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Abstract

Existing Machine Translation (MT) research of-
ten suggests a single, fixed set of hyperparame-
ters for word segmentation models, symmetric
Byte Pair Encoding (BPE), which applies the
same number of merge operations (NMO) to
train tokenizers for both source and target lan-
guages. However, we demonstrate that this uni-
form approach doesn’t guarantee optimal MT
performance across different language pairs
and data sizes. This work investigates BPE seg-
mentation recipes across various data volumes
and language pairs to evaluate MT system per-
formance. We find that utilizing asymmetric
BPE—where the source and target languages
have different NMOs—significantly improves
results over the symmetric approach, espe-
cially in low-resource settings (50K, 100K, and
500K sentence pairs). Specifically, asymmet-
ric BPE yield statistically significant (p<0.05)
average gains of 5.32, 4.46, and 0.7 CHRF++
on English-Hindi in low-resource setups (50K,
100K, and 500K sentence pairs, respectively).
We validated this trend across six additional
language pairs (English↔Telugu, Shona, Nor-
wegian, Kyrgyz, Hausa, and Inuktitut), ob-
serving statistically significant improvement
in 10 out of 12 systems compared to symmetric
BPE. Our findings indicate a high NMO for the
source (4K to 32K) and a low NMO for the
target (0.5K to 2K) provides optimal results,
particularly benefiting low-resource MT.

1 Introduction

Efforts have been made to include low-resource lan-
guage pairs in Neural Machine Translation (NMT),
e.g. Workshop on Technologies for MT of Low Re-
source Languages. Often, successful past method-
ologies on high-resource language pairs, like hy-
perparameters for preprocessing, are used without
considering their suitability for specific language
pairs. For example, if we take a preprocessing step,
such as word segmentation, a key preprocessing

step, divides words into subwords to enhance learn-
ing and manage vocabulary size, handling rare and
unknown words to boost MT performance. Notable
Techniques include BPE (Sennrich et al., 2016),
word piece (Devlin et al., 2019), sentence piece
(Kudo and Richardson, 2018), and morfessor (Smit
et al., 2014). BPE compresses data by merging
frequent character pairs into symbols (Gage, 1994),
with the number of merge operations (NMO) as a
key parameter. A lower NMO (e.g., 500, Table 1)
reduces vocabulary size with more segmentation,
while a higher NMO (e.g., 32K) results in larger
vocabularies and less segmentation. Typically, the
same NMO is applied to both source and target
languages. Recent work have shown that examin-
ing BPE parameters in low-resource MT is vital
(Ding et al., 2019; Abid, 2020), but uniform NMOs
for source and target (symmetrical BPE) (Huck
et al., 2017; Ortega et al., 2020; Lankford et al.,
2021; Domingo et al., 2023; Lee et al., 2024) pre-
vail, with little exploration of asymmetrical BPE in
MT. Earlier work Ngo Ho and Yvon (2021) looked
at asymmetric BPE for language alignment, not
for MT. Our work is a result of a multi-year ex-
ploration of the impact of asymmetrical subword
segmentation in bilingual MT systems.

While we acknowledge the rise of multilin-
gual and decoder-only models, our study focuses
on the effect of asymmetric BPE in bilingual
setups, particularly in low-resource conditions
where pretrained tokenizers or joint vocabular-
ies may be unavailable. Bilingual systems re-
main a research focus, with studies in Cantonese-
Mandarin (Liu, 2022), English-Luganda (Kimera
et al., 2025), Wolof-French (Dione et al., 2022),
Bavarian-German (Her and Kruschwitz, 2024), and
English-Manipuri (Singh et al., 2023; Singh and
Singh, 2022) using bilingual data and transformer-
based architectures with customized subword seg-
mentation like BPE or morphology-aware tokeniza-
tion. These efforts, along with Li et al. (2024),
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Sentence bosusco , 54 , runs an adventure tourism bureau .

500 NMO
bo@@ su@@ sc@@ o , 5@@ 4 , r@@ un@@ s an
ad@@ v@@ en@@ ture t@@ our@@ is@@ m bu@@ re@@ a@@ u .

32K NMO bo@@ su@@ sco , 54 , runs an adventure tourism bureau .

Table 1: Effect of NMO variation: 500 NMO yields highly segmented tokens, while 32K retains most vocabulary

cover underrepresented languages and diverse writ-
ing systems, proving the continued relevance of
bilingual systems. Our work investigates asymmet-
rical BPE’s impact on bilingual MT systems, utiliz-
ing different merge operation counts for source and
target languages across varied dataset sizes and re-
sources. Extending these results to multilingual or
decoder-only models is beyond this work’s scope
but represents an interesting future direction.

