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Abstract

Automatic Sign Language Recognition (ASLR)
has emerged as a vital field for bridging the gap
between deaf and hearing communities. How-
ever, the problem of sign-to-sign retrieval or
detecting a specific sign within a sequence of
continuous signs remains largely unexplored.
We define this novel task as Sign Language
Spotting. In this paper, we present a first step to-
ward sign language retrieval by addressing the
challenge of detecting the presence or absence
of a query sign video within a sentence-level
gloss or sign video. Unlike conventional ap-
proaches that rely on intermediate gloss recog-
nition or text-based matching, we propose an
end-to-end model that directly operates on pose
keypoints extracted from sign videos. Our ar-
chitecture employs an encoder-only backbone
with a binary classification head to determine
whether the query sign appears within the target
sequence. By focusing on pose representations
instead of raw RGB frames, our method sig-
nificantly reduces computational cost and mit-
igates visual noise. We evaluate our approach
on the Word Presence Prediction dataset from
the WSLP 2025 shared task, achieving 61.88%
accuracy and 60.00% F1-score. These results
demonstrate the effectiveness of our pose-based
framework for Sign Language Spotting, estab-
lishing a strong foundation for future research
in automatic sign language retrieval and verifi-
cation. Code is available at this repository.

1 Introduction

Sign language, which globally consists of more
than 300 different sign languages (United Nations,
2023), was developed to address the need for ef-
fective communication for the deaf and hearing-
impaired population (Tunga et al., 2021). Each
sign language comprises a complex combination of
hand gestures, facial expressions, and body move-
ments that collectively encode the semantics and
grammatical structures of spoken languages (Tang
et al., 2025; Rastgoo et al., 2024). However, there

is still a challenge and a communication gap be-
tween the deaf and hearing community (Das et al.,
2024), (Venugopalan and Reghunadhan, 2021).
Previous works have focused on sign language
translation(SLT) where researchers have attempted
to translate sign language either as RGB or poses
to either text(that is word word-level semantically
meaningful) (Yin and Read, 2020; Kan et al., 2022)
or glosses (Zhou et al., 2023; Low, 2025).

Sign language recognition(SLR) could be iso-
lated and continuous SLR. Isolated sign language
(ISLR) (Kumari and Anand, 2024; Baihan et al.,
2024; Ren et al., 2025) translation involves word-
level focuses on recognizing individual signs in
isolation, treating each sign as an independent clas-
sification problem. In contrast, Continuous Sign
Language Recognition (CSLR) (Wang et al., 2025;
Jian He et al., 2025; Zheng et al., 2023; Low, 2025)
involves sentence-level SL, which addresses a more
challenging task of translating continuous sign-
ing sequences into semantically correct sentences
or gloss annotations, requiring models to handle
temporal dependencies, co-articulation effects, and
variable-length sequences.

While significant progress has been made in
recognition and translation, the ability to search,
retrieve, or verify specific signs within continu-
ous signing videos remains underexplored. This
capability- known as sign spotting - is critical for
applications such as SL retrieval, dictionary lookup,
and educational tools. This requires robust sign
spotting capabilities, that is, the ability to locate
and identify specific signs within continuous sign-
ing videos. Traditional approaches to this problem
have relied on text-based intermediate representa-
tions.

For word spotting for CLSR, researchers have at-
tempted to spot words using Large Language Mod-
els (LLMs). (Walsh et al., 2023) proposed using
LLMs such as BERT and Word2Vec to leverage
alignment to improve isolated signs from continu-
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ous signs. Their approach solves text gloss map-
ping using LLMs; their model provides an effective
method, which was evaluated on MeieneDGS (Kon-
rad et al., 2020) and BOBSL(Albanie et al., 2021).

Recent work on sign spotting addresses the chal-
lenge of SLT by decomposing it into modular
stages. Spotter+GPT (Jian He et al., 2025) pro-
poses an approach to eliminate the need for SLT-
specific end-to-end training, significantly reduc-
ing computational costs. Their approach extracts
I3D motion and ResNeXt-101 handshape features,
matches them to a sign dictionary using DTW and
cosine similarity, and passes spotted signs, which
are the top-k glosses, to GPT for sentence gener-
ation. While Spotter+GPT demonstrates the ef-
fectiveness of modular SLT, our work addresses a
fundamentally different task: word presence verifi-
cation.

In this paper, we introduce a novel end-to-end
video-to-video sign spotting framework that elimi-
nates the need for textual or gloss-based interme-
diates. Given a query sign video and a sentence-
level sign video, our model determines whether the
query sign is present within the sentence. We adopt
an encoder-only architecture with a binary classifi-
cation head, operating directly on pose keypoints
rather than RGB frames. This design reduces com-
putational complexity and suppresses visual noise
while maintaining discriminative spatial-temporal
information. We evaluate our approach on the
Word Presence Prediction dataset from the WSLP
2025 shared task1. To the best of our knowledge,
this work represents the first study to address sign
language spotting purely through video-to-video
matching, establishing a foundation for future re-
search in automatic sign language retrieval, verifi-
cation, and search.

