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Abstract
Sign languages are highly diverse across coun-
tries and regions, yet most Sign Language
Translation (SLT) work remains monolingual.
We explore a unified, multi-target SLT model
trained jointly on four sign languages (German,
Greek, Argentinian, Indian) using a standard-
ized data layer. Our model operates on pose
keypoints extracted with MediaPipe, yielding
a lightweight and dataset-agnostic representa-
tion that is less sensitive to backgrounds, cloth-
ing, cameras, or signer identity while retaining
motion and configuration cues. On RWTH-
PHOENIX-Weather 2014T, Greek Sign Lan-
guage Dataset, LSA-T, and ISLTranslate, naive
joint training under a fully shared parameteri-
zation performs worse than monolingual base-
lines; however, a simple two-stage schedule:
multilingual pre-training followed by a short
language-specific fine-tuning, recovers and sur-
passes monolingual results on three datasets
(PHOENIX14T: +0.15 BLEU-4; GSL: +0.74;
ISL: +0.10) while narrowing the gap on the
most challenging corpus (LSA-T: −0.24 vs.
monolingual). Scores span from BLEU-4≈ 1
on open-domain news (LSA-T) to > 90 on con-
strained curricula (GSL), highlighting the role
of dataset complexity. We release our code to
facilitate training and evaluation of multilingual
SLT models.

1 Introduction

Sign Language Translation (SLT) aims to con-
vert sign language videos into spoken or written
language text, helping bridge communication be-
tween deaf and hearing communities. SLT re-

search has concentrated mostly on single-language
benchmarks. Most notably, German Sign Lan-
guage (DGS) with RWTH-PHOENIX-Weather
2014T has typically been used as baseline (Camgoz
et al., 2018). Subsequently, transformer-based ap-
proaches demonstrated steady improvements (Cam-
goz et al., 2020), yet the diversity of sign languages
and the scarcity of labeled data make it impractical
to build and maintain one system per language. In
contrast, multilingual modeling has transformed
spoken/written machine translation (MT): a sin-
gle shared model with target-language control to-
kens can learn to translate among many languages
and even generalize in low-resource settings (John-
son et al., 2017). Bringing these ideas into SLT
is promising but still relatively new. Recent work
has shown the feasibility of multilingual SLT with
architectural mechanisms to regulate parameter
sharing across languages (Yin et al., 2022), and
with clustering strategies to mitigate interference
by grouping related languages (Zhang et al., 2025);
in parallel, scaling data and directions is begin-
ning to push SLT beyond narrow domains (Zhang
et al., 2024). However, evaluation setups differ:
some studies prefer many-to-one (many sign lan-
guages → one spoken language) for comparability,
while others explore many-to-many configurations
with multiple spoken targets, leaving open how far
a fully shared, standard architecture can go when
each sign language is translated into its own spoken
language.

We address this question by training a sin-
gle multilingual SLT model across four sign
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languages: DGS in RWTH-PHOENIX-Weather
2014T (DGS→German) (Camgoz et al., 2018),
the Greek Sign Language Dataset (GSL→Greek)
(Adaloglou et al., 2020), LSA-T (Argentinian
Sign Language; LSA→Spanish) (Bianco et al.,
2023), and ISLTranslate (Indian Sign Language;
ISL→English) (Joshi et al., 2023). In this work we
adapt Signformer (Yang, 2024) to operate on pose
keypoints (hands, body, selected facial landmarks)
extracted with MediaPipe (Lugaresi et al., 2019) in-
stead of on CNN-derived visual embeddings. This
choice yields a lightweight pipeline and can en-
courage cross-lingual transfer over motion patterns,
albeit at the cost of some visual nuance in fine
handshape/face details (for which robustness tech-
niques continue to improve (Moryossef, 2024)).
Practically, we unify data preparation across these
corpora using an open-source library that standard-
izes formats and preprocessing, lowering barriers
to multilingual experimentation.1

Our contributions can be listed as:

• A multi-target multilingual SLT model that
translates each sign language into its native
spoken language within a single, fully shared
Transformer with no language-specific rout-
ing, complementing prior multilingual SLT
designs that add sharing controls (Yin et al.,
2022; Zhang et al., 2025).