We define the “BPE configuration" as m1_m2,
with m1 and m2 representing the merge operations
for source and target languages. Our study on sym-
metric and asymmetric BPE configurations for En-
glish–Hindi under varying data conditions shows
asymmetric configurations performing best, espe-
cially in low-resource context. We extend these in-
sights to six additional language pairs—English ↔
Telugu, Shona, Norwegian, Kyrgyz, Hausa, Inuk-
titut—selected for diverse language families and
morphological typologies. Our findings consis-
tently demonstrate that, in low-resource envi-
ronments, the most effective BPE configuration
for the majority of language translation direc-
tions tends to be asymmetric. Specifically, setups
with 4K to 32K NMO for the source and 500 to
2K for the target outperform symmetric BPE
configurations.

Section 2 summarizes previous efforts to use
symmetric BPE merge operations to improve MT
performance. Section 3 explains our motivation for
finding optimal BPE configurations by exploring
asymmetric BPE. Section 4 outlines our experi-
mental setup and presents the performance of the
English-Hindi MT system on FLORES and Do-
main testsets. Section 5 evaluates the setup for
other language pairs in low resource context, con-
cluding our observations in Section 6.

2 Related Work - Symmetrical BPE

Most bilingual MT systems—especially for low-
resource pairs—use the same number of merge
operations (NMO) for source and target languages.
Studies show that smaller vocabularies (0–4K
NMO) outperform the common 32K setting by up

to 4 BLEU points in low-resource scenarios (Ding
et al., 2019); similar patterns are reported for En-
glish–Egyptian, English–Levantine (Abid, 2020),
and English–Irish (Lankford et al., 2021).

Other work adapts segmentation for polysyn-
thetic languages (Ortega et al., 2020), rich mor-
phology (Lee et al., 2024), or target-side varia-
tion (Domingo et al., 2023). Alternative strate-
gies include cascading segmentations (Huck et al.,
2017), vocabulary refinement (Xu et al., 2021), and
multi-BPE–setting corpora (Poncelas et al., 2020).
While (Ngo Ho and Yvon, 2021) varied NMOs
for alignment, no prior study systematically evalu-
ates asymmetric BPE—using different NMOs for
source and target—across resource levels. This
work addresses that gap.

Though multilingual MT research now domi-
nates, bilingual MT remains vital for low-resource
pairs, where symmetric BPE is still common (Liu,
2022; Kimera et al., 2025; Dione et al., 2022; Her
and Kruschwitz, 2024; Singh et al., 2023; Singh
and Singh, 2022). Recent work on Parity-Aware
BPE (Foroutan et al., 2025) introduces fairness-
oriented subword allocation, reducing disadvan-
tages for low-resource languages in multilingual
tokenization. Although our experiments are limited
to bilingual MT, asymmetric BPE could comple-
ment such fairness-aware methods in multilingual
systems; extending this remains outside our current
scope.

3 Exploring Asymmetrical BPE

In practice, for a BPE configuration m1_m2, the
values of m1 and m2 are usually the same, with
the number of merge operations (NMO) ranging
from 8K to 40K (Wu, 2016; Denkowski and Neu-
big, 2017; Cherry et al., 2018; Renduchintala et al.,
2019). However, Ding et al. (2019); Dewangan
et al. (2021) found these settings suboptimal for
low-resource language pairs. Ding et al. (2019)
observed that m1 = m2 ≤ 4K NMO outperforms
32K in low-resource conditions, consistent with our
experiments on 0.1 million sentence pairs (English
↔ {Hindi, Telugu}) (Figure 1). Dewangan et al.
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Figure 1: CHRF++ Scores for Symmetrical BPE
(32K,4K) vs Asymmetrical BPE (m1 ̸=m2)

(2021) further showed that identical BPE configura-
tions yield differing performance across language
pairs, exemplified by English-Hindi vs. English-
Telugu comparisons at 4K NMO (Figure 1).

Work by Ortega et al. (2020); Mujadia and
Sharma (2021) suggests that selecting NMO should
be done while considering dataset size and lan-
guage pair, as nuanced BPE strategies benefit mor-
phologically complex languages. We study sym-
metrical BPE configurations with identical NMOs
for source and target, and investigate alternatives
by varying m1 and m2 independently in English-
Hindi across datasets from 50K to 8M sentences.
This approach improves results in low-resource set-
tings (Figure 1). Extensive experiments on English-
Hindi, evaluated on FLORES (Goyal et al., 2022),
confirm better performance of atypical BPE for tok-
enization. We further validate these findings by ex-
tending experiments to English ↔ {Telugu, Shona,
Norwegian, Kyrgyz, Hausa, Inuktitut}. Our results
strongly support optimizing NMO based on train-
ing data size and language pair. Figure 2 presents
a conceptual overview of the optimal ranges for
BPE configurations found in English-Hindi across
resource settings. Here, “ranges” indicate the spec-
trum of NMO values used as hyperparameters for
source and target subword tokenization in word seg-
mentation. The performance gap between the best
and symmetrical BPE systems is shown by shades
of green, with the largest gains in low-resource sce-
narios (darker green). As dataset size increases,
performance differences among configurations di-
minish (lighter green).

