ =
f(Xs,Xq; θ), representing the likelihood that the
query sign occurs in the given sentence. The binary
prediction is made as: The training objective is to
optimize the model parameters θ by minimizing a
loss function L(θ) over the training data:

θ∗ = argmin
θ

L(θ).

2.3 Pose CNN Encoder

Each pose frame is represented as a vector xt ∈
R100, corresponding to 50 keypoints with 2D coor-
dinates (x, y). To preserve the spatial topology of
the human skeleton, each vector is reshaped into a
2D array of size R50×2, considering only the hand
and body keypoints as described in Section 2.1.

A 2D CNN is applied independently to each
frame to extract local spatial dependencies among
keypoints. Specifically, each pose frame passes
through three Conv2D blocks, each consisting of
a convolutional layer, Batch Normalization, and
ReLU activation. These blocks progressively cap-
ture hierarchical geometric patterns while maintain-
ing spatial coherence across keypoints.

Following the convolutional layers, an adaptive
average pooling layer reduces the spatial dimen-
sions to a fixed-size representation, which is then
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Figure 1: Architecture overview. Pose sequences are encoded using 2D CNNs and then processed by a Transformer
encoder, which produces visual tokens. The [CLS] token is max-pooled to predict query presence using binary
cross-entropy loss (LBCE).

linearly projected to a feature vector of dimension
d = 128.

This process yields a sequence of per-frame em-
beddings:

H = {ht}Tt=1 ∈ RT×128, (1)

where T denotes the total frames in the video. Each
embedding ht encodes the spatial structure of the
signer’s body and hand poses at time step t. The
resulting feature sequence is passed to the trans-
former encoder for temporal modeling.

2.4 Visual Transformer Encoder model

To enable temporal dependencies and cross-
sequence interactions between the query and sen-
tence embeddings, we adopt a BERT-style se-
quence modeling approach. Specifically, a [CLS]
token is prepended for global sequence-level clas-
sification, while a [SEP] token is inserted to ex-
plicitly separate the query pose tokens from the
candidate pose tokens. This design enables the
model to attend across the boundary between the
two sequences, allowing direct interaction between
corresponding temporal segments.

Learnable positional encodings and token-type
embeddings are incorporated to preserve temporal
order and to distinguish between query and can-
didate sequences. The transformer encoder then
processes the concatenated sequence using multi-
head self-attention, where the attention scores be-
tween query and candidate pose tokens serve
as a key mechanism for measuring their semantic
and spatial correspondence. These cross-sequence
attention patterns help the model identify whether
visual and structural similarities exist between the

query sign and any segment of the candidate video,
thereby assisting the sign spotting task.

2.4.1 Classification Loss
Since the expected outcome is binary(present or ab-
sent), our model employs the binary cross-entropy
loss(BCE) to penalize incorrect and overconfident
predictions. We extract the [CLS] token representa-
tion via max pooling and project it to an MLP clas-
sifier to generate the corresponding logits ŷ ∈ R.
The final prediction is obtained by applying the
sigmoid(σ) to the logits. The binary cross-entropy
loss is computed as:

LBCE = − 1

B

B∑

i=1

[yi log pi + (1− yi) log(1− pi)]

(2)
where p = σ(ŷi)), σ is the sigmoid function ,

yi ∈ {0, 1} is the ground truth label, and B is the
batch size.

3 Experiments

3.1 Dataset and Evaluation Metrics

For this experiment, we evaluate our model with
Word Presence Dataset2, an ASL sign spotting
dataset designed to determine if a query sign ap-
pears within a sentence sequence.

The dataset comprises 25,432 sentence-query
pairs constructed from 7,857 unique sentence se-
quences and 1,410 unique query sequences. The
dataset is balanced, with equal distribution of pos-
itive (query present) and negative (query absent)
samples. We employ an 80:20 train-validation split.

2https://huggingface.co/datasets/
Exploration-Lab/WSLP-AACL-2025
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Table 1: Performance comparison on Word Presence
Prediction (Test Set).

Method Acc. F1 Prec. Rec.

Ours (1D CNN) 60.95 59.62 62.70 61.01
Ours (2D CNN) 61.66 58.42 67.16 61.74

The test set contains 1,266 unique sentence se-
quences and 555 unique query sequences, ensuring
minimal overlap with the training distribution.

During Evaluation, we use standard classifica-
tion evaluation metrics, i.e., Accuracy, Precision,
Recall, and F1-score.

4 Implementation Details

We train the model end-to-end with an initial learn-
ing rate of 0.0005 since commonly used values
(e.g., 0.001 or 0.01) resulted in suboptimal conver-
gence, using the AdamW optimizer and a temper-
ature of 0.07 for contrastive losses. A dropout of
0.02 was applied to prevent overfitting. Training is
carried out for 50 epochs with a patience of 5 if no
future improvements. This was done using a single
NVIDIA L40S GPU.

