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Abstract

In this paper, we describe our system un-
der the team name BLEU Monday for the
English-to-Indic Multimodal Translation Task
at WAT 2025. We participate in the text-only
translation tasks for English-Hindi, English-
Bengali, English-Malayalam, and English-Odia
language pairs. We present a two-stage ap-
proach that addresses quality issues in the train-
ing data through automated error detection
and correction, followed by parameter-efficient
model fine-tuning.

Our methodology introduces a vision-
augmented judge-corrector pipeline that
leverages multimodal language models to
systematically identify and correct translation
errors in the training data. The judge compo-
nent classifies translations into three categories:
correct, visually ambiguous (requiring image
context), or mistranslated (poor translation
quality). Identified errors are routed to spe-
cialized correctors: GPT-40-mini regenerates
captions requiring visual disambiguation,
while IndicTrans?2 retranslates cases with pure
translation quality issues. This automated
pipeline processes 28,928 training examples
across four languages, correcting an average of
17.1% of captions per language.

We then apply Low-Rank Adaptation (LoRA)
to fine-tune the IndicTrans2 en-indic 200M dis-
tilled model on both original and corrected
datasets. Training on corrected data yields con-
sistent improvements, with BLEU score gains
of +1.30 for English-Bengali on the evaluation
set (42.00 — 43.30) and +0.70 on the challenge
set (44.90 — 45.60), +0.60 for English-Odia on
the evaluation set (41.00 — 41.60), and +0.10
for English-Hindi on the challenge set (53.90
— 54.00).

1 Introduction

Machine translation (MT) for low-resource lan-
guages remains a challenging problem, particu-
larly when dealing with multimodal data where vi-

sual context can resolve ambiguities (Specia et al.,
2016; Elliott et al., 2016). The Workshop on Asian
Translation (WAT) 2025 English-to-Indic Multi-
modal Translation Task addresses this challenge for
four scheduled Indian languages: Hindi, Bengali,
Malayalam, and Odia, each with distinct scripts and
linguistic characteristics (Parida et al., 2019; Sen
et al., 2022; Parida et al., 2024). While recent ad-
vances in neural machine translation have shown re-
markable progress for high-resource language pairs
(Bahdanau et al., 2014; Vaswani et al., 2017), low-
resource languages continue to lag behind due to
limited parallel corpora, lack of linguistic diversity
in training data, and inconsistent translation qual-
ity (Sennrich and Zhang, 2019; Costa-Jussa et al.,
2022).

Recent research in multimodal machine transla-
tion (MMT) has demonstrated that incorporating
visual information can significantly improve trans-
lation quality, especially for ambiguous terms and
culturally-specific content (Ahmed et al., 2025; El-
liott et al., 2016; Calixto et al., 2017). The underly-
ing hypothesis is that visual context provides crucial
disambiguating cues that align with human cogni-
tive processes of language understanding, which
naturally rely on multiple sensory inputs (Bein-
born et al., 2018). However, a critical bottleneck
in training robust MMT systems for low-resource
languages is the quality of parallel training data
itself.

Prior work has identified systematic translation
errors in the Visual Genome-based datasets used
for low-resource MMT tasks (Betala and Chok-
shi, 2024), where captions often lack proper visual
grounding, contain linguistic errors, or exhibit un-
natural phrasing that can propagate through trained
models. To validate these observations in the con-
text of the WAT 2025 task, one of the authors man-
ually evaluated a sample of the training data. This
analysis confirmed numerous quality issues includ-
ing mistranslations (semantic errors), visual am-
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biguities (terms requiring image context for dis-
ambiguation), and unnatural expressions that devi-
ate from native speaker conventions (see Figure 2).
These findings highlight a fundamental challenge:
noisy training data can severely limit the effective-
ness of even state-of-the-art neural MT systems.

