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Abstract

Sign Language Translation (SLT) is a crucial
technology for fostering communication ac-
cessibility for the Deaf and Hard-of-Hearing
(DHH) community. A dominant approach in
SLT involves a two-stage pipeline: first, tran-
scribing video to sign language glosses, and
then translating these glosses into natural text.
This second stage, gloss-to-text translation, is
a challenging, low-resource machine transla-
tion task due to data scarcity and significant
syntactic divergence. While prior work has of-
ten relied on training translation models from
scratch, we show that fine-tuning large, pre-
trained language models (PLMs) offers a more
effective and data-efficient paradigm. In this
work, we conduct a comprehensive bidirec-
tional evaluation of several PLMs (T5, Flan-
T5, mBART, and Llama) on this task. We use
a collection of popular SLT datasets (RWTH-
PHOENIX-14T, SIGNUM, and ASLG-PC12)
and evaluate performance using standard ma-
chine translation metrics. Our results show
that fine-tuned PLMs consistently and signifi-
cantly outperform Transformer models trained
from scratch, establishing new state-of-the-art
results. Crucially, our bidirectional analysis re-
veals a significant performance gap, with Text-
to-Gloss translation posing a greater challenge
than Gloss-to-Text. We conclude that lever-
aging the linguistic knowledge of pre-trained
models is a superior strategy for gloss transla-
tion and provides a more practical foundation
for building robust, real-world SLT systems.

1 Introduction

Automatic Sign Language Translation (SLT) is a
vital research field focused on bridging communi-
cation barriers for the millions of individuals in
the Deaf and Hard-of-Hearing (DHH) community
(Bragg et al., 2019). The development of robust
SLT systems has profound implications for social
inclusion, education, and access to essential ser-
vices, particularly in domains like telehealth where

the availability of human interpreters can be limited
(Pikoulis et al., 2022).

A dominant paradigm in SLT research decom-
poses the complex video-to-text translation prob-
lem into a more manageable two-stage pipeline
(Camgoz et al., 2018). First, a Sign Language
Recognition (SLR) module analyzes the input
video to generate a sequence of textual labels,
known as “glosses.” These glosses represent the
individual signs in their original signed order. Sec-
ond, a machine translation module translates this
sequence of glosses into a grammatically correct
natural language sentence. This paper focuses on
this critical second stage: the bidirectional trans-
lation between sign language glosses and natural
language text (Gloss ⇔ Text).

The task of translating sign glosses, however,
presents unique challenges for Neural Machine
Translation (NMT). Glosses are an intermediate
representation that simplifies the visual signal into
a text-like sequence, but they omit many linguistic
features and non-manual markers (e.g., facial ex-
pressions). While the lexicon of glosses often over-
laps significantly with the target natural language,
their syntax follows the grammatical rules of the
source sign language, which can be vastly differ-
ent. For example, American Sign Language (ASL)
has a distinct word order and grammatical struc-
ture from English (Sandler and Lillo-Martin, 2006).
This results in a translation task characterized by
high lexical overlap but significant syntactic diver-
gence. Compounding this challenge, the parallel
gloss-text corpora available for training are typi-
cally small, making this an extremely low-resource
NMT problem (Yin and Read, 2020).

Previous neural approaches have demonstrated
the viability of the Transformer architecture for this
task, but have primarily relied on training models
from scratch on these limited datasets (Yin and
Read, 2020). We hypothesize that this approach is
data-inefficient and that a more effective strategy is
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Figure 1: The two-stage Sign Language Translation
(SLT) pipeline. This work focuses on the second stage:
translating sign language gloss sequences into natural
language text and vice-versa. The example shows ASL
glosses being translated into an English sentence.

to leverage the vast linguistic knowledge encoded
in large, pre-trained language models (PLMs).

Recently, the focus has begun to shift to-
wards fine-tuning LLMs, with work such as
(Fayyazsanavi et al., 2024) achieving strong results
by developing specialized techniques like novel
loss functions and data augmentation for the uni-
directional Gloss-to-Text task. Our work comple-
ments these efforts by asking a different, founda-
tional question: how do various modern PLMs and
architectures perform across the full, bidirectional
translation pipeline? By fine-tuning these models,
which have already learned the rich grammatical
and semantic nuances of the target language from
massive text corpora, we can adapt them to the
specific task of gloss translation more effectively.