To ensure our model focuses on important fea-
tures, we skipped all early and late frames with
no finger movement. During training, we applied
different data augmentation techniques such as se-
quence masking, scaling, jittering, and Gaussian
noise to ensure robustness.

4.1 Evaluation on Test Set

Table 1 presents our results on the test set. Given
that this is a novel task introduced in the WSLP
2025 shared task, with no prior work to the best
of our knowledge, hence no baseline to compare
against. Our 2D-CNN approach achieves 61.66%
accuracy, outperforming linear(1D-CNN) projec-
tion. Notably, 2D-CNN significantly improves pre-
cision, indicating fewer false positives, though F1
slightly decreases due to the precision-recall trade-
off.

4.2 Ablation study and analysis

To evaluate the robustness of our model, we con-
duct some ablations using different training choices
with a concentration on Accuracy and F1 Scores.

4.2.1 Effect of different loss function
As shown in Table 2 demonstrate that using only
contrastive loss underperforms when compared to

Table 2: Ablation study on validation set(val set).

Configuration Acc. F1 Prec. Rec.

Loss Functions
BCE only (ours) 63.04 70.36 59.19 86.71
Contrast only 57.20 69.27 54.39 95.38
BCE + Contrast 61.39 64.13 60.49 68.25

Pose Encoding
1D Conv 53.65 67.58 52.29 95.53
2D Conv (ours) 61.39 64.13 60.49 68.25

using BCE, indicating that contrastive supervision
is not satisfactory enough for this task. While com-
bining both losses with contrastive weight λ = 0.5
achieves 61.39% accuracy, the result is still below
BCE-only performance. The contrastive objective
may interfere with classification if the weight is
not carefully tuned; using either higher or lower
weights results in lower performance, and the em-
bedding space learned through mean pooling may
be less discriminative than the [CLS] token repre-
sentation for this verification task.

4.2.2 Effect of Pose Encoding

Table 2 demonstrates that 2D-CNN outperforms
other methods in encoding postures. 1D-CNN cap-
tures temporal patterns but treats keypoints as a se-
quence without using their geometric correlations.
In contrast, 2D-CNN preserves spatial structure by
reshaping each frame as an n× 2 grid, where n is
the number of keypoints, allowing the network to
learn spatial patterns such as hand configurations
and body postures.

5 Conclusion

In the work, we present the first video-to-video
word presence verification in sign language, where
both the sentence and query are video sequences.
Our approach proposes using pose sequence in,
combining 2D CNN encoding with a Transformer
temporal model, achieving 61.66% accuracy on the
word presence dataset.

To the best of our knowledge at the time of this
research, no prior work has been done in video-to-
video sentence-to-query word spotting. Ablation
studies and analysis show that 2D spatial encoding
of poses and BCE loss are critical design choices.
Our work establishes a strong baseline for this task
and demonstrates the effectiveness of pose-based
representations for SL understanding.
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Abstract

Sign Language Translation (SLT) is a crucial
technology for fostering communication ac-
cessibility for the Deaf and Hard-of-Hearing
(DHH) community. A dominant approach in
SLT involves a two-stage pipeline: first, tran-
scribing video to sign language glosses, and
then translating these glosses into natural text.
This second stage, gloss-to-text translation, is
a challenging, low-resource machine transla-
tion task due to data scarcity and significant
syntactic divergence. While prior work has of-
ten relied on training translation models from
scratch, we show that fine-tuning large, pre-
trained language models (PLMs) offers a more
effective and data-efficient paradigm. In this
work, we conduct a comprehensive bidirec-
tional evaluation of several PLMs (T5, Flan-
T5, mBART, and Llama) on this task. We use
a collection of popular SLT datasets (RWTH-
PHOENIX-14T, SIGNUM, and ASLG-PC12)
and evaluate performance using standard ma-
chine translation metrics. Our results show
that fine-tuned PLMs consistently and signifi-
cantly outperform Transformer models trained
from scratch, establishing new state-of-the-art
results. Crucially, our bidirectional analysis re-
veals a significant performance gap, with Text-
to-Gloss translation posing a greater challenge
than Gloss-to-Text. We conclude that lever-
aging the linguistic knowledge of pre-trained
models is a superior strategy for gloss transla-
tion and provides a more practical foundation
for building robust, real-world SLT systems.

1 Introduction

Automatic Sign Language Translation (SLT) is a
vital research field focused on bridging communi-
cation barriers for the millions of individuals in
the Deaf and Hard-of-Hearing (DHH) community
(Bragg et al., 2019). The development of robust
SLT systems has profound implications for social
inclusion, education, and access to essential ser-
vices, particularly in domains like telehealth where

the availability of human interpreters can be limited
(Pikoulis et al., 2022).