Building on these findings, we introduce a two-
stage approach that systematically addresses data
quality before model training. First, we employed
a vision-guided judge-corrector system powered by
multimodal large language models (LLMs) to auto-
matically identify and fix errors in training captions.
Recent research has established the effectiveness of
LLM-as-a-judge paradigms for quality assessment
across multiple modalities (Zeng et al., 2024; Xiong
et al., 2025), demonstrating their ability to provide
nuanced evaluations that would traditionally require
human annotators. Our judge module leverages vi-
sual context to classify each caption into one of
three categories: (1) correct translations requiring
no modification, (2) incorrect translations where
visual context is needed to resolve ambiguities (e.g.,
distinguishing “dish” as food versus container), or
(3) incorrect translations with poor translation qual-
ity independent of visual information (e.g., mis-
translations, severe grammatical errors, or unnat-
ural phrasing). Based on this classification, we
route corrections through specialized mechanisms:
a multimodal LLM (GPT-40-mini! (Menick et al.,
2024)) regenerates captions requiring visual disam-
biguation, while IndicTrans2 (Gala et al., 2023), a
state-of-the-art model for English-to-Indic transla-
tion, retranslates cases with pure linguistic errors.
This routing strategy enables targeted correction
while leveraging the strengths of each approach.

Second, we leveraged the corrected training data
to fine-tune IndicTrans2 (Nair et al., 2024) using
LoRA (Low-Rank Adaptation) (Hu et al., 2022), a
parameter-efficient fine-tuning method (Xu et al.,
2023; Han et al., 2024) that has proven effective for
adapting large models to specific domains with min-
imal computational resources (Wong et al., 2024).
To rigorously evaluate the impact of data quality on
translation performance, we train separate models
on both the original and corrected datasets, pro-
viding direct evidence of the benefits of automated
data cleaning.

Our automated pipeline processes 28,928 train-
ing examples across four languages, correcting

'https://platform.openai.com/docs/models/
gpt-4o-mini

19,806 captions in total. On average, 17.1% of
captions per language require correction, with rates
varying from 12.0% for Odia (3,486 corrections)
to 24.0% for Malayalam (6,945 corrections), while
Hindi and Bengali show intermediate rates of 16.3%
(4,727 corrections) and 16.1% (4,648 corrections),
respectively. Of the total corrections, 5,290 (26.7%)
require visual context for proper disambiguation,
while 14,513 (73.3%) exhibit poor translation qual-
ity addressable through retranslation. Experimen-
tal results demonstrate that training on corrected
data yields consistent improvements across evalu-
ation metrics, with notable BLEU score gains for
English-Bengali (+1.30 on evaluation set, +0.70
on challenge set), English-Odia (+0.60 on eval-
uation set), and English-Hindi (+0.10 on chal-
lenge set). To support future research in this area,
we make our corrected dataset, judge-corrector
pipeline code, and trained models publicly avail-
able at https://github.com/sid-betalol/
wat-2025-english2indic-mmt.
Our main contributions are:

* A vision-guided judge-corrector pipeline that
automatically identifies and corrects transla-
tion errors in multimodal training data through
intelligent routing between visual and linguis-
tic correction strategies

* Comprehensive analysis of error patterns
in low-resource MMT datasets, processing
28,928 examples across four languages and
revealing that an average of 17.1% of captions
per language contain errors, with 26.7% of
corrections requiring visual context for proper
disambiguation

* Comparative evaluation demonstrating that
LoRA finetuning on corrected data yields mea-
surable improvements over training on original
data, validating the importance of data quality
in low-resource MT

2 Methodology

The overall pipeline of our approach is shown in
Figure 1 and the data used for this task is described
in Appendix A.

2.1 Preprocessing

We perform two preprocessing steps to prepare
the data for our pipeline. First, we combine the
language-specific datasets into a unified format
where each row contains a unique image identifier,
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Figure 1: Overview of our two-stage approach. Stage 1 uses a vision-guided judge-corrector system to clean the
training data, with 14.8% of examples corrected on average across the three languages (Hindi, Bengali, and Odia).

Stage 2 applies LoRA fine-tuning to IndicTrans2.

the English caption, and corresponding translations
in all four target languages.