• A unified, open-source data layer that har-
monizes formats and preprocessing across
RWTH-PHOENIX-Weather 2014T, Greek El-
ementary, LSA-T, and ISLTranslate, enabling
streamlined multilingual training and evalu-
ation (Bianco, 2025; Camgoz et al., 2018;
Adaloglou et al., 2020; Bianco et al., 2023;
Joshi et al., 2023).

• A pose-keypoint adaptation of Signformer
(Yang, 2024) that replaces frame-based en-
coders with MediaPipe/BlazePose landmarks
(Lugaresi et al., 2019; Bazarevsky et al.,
2020), producing an efficient model suitable
for cross-lingual sharing and deployment.

• An empirical study of multilingual trans-
fer on four typologically and domain-diverse
sign languages, showing that multilingual
pre-training plus light language-specific fine-
tuning surpasses monolingual baselines on
PHOENIX14T, GSL, and ISL, and narrows

1Url anonimized for review purposes.

(but does not close) the gap on LSA-T, con-
sistent with trends observed as SLT scales
(Zhang et al., 2024).

2 Related Work

Research on Sign Language Translation (SLT) be-
gan with the introduction of RWTH-PHOENIX-
Weather 2014T and the first end-to-end baselines by
Camgoz et al. (2018), which established the now-
standard formulation of translating continuous sign
video directly into spoken/written text. Subsequent
transformer-based architectures advanced the state
of the art by better modeling long-range tempo-
ral dependencies and jointly learning recognition
and translation objectives (Camgoz et al., 2020).
More recently, efforts to scale SLT in both data and
directions highlighted that broader, multi-domain
supervision can yield sizeable gains, especially
when training setups move beyond a single sign
language and a single target (Zhang et al., 2024).
Nevertheless, the field has remained predominantly
monolingual, in large part because sign corpora are
scarce, heterogeneous, and difficult to align across
languages, which complicates the construction of
unified training pipelines and fair evaluation.

In contrast, multilingual modeling has been a
defining trend in spoken/written neural machine
translation (NMT). A single Transformer with
a shared subword vocabulary and simple target-
language control tokens can successfully learn
many-to-many mappings, facilitate transfer for low-
resource pairs, and even enable zero-shot general-
ization (Johnson et al., 2017). This paradigm natu-
rally motivates multilingual SLT, where the model
could amortize learning across sign languages that
share articulatory patterns (e.g., hand trajectories,
mouthings) or pragmatic structures, while still spe-
cializing to language-specific phenomena through
conditioning.

Early steps toward multilingual SLT made this
connection explicit. Yin et al. (2022) proposed and
systematically explored many-to-one, one-to-many,
and many-to-many setups, reporting that naive full
sharing can cause interference, and that architec-
tural controls (e.g., language-aware routing) help
balance sharing versus specialization. Building on
this line, Zhang et al. (2025) showed that automat-
ically clustering sign languages into families and
training family-specific models can further miti-
gate negative transfer while preserving the benefits
of multilingual supervision. In parallel, work on
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scaling SLT emphasized the importance of enlarg-
ing both data and translation directions, reinforc-
ing that multilinguality, when properly managed,
acts as both regularizer and data multiplier (Zhang
et al., 2024). Against this backdrop, our study
intentionally opts for a simpler design choice: a
fully shared, standard Transformer without routing
or family modules, paired with target-language to-
kens, to isolate how far basic parameter sharing can
go in a multi-target configuration where each sign
language maps to its native spoken language (akin
to multilingual NMT) (Johnson et al., 2017).

Finally, the feasibility of multilingual SLT also
hinges on the availability of diverse corpora beyond
PHOENIX14T. Recent datasets such as the Greek
Sign Language Dataset (Adaloglou et al., 2020),
LSA-T for Argentinian Sign Language (Bianco
et al., 2023), and ISLTranslate for Indian Sign Lan-
guage (Joshi et al., 2023) broaden the linguistic and
domain coverage for SLT research. Yet these re-
sources differ in annotation conventions, domains,
and difficulty, complicating joint training. This mo-
tivates standardized preprocessing layers and uni-
fied data schemas, which we leverage to train and
evaluate a single pose-based model across multiple
sign languages within one coherent framework.