A dominant paradigm in SLT research decom-
poses the complex video-to-text translation prob-
lem into a more manageable two-stage pipeline
(Camgoz et al., 2018). First, a Sign Language
Recognition (SLR) module analyzes the input
video to generate a sequence of textual labels,
known as “glosses.” These glosses represent the
individual signs in their original signed order. Sec-
ond, a machine translation module translates this
sequence of glosses into a grammatically correct
natural language sentence. This paper focuses on
this critical second stage: the bidirectional trans-
lation between sign language glosses and natural
language text (Gloss ⇔ Text).

The task of translating sign glosses, however,
presents unique challenges for Neural Machine
Translation (NMT). Glosses are an intermediate
representation that simplifies the visual signal into
a text-like sequence, but they omit many linguistic
features and non-manual markers (e.g., facial ex-
pressions). While the lexicon of glosses often over-
laps significantly with the target natural language,
their syntax follows the grammatical rules of the
source sign language, which can be vastly differ-
ent. For example, American Sign Language (ASL)
has a distinct word order and grammatical struc-
ture from English (Sandler and Lillo-Martin, 2006).
This results in a translation task characterized by
high lexical overlap but significant syntactic diver-
gence. Compounding this challenge, the parallel
gloss-text corpora available for training are typi-
cally small, making this an extremely low-resource
NMT problem (Yin and Read, 2020).

Previous neural approaches have demonstrated
the viability of the Transformer architecture for this
task, but have primarily relied on training models
from scratch on these limited datasets (Yin and
Read, 2020). We hypothesize that this approach is
data-inefficient and that a more effective strategy is

77



Model	for
Gloss	

Prediction

Fine-
tuned	
LLM

Predicted	Gloss	
Sequence:

PRO-1	NEED	
MEDICINE	FOR	

PAIN

Converted	Gloss	to	
English:	

“I	need	medication	
for	my	pain”

Figure 1: The two-stage Sign Language Translation
(SLT) pipeline. This work focuses on the second stage:
translating sign language gloss sequences into natural
language text and vice-versa. The example shows ASL
glosses being translated into an English sentence.

to leverage the vast linguistic knowledge encoded
in large, pre-trained language models (PLMs).

Recently, the focus has begun to shift to-
wards fine-tuning LLMs, with work such as
(Fayyazsanavi et al., 2024) achieving strong results
by developing specialized techniques like novel
loss functions and data augmentation for the uni-
directional Gloss-to-Text task. Our work comple-
ments these efforts by asking a different, founda-
tional question: how do various modern PLMs and
architectures perform across the full, bidirectional
translation pipeline? By fine-tuning these models,
which have already learned the rich grammatical
and semantic nuances of the target language from
massive text corpora, we can adapt them to the
specific task of gloss translation more effectively.

The main contributions of this work are as fol-
lows:

• We conduct the first large-scale, systematic
comparison of fine-tuning various modern
PLMs, including T5, Flan-T5, mBART, and
Llama, for the bidirectional gloss-to-text and
text-to-gloss translation tasks.

• We empirically demonstrate that our fine-
tuning approach significantly outperforms
the strong baseline of a Transformer trained
from scratch, establishing new state-of-the-
art results on the RWTH-PHOENIX-14T,
SIGNUM, and ASLG-PC12 benchmarks.

• We provide a comparative analysis of dif-
ferent model architectures (encoder-decoder
vs. decoder-only) and pre-training paradigms
(e.g., instruction-tuning) to identify the most
suitable approaches for this unique translation
task.

• We will release our fine-tuned models and
experimental code to the research community
to foster reproducibility and accelerate future
progress in SLT.

2 Related Work

Language Models are increasingly applied across
diverse domains, including label quality improve-
ment (Mahjourian and Nguyen, 2025), Sentiment
Analysis (Mohammadagha et al., 2025), secure
software development practices (Torkamani et al.,
2025), and mental health text analysis (Kermani
et al., 2025). They have also shown growing poten-
tial in advancing translation tasks such as SLT.

2.1 Sign Language Gloss-to-Text Translation

The translation of sign language glosses to natural
language text has been an active area of research
within SLT. Early approaches often relied on rule-
based systems or statistical machine translation
(SMT) methods. For instance, the widely-used
ASLG-PC12 dataset was itself generated using a
rule-based, part-of-speech-based grammar to con-
vert English text into ASL glosses (Othman and
Jemni, 2012). However, these methods often strug-
gle to capture the fluency and complexity of natural
language.