Second, we crop the images to their specified
bounding box coordinates. The dataset includes
images of complete scenes along with coordinates
(X, y, width, height) that define rectangular regions
corresponding to each caption. We extract these
regions to ensure that vision-language models fo-
cus on the precise visual content described by the
captions, rather than the entire scene.

2.2 Manual Data Quality Assessment

Prior work by Betala and Chokshi (2024) identified
systematic quality issues in Visual Genome-based
datasets for multimodal machine translation, not-
ing that captions often lack proper visual ground-
ing, contain linguistic errors, and exhibit unnatural
phrasing. These observations, made in the context
of the WMT2024 English-to-Low Resource Multi-
modal Translation Task, highlighted a fundamental
challenge: noisy training data can severely limit
the effectiveness of neural MT systems, even when
using state-of-the-art architectures.

Motivated by these findings, we conducted our
own manual evaluation to assess whether similar is-
sues were present in the WAT 2025 English-to-Indic
datasets. One of the authors, a native Hindi speaker
with formal education in Hindi through high school
in the Indian education system, systematically re-
viewed a random sample of 1000 examples from the
English-Hindi training set. This manual analysis
confirmed the presence of pervasive quality issues
and revealed three primary categories of errors:

Mistranslations (Semantic Errors): Sampled
captions contained clear semantic errors where the
Hindi translation did not accurately convey the
meaning of the English source. These ranged from
minor meaning shifts to complete mistranslations

that would mislead a native speaker.

Visual Ambiguities: These captions contained
ambiguous terms that required visual context for
proper disambiguation. For example, the English
word “dish” could refer to either food or a con-
tainer—a distinction that native speakers would re-
solve by examining the accompanying image, but
which was often incorrectly translated without such
visual grounding.

Unnatural Expressions: Some captions exhib-
ited unnatural phrasing that, while potentially un-
derstandable, deviated significantly from how na-
tive speakers would naturally express the same con-
cept. These included awkward word choices, non-
idiomatic constructions, and grammatically correct
but stylistically inappropriate formulations.

Itis important to note that these categories are not
mutually exclusive; many captions exhibited multi-
ple types of issues simultaneously. For instance, a
single caption might contain both a mistranslation
and unnatural phrasing. Detailed examples of each
error category are provided in Figure 2.

This manual analysis validated the concerns
raised by Betala and Chokshi (2024) in the WAT
2025 dataset context, revealing substantial qual-
ity issues across the training data. While manual
correction by native speakers would be ideal, it is
prohibitively expensive and time-consuming for a
dataset of nearly 29,000 examples per language.
These findings motivated our development of an
automated judge-corrector system capable of iden-
tifying and correcting major translation errors at
scale, which ultimately flagged approximately 17%
of captions for correction across the four languages,
focusing on cases with clear semantic errors or vi-
sual ambiguities.
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Figure 2: Training data correction examples from our judge-corrector system. Top row shows cases requiring
visual disambiguation (corrected via GPT-40-mini VLM), bottom row shows poor translation quality (corrected via
IndicTrans?2 retranslation). Original translations shown in red, corrections in green, with English glosses.

2.3 Data Cleaning Pipeline

Our automated data cleaning pipeline employs a
vision-guided judge-corrector architecture that pro-
cesses each training example through three stages:
judgment, routing, and correction. The system is
implemented using DSPy (Khattab et al., 2024), a
framework for structured prompting that enables
type-safe interaction with large language models.