2 Methodology

We propose a video-to-video sign spotting archi-
tecture that jointly models visual–semantic align-
ment and binary word presence prediction. The
framework learns robust cross-modal representa-
tions that generalize across signers and sentence
contexts. Our approach consists of three main com-
ponents: pose extraction, feature encoding, and
presence prediction, as illustrated in Figure 1.

1https://exploration-lab.github.io/WSLP/task/

2.1 Pose Extraction

We use MediaPipe (Lugaresi et al., 2019) to con-
vert RGB video sequences to pose-based represen-
tations, allowing for a more generalized, efficient,
and resilient architecture. For each frame, Medi-
aPipe estimates the pose keypoints of the signer
in the video. Following (Johnny et al., 2025), we
extract holistic pose features containing 42 hand
keypoints (21 per hand), 8 body keypoints, and 19
facial landmarks. As suggested by (Johnny et al.,
2025), we used only the hand and body features in
this study.

2.2 Problem formulation

Given a sentence sequence Xs ∈ RTs×F and a
query sequence Xq ∈ RTq×F , where Ts and Tq

denote the temporal lengths of the sentence and
query sequences respectively, and F represents the
dimensionality of the pose features, the objective is
to determine whether the query sign appears within
the sentence.

Let f(Xs,Xq; θ) be a parameterized model,
where θ denotes the set of learnable parame-
ters. The model outputs a probability score ŷ =
f(Xs,Xq; θ), representing the likelihood that the
query sign occurs in the given sentence. The binary
prediction is made as: The training objective is to
optimize the model parameters θ by minimizing a
loss function L(θ) over the training data:

θ∗ = argmin
θ

L(θ).

2.3 Pose CNN Encoder

Each pose frame is represented as a vector xt ∈
R100, corresponding to 50 keypoints with 2D coor-
dinates (x, y). To preserve the spatial topology of
the human skeleton, each vector is reshaped into a
2D array of size R50×2, considering only the hand
and body keypoints as described in Section 2.1.

A 2D CNN is applied independently to each
frame to extract local spatial dependencies among
keypoints. Specifically, each pose frame passes
through three Conv2D blocks, each consisting of
a convolutional layer, Batch Normalization, and
ReLU activation. These blocks progressively cap-
ture hierarchical geometric patterns while maintain-
ing spatial coherence across keypoints.

Following the convolutional layers, an adaptive
average pooling layer reduces the spatial dimen-
sions to a fixed-size representation, which is then
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Figure 1: Architecture overview. Pose sequences are encoded using 2D CNNs and then processed by a Transformer
encoder, which produces visual tokens. The [CLS] token is max-pooled to predict query presence using binary
cross-entropy loss (LBCE).

linearly projected to a feature vector of dimension
d = 128.

This process yields a sequence of per-frame em-
beddings:

H = {ht}Tt=1 ∈ RT×128, (1)

where T denotes the total frames in the video. Each
embedding ht encodes the spatial structure of the
signer’s body and hand poses at time step t. The
resulting feature sequence is passed to the trans-
former encoder for temporal modeling.

2.4 Visual Transformer Encoder model

To enable temporal dependencies and cross-
sequence interactions between the query and sen-
tence embeddings, we adopt a BERT-style se-
quence modeling approach. Specifically, a [CLS]
token is prepended for global sequence-level clas-
sification, while a [SEP] token is inserted to ex-
plicitly separate the query pose tokens from the
candidate pose tokens. This design enables the
model to attend across the boundary between the
two sequences, allowing direct interaction between
corresponding temporal segments.

Learnable positional encodings and token-type
embeddings are incorporated to preserve temporal
order and to distinguish between query and can-
didate sequences. The transformer encoder then
processes the concatenated sequence using multi-
head self-attention, where the attention scores be-
tween query and candidate pose tokens serve
as a key mechanism for measuring their semantic
and spatial correspondence. These cross-sequence
attention patterns help the model identify whether
visual and structural similarities exist between the

query sign and any segment of the candidate video,
thereby assisting the sign spotting task.

2.4.1 Classification Loss
Since the expected outcome is binary(present or ab-
sent), our model employs the binary cross-entropy
loss(BCE) to penalize incorrect and overconfident
predictions. We extract the [CLS] token representa-
tion via max pooling and project it to an MLP clas-
sifier to generate the corresponding logits ŷ ∈ R.
The final prediction is obtained by applying the
sigmoid(σ) to the logits. The binary cross-entropy
loss is computed as:

LBCE = − 1

B

B∑

i=1

[yi log pi + (1− yi) log(1− pi)]

(2)
where p = σ(ŷi)), σ is the sigmoid function ,

yi ∈ {0, 1} is the ground truth label, and B is the
batch size.