With the advent of deep learning, the focus
shifted to neural machine translation (NMT) mod-
els. An initial line of work applied Recurrent Neu-
ral Network (RNN) based architectures with atten-
tion to the task (Camgoz et al., 2018). A significant
step forward was made by (Yin and Read, 2020),
who demonstrated the effectiveness of the Trans-
former architecture (Vaswani et al., 2017) for this
task. Their work, which serves as a primary base-
line for our study, involved training Transformer
models from scratch on gloss-text corpora like
RWTH-PHOENIX-14T and ASLG-PC12. They
showed that this approach could achieve state-of-
the-art results, establishing a strong benchmark for
neural-based gloss-to-text translation.

The inherent low-resource nature of the problem
has also inspired other lines of research, such as
data augmentation. For example, (Moryossef et al.,
2021) proposed rule-based heuristics to generate
pseudo-parallel gloss-text pairs from monolingual
text to augment the limited training data. While
effective, our work explores a complementary di-
rection: instead of augmenting the data, we pro-
pose using more powerful models that are better
equipped to learn from sparse data.

Concurrent to our work, (Fayyazsanavi et al.,
2024) also explore fine-tuning LLMs for Gloss-
to-Text translation. Their primary contributions
are the development of tailored data augmenta-
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tion techniques (paraphrasing and back-translation)
and a novel Semantically Aware Label Smooth-
ing (SALS) loss function to handle gloss ambi-
guities. Their work demonstrates significant im-
provements on the PHOENIX-2014T dataset. Our
research differs in three key aspects: (1) Scope:
We conduct a bidirectional analysis, evaluating
both Gloss-to-Text (G2T) and Text-to-Gloss (T2G)
tasks, whereas their work focuses solely on G2T.
(2) Contribution Type: Our work provides a broad,
systematic comparison of multiple PLM families
and architectures to establish foundational bench-
marks, while their work focuses on developing
novel, task-specific techniques for a single model.
(3) Evaluation Breadth: We validate our findings
across three distinct datasets (RWTH-PHOENIX-
14T, SIGNUM, and ASLG-PC12) to ensure gen-
eralizability, whereas their experiments are con-
ducted on the PHOENIX-2014T dataset.

2.2 Pre-trained Language Models for NMT

The dominant paradigm in modern Natural Lan-
guage Processing (NLP) has shifted from training
task-specific models from scratch to a pre-train and
fine-tune approach (Devlin et al., 2019). Large-
scale language models like T5 (Raffel et al., 2020),
BART (Lewis et al., 2020), and the Llama family
(Aaron Grattafiori, 2024) are first pre-trained on
vast, web-scale corpora of unlabeled text. During
this phase, they learn rich, general-purpose repre-
sentations of syntax, semantics, and world knowl-
edge.

This pre-trained knowledge can then be trans-
ferred to downstream tasks via a second, much
shorter fine-tuning phase on a smaller, labeled
dataset. This paradigm has proven exceptionally
effective for low-resource NMT (Zoph et al., 2016).
Instead of learning the target language’s grammar
and semantics from a small parallel corpus, the
model only needs to learn the mapping between
the source and target representations. Our work is
the first to systematically apply and evaluate this
powerful paradigm across a diverse set of modern
PLMs for the unique challenges of bidirectional
sign language gloss translation.

3 Experimental Setup

We designed a comprehensive experimental setup
to rigorously evaluate the performance of fine-
tuned pre-trained language models (PLMs) against
a from-scratch baseline on bidirectional gloss-text

Gloss-Text
Corpus
(Small)

Transformer
(Random
Weights)

Task-Specific
Model

(Limited
Knowledge)

Training

Result

(a) Training from Scratch

Web-Scale
Text Corpus
(Massive)

Pre-trained
LM (PLM)

(General Linguis-
tic Knowledge)

Gloss-Text
Corpus
(Small)

Fine-Tuned Model
(Task-Specific
& General
Knowledge)

Pre-training

Fine-tuning

Result

(b) Fine-Tuning (Our Approach)

Figure 2: Conceptual comparison of the two training
paradigms. (a) The baseline approach trains a Trans-
former from scratch using only the limited gloss-text
corpus. (b) Our approach leverages a large language
model pre-trained on vast text corpora and then fine-
tunes it on the gloss-text corpus.

translation. Our setup is standardized across all
models to ensure fair and reproducible compar-
isons. The complete code implementation and
benchmarks are made publicly available for repro-
ducibility: anonymized.

3.1 Task Definition
We address two primary translation tasks in this
work, treating both as sequence-to-sequence prob-
lems:

1. Gloss-to-Text (G2T): The model takes a se-
quence of sign language glosses as input (e.g.,
PRO-1 NEED MEDICINE PAIN) and must gen-
erate a grammatically correct sentence in the
target natural language (e.g., "I need medicine
for the pain.").

2. Text-to-Gloss (T2G): The model takes a nat-
ural language sentence as input and must gen-
erate the corresponding sequence of glosses,
reflecting the word order and lexical choices
of the target sign language.