The main contributions of this work are as fol-
lows:

• We conduct the first large-scale, systematic
comparison of fine-tuning various modern
PLMs, including T5, Flan-T5, mBART, and
Llama, for the bidirectional gloss-to-text and
text-to-gloss translation tasks.

• We empirically demonstrate that our fine-
tuning approach significantly outperforms
the strong baseline of a Transformer trained
from scratch, establishing new state-of-the-
art results on the RWTH-PHOENIX-14T,
SIGNUM, and ASLG-PC12 benchmarks.

• We provide a comparative analysis of dif-
ferent model architectures (encoder-decoder
vs. decoder-only) and pre-training paradigms
(e.g., instruction-tuning) to identify the most
suitable approaches for this unique translation
task.

• We will release our fine-tuned models and
experimental code to the research community
to foster reproducibility and accelerate future
progress in SLT.

2 Related Work

Language Models are increasingly applied across
diverse domains, including label quality improve-
ment (Mahjourian and Nguyen, 2025), Sentiment
Analysis (Mohammadagha et al., 2025), secure
software development practices (Torkamani et al.,
2025), and mental health text analysis (Kermani
et al., 2025). They have also shown growing poten-
tial in advancing translation tasks such as SLT.

2.1 Sign Language Gloss-to-Text Translation

The translation of sign language glosses to natural
language text has been an active area of research
within SLT. Early approaches often relied on rule-
based systems or statistical machine translation
(SMT) methods. For instance, the widely-used
ASLG-PC12 dataset was itself generated using a
rule-based, part-of-speech-based grammar to con-
vert English text into ASL glosses (Othman and
Jemni, 2012). However, these methods often strug-
gle to capture the fluency and complexity of natural
language.

With the advent of deep learning, the focus
shifted to neural machine translation (NMT) mod-
els. An initial line of work applied Recurrent Neu-
ral Network (RNN) based architectures with atten-
tion to the task (Camgoz et al., 2018). A significant
step forward was made by (Yin and Read, 2020),
who demonstrated the effectiveness of the Trans-
former architecture (Vaswani et al., 2017) for this
task. Their work, which serves as a primary base-
line for our study, involved training Transformer
models from scratch on gloss-text corpora like
RWTH-PHOENIX-14T and ASLG-PC12. They
showed that this approach could achieve state-of-
the-art results, establishing a strong benchmark for
neural-based gloss-to-text translation.

The inherent low-resource nature of the problem
has also inspired other lines of research, such as
data augmentation. For example, (Moryossef et al.,
2021) proposed rule-based heuristics to generate
pseudo-parallel gloss-text pairs from monolingual
text to augment the limited training data. While
effective, our work explores a complementary di-
rection: instead of augmenting the data, we pro-
pose using more powerful models that are better
equipped to learn from sparse data.

Concurrent to our work, (Fayyazsanavi et al.,
2024) also explore fine-tuning LLMs for Gloss-
to-Text translation. Their primary contributions
are the development of tailored data augmenta-
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tion techniques (paraphrasing and back-translation)
and a novel Semantically Aware Label Smooth-
ing (SALS) loss function to handle gloss ambi-
guities. Their work demonstrates significant im-
provements on the PHOENIX-2014T dataset. Our
research differs in three key aspects: (1) Scope:
We conduct a bidirectional analysis, evaluating
both Gloss-to-Text (G2T) and Text-to-Gloss (T2G)
tasks, whereas their work focuses solely on G2T.
(2) Contribution Type: Our work provides a broad,
systematic comparison of multiple PLM families
and architectures to establish foundational bench-
marks, while their work focuses on developing
novel, task-specific techniques for a single model.
(3) Evaluation Breadth: We validate our findings
across three distinct datasets (RWTH-PHOENIX-
14T, SIGNUM, and ASLG-PC12) to ensure gen-
eralizability, whereas their experiments are con-
ducted on the PHOENIX-2014T dataset.

2.2 Pre-trained Language Models for NMT

The dominant paradigm in modern Natural Lan-
guage Processing (NLP) has shifted from training
task-specific models from scratch to a pre-train and
fine-tune approach (Devlin et al., 2019). Large-
scale language models like T5 (Raffel et al., 2020),
BART (Lewis et al., 2020), and the Llama family
(Aaron Grattafiori, 2024) are first pre-trained on
vast, web-scale corpora of unlabeled text. During
this phase, they learn rich, general-purpose repre-
sentations of syntax, semantics, and world knowl-
edge.