4 Evaluation on English ↔ Hindi

We explore BPE configurations with the Samanan-
tar dataset (Ramesh et al., 2022) for English-Hindi

containing 8 million parallel sentences. English
text is tokenized, normalized, and lowercased using
Moses scripts1, while preprocessing of Hindi uti-
lizes the Indic NLP library (Kunchukuttan, 2020).
We simulate various training set sizes by group-
ing sentences based on English sentence length
(Table 2) and randomly sample datasets of sizes
0.05M, 0.1M, 0.5M, 1M, 4M, and 8M, maintaining
sentence length proportions (see Appendix A.1 for
details). The BPE tokenizer is trained per language
and dataset size with eight NMOs: 0.5K, 1K, 2K,
4K, 8K, 16K, 25K, and 32K.

All possible BPE configurations (e.g., src500-
tgt500, src500-tgt1000) are trained using the Trans-
former architecture (Vaswani et al., 2017) with hy-
perparameters detailed in Appendix A.2. Training a
single BPE configuration m1_m2 across all dataset
sizes averages 1040 GPU hours on a 1080TI, re-
sulting in 64 configurations per language direc-
tion and 768 total systems (64 configurations × 6
dataset sizes × 2 directions). For evaluation, we
use the FLORES dataset (Goyal et al., 2022) and
report CHRF++ scores (Popović, 2015) to analyze
the impact of different BPE configurations. We
adopt CHRF++ rather than embedding-based met-
rics such as COMET (Rei et al., 2022), as not all
language pairs have COMET support and we aim
to compare performance using a consistent metric
across all pairs. Validation and test set statistics are
provided in Appendix A.8.

4.1 Best and Worst Configurations

To maintain clarity and brevity in our observations,
Tables 3 and Table 4 show the performance of five
selected configurations out of 64. For each dataset
size, the systems represented are:

• High A and B: The two systems with the high-
est performance across all asymmetric config-
urations for each dataset size.

• Low A and B: The two systems with the low-
est performance across all asymmetric config-
urations for each dataset size.

• Baseline: The best system among all sym-
metric BPE configurations (m_m, where
m⊂{500,1K,2K,4K,8K,16K,25K,32K}).

Performance of all configurations for all systems is
provided in the Appendix A.3.

1https://github.com/moses-smt/mosesdecoder/

37

https://github.com/moses-smt/mosesdecoder/


Length bin 1 to 10 11 to 15 16 to 20 21 to 25 26 to 30 31 to 35 35 to 40 >=41 Total
No. of sentences 2792334 1655162 1150396 854091 617318 420583 275774 414926 8180584

Percentage 34.13 20.23 14.06 10.44 7.55 5.14 3.37 5.07 100

Table 2: Distribution of sentences in groups based on token length for full data

Dataset Size 0.05 M 0.1 M 0.5 M

Performance Tier src tgt CHRF++ δ src tgt CHRF++ δ src tgt CHRF++ δ

Low A 500 1K 19.56 -3.93 500 25K 23.36 -15.92 2K 32K 48.92 -3.53

Low B 500 2K 19.58 -3.91 1K 32K 24.2 -15.08 25K 32K 49.62 -2.83

Baseline 4K 4K 23.49 0 500 500 39.28 0 4K 4K 52.45 0

High B 25K 500 28.47* 4.98 16K 500 40.66* 1.38 8K 2K 53.19* 0.74

High A 16K 500 29.33* 5.84 8K 500 40.75* 1.47 4K 500 53.37* 0.92

Dataset Size 1 M 4 M 8 M

Performance Tier src tgt CHRF++ δ src tgt CHRF++ δ src tgt CHRF++ δ

Low A 500 32K 53.27 -1.77 500 1K 56.1 -1.73 500 2K 56.26 -2.45

Low B 1K 32K 53.58 -1.46 1K 2K 56.3 -1.53 500 500 56.43 -2.28

Baseline 8K 8K 55.04 0 32K 32K 57.83 0 32K 32K 58.71 0

High B 16K 8K 55.19 0.15 32K 16K 58.06 0.23 16K 25K 58.74 0.03

High A 16K 4K 55.39 0.35 25K 16K 58.18 0.35 4K 32K 58.75 0.04

Table 3: Performance of the top 2 (High A, High B) and bottom 2 (Low A, Low B) tokenization configurations
compared to the symmetric baseline for Hindi-to-English across dataset sizes. Bold indicates statistically significant
improvement over baseline (p < 0.05); bold with * denotes high significance (p < 0.01). δ shows CHRF++
difference from best baseline. src and tgt are source and target merge operations (NMO).