3.2 Datasets
We conduct experiments on three publicly available
corpora, each with unique characteristics that test
different aspects of our models. A summary of
the datasets after standard train/dev/test splitting is
provided in Table 1.

Dataset Language Pair Domain Train/Dev/Test

PHOENIX DGS / German Weather 7,096 / 518 / 642
SIGNUM DGS / German Varied 603 / 177 / —
ASLG-PC12 ASL / English Synthetic 500k / 5k / 5k

Table 1: Overview of datasets. DGS stands for German
Sign Language; ASL for American Sign Language. The
SIGNUM test set is used for validation.

79

anonymized


• RWTH-PHOENIX-Weather 2014T
(Phoenix14T) (Camgoz et al., 2018) is a
widely-used benchmark for continuous sign
language research, consisting of German
weather forecasts and their correspond-
ing German Sign Language (DGS) gloss
transcriptions.

• SIGNUM (von Agris and Kraiss, 2010) is a
smaller DGS corpus with a more controlled
vocabulary, providing a different data condi-
tion. We use the original train-test split in our
evaluation.

• ASLG-PC12 (Othman and Jemni, 2012) is
a large-scale, synthetically generated corpus
of English sentences from Project Gutenberg
automatically converted into ASL glosses.
While synthetic, its size allows for testing
model scalability. We use a 500k-pair sub-
set for training.

3.3 Models and Implementation
We evaluate a from-scratch baseline against four
different PLMs.

• Transformer Baseline (65M params): For
comparison against pre-trained language mod-
els (PLMs), we implemented a custom Trans-
former architecture trained from scratch on
the sign language gloss translation tasks.

The model uses a 4-layer encoder and 4-layer
decoder, each with dmodel = 256 hidden units,
8 attention heads, and a feed-forward dimen-
sion of 1024. Positional encodings are added
to the token embeddings, and residual connec-
tions with dropout (0.2) are applied through-
out. To improve parameter efficiency, the out-
put projection layer shares weights with the
target embeddings.

• T5-base (220M params): A versatile
encoder-decoder PLM pre-trained on a text-
to-text objective (Raffel et al., 2020).

• Flan-T5-base (220M params): An
instruction-tuned version of T5, which
has been shown to improve zero-shot and
few-shot performance on unseen tasks.

• mBART 50 (610M params): A multilingual
sequence-to-sequence model pre-trained with
a denoising objective, which may be partic-
ularly suited to handling the ungrammatical
nature of glosses (Lewis et al., 2020).

• Llama 3 8B: A powerful, modern, decoder-
only LLM used to assess the performance
of this architectural class (Aaron Grattafiori,
2024).

All models were trained using the HuggingFace
Transformers library . For fine-tuning the PLMs,
we used the AdamW optimizer with a learning rate
of 3× 10−4 and a batch size of 32. We employed
a linear learning rate scheduler with 100 warmup
steps and trained for a maximum of 10 epochs
with early stopping based on validation loss. For
encoder-decoder models, input sequences were pre-
fixed with a task description, e.g., “translate Gloss
to English: [GLOSS SEQUENCE]”.

3.4 Evaluation Metrics

To provide a comprehensive assessment of transla-
tion quality, we use a suite of standard automatic
metrics:

• BLEU (Papineni et al., 2002): Measures n-
gram precision, a standard metric for machine
translation quality.

• ROUGE-L (Lin, 2004): Measures the
longest common subsequence, capturing
recall-oriented aspects of the translation.

• METEOR (Banerjee and Lavie, 2005): An
alignment-based metric that considers syn-
onymy and stemming for a more semantically-
aware evaluation.

• Word Error Rate (WER): Measures the
number of substitutions, deletions, and inser-
tions required to transform the hypothesis into
the reference. It is particularly useful for the
T2G task where output structure is more rigid.

All scores are computed using the SacreBLEU li-
brary (Post, 2018) to ensure consistent and repro-
ducible results. Each experiment was run 10 times
with different random initializations.

4 Results and Analysis

We present the results of our experiments on both
the Gloss-to-Text (G2T) and Text-to-Gloss (T2G)
translation tasks. Our analysis focuses on com-
paring the performance of fine-tuned pre-trained
models against the from-scratch Transformer base-
line.
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Dataset Model BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑ METEOR ↑ WER ↓

RWTH-PHOENIX-14T

Transformer (Baseline) 34.01 23.71 17.24 13.06 34.75 29.51 81.44
T5-base 48.71 37.16 30.13 22.73 35.04 31.32 34.37
Flan-T5-base 45.94 32.68 25.29 19.03 33.33 30.06 36.68
mBART 58.16 45.86 36.52 25.58 46.30 42.26 26.56
Llama 8B 63.56 53.45 43.78 29.92 53.33 49.14 21.32