2.3.1 Judge Module

The judge module (Table 5) evaluates each tar-
get language caption using a multimodal language
model (Gemini 2.5 Flash Lite) that simultaneously
analyzes the cropped image region, the English cap-
tion, and the target language translation. For each
example, the judge produces four outputs:

* Status: Binary classification as “correct” or
“incorrect”

* Reason: If incorrect, categorized as either
“visual_context_needed” (ambiguous terms re-
quiring visual disambiguation) or “poor_trans-
lation” (linguistic errors independent of visual
context)

¢ Confidence: Numerical score between 0 and
1 indicating judgment certainty

» Explanation: Brief justification citing the spe-
cific issue identified

The judge is explicitly instructed to focus on ma-
jor issues while ignoring minor stylistic variations
such as punctuation differences, optional particles,
or alternative word orderings that preserve seman-
tic equivalence. This design choice reduces false
positives that would waste computational resources
on unnecessary corrections while also preserving
already-correct translations that could be degraded
by spurious automated interventions, ensuring the
pipeline focuses exclusively on substantive quality
problems. Missing or empty captions are automati-
cally classified as “visual_context_needed” without
invoking the multimodal model, as they unambigu-
ously require regeneration.

Sample counts with confidence < 0.70

100
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Figure 3: Judge confidence and correction statistics by
language. Bars represent the count of training examples
where the judge module assigned a confidence score
below 0.7, resulting in retention of the original caption.
The line plot shows the overall correction rate (percent-
age of training examples modified) for each language.
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To mitigate the impact of uncertain judgments,
we implement a confidence threshold: captions
flagged as incorrect but with confidence below 0.7
are retained without modification. This conserva-
tive approach prevents potentially incorrect correc-
tions in ambiguous cases where the judge’s assess-
ment may be unreliable.

2.3.2 Routing and Correction

Based on the judge’s classification, captions are
routed through one of three paths:

Correct captions (~83% of examples) are pre-
served without modification, maintaining the origi-
nal translation quality where no issues are detected.

Instances labelled as visual context needed
(~27% of corrections, ~4.5% of total examples)
are processed by GPT-40-mini, a multimodal lan-
guage model that regenerates the caption by analyz-
ing both the cropped image and the English source.
This approach is specifically designed for cases
where ambiguous terms require visual grounding
for proper disambiguation. The model is provided
with the original (potentially incorrect) caption for
reference, but is instructed to prioritize visual evi-
dence when generating the corrected version. The
prompt for this module is highlighted in Table 6.

Poor translation cases (~73% of corrections,
~12.5% of total examples) are retranslated using In-
dicTrans2 (Gala et al., 2023), a state-of-the-art neu-
ral machine translation model specifically trained
for English-to-Indic language pairs. This rout-
ing strategy leverages IndicTrans2’s strong perfor-
mance on pure translation tasks while reserving the
more expensive multimodal LLM for cases where
visual context is essential.

2.3.3 Implementation Details

The pipeline processes all four target languages
(Hindi, Bengali, Malayalam, Odia) concurrently for
each image, with rate limiting to manage API costs
and comply with provider constraints.

The pipeline processes all four target languages
concurrently for each image, with rate limiting
(maximum 4 concurrent API calls) to manage costs
and comply with provider constraints. To optimize
efficiency, images are loaded once per example and
reused across all language evaluations, while auto-
matic checkpointing every 100 examples enables
recovery from interruptions.

Based on the parallel corpus statistics as shown
in Table 4, the corrector module receives explicit
guidance on typical caption lengths for each target

language to ensure natural output: Hindi and Odia
captions should match English word counts, while
Bengali should be approximately 20% shorter and
Malayalam 25% shorter. We speculate that these
language-specific guidelines might help maintain
stylistic consistency with native speaker conven-
tions while preventing unnecessarily verbose or
overly terse translations.

2.4 Model Finetuning

Following data cleaning, we fine-tune the Indic-
Trans2 en-indic 200M distilled model? (Gala et al.,
2023) using Low-Rank Adaptation (LoRA) (Hu
et al., 2022), a parameter-efficient fine-tuning tech-
nique that updates only a small subset of model
parameters while keeping the base model frozen.