3 Methodology

3.1 Datasets and Data Processing

Our study spans four SLT corpora with diverse lan-
guages, domains, and collection protocols: RWTH-
PHOENIX-Weather 2014T (Camgoz et al., 2018),
Greek Sign Language Dataset (GSL) (Adaloglou
et al., 2020), LSA-T (Bianco et al., 2023), and
ISLTranslate (Joshi et al., 2023). To make joint
training feasible and comparable across languages,
we standardize all datasets through a unified
schema that normalizes splits, text preprocessing,
and video-to-sequence conversion.

Concretely, videos are sampled at a consistent
frame rate and processed with MediaPipe to ex-
tract 2D landmarks for hands, upper body, and
selected facial regions (Lugaresi et al., 2019). We
apply temporal smoothing and torso-based normal-
ization to reduce jitter and scale variance, then se-
lect a subset of ∼150 features per frame (priori-
tizing hands/arms and a small set of facial cues)
that best capture manual articulations and gram-
matical markers. Text targets are normalized and
tokenized with a shared subword vocabulary. Fig-
ure 1 illustrates how the multilingual training set is

formed by concatenating all corpora and converting
each video to a pose-keypoint sequence, and, as a
side benefit, using pose keypoints instead of raw
frames also reduces sensitivity to dataset-specific
nuisances (e.g., backgrounds, lighting, clothing,
camera/viewpoint, signer appearance), promoting
more invariant cross-corpus sharing while preserv-
ing motion/configuration cues.

3.2 Training Procedure

We adopt a two-stage schedule designed to leverage
cross-lingual transfer while preserving language-
specific nuances:

Stage 1 (Multilingual pre-training): we train
a single fully shared model on the union of all
datasets. To avoid overfitting to high-resource sub-
sets, mini-batches are balanced by oversampling
lower-resource languages, and early stopping is
triggered on a macro-averaged validation BLEU
across languages. The objective is standard cross-
entropy over subword targets; we do not use gloss
supervision.

Stage 2 (Language-specific fine-tuning): start-
ing from the multilingual checkpoint, we fine-tune
one model per language with a lower learning
rate, which reliably recovers (and sometimes sur-
passes) the monolingual baselines. Throughout,
the target-language token conditions the decoder
so that the same parameters handle DGS→German,
GSL→Greek, LSA→Spanish, and ISL→English
within one architecture (Johnson et al., 2017). The
full workflow is summarized in Figure 2.

3.3 Model Architecture

Our model builds on Signformer (Yang, 2024),
a compact Transformer sequence-to-sequence ar-
chitecture. We replace the original frame-based
convolutional tokenization with a pose-based en-
coder: each frame’s selected keypoints (hands, up-
per body, facial cues) are concatenated into a vector
of dimension din≈ 150, normalized, and linearly
projected to the model embedding space. Unlike
multilingual SLT systems that introduce language-
specific routing or adapters (Yin et al., 2022), we
keep all parameters shared, emphasizing simplicity
and parameter efficiency. Figure 3 illustrates the
model’s architecture.

Beyond efficiency, the pose-based encoder acts
as an inductive bias toward signer and background
invariant features, encouraging cross-lingual shar-
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Figure 1: Multilingual dataset construction. Each corpus (PHOENIX14T, GSL, LSA-T, ISLTranslate) is standardized
via a unified schema, then each video is converted into a sequence of MediaPipe keypoints (hands/body/face).
The resulting pose sequences are concatenated into one multilingual training set with target-language tokens for
multi-target decoding.

Figure 2: Monolingual training vs Two-stage multilingual training. Stage 1: joint pre-training of a fully shared
Signformer on the concatenation of PHOENIX14T, GSL, LSA-T, and ISLTranslate with target-language tokens.
Stage 2: light fine-tuning on each language’s data starting from the multilingual checkpoint.

ing without overfitting to visual artefacts that differ
across datasets.