Dataset Size 0.05 M 0.1 M 0.5 M

Performance Tier src tgt CHRF++ δ src tgt CHRF++ δ src tgt CHRF++ δ

Low A 1K 25K 13 -5.39 500 32K 16.49 -12.55 500 32K 43.57 -3.5

Low B 500 4K 13.55 -4.84 500 25K 16.74 -12.3 1K 32K 43.88 -3.19

Baseline 8K 8K 18.39 0 4K 4K 29.04 0 4K 4K 47.07 0

High B 16K 500 23.19* 4.8 16K 500 34.73* 5.69 8K 500 47.12 0.05

High A 8K 500 23.83* 5.44 8K 500 35* 5.96 4K 500 47.55 0.48

Dataset Size 1 M 4 M 8 M

Performance Tier src tgt CHRF++ δ src tgt CHRF++ δ src tgt CHRF++ δ

Low A 1K 32K 47.23 -1.93 8K 2K 50.64 -1.12 500 1K 50.79 -1.84

Low B 2K 32K 47.83 -1.33 500 2K 50.73 -1.03 32K 2K 51.29 -1.34

Baseline 8K 8K 49.16 0 16K 16K 51.76 0 25K 25K 52.63 0

High B 4K 2K 49.74 0.58 16K 32K 51.95 0.19 25K 32K 52.63 0

High A 8K 2K 49.75 0.59 32K 25K 52 0.24 16K 25K 53 0.37

Table 4: Performance of the top 2 (High A, High B) and bottom 2 (Low A, Low B) tokenization configurations
compared to the symmetric baseline for English-to-Hindi across dataset sizes. Bold indicates statistically significant
improvement over baseline (p < 0.05); bold with * denotes high significance (p < 0.01). δ shows CHRF++
difference from best baseline. src and tgt are source and target merge operations (NMO).
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Figure 2: Changes in Optimal BPE Configuration from Low- to High-Resource Settings

Figure 3: CHRF++ scores for 0.1M sentence pairs for
Hindi-to-English MT systems using configurations of
the form 16K_x, where x ∈ {500, 1K, 2K, 4K, 8K, 16K,
25K, 32K}.

As shown in Tables 3 and 4, for low-resource
settings (<1M), the best system outperforms the
weakest by ≈15 CHRF++ scores and the best sym-
metric BPE by ≈5. In medium-resource scenarios
(1M), the optimal source and target NMO shift to
the medium range (2K–8K), with smaller perfor-
mance variation (≈3 CHRF++). For high-resource
settings, the difference between best and worst con-
figurations is minimal (< 2 CHRF++), with the
best system using 32K NMO on the target. This
highlights the advantage of asymmetric BPE in low-
resource contexts. This trend of shifting optimal
BPE values with dataset size also appears when
varying target NMO while keeping source NMO
fixed. For example, English↔Hindi systems with
source NMO fixed at 16K on 0.1M data (Figures 3
and 4) show gradual performance changes as tar-
get NMO varies from 500 to 32K. Similar patterns
with other fixed source or target values are detailed
in Appendix A.3. This highlights that modifying
the NMO on the target side, especially in a low-
resource scenario, plays a vital role in determining
the optimal BPE configuration.

We conclusively find that symmetric BPE con-
figurations underperform compared to asymmetric

Figure 4: CHRF++ scores for 0.1M sentence pairs for
English-to-Hindi MT systems using configurations of
the form 16K_x, where x ∈ {500, 1K, 2K, 4K, 8K, 16K,
25K, 32K}.

Figure 5: CHRF++ score comparison of Asymmetric
BPE with VOLT for English to Hindi

ones in low-resource MT systems. As dataset size
grows, symmetric configurations perform compara-
bly to asymmetric. Nonetheless, asymmetric BPE
yields statistically significant improvements in low-
resource settings.

We compare our systems with optimal BPE con-
figurations against VOLT (Xu et al., 2021)2. Fig-
ures 5 and 6 show CHRF++ comparisons between
VOLT tokenization, optimal BPE, and “best" base-
line symmetric BPE (source NMO = target NMO)

2Using hyperparameters specified in the original paper.
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Figure 6: CHRF++ score comparison of Asymmetric
BPE with VOLT for Hindi to English

Domain # of Sentences English Tokens Hindi Tokens
Artificial Intelligence 389 6965 8441

Chemistry 392 7761 9368

Table 5: Statistics of ICON 2020 Domain Adaptation
Testset

configuration. Systems using asymmetric BPE out-
perform VOLT across all dataset sizes, with statis-
tically significant improvements (p < 0.05) espe-
cially in low-resource settings.