2.4.1 Data Preparation

We prepare the cleaned training data for multilin-
gual fine-tuning by converting it into a unified for-
mat suitable for IndicTrans2. Each training example
consists of four components: (1) the English source
text (english_caption), (2) the target language
translation (either {language}_corrected or
{language}_original depending on the train-
ing configuration), (3) the source language code
(eng_Latn), and (4) the target language code in
FLORES-200 format (Costa-Jussa et al., 2022; nll,
2024) (hin_Deva for Hindi, ben_Beng for Bengali,
mal_Mlym for Malayalam, ory_Orya for Odia).
The training data is processed through the offi-
cial IndicTransToolkit processor (Gala et al., 2023),
which applies language-specific preprocessing in-
cluding script normalization and tokenization con-
ventions. We create one training example per lan-
guage per image, resulting in 115,712 total train-
ing examples (28,928 images x 4 languages). The
development set follows the same preprocessing
pipeline, using the original {languagel}_text
columns from the official development split.

2.4.2 LoRA Configuration

We apply LoRA to the attention projection layers
(q_proj and v_proj) of the transformer encoder-
decoder architecture (Vaswani et al., 2017). The
LoRA configuration uses rank = 16 with scaling
factor a = 32, resulting in approximately 0.8M
trainable parameters compared to the base model’s
200M parameters (0.4% of total parameters). We
set the LoRA dropout probability to 0.1 to prevent

"https://huggingface.co/aidbharat/
indictrans2-en-indic-dist-200M
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overfitting on the relatively small training set. This
parameter-efficient approach enables training on
consumer hardware while maintaining competitive
performance (Hu et al., 2022).

2.4.3 Training Configuration

Training is conducted using the Hugging Face
Transformers library (Wolf et al., 2020) with the
Seq2SeqTrainer class. We use the following hy-
perparameters: per-device batch size of 8 with 2-
way gradient accumulation, resulting in an effective
global batch size of 32 across 2 GPUs; learning rate
of 3 x 107> with 500 warmup steps using linear
scheduling; weight decay of 0.01; and maximum
gradient norm of 1.0 for stability. We train for 3
epochs, which balances convergence with compu-
tational efficiency. All experiments use float32 pre-
cision to ensure numerical stability across different
hardware platforms.

The model is trained in a multilingual fashion,
where a single model learns to translate from En-
glish to all four target languages simultaneously
(Aharoni et al., 2019). Each training batch contains
examples from all languages, enabling the model
to share representations across related Indic lan-
guages while learning language-specific translation
patterns through the FLORES-200 language codes
that prefix each input. This multilingual approach
has been shown to improve performance for lower-
resource languages through cross-lingual transfer
(Arivazhagan et al., 2019).

The training employs standard sequence-to-
sequence preprocessing: input sequences are to-
kenized using the IndicTrans2 tokenizer with a
maximum length of 256 tokens, and the DataColla-
torForSeq2Seq applies padding to create uniform
batch sizes while masking padding tokens in label
sequences with -100 to exclude them from loss com-
putation. During inference, we use greedy decoding
(beam size 1, ‘num_beams=1") as a workaround for
known beam search compatibility issues in the In-
dicTrans2 implementation.

2.4.4 Inference

For inference, we load the trained LoRA adapters
and merge them with the base IndicTrans2 model us-
ing PEFT’s merge_and_unload () method (Man-
grulkar et al., 2022), eliminating the overhead of
adapter routing during generation. Translations are
generated using the IndicTransToolkit’s preprocess-
ing and postprocessing pipelines to ensure consis-
tency with the model’s training format. We translate

the evaluation and challenge sets in batches of 16
with a maximum generation length of 256 tokens.

2.4.5 Submitted Systems

Due to resource and time constraints, we submit
results for three language pairs: English-Hindi,
English-Bengali, and English-Odia. We do not sub-
mit results for English-Malayalam.

To rigorously evaluate the impact of data clean-
ing on translation quality, we submit translations
from two systems: (1) a LoORA model trained on
the original (uncorrected) training data, and (2) a
LoRA model trained on our corrected training data.
Both models use identical architectures, hyperpa-
rameters, and training procedures, with the only
difference being the quality of the training captions.
This controlled comparison allows us to directly at-
tribute performance differences to the data cleaning
pipeline.