3 Experiments

3.1 Dataset and Evaluation Metrics

For this experiment, we evaluate our model with
Word Presence Dataset2, an ASL sign spotting
dataset designed to determine if a query sign ap-
pears within a sentence sequence.

The dataset comprises 25,432 sentence-query
pairs constructed from 7,857 unique sentence se-
quences and 1,410 unique query sequences. The
dataset is balanced, with equal distribution of pos-
itive (query present) and negative (query absent)
samples. We employ an 80:20 train-validation split.

2https://huggingface.co/datasets/
Exploration-Lab/WSLP-AACL-2025
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Table 1: Performance comparison on Word Presence
Prediction (Test Set).

Method Acc. F1 Prec. Rec.

Ours (1D CNN) 60.95 59.62 62.70 61.01
Ours (2D CNN) 61.66 58.42 67.16 61.74

The test set contains 1,266 unique sentence se-
quences and 555 unique query sequences, ensuring
minimal overlap with the training distribution.

During Evaluation, we use standard classifica-
tion evaluation metrics, i.e., Accuracy, Precision,
Recall, and F1-score.

4 Implementation Details

We train the model end-to-end with an initial learn-
ing rate of 0.0005 since commonly used values
(e.g., 0.001 or 0.01) resulted in suboptimal conver-
gence, using the AdamW optimizer and a temper-
ature of 0.07 for contrastive losses. A dropout of
0.02 was applied to prevent overfitting. Training is
carried out for 50 epochs with a patience of 5 if no
future improvements. This was done using a single
NVIDIA L40S GPU.

To ensure our model focuses on important fea-
tures, we skipped all early and late frames with
no finger movement. During training, we applied
different data augmentation techniques such as se-
quence masking, scaling, jittering, and Gaussian
noise to ensure robustness.

4.1 Evaluation on Test Set

Table 1 presents our results on the test set. Given
that this is a novel task introduced in the WSLP
2025 shared task, with no prior work to the best
of our knowledge, hence no baseline to compare
against. Our 2D-CNN approach achieves 61.66%
accuracy, outperforming linear(1D-CNN) projec-
tion. Notably, 2D-CNN significantly improves pre-
cision, indicating fewer false positives, though F1
slightly decreases due to the precision-recall trade-
off.

4.2 Ablation study and analysis

To evaluate the robustness of our model, we con-
duct some ablations using different training choices
with a concentration on Accuracy and F1 Scores.

4.2.1 Effect of different loss function
As shown in Table 2 demonstrate that using only
contrastive loss underperforms when compared to

Table 2: Ablation study on validation set(val set).

Configuration Acc. F1 Prec. Rec.

Loss Functions
BCE only (ours) 63.04 70.36 59.19 86.71
Contrast only 57.20 69.27 54.39 95.38
BCE + Contrast 61.39 64.13 60.49 68.25

Pose Encoding
1D Conv 53.65 67.58 52.29 95.53
2D Conv (ours) 61.39 64.13 60.49 68.25

using BCE, indicating that contrastive supervision
is not satisfactory enough for this task. While com-
bining both losses with contrastive weight λ = 0.5
achieves 61.39% accuracy, the result is still below
BCE-only performance. The contrastive objective
may interfere with classification if the weight is
not carefully tuned; using either higher or lower
weights results in lower performance, and the em-
bedding space learned through mean pooling may
be less discriminative than the [CLS] token repre-
sentation for this verification task.

4.2.2 Effect of Pose Encoding

Table 2 demonstrates that 2D-CNN outperforms
other methods in encoding postures. 1D-CNN cap-
tures temporal patterns but treats keypoints as a se-
quence without using their geometric correlations.
In contrast, 2D-CNN preserves spatial structure by
reshaping each frame as an n× 2 grid, where n is
the number of keypoints, allowing the network to
learn spatial patterns such as hand configurations
and body postures.

5 Conclusion

In the work, we present the first video-to-video
word presence verification in sign language, where
both the sentence and query are video sequences.
Our approach proposes using pose sequence in,
combining 2D CNN encoding with a Transformer
temporal model, achieving 61.66% accuracy on the
word presence dataset.

To the best of our knowledge at the time of this
research, no prior work has been done in video-to-
video sentence-to-query word spotting. Ablation
studies and analysis show that 2D spatial encoding
of poses and BCE loss are critical design choices.
Our work establishes a strong baseline for this task
and demonstrates the effectiveness of pose-based
representations for SL understanding.
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