This pre-trained knowledge can then be trans-
ferred to downstream tasks via a second, much
shorter fine-tuning phase on a smaller, labeled
dataset. This paradigm has proven exceptionally
effective for low-resource NMT (Zoph et al., 2016).
Instead of learning the target language’s grammar
and semantics from a small parallel corpus, the
model only needs to learn the mapping between
the source and target representations. Our work is
the first to systematically apply and evaluate this
powerful paradigm across a diverse set of modern
PLMs for the unique challenges of bidirectional
sign language gloss translation.

3 Experimental Setup

We designed a comprehensive experimental setup
to rigorously evaluate the performance of fine-
tuned pre-trained language models (PLMs) against
a from-scratch baseline on bidirectional gloss-text

Gloss-Text
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Transformer
(Random
Weights)

Task-Specific
Model

(Limited
Knowledge)

Training

Result

(a) Training from Scratch
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tic Knowledge)

Gloss-Text
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Fine-Tuned Model
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Knowledge)
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Result

(b) Fine-Tuning (Our Approach)

Figure 2: Conceptual comparison of the two training
paradigms. (a) The baseline approach trains a Trans-
former from scratch using only the limited gloss-text
corpus. (b) Our approach leverages a large language
model pre-trained on vast text corpora and then fine-
tunes it on the gloss-text corpus.

translation. Our setup is standardized across all
models to ensure fair and reproducible compar-
isons. The complete code implementation and
benchmarks are made publicly available for repro-
ducibility: anonymized.

3.1 Task Definition
We address two primary translation tasks in this
work, treating both as sequence-to-sequence prob-
lems:

1. Gloss-to-Text (G2T): The model takes a se-
quence of sign language glosses as input (e.g.,
PRO-1 NEED MEDICINE PAIN) and must gen-
erate a grammatically correct sentence in the
target natural language (e.g., "I need medicine
for the pain.").

2. Text-to-Gloss (T2G): The model takes a nat-
ural language sentence as input and must gen-
erate the corresponding sequence of glosses,
reflecting the word order and lexical choices
of the target sign language.

3.2 Datasets
We conduct experiments on three publicly available
corpora, each with unique characteristics that test
different aspects of our models. A summary of
the datasets after standard train/dev/test splitting is
provided in Table 1.

Dataset Language Pair Domain Train/Dev/Test

PHOENIX DGS / German Weather 7,096 / 518 / 642
SIGNUM DGS / German Varied 603 / 177 / —
ASLG-PC12 ASL / English Synthetic 500k / 5k / 5k

Table 1: Overview of datasets. DGS stands for German
Sign Language; ASL for American Sign Language. The
SIGNUM test set is used for validation.
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• RWTH-PHOENIX-Weather 2014T
(Phoenix14T) (Camgoz et al., 2018) is a
widely-used benchmark for continuous sign
language research, consisting of German
weather forecasts and their correspond-
ing German Sign Language (DGS) gloss
transcriptions.

• SIGNUM (von Agris and Kraiss, 2010) is a
smaller DGS corpus with a more controlled
vocabulary, providing a different data condi-
tion. We use the original train-test split in our
evaluation.

• ASLG-PC12 (Othman and Jemni, 2012) is
a large-scale, synthetically generated corpus
of English sentences from Project Gutenberg
automatically converted into ASL glosses.
While synthetic, its size allows for testing
model scalability. We use a 500k-pair sub-
set for training.

3.3 Models and Implementation
We evaluate a from-scratch baseline against four
different PLMs.

• Transformer Baseline (65M params): For
comparison against pre-trained language mod-
els (PLMs), we implemented a custom Trans-
former architecture trained from scratch on
the sign language gloss translation tasks.

The model uses a 4-layer encoder and 4-layer
decoder, each with dmodel = 256 hidden units,
8 attention heads, and a feed-forward dimen-
sion of 1024. Positional encodings are added
to the token embeddings, and residual connec-
tions with dropout (0.2) are applied through-
out. To improve parameter efficiency, the out-
put projection layer shares weights with the
target embeddings.