SIGNUM

Transformer (Baseline) 59.60 47.26 39.76 34.24 61.22 53.09 46.45
T5-base 71.21 66.09 60.70 52.87 86.34 71.64 22.09
Flan-T5-base 68.12 64.84 59.45 50.72 85.95 73.83 18.45
mBART 82.81 77.07 72.38 67.60 84.80 79.68 17.61
Llama 8B 80.56 75.89 70.35 65.78 82.24 78.92 18.23

ASLG-PC12

Transformer (Baseline) 79.28 73.13 67.75 62.81 89.40 80.60 23.41
T5-base 91.02 81.90 74.82 68.69 89.17 85.63 20.92
Flan-T5-base 86.38 74.11 64.91 65.40 84.76 82.64 26.81
mBART 94.55 90.27 86.08 79.58 92.99 88.03 19.31
Llama 8B 96.06 91.55 87.06 83.10 94.12 90.24 17.83

Table 2: Gloss-to-Text (G2T) translation results on RWTH-PHOENIX-14T, SIGNUM, and ASLG-PC12.

Dataset Model BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑ METEOR ↑ WER ↓

RWTH-PHOENIX-14T

Transformer (Baseline) 33.47 19.06 11.26 6.98 36.72 25.21 82.46
T5 60.30 27.19 15.17 8.49 49.18 40.85 66.90
Flan-T5 47.50 25.60 15.00 10.00 45.20 38.50 69.30
mBART 50.10 30.45 19.20 12.10 44.32 36.51 64.10
Llama 58.43 38.32 25.54 16.81 51.25 44.63 61.45

SIGNUM

Transformer (Baseline) 61.73 49.65 43.26 37.51 64.50 55.31 43.93
T5 72.15 56.82 43.64 34.66 68.50 58.90 38.84
Flan-T5 69.23 54.32 41.50 32.44 65.83 56.22 41.21
mBART 75.42 49.54 37.07 25.43 70.20 61.30 37.83
Llama 62.53 47.61 35.43 29.74 68.63 56.25 45.72

ASLG-PC12

Transformer (Baseline) 82.21 75.47 68.12 64.12 89.77 81.93 23.10
T5-base 64.20 44.76 31.34 21.73 76.21 60.66 42.13
Flan-T5-base 43.41 30.87 23.47 18.51 60.58 52.55 55.68
mBART 73.76 53.41 38.49 27.68 80.65 67.24 35.80
Llama 85.64 76.78 70.62 66.33 89.91 83.85 22.37

Table 3: Text-to-Gloss (T2G) translation results on RWTH-PHOENIX-14T, SIGNUM, and ASLG-PC12.

4.1 Gloss-to-Text Performance

Table 2 summarizes the performance of all models
on the G2T task across the datasets. All scores are
averaged over 10 runs. Best scores per metric are
in bold. The results provide strong evidence for
our primary hypothesis.

The results of the gloss-to-text experiments
across RWTH-PHOENIX-14T, SIGNUM, and
ASLG-PC12 shown in Table 2 demonstrate con-
sistent improvements of pre-trained models over
the baseline Transformer trained from scratch. On
PHOENIX-14T, all PLMs achieve substantial gains
in BLEU-4, with the model mBART reaching
25.58 compared to 13.06 for the baseline. The
larger Llama 8B extends this advantage further
with 29.92 BLEU-4, underscoring the benefit of
large-scale pre-training even in low-resource condi-
tions. On SIGNUM, mBART attains 67.60 BLEU-
4, while Llama 8B maintains competitive results.
For ASLG-PC12, where the dataset is larger and
synthetic, Llama 8B achieves the highest score with
83.10 BLEU-4, indicating that decoder-only mod-
els are able to fully exploit large-scale parallel data.

Overall, the results confirm that fine-tuning PLMs
yields not only higher accuracy but also more flu-
ent and grammatically complete translations across
diverse data conditions.

4.2 Text-to-Gloss Performance

For the reverse task of Text-to-Gloss (T2G), we
evaluate the models’ ability to generate syntacti-
cally correct gloss sequences. The results are pre-
sented in Table 3.

Compared to gloss-to-text, BLEU scores are gen-
erally lower and WER is higher, reflecting the struc-
tural difficulty of generating gloss sequences that
require word deletion, reordering, and strict ad-
herence to gloss grammar. On PHOENIX-14T,
the best-performing model achieves only 16.81
BLEU-4, showing the sharp contrast with gloss-
to-text performance. On SIGNUM, pre-trained
models again outperform the baseline, with T5 and
mBART reaching mid-30 BLEU-4 scores, but still
below their gloss-to-text counterparts. On ASLG-
PC12, Llama achieves the strongest performance
with 66.33 BLEU-4, benefiting from the scale of
training data, though this remains substantially
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Figure 3: G2T multi-metric comparison across datasets (higher is better; WER inverted).