2.5 System Classification

We classify our submissions according to the WAT
2025 task guidelines across four dimensions, as
specified by the task organizers (Parida et al., 2024).
First, we participate in the unconstrained track
due to our use of multimodal large language models,
specifically GPT-40-mini* (Menick et al., 2024) and
Gemini 2.5 Flash Lite* (Comanici et al., 2025), as
part of our automated data cleaning pipeline. While
these models are not used during inference, their use
in training data preparation exceeds the pretrained
model restrictions of the constrained track.
Second, our approach is classified as text-only
translation. Although our data cleaning pipeline
leverages visual information to identify and correct
translation errors in the training set, the final trained
model does not use images during inference. At
translation time, the model receives only the En-
glish source text as input, without access to the
corresponding image or bounding box information.
Third, we are domain-unaware, using exclu-
sively the officially provided training data (28,928
examples per language) without incorporating the
full English Visual Genome corpus or any addi-
tional external datasets. Our data cleaning process
operates only on the provided parallel captions, im-
proving their quality without introducing new train-
ing examples.
*https://platform.openai.com/docs/models/
gpt-4o-mini

*https://deepmind.google/models/gemini/
flash-1lite/
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Finally, our system is multilingual, employing
a single IndicTrans2 model that simultaneously
translates from English to all four target languages
(Hindi, Bengali, Malayalam, and Odia). Rather
than training separate pairwise models for each lan-
guage pair, our multilingual approach enables cross-
lingual transfer and parameter sharing across the
related Indic languages (Arivazhagan et al., 2019),
while using FLORES-200 language codes to distin-
guish target languages during generation.

3 Results

We present the results of our two-stage approach:
first analyzing the impact of our automated data
cleaning pipeline on training data quality, then eval-
uating how these improvements translate to trans-
lation performance on the official evaluation and
challenge test sets.

3.1 Data Cleaning Statistics

Our automated judge-corrector pipeline processed
all 28,928 training examples across four target lan-
guages, identifying and correcting quality issues in
19,806 captions (17.1% of total examples). Table 1
summarizes the correction statistics by language.

The correction rates vary significantly across lan-
guages, with Malayalam requiring the most cor-
rections (24.0%) and Odia requiring the fewest
(12.1%). This variation likely reflects differences
in the original annotation processes for each lan-
guage dataset (Parida et al., 2019; Sen et al., 2022).
Across all languages, the majority of corrections
(73.3%, 14,513 out of 19,806) address poor trans-
lation quality that can be resolved without visual
context, while 26.7% (5,290 corrections) involve
visually ambiguous terms requiring multimodal un-
derstanding. The low number of missing captions
(3 total) indicates that the original datasets were
largely complete, with quality issues primarily man-
ifesting as incorrect or unnatural translations rather
than absent captions.

3.2 Translation Performance

Table 2 presents the main results comparing mod-
els trained on original versus corrected data across
three language pairs on both the evaluation set
(1,595 examples) and challenge set (1,400 exam-
ples). We report BLEU (Papineni et al., 2002) and
RIBES (Isozaki et al., 2010) scores, two standard
automatic metrics for evaluating machine transla-
tion quality.

3.2.1 Impact of Data Cleaning

The results demonstrate that data cleaning yields
consistent improvements for English-Bengali
across both test sets, with BLEU score gains of
+1.30 on the evaluation set (42.00 — 43.30) and
+0.70 on the challenge set (44.90 — 45.60). These
improvements are substantial given that Bengali
had a moderate correction rate (16.1%) in the
training data. The challenge set improvements
are particularly noteworthy, as this set specifically
targets ambiguous cases where visual context is
crucial for disambiguation—precisely the type of
errors our vision-guided corrector is designed to
address.

For English-Odia, we observe a +0.60 BLEU im-
provement on the evaluation set (41.00 — 41.60),
though performance on the challenge set shows a
marginal decline of -0.10 points. This mixed result
is notable given that Odia had the lowest correc-
tion rate (12.1%) among all submitted languages,
suggesting that the original Odia training data was
already of relatively high quality. The slight perfor-
mance decrease on the challenge set may indicate
that automated correction can occasionally degrade
high-quality original translations when the error
rate is already low.