• T5-base (220M params): A versatile
encoder-decoder PLM pre-trained on a text-
to-text objective (Raffel et al., 2020).

• Flan-T5-base (220M params): An
instruction-tuned version of T5, which
has been shown to improve zero-shot and
few-shot performance on unseen tasks.

• mBART 50 (610M params): A multilingual
sequence-to-sequence model pre-trained with
a denoising objective, which may be partic-
ularly suited to handling the ungrammatical
nature of glosses (Lewis et al., 2020).

• Llama 3 8B: A powerful, modern, decoder-
only LLM used to assess the performance
of this architectural class (Aaron Grattafiori,
2024).

All models were trained using the HuggingFace
Transformers library . For fine-tuning the PLMs,
we used the AdamW optimizer with a learning rate
of 3× 10−4 and a batch size of 32. We employed
a linear learning rate scheduler with 100 warmup
steps and trained for a maximum of 10 epochs
with early stopping based on validation loss. For
encoder-decoder models, input sequences were pre-
fixed with a task description, e.g., “translate Gloss
to English: [GLOSS SEQUENCE]”.

3.4 Evaluation Metrics

To provide a comprehensive assessment of transla-
tion quality, we use a suite of standard automatic
metrics:

• BLEU (Papineni et al., 2002): Measures n-
gram precision, a standard metric for machine
translation quality.

• ROUGE-L (Lin, 2004): Measures the
longest common subsequence, capturing
recall-oriented aspects of the translation.

• METEOR (Banerjee and Lavie, 2005): An
alignment-based metric that considers syn-
onymy and stemming for a more semantically-
aware evaluation.

• Word Error Rate (WER): Measures the
number of substitutions, deletions, and inser-
tions required to transform the hypothesis into
the reference. It is particularly useful for the
T2G task where output structure is more rigid.

All scores are computed using the SacreBLEU li-
brary (Post, 2018) to ensure consistent and repro-
ducible results. Each experiment was run 10 times
with different random initializations.

4 Results and Analysis

We present the results of our experiments on both
the Gloss-to-Text (G2T) and Text-to-Gloss (T2G)
translation tasks. Our analysis focuses on com-
paring the performance of fine-tuned pre-trained
models against the from-scratch Transformer base-
line.

80



Dataset Model BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑ METEOR ↑ WER ↓

RWTH-PHOENIX-14T

Transformer (Baseline) 34.01 23.71 17.24 13.06 34.75 29.51 81.44
T5-base 48.71 37.16 30.13 22.73 35.04 31.32 34.37
Flan-T5-base 45.94 32.68 25.29 19.03 33.33 30.06 36.68
mBART 58.16 45.86 36.52 25.58 46.30 42.26 26.56
Llama 8B 63.56 53.45 43.78 29.92 53.33 49.14 21.32

SIGNUM

Transformer (Baseline) 59.60 47.26 39.76 34.24 61.22 53.09 46.45
T5-base 71.21 66.09 60.70 52.87 86.34 71.64 22.09
Flan-T5-base 68.12 64.84 59.45 50.72 85.95 73.83 18.45
mBART 82.81 77.07 72.38 67.60 84.80 79.68 17.61
Llama 8B 80.56 75.89 70.35 65.78 82.24 78.92 18.23

ASLG-PC12

Transformer (Baseline) 79.28 73.13 67.75 62.81 89.40 80.60 23.41
T5-base 91.02 81.90 74.82 68.69 89.17 85.63 20.92
Flan-T5-base 86.38 74.11 64.91 65.40 84.76 82.64 26.81
mBART 94.55 90.27 86.08 79.58 92.99 88.03 19.31
Llama 8B 96.06 91.55 87.06 83.10 94.12 90.24 17.83

Table 2: Gloss-to-Text (G2T) translation results on RWTH-PHOENIX-14T, SIGNUM, and ASLG-PC12.