4.2 Performance on Domain Test
Subword models must handle rare or unseen words,
making domain-specific datasets effective for eval-
uating asymmetric BPE in MT systems. Thus, to
demonstrate the impact of segmentation strategies,
we evaluate all systems on Artificial Intelligence
(AI) and Chemistry (CH) domain test sets from the
ICON 2020 Domain Adaptation Task3. Table 54

presents domain test data statistics. Table 6 show
the performance of configurations from Table 4 on
domain datasets for English-to-Hindi systems. Per-
formance of Hindi-to-English systems is given in
Appendix A.4.

For English↔Hindi domain test set translation,
we observe:

• In low- to medium-resource settings, asym-
metric BPE systems outperform baselines sig-
nificantly when source NMO is much higher
than target NMO. This aligns with FLORES
results (Tables 3 and 4) and highlights asym-
metric BPE benefits for domain translation
with limited data.

• In high-resource settings, symmetric and
asymmetric systems perform similarly.

3We thank task organizers for access.
4After removing 12 and 5 lines from AI and CH test sets

respectively, that overlapped with the 8M training set.

These results demonstrate the potential transla-
tion improvements from asymmetric BPE in new
domains under limited-resource conditions. Perfor-
mances of all systems on AI and CH test sets is in
Appendices A.5 and A.6, respectively.

Figure 7 illustrates, with an example on AI do-
main, the advantage of asymmetric BPE over sym-
metric BPE for 0.1M parallel sentences. Configu-
rations like 16K_500 or 8K_500 produce more nat-
ural, semantically faithful Hindi translations than
symmetric 32K_32K or 4K_4K setups. Translation
improves as we move from symmetric high NMO
(32K_32K), to symmetric low NMO (4K_4K), to
asymmetric (16K_500 or 8K_500).

• 32K_32K – In the output with delimiters, most
of the tokens are already fully merged into
complete words. While this segmentation
yields a large vocabulary, in low-resource con-
ditions, it results in sparsity: many source and
target tokens appear too infrequently for ef-
fective parameter learning. Consequently, the
network fails to learn robust mappings, lead-
ing to incomplete or inaccurate translations
despite having fully merged tokens.

• 4K_4K – The glossary shows an improvement
in overall translation fluency, but important
content words such as system, commonly and
click are missing, both explicitly and implic-
itly (meaning that they cannot be inferred
from context). The improvement is due to
the increased recurrence of subword units in
the training data from the reduced vocabulary
size, which strengthens learned associations,
but at the cost of certain semantic details.

• Asymmetric (16K_500, 8K_500): Bet-
ter meaning preservation than symmetric.
Whereas 16K_500 omits “post” and drops fi-
nal language reference, 8K_500 conveys al-
most full meaning but mistranslates “post”
as a job title. From a learning perspective,
the smaller decoder vocabulary improves the
alignment and connection learning between
the source and target segments (similar to
Ngo Ho and Yvon (2021)), aligning with pre-
vious findings (Domingo et al., 2023) that the
target side vocabulary influences NMT per-
formance. Although overly constrained vo-
cabularies can still introduce semantic drift in
rare or domain-specific terms, overall transla-
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Dataset Size 0.05M 0.1M 0.5M

Performance Tier src tgt AI CH src tgt AI CH src tgt AI CH

Low A 1K 25K 15.98 14.13 500 32K 18.46 16.67 500 32K 53.32 47.44

Low B 500 4K 15.97 15.03 500 25K 18.80 16.86 1K 32K 53.99 47

Baseline 8K 8K 20.76 19.34 4K 4K 35.79 32.19 4K 4K 58.63 50.64

High B 16K 500 26.76* 24.03* 16K 500 42.97* 37.94* 8K 500 58.91 50.94

High A 8K 500 28.28* 25.14* 8K 500 44.05* 38.57* 4K 500 58.70 51.53

Dataset Size 1M 4M 8M

Performance Tier src tgt AI CH src tgt AI CH src tgt AI CH

Low A 1K 32K 58.58 51.78 8K 2K 62.23 54.55 500 1K 61.91 54.78

Low B 2K 32K 58.88 51.65 500 2K 61.51 54.01 32K 2K 62.52 54.63

Baseline 8K 8K 61.22 53.6 16K 16K 63.12 55.14 25K 25K 63.95 55.65

High B 4K 2K 60.39 53.55 16K 32K 63.21 55.84 25K 32K 63.9 55.92

High A 8K 2K 60.01 53.27 32K 25K 63.6 55.74 16K 25K 63.53 55.69

Table 6: Performance of the top 2 (High A and High B) and bottom 2 (Low A and Low B) systems with respective
tokenisation configurations compared to the symmetric baseline for English-to-Hindi systems across dataset sizes
for AI and CH Domains. Bold scores indicate statistically significant improvements over the baseline (p < 0.05);
bold scores with an asterisk (∗) indicate high significance (p < 0.01)

Figure 7: Examples of English-to-Hindi translations across different BPE configurations, showing segmented source
text, outputs with delimiters ‘@@’, and output without delimiters with corresponding English glossaries for each
segment.
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tion remains improved compared to symmet-
ric configurations.