Figure 4: T2G multi-metric comparison across datasets (higher is better; WER inverted).

Figure 5: Bidirectional Performance Asymmetry
(BLEU-4) on the ASLG-PC12 Dataset.

lower than its gloss-to-text result. These findings
confirm the expected asymmetry between the two
directions and indicate that text-to-gloss transla-
tion is likely to remain a bottleneck in practical
bidirectional systems unless further task-specific
modeling innovations are introduced. As shown
in Figure 5, we observe a clear bidirectional per-
formance asymmetry on the ASLG-PC12 dataset.
While G2T achieves higher BLEU, ROUGE-L, and
METEOR scores, the corresponding T2G direction
results in substantially lower scores across all met-
rics, highlighting the inherent difficulty of the re-
verse translation task. A notable exception arises in

T2G. As shown in Table3, the from-scratch Trans-
former achieves the strongest result on SIGNUM
and is second only to Llama 8B on ASLG-PC12,
outperforming smaller PLMs. This pattern sug-
gests that pre-training for fluent text can conflict
with generating non-fluent, rule-like gloss targets.

4.3 Qualitative Analysis

To provide a more intuitive understanding of the
performance gap, Table 4 shows example transla-
tions from our Flan-T5-base versus the baseline
Transformer.

The examples clearly illustrate the advantage
of pre-training. The baseline model often pro-
duces grammatically incomplete or "telegraphic"
text, closely mirroring the structure of the input
glosses. In contrast, the fine-tuned Flan-T5 model
successfully infers the correct grammatical struc-
ture, inserting necessary function words (e.g., "will
be", "there is"), handling verb tenses, and produc-
ing overall more natural and fluent sentences. This
qualitative difference highlights that pre-trained
models do not just learn a word-for-word mapping
but leverage their internal linguistic models to per-
form true translation.
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Source Text: we are talking about children , the most precious resource that we should protect.

Reference Gloss: X-WE BE TALK ABOUT CHILD , MOST DESC-PRECIOUS RESOURCE THAT X-WE
SHOULD PROTECT.
Predicted Gloss: X-WE BE TALK ABOUT CHILD , MOST FINISH RESOURCE THAT X-WE SHOULD
PROTECT.

Source Gloss: IX-1P NOT-YET SEE MOVIE BUT FRIEND RECOMMEND

Reference: I haven’t seen the movie yet, but my friend recommended it.
Baseline Output: I not see movie but friend say good.
Our Output (Flan-T5): I have not seen the movie yet, but my friend recommended it.

Table 4: Qualitative comparison of example translations from the G2T and T2G tasks. The fine-tuned model
generates more fluent and grammatically complete sentences.

5 Discussion

Our experimental results provide compelling evi-
dence that fine-tuning pre-trained language mod-
els (PLMs) is a superior strategy to training from
scratch for bidirectional gloss translation. Across
datasets, PLMs strongly outperform the baseline
on G2T, and often on T2G as well—notably Llama
8B on ASLG-PC12—though some PLMs under-
perform the baseline on ASLG-PC12 T2G. This is
demonstrated by concordant gains across BLEU,
ROUGE-L, and METEOR metrics, alongside cor-
responding reductions in WER, as detailed in Ta-
bles 2 and 3.

5.1 The Decisive Advantage of Pre-trained
Knowledge

A primary finding is the sheer magnitude of the im-
provement attributable to pre-training. On the chal-
lenging PHOENIX-14T dataset (G2T task), even
the T5-base model achieves a BLEU-4 score of
22.73, a relative gain of roughly 74% over the 13.06
baseline. Larger or more sophisticated PLMs am-
plify this advantage, with Llama 8B reaching an
impressive 29.92 BLEU-4.

This performance leap stems from the effective
transfer of linguistic knowledge. As the qualitative
examples in Table 4 illustrate, PLMs move beyond
simple surface-level pattern matching. Compared
to the telegraphic and grammatically incomplete
outputs of the baseline, fine-tuned models success-
fully infer correct grammatical structure, inserting
necessary function words, handling verb tenses,
and producing far more natural and fluent sentences.
This demonstrates that the models leverage their
vast pre-trained knowledge of language, needing
only to learn the mapping from glosses during fine-
tuning.

5.2 The Bidirectional Bottleneck: Asymmetry
in Translation

A critical insight from our bidirectional analysis is
the significant asymmetry between the two trans-
lation directions. As shown in Figure 5 and in
the detailed results in Table 2 and Table 3, we ob-
serve a stark performance asymmetry between the
G2T and T2G directions across all models. Text-
to-Gloss (T2G) translation is substantially more
challenging than Gloss-to-Text (G2T). Across most
models and datasets, we observe substantial BLEU
reductions (often ∼30–60%) when reversing direc-
tion.