Dataset Model BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑ METEOR ↑ WER ↓

RWTH-PHOENIX-14T

Transformer (Baseline) 33.47 19.06 11.26 6.98 36.72 25.21 82.46
T5 60.30 27.19 15.17 8.49 49.18 40.85 66.90
Flan-T5 47.50 25.60 15.00 10.00 45.20 38.50 69.30
mBART 50.10 30.45 19.20 12.10 44.32 36.51 64.10
Llama 58.43 38.32 25.54 16.81 51.25 44.63 61.45

SIGNUM

Transformer (Baseline) 61.73 49.65 43.26 37.51 64.50 55.31 43.93
T5 72.15 56.82 43.64 34.66 68.50 58.90 38.84
Flan-T5 69.23 54.32 41.50 32.44 65.83 56.22 41.21
mBART 75.42 49.54 37.07 25.43 70.20 61.30 37.83
Llama 62.53 47.61 35.43 29.74 68.63 56.25 45.72

ASLG-PC12

Transformer (Baseline) 82.21 75.47 68.12 64.12 89.77 81.93 23.10
T5-base 64.20 44.76 31.34 21.73 76.21 60.66 42.13
Flan-T5-base 43.41 30.87 23.47 18.51 60.58 52.55 55.68
mBART 73.76 53.41 38.49 27.68 80.65 67.24 35.80
Llama 85.64 76.78 70.62 66.33 89.91 83.85 22.37

Table 3: Text-to-Gloss (T2G) translation results on RWTH-PHOENIX-14T, SIGNUM, and ASLG-PC12.

4.1 Gloss-to-Text Performance

Table 2 summarizes the performance of all models
on the G2T task across the datasets. All scores are
averaged over 10 runs. Best scores per metric are
in bold. The results provide strong evidence for
our primary hypothesis.

The results of the gloss-to-text experiments
across RWTH-PHOENIX-14T, SIGNUM, and
ASLG-PC12 shown in Table 2 demonstrate con-
sistent improvements of pre-trained models over
the baseline Transformer trained from scratch. On
PHOENIX-14T, all PLMs achieve substantial gains
in BLEU-4, with the model mBART reaching
25.58 compared to 13.06 for the baseline. The
larger Llama 8B extends this advantage further
with 29.92 BLEU-4, underscoring the benefit of
large-scale pre-training even in low-resource condi-
tions. On SIGNUM, mBART attains 67.60 BLEU-
4, while Llama 8B maintains competitive results.
For ASLG-PC12, where the dataset is larger and
synthetic, Llama 8B achieves the highest score with
83.10 BLEU-4, indicating that decoder-only mod-
els are able to fully exploit large-scale parallel data.

Overall, the results confirm that fine-tuning PLMs
yields not only higher accuracy but also more flu-
ent and grammatically complete translations across
diverse data conditions.

4.2 Text-to-Gloss Performance

For the reverse task of Text-to-Gloss (T2G), we
evaluate the models’ ability to generate syntacti-
cally correct gloss sequences. The results are pre-
sented in Table 3.

Compared to gloss-to-text, BLEU scores are gen-
erally lower and WER is higher, reflecting the struc-
tural difficulty of generating gloss sequences that
require word deletion, reordering, and strict ad-
herence to gloss grammar. On PHOENIX-14T,
the best-performing model achieves only 16.81
BLEU-4, showing the sharp contrast with gloss-
to-text performance. On SIGNUM, pre-trained
models again outperform the baseline, with T5 and
mBART reaching mid-30 BLEU-4 scores, but still
below their gloss-to-text counterparts. On ASLG-
PC12, Llama achieves the strongest performance
with 66.33 BLEU-4, benefiting from the scale of
training data, though this remains substantially
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Figure 3: G2T multi-metric comparison across datasets (higher is better; WER inverted).

Figure 4: T2G multi-metric comparison across datasets (higher is better; WER inverted).

Figure 5: Bidirectional Performance Asymmetry
(BLEU-4) on the ASLG-PC12 Dataset.

lower than its gloss-to-text result. These findings
confirm the expected asymmetry between the two
directions and indicate that text-to-gloss transla-
tion is likely to remain a bottleneck in practical
bidirectional systems unless further task-specific
modeling innovations are introduced. As shown
in Figure 5, we observe a clear bidirectional per-
formance asymmetry on the ASLG-PC12 dataset.
While G2T achieves higher BLEU, ROUGE-L, and
METEOR scores, the corresponding T2G direction
results in substantially lower scores across all met-
rics, highlighting the inherent difficulty of the re-
verse translation task. A notable exception arises in

T2G. As shown in Table3, the from-scratch Trans-
former achieves the strongest result on SIGNUM
and is second only to Llama 8B on ASLG-PC12,
outperforming smaller PLMs. This pattern sug-
gests that pre-training for fluent text can conflict
with generating non-fluent, rule-like gloss targets.