5 Exploring Asymmetrical BPE
Configurations for other language pairs

To evaluate the transferability of optimal sub-
word segmentation from English–Hindi to typo-
logically diverse languages, we extend experiments
to English↔{Telugu, Shona, Norwegian, Kyrgyz,
Hausa, Inuktitut}. Corpora sources are:

• English–{Hausa, Shona, Norwegian, Kyr-
gyz}: Gowda et al. (2021)

• English–Telugu: Ramesh et al. (2022)

• English–Inuktitut: Joanis et al. (2020)

To simulate low-resource settings, we sampled
0.1M sentence pairs per language via sentence-
length binning, analogous to English–Hindi, statis-
tics are in Appendix A.7.

These language pairs were chosen to assess the
impact of symmetric and asymmetric BPE con-
figurations in low-resource scenarios across di-
verse language families with varying morpholog-
ical and typological complexity. Baselines used
symmetric BPE (4K_4K, 32K_32K), while asym-
metric settings (8K_500, 16K_500) derive from
English-Hindi optimal configurations at 0.1M sen-
tence pairs. For evaluating we use the FLORES
test set, except English↔Inuktitut tested on Joanis
et al. (2020) (Appendix A.8).

Experiments are repeated three times for repro-
ducibility (sampling, BPE training, model training).
Figures 8 and 9 compare average asymmetric and
symmetric BPE results for translations to and from
English. Asymmetric BPE significantly improves
four of six L-to-English systems and all English-
to-L systems (p < 0.05, indicated by *), under-
scoring the benefits of asymmetric BPE and the
need to explore beyond conventional settings for
low-resource pairs.

6 Conclusion

In-depth examination of BPE configurations across
diverse language pairs and differing dataset sizes
reveals that typical configurations (n_n) do not al-
ways produce optimal results. As referenced in
Section 2, in low-resource settings, systems benefit
from using symmetric n NMO configurations when
n is significantly smaller than 32K; our experiments

Figure 8: CHRF++ scores improvement with asymmet-
rical over symmetrical BPE for English to L Languages

Figure 9: CHRF++ scores improvement with asym-
metrical over symmetrical BPE from L Languages to
English

with asymmetric BPE n_m show that further im-
provement in translation performance is possible,
under low-resource conditions, when n » m where
n, m represent NMOs for source and target respec-
tively. This study highlights the need to go beyond
default segmentation in machine translation, espe-
cially for low-resource languages. While symmet-
ric BPE configurations may suffice with medium
to large datasets, their effectiveness drops in low-
resource settings. Using asymmetric BPE—with a
higher number of merge operations for the source
language and fewer for the target—yields signif-
icant translation quality gains. These configura-
tions consistently outperform across varied lan-
guage families and morphological complexities,
underscoring the importance of tailored segmenta-
tion for optimizing low-resource translation.

Limitation

This study is limited by the computational cost
of exhaustively analysing all BPE configurations
for each language pair and by its focus only on
bilingual encoder–decoder NMT. However, the re-
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sults show that certain configuration ranges consis-
tently improve translation quality in low-resource
settings, substantially reducing the search space.
These findings suggest promising extensions to
multilingual models, potentially combined with
fairness-aware tokenisation such as Parity-Aware
BPE (Foroutan et al., 2025) to deliver both perfor-
mance gains and balanced vocabulary distribution.
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A Appendix

A.1 English–Hindi Training Data Statistics

We use an 8-million-sentence English–Hindi cor-
pus from the Samanantar dataset and execute strati-
fied random sampling across sentence length bins
to simulate different resource availability levels.
Table 7 summarises the statistics for sentence pairs
corresponding to each level of resource availability.

A.2 Hyperparameters for Training
Transformer Model

We followed the official Fairseq tutorial instruc-
tions for preprocessing, training, and translation5,
and customised the parameters given in Table 8
with respective values for all experiments.

A.3 Performance of all systems for English ↔
Hindi for all dataset scenarios

Figures 10 present the performance of all config-
urations for English ↔ Hindi systems in a low re-
source scenario (for data set sizes of 0.05M, 0.1M
and 0.5M). And Figures 11 show the performance
of all configurations on 1M, 4M and 8M dataset
sizes. Each subgraph represents performance on
a particular dataset size, with the x-axis being the
source NMO. The black stepped dotted lines indi-
cate the maximum CHRF++ score for each dataset
size considering for each source NMOs. In figure
10 for low-resource environments (0.05M, 0.1M
and 0.5M) systems, as noted by (Ding et al., 2019),
the use of symmetric BPE configuration with lower
NMOs improves performance over high NMOs.
However, the best results are achieved using asym-
metric BPE configurations when the source has a
higher NMO than the target. We see a maximum
performance gain when the source NMO is very
high and the target NMO very low (we see con-
sistent performance with the target NMO = 500).