4 Experiments and Results

We evaluate three training regimes: (i) Monolin-
gual baselines—one pose-based Signformer per
dataset; (ii) a Multilingual joint model trained
naively on the concatenation of all corpora; and
(iii) Multilingual + fine-tuning, where the joint
model is lightly adapted to each language. We
report case-insensitive BLEU-4 (Papineni et al.,
2002), following standard SLT practice (Camgoz
et al., 2018, 2020). Table 1 summarizes results for
all four datasets.

Two clear trends emerge. First, naive joint
training under a fully shared parameterization in-

Dataset Monolingual Joint +Fine-tune
PHOENIX14T (DGS→De) 9.56 4.27 9.71
GSL Dataset (GSL→Gr) 94.38 63.07 95.12
LSA-T (LSA→Es) 1.18 0.48 0.94
ISL-Translate (ISL→En) 2.61 0.59 2.71

Table 1: BLEU-4 on test sets for monolingual baselines,
a single multilingual joint model, and multilingual pre-
training followed by language-specific fine-tuning. Best
per row in bold.

curs sizeable drops relative to monolingual train-
ing (PHOENIX14T: −5.29; GSL: −31.31; LSA-T:
−0.70; ISL: −2.02 BLEU), indicating capacity di-
lution and cross-language interference when mix-
ing heterogeneous sign languages without stronger
sharing controls. Second, the two-stage sched-
ule is crucial: brief, low–learning-rate fine-tuning
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Figure 3: Overview of the adapted Signformer archi-
tecture (originally taken from (Yang, 2024)) for multi-
lingual SLT using pose keypoints as input. Instead of
frame-based visual tokens, each frame’s concatenated
hand, upper-body, and selected facial landmarks (after
normalization and linear projection) feed the encoder. A
shared decoder, conditioned on a target-language token,
generates the translation.

largely restores and, on three datasets, surpasses
monolingual performance (PHOENIX14T +0.15,
GSL +0.74, ISL +0.10 vs. monolingual), while
LSA-T remains challenging (joint → FT: +0.46,
ending −0.24 below monolingual). These out-
comes mirror multilingual MT and SLT scaling
results—multilingual pre-training acts as a regular-
izer and data multiplier, but sensitive adaptation
is required to realize gains across languages and
domains (Johnson et al., 2017; Zhang et al., 2024).

Dataset complexity and representation effects.
The spread in BLEU-4 reflects intrinsic differences
across corpora. GSL’s curriculum-oriented con-
tent and constrained phrasing may partly explain
its very high scores, whereas LSA-T’s news-style,
open-domain content, signer variability, and po-
tential annotation/pose-estimation noise make it
considerably harder. Moreover, pose-based in-
puts—while enabling compact, deployable mod-
els—trade some fine-grained appearance cues (e.g.,
subtle handshapes, facial expression nuances) for
efficiency, which can widen the gap to video-based
SOTA on the most challenging settings (Yang,
2024). Still, the fact that PHOENIX14T and
GSL not only recover but slightly surpass monolin-
gual baselines after multilingual pre-training sug-
gests that shared motion/configuration patterns are
learnable with keypoints when paired with light
language-specific adaptation.

5 Conclusion

We presented a multi-target multilingual SLT sys-
tem that translates DGS→German, GSL→Greek,
LSA→Spanish, and ISL→English within a single,
fully shared Transformer, enabled by a unified data
layer and pose-based inputs. Naive joint training
alone is insufficient—performance drops on all four
datasets—but a simple two-stage schedule (multi-
lingual pre-training followed by brief language-
specific fine-tuning) reliably recovers and sur-
passes monolingual baselines on PHOENIX14T,
GSL, and ISL, while narrowing (though not clos-
ing) the gap on LSA-T. These findings echo multi-
lingual MT and recent SLT scaling results: cross-
lingual transfer is beneficial, but careful adaptation
is necessary to mitigate interference (Johnson et al.,
2017; Zhang et al., 2024).

Relative to prior multilingual SLT that com-
monly evaluates many-to-one into a single target
language, our study emphasizes a multi-target con-
figuration aligned with each dataset’s native spoken
language and demonstrates that a compact, pose-
based Signformer can serve as an effective back-
bone for this setting. While pose inputs may un-
derperform on unconstrained domains like LSA-T,
they enable lightweight, privacy-friendly models.
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