4.3 Qualitative Analysis

To provide a more intuitive understanding of the
performance gap, Table 4 shows example transla-
tions from our Flan-T5-base versus the baseline
Transformer.

The examples clearly illustrate the advantage
of pre-training. The baseline model often pro-
duces grammatically incomplete or "telegraphic"
text, closely mirroring the structure of the input
glosses. In contrast, the fine-tuned Flan-T5 model
successfully infers the correct grammatical struc-
ture, inserting necessary function words (e.g., "will
be", "there is"), handling verb tenses, and produc-
ing overall more natural and fluent sentences. This
qualitative difference highlights that pre-trained
models do not just learn a word-for-word mapping
but leverage their internal linguistic models to per-
form true translation.
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Source Text: we are talking about children , the most precious resource that we should protect.

Reference Gloss: X-WE BE TALK ABOUT CHILD , MOST DESC-PRECIOUS RESOURCE THAT X-WE
SHOULD PROTECT.
Predicted Gloss: X-WE BE TALK ABOUT CHILD , MOST FINISH RESOURCE THAT X-WE SHOULD
PROTECT.

Source Gloss: IX-1P NOT-YET SEE MOVIE BUT FRIEND RECOMMEND

Reference: I haven’t seen the movie yet, but my friend recommended it.
Baseline Output: I not see movie but friend say good.
Our Output (Flan-T5): I have not seen the movie yet, but my friend recommended it.

Table 4: Qualitative comparison of example translations from the G2T and T2G tasks. The fine-tuned model
generates more fluent and grammatically complete sentences.

5 Discussion

Our experimental results provide compelling evi-
dence that fine-tuning pre-trained language mod-
els (PLMs) is a superior strategy to training from
scratch for bidirectional gloss translation. Across
datasets, PLMs strongly outperform the baseline
on G2T, and often on T2G as well—notably Llama
8B on ASLG-PC12—though some PLMs under-
perform the baseline on ASLG-PC12 T2G. This is
demonstrated by concordant gains across BLEU,
ROUGE-L, and METEOR metrics, alongside cor-
responding reductions in WER, as detailed in Ta-
bles 2 and 3.

5.1 The Decisive Advantage of Pre-trained
Knowledge

A primary finding is the sheer magnitude of the im-
provement attributable to pre-training. On the chal-
lenging PHOENIX-14T dataset (G2T task), even
the T5-base model achieves a BLEU-4 score of
22.73, a relative gain of roughly 74% over the 13.06
baseline. Larger or more sophisticated PLMs am-
plify this advantage, with Llama 8B reaching an
impressive 29.92 BLEU-4.

This performance leap stems from the effective
transfer of linguistic knowledge. As the qualitative
examples in Table 4 illustrate, PLMs move beyond
simple surface-level pattern matching. Compared
to the telegraphic and grammatically incomplete
outputs of the baseline, fine-tuned models success-
fully infer correct grammatical structure, inserting
necessary function words, handling verb tenses,
and producing far more natural and fluent sentences.
This demonstrates that the models leverage their
vast pre-trained knowledge of language, needing
only to learn the mapping from glosses during fine-
tuning.

5.2 The Bidirectional Bottleneck: Asymmetry
in Translation

A critical insight from our bidirectional analysis is
the significant asymmetry between the two trans-
lation directions. As shown in Figure 5 and in
the detailed results in Table 2 and Table 3, we ob-
serve a stark performance asymmetry between the
G2T and T2G directions across all models. Text-
to-Gloss (T2G) translation is substantially more
challenging than Gloss-to-Text (G2T). Across most
models and datasets, we observe substantial BLEU
reductions (often ∼30–60%) when reversing direc-
tion.