5https://fairseq.readthedocs.io/en/latest/
getting_started.html

Conversely, when the target’s NMO is greater than
that of the source, performance declines, like for
the Hindi to English 0.1M dataset, performance of
500_25K and 500_32K was worse than symmetric
BPE configurations.

A.4 Performance of Hindi-To-English
Selected Configurations on Domain Test
set

Table 9 shows the performance of the Highest and
Lowest performing asymmetric BPE systems with
baseline systems for Hindi-To-English systems.
Like in English to Hindi systems, we see signif-
icant improvement when using asymmetric BPE
configurations in low-resource settings.

A.5 Evaluation of English ↔ Hindi systems
on AI for all BPE Configurations

Figures 12 and 13 depict the performance of all
configurations for English ↔ Hindi systems during
translations in the AI domain. A similar perfor-
mance pattern appears across configurations here,
as observed with the FLORES test set (see Ap-
pendix A.3).

A.6 Evaluation of English ↔ Hindi systems
on Chemistry for all BPE Configurations

Figures 14 and 15 depict the performance of all
configurations for English ↔ Hindi systems during
translations in the Chemistry domain. A similar
performance pattern appears across configurations
here, as observed with the FLORES test set (see
Appendix A.3).

A.7 Statistics of Bitext for secondary set of
experiments

Table 10 gives the statistics of the original bitext
that we obtained for the secondary set of exper-
iments, to see the transferability of asymmetric
BPE configurations. And to simulate low-resource
settings, we sampled 0.1M sentence pairs per lan-
guage using sentence-length binning, as done for
English–Hindi; statistics are shown in Table 11.

A.8 Validation and Test Set Statistics
As noted, for English–Inuktitut validation and test
sets, we use Joanis et al. (2020). For all other
language pairs, the FLORES dataset was used. Ta-
ble 12 shows token-level statistics for validation
and test sets across all language pairs.
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(a) 0.05 Million English to Hindi (b) 0.05 Million Hindi to English

(c) 0.1 Million English to Hindi (d) 0.1 Million Hindi to English

(e) 0.5 Million English to Hindi (f) 0.5 Million Hindi to English

Figure 10: Evaluation of English ↔ Hindi MT Systems for 0.05M, 0.1M and 0.5M dataset sizes on FLORES, x-axis
is source NMO and y-axis is CHRF++ scores
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(a) 1 Million English to Hindi (b) 1 Million Hindi to English

(c) 4 Million English to Hindi (d) 4 Million Hindi to English

(e) 8 Million English to Hindi (f) 8 Million Hindi to English

Figure 11: Evaluation of English ↔ Hindi MT Systems for 1M, 4M and 8M dataset sizes on FLORES, x-axis is
source NMO and y-axis is CHRF++ scores
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(a) 0.05 Million English to Hindi (b) 0.05 Million Hindi to English

(c) 0.1 Million English to Hindi (d) 0.1 Million Hindi to English

(e) 0.5 Million English to Hindi (f) 0.5 Million Hindi to English

Figure 12: Evaluation of English ↔ Hindi MT Systems for 0.05M, 0.1M and 0.5M dataset sizes on AI, x-axis is
source NMO and y-axis is CHRF++ scores
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(a) 1 Million English to Hindi (b) 1 Million Hindi to English

(c) 4 Million English to Hindi (d) 4 Million Hindi to English

(e) 8 Million English to Hindi (f) 8 Million Hindi to English

Figure 13: Evaluation of English ↔ Hindi MT Systems for 1M, 4M and 8M dataset sizes on AI, x-axis is source
NMO and y-axis is CHRF++ scores
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(a) 0.05 Million English to Hindi (b) 0.05 Million Hindi to English

(c) 0.1 Million English to Hindi (d) 0.1 Million Hindi to English

(e) 0.5 Million English to Hindi (f) 0.5 Million Hindi to English

Figure 14: Evaluation of English ↔ Hindi MT Systems for 0.05M, 0.1M and 0.5M dataset sizes on CH, x-axis is
source NMO and y-axis is CHRF++ scores
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(a) 1 Million English to Hindi (b) 1 Million Hindi to English