This difficulty arises because T2G requires the
model to generate a syntactically rigid and often
non-fluent sequence, which involves precise word
deletion and reordering to match sign language
grammar. This is an unnatural task for PLMs,
whose pre-training objective is biased towards gen-
erating fluent, natural language. For instance, while
mBART achieves a strong 25.58 BLEU-4 on the G2T
task for PHOENIX-14T, its performance drops to
just 12.10 for T2G. These findings confirm that in
any practical bidirectional system, the T2G com-
ponent is likely to be the primary performance
bottleneck if not explicitly optimized with task-
specific architectures or objectives. On T2G, a con-
sistent counterexample appears: the from-scratch
Transformer surpasses smaller pre-trained models
on ASLG-PC12 dataset. This pattern supports a
negative-transfer explanation, in which fluency-
oriented pre-training conflicts with generating non-
fluent, rule-like gloss sequences, while the base-
line’s neutral inductive bias learns the rigid map-
ping directly. Only very large models appear to
mitigate this interference through additional capac-
ity.
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5.3 Architectural and Data Scale
Considerations

Our results offer insights into the interplay be-
tween model architecture, pre-training objectives,
and data conditions. Encoder-decoder models (T5,
Flan-T5, mBART) prove highly competitive, es-
pecially on the smaller, real-world datasets like
PHOENIX-14T and SIGNUM. Notably, the mul-
tilingual denoising pre-training of mBART appears
to provide an advantageous inductive bias for the
gloss-to-text mapping.

However, the decoder-only Llama 8B model ex-
cels where the data scale is largest, achieving the
highest scores on the synthetic ASLG-PC12 dataset
(83.10 BLEU-4 for G2T). This pattern suggests that
while encoder-decoder architectures may be more
data-efficient for learning the structured mapping
from gloss to text, powerful decoder-only models
can surpass them when sufficient parallel data is
available to specialize to the task. Furthermore,
the mixed results of instruction-tuning (Flan-T5
vs. T5) indicate that generic instruction-following
priors do not always translate into downstream ad-
vantages for this highly structured translation task.

Finally, dataset characteristics clearly shape out-
comes. The high scores on SIGNUM (up to 67.60
BLEU-4 G2T) highlight the effectiveness of PLMs
on domain-specific data with controlled vocabular-
ies. In contrast, PHOENIX-14T remains the most
realistic and challenging benchmark, where our im-
provements represent substantial progress towards
deployable, real-world systems.

5.4 Limitations and Future Work

Our evaluation relies primarily on automatic met-
rics and gloss-based representations, which do not
capture non-manual markers and may not fully re-
flect end-user utility. Human evaluation, including
DHH raters, should complement automatic metrics.
From a modeling standpoint, Llama 8B raises com-
pute and memory considerations; future work will
investigate parameter-efficient tuning and knowl-
edge distillation. Finally, closing the bidirectional
gap likely requires objectives and architectures tai-
lored for T2G (e.g., stronger constraints or struc-
tured decoding) and, longer term, integration with
end-to-end video models that capture non-manual
features.

6 Conclusion

We presented a comprehensive, controlled evalu-
ation of pre-trained language models for bidirec-
tional gloss translation across three distinct datasets.
Our findings conclusively show that fine-tuning
PLMs consistently and substantially outperforms
training Transformers from scratch, with relative
BLEU-4 gains on the G2T task ranging from
roughly 74% (e.g., 13.06 → 22.73 on PHOENIX-
14T with T5-base) to about 130% (13.06 → 29.92
with Llama 8B).

Our G2T results establish new state-of-the-art
levels on all three benchmarks within our exper-
imental setting, PHOENIX-14T (29.92 BLEU-
4), SIGNUM (67.60), and ASLG-PC12 (83.10),
demonstrating that transfer learning is a decisive
enabler for this low-resource translation problem.
The architectural analysis indicates that while
encoder-decoder PLMs are highly competitive on
smaller datasets, decoder-only LLMs can excel as
data scale increases.

At the same time, our bidirectional study un-
derscores a persistent asymmetry: Text-to-Gloss
translation remains notably harder than Gloss-to-
Text, with ∼30–60% BLEU reductions and ele-
vated WER across datasets. Addressing this gap is
a key avenue for future research, potentially requir-
ing specialized objectives or constrained decoding.

Practically, these findings lower the barrier to
building effective gloss translation systems. Strong
models can be obtained via fine-tuning rather than
costly training from scratch, making it feasible to
extend SLT technology to additional sign languages
and domains. We will release our code and fine-
tuned checkpoints to support reproducibility and
accelerate progress toward inclusive, deployable
communication tools for the DHH community.
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