This difficulty arises because T2G requires the
model to generate a syntactically rigid and often
non-fluent sequence, which involves precise word
deletion and reordering to match sign language
grammar. This is an unnatural task for PLMs,
whose pre-training objective is biased towards gen-
erating fluent, natural language. For instance, while
mBART achieves a strong 25.58 BLEU-4 on the G2T
task for PHOENIX-14T, its performance drops to
just 12.10 for T2G. These findings confirm that in
any practical bidirectional system, the T2G com-
ponent is likely to be the primary performance
bottleneck if not explicitly optimized with task-
specific architectures or objectives. On T2G, a con-
sistent counterexample appears: the from-scratch
Transformer surpasses smaller pre-trained models
on ASLG-PC12 dataset. This pattern supports a
negative-transfer explanation, in which fluency-
oriented pre-training conflicts with generating non-
fluent, rule-like gloss sequences, while the base-
line’s neutral inductive bias learns the rigid map-
ping directly. Only very large models appear to
mitigate this interference through additional capac-
ity.
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5.3 Architectural and Data Scale
Considerations

Our results offer insights into the interplay be-
tween model architecture, pre-training objectives,
and data conditions. Encoder-decoder models (T5,
Flan-T5, mBART) prove highly competitive, es-
pecially on the smaller, real-world datasets like
PHOENIX-14T and SIGNUM. Notably, the mul-
tilingual denoising pre-training of mBART appears
to provide an advantageous inductive bias for the
gloss-to-text mapping.

However, the decoder-only Llama 8B model ex-
cels where the data scale is largest, achieving the
highest scores on the synthetic ASLG-PC12 dataset
(83.10 BLEU-4 for G2T). This pattern suggests that
while encoder-decoder architectures may be more
data-efficient for learning the structured mapping
from gloss to text, powerful decoder-only models
can surpass them when sufficient parallel data is
available to specialize to the task. Furthermore,
the mixed results of instruction-tuning (Flan-T5
vs. T5) indicate that generic instruction-following
priors do not always translate into downstream ad-
vantages for this highly structured translation task.

Finally, dataset characteristics clearly shape out-
comes. The high scores on SIGNUM (up to 67.60
BLEU-4 G2T) highlight the effectiveness of PLMs
on domain-specific data with controlled vocabular-
ies. In contrast, PHOENIX-14T remains the most
realistic and challenging benchmark, where our im-
provements represent substantial progress towards
deployable, real-world systems.

5.4 Limitations and Future Work

Our evaluation relies primarily on automatic met-
rics and gloss-based representations, which do not
capture non-manual markers and may not fully re-
flect end-user utility. Human evaluation, including
DHH raters, should complement automatic metrics.
From a modeling standpoint, Llama 8B raises com-
pute and memory considerations; future work will
investigate parameter-efficient tuning and knowl-
edge distillation. Finally, closing the bidirectional
gap likely requires objectives and architectures tai-
lored for T2G (e.g., stronger constraints or struc-
tured decoding) and, longer term, integration with
end-to-end video models that capture non-manual
features.

6 Conclusion

We presented a comprehensive, controlled evalu-
ation of pre-trained language models for bidirec-
tional gloss translation across three distinct datasets.
Our findings conclusively show that fine-tuning
PLMs consistently and substantially outperforms
training Transformers from scratch, with relative
BLEU-4 gains on the G2T task ranging from
roughly 74% (e.g., 13.06 → 22.73 on PHOENIX-
14T with T5-base) to about 130% (13.06 → 29.92
with Llama 8B).

Our G2T results establish new state-of-the-art
levels on all three benchmarks within our exper-
imental setting, PHOENIX-14T (29.92 BLEU-
4), SIGNUM (67.60), and ASLG-PC12 (83.10),
demonstrating that transfer learning is a decisive
enabler for this low-resource translation problem.
The architectural analysis indicates that while
encoder-decoder PLMs are highly competitive on
smaller datasets, decoder-only LLMs can excel as
data scale increases.

At the same time, our bidirectional study un-
derscores a persistent asymmetry: Text-to-Gloss
translation remains notably harder than Gloss-to-
Text, with ∼30–60% BLEU reductions and ele-
vated WER across datasets. Addressing this gap is
a key avenue for future research, potentially requir-
ing specialized objectives or constrained decoding.

Practically, these findings lower the barrier to
building effective gloss translation systems. Strong
models can be obtained via fine-tuning rather than
costly training from scratch, making it feasible to
extend SLT technology to additional sign languages
and domains. We will release our code and fine-
tuned checkpoints to support reproducibility and
accelerate progress toward inclusive, deployable
communication tools for the DHH community.
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