(c) 4 Million English to Hindi (d) 4 Million Hindi to English

(e) 8 Million English to Hindi (f) 8 Million Hindi to English

Figure 15: Evaluation of English ↔ Hindi MT Systems for 1M, 4M and 8M dataset sizes on CH, x-axis is source
NMO and y-axis is CHRF++ scores
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Length Range # of Lines % of Total 4M 1M 0.5M 0.1M
1 to 10 2,792,334 34.13% 1,365,200 341,300 170,650 34,130
11 to 15 1,655,162 20.23% 809,200 202,300 101,150 20,230
16 to 20 1,150,396 14.06% 562,400 140,600 70,300 14,060
21 to 25 854,091 10.44% 417,600 104,400 52,200 10,440
31 to 35 420,583 5.14% 205,600 51,400 25,700 5,140
36 to 40 275,774 3.37% 134,800 33,700 16,850 3,370
≥ 41 414,926 5.07% 202,800 50,700 25,350 5,070
Total 8,180,584 3,999,600 999,900 499,950 99,990

Table 7: Distribution of English–Hindi sentence pairs sampled from Samanantar across sentence length bins and
different dataset sizes.

Parameter Value
arch transformer

optimizer adam
adam-betas (0.9, 0.98)
clip-norm 0.0

lr 5e-4
lr-scheduler inverse_sqrt
warmup-updates 4000
warmup-init-lr 1e-07

dropout 0.3
attention-dropout 0.1
activation-dropout 0.1

weight-decay 0.0001
criterion label_smoothed_cross_entropy

label-smoothing 0.1
max-tokens 6000
max-update 300000
patience 20

update-freq 10

Table 8: Training hyperparameters used across all ex-
periments.
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Dataset Size 0.05M 0.1M 0.5M

Performance Tier src tgt AI CH src tgt AI CH src tgt AI CH

Low A 500 1K 20.87 19.64 500 25K 25.22 23.56 2K 32K 57.8 50.82

Low B 500 2K 19.71 18.46 1K 32K 26.65 24.61 25K 32K 59.35 52.27

Baseline 4K 4K 24.61 22.92 500 500 47.55 41.21 4K 4K 63.7 56.61

High B 25K 500 31.22* 28.17* 16K 500 50.36* 42.12* 8K 2K 64.07 56.61

High A 16K 500 32.74* 29.78* 8K 500 50.41* 42.41* 4K 500 64.29* 56.84

Dataset Size 1M 4M 8M

Performance Tier src tgt AI CH src tgt AI CH src tgt AI CH

Low A 500 32K 63.75 57.23 500 1K 67.51 61.19 500 2K 68.02 61.3

Low B 1K 32K 64.33 57.13 1K 2K 67.86 61.55 500 500 68.12 61.24

Baseline 8K 8K 65.52 59.18 32K 32K 68.1 62.1 32K 32K 69.74 63.24

High B 16K 8K 66.07* 59.03 32K 16K 68.08 61.94 16K 25K 69.47 63.05

High A 16K 4K 65.68 60.11 25K 16K 69.32 62.45 4K 32K 69.68 63.18

Table 9: Performance of the top 2 (High A and High B) and bottom 2 (Low A and Low B) systems with respective
tokenisation configurations compared to the symmetric baseline for Hindi-to-English systems across dataset sizes
for AI and CH Domains. Bold scores indicate statistically significant improvements over the baseline (p < 0.05);
bold scores with an asterisk (∗) indicate high significance (p < 0.01)

Language # Sentence Pairs English Tokens L Tokens
Telugu 508,557 9,277,916 6,861,361
Shona 9,463,612 98,089,812 76,046,554
Norwegian 1,454,765 22,223,984 20,541,537
Kyrgyz 21,603,490 251,345,836 168,333,543
Hausa 4,452,045 57,987,583 64,016,592
Inuktitut 733,624 15,751,147 7,991,818

Table 10: Original corpus statistics English - L Lan-
guage for secondary language pair.

Language English Tokens L Tokens
Telugu 2,471,877 1,919,321
Shona 1,228,485 965,502

Norwegian 1,791,571 1,641,309
Kyrgyz 1,385,891 936,543
Hausa 1,531,132 1,679,785

Inuktitut 2,148,188 1,089,834

Table 11: Token statistics after sampling 0.1 million
training sentence pairs per language pair (English - L).

Language Split # Sentences English Tokens L Tokens
Hindi validation 997 23,586 27,325

test 1,012 24,722 28,534
Telugu validation 997 23,586 19,443

test 1,012 24,722 20,213
Shona validation 997 23,586 19,116

test 1,012 24,722 19,958
Norwegian validation 997 23,586 23,472

test 1,012 24,722 24,213
Kyrgyz validation 997 23,586 18,935

test 1,012 24,722 20,022
Hausa validation 997 23,586 27,031

test 1,012 24,722 28,018
Inuktitut validation 5,433 66,431 37,321

test 6,139 86,661 47,813

Table 12: Validation and test set statistics for all lan-
guage pairs.
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