English-Hindi shows the smallest improvements,
with identical BLEU scores (42.10) on the evalua-
tion set and only +0.10 improvement on the chal-
lenge set (53.90 — 54.00). However, we observe
consistent RIBES improvements for Hindi on the
evaluation set (+0.0021), indicating better word
ordering despite similar BLEU scores. The mini-
mal BLEU improvements for Hindi may reflect that
this widely-studied language already had relatively
clean training data (16.3% correction rate), limiting
the potential gains from automated cleaning.

3.2.2 Error Type Analysis

Examining the relationship between correction
types and performance gains reveals instructive pat-
terns. Bengali, which showed the largest improve-
ments, had a balanced distribution of error types
(31% visual context, 69% poor translation). This
suggests that both the vision-guided corrections
(handled by GPT-40-mini) and the text-based re-
translations (handled by IndicTrans2) contributed
meaningfully to improved model quality. The fact
that substantial improvements were achieved de-
spite correcting only 16.1% of the training data un-
derscores the importance of targeting high-impact
errors rather than achieving perfect coverage.
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Language Correct Corrected Visual Translation
Hindi 24,201 (83.7%) 4,727 (16.3%) 1,314 3,412
Bengali 24,280 (83.9%) 4,648 (16.1%) 1,436 3,211
Malayalam 21,983 (76.0%) 6,945 (24.0%) 1,507 5,438
Odia 25,442 (87.9%) 3,486 (12.1%) 1,033 2,452
Total 95,906 (83.0%) 19,806 (17.1%0) 5,290 14,513

Table 1: Data cleaning statistics across four languages. “Visual” indicates corrections requiring visual context
(handled by GPT-40-mini), while “Translation” indicates poor translations (handled by IndicTrans2). Percentages

show proportion of total 28,928 examples per language.

Language Pair Model Test Set BLEU RIBES A BLEU
Original Evaluation 42.10 0.815 —
Enelish-Hindi Corrected Evaluation 42.10 0.817 +0.00
& Original Challenge 53.90 0.867 —
Corrected Challenge 54.00 0.865 +0.10
Original Evaluation 42.00 0.759 —
Enclish-Beneali Corrected Evaluation 43.30 0.770 +1.30
& & Original Challenge 4490  0.813 —
Corrected Challenge 45.60 0.809 +0.70
Original Evaluation 41.00 0.847 —
Enelish-Odia Corrected  Evaluation 41.60 0.846 +0.60
& Original Challenge  40.10  0.873 —
Corrected Challenge 40.00 0.870 -0.10

Table 2: Translation performance comparing LoRA finetuning on original versus corrected training data. Bold
indicates best performance for each language pair and test set. A BLEU shows the improvement (+) or degradation

(-) from data correction.

The challenge set results provide evidence for
the value of vision-guided corrections, particularly
for Bengali which showed consistent gains across
both test sets. However, Odia’s slight decline on the
challenge set highlights an important limitation: au-
tomated correction, even with multimodal guidance,
cannot perfectly replicate human judgment and may
occasionally introduce errors when applied to al-
ready high-quality translations. This suggests that
automated cleaning provides the greatest benefit for
datasets with moderate to high error rates, while
datasets with very low error rates (such as Odia at
12.1%) may see diminishing or mixed returns.

3.2.3 Comparison to Full Finetuning
Approaches

Our LoRA-based approach represents a parameter-
efficient alternative to full finetuning, enabling
rapid experimentation and comparison between
original and corrected training data. While our
results demonstrate clear benefits from data clean-
ing using LoRA, we note that full finetuning of
IndicTrans2 could potentially yield even stronger
performance. The IITP-AI-NLP-ML team, which
achieved top rankings on multiple leaderboards in
this shared task, employed full finetuning of Indic-
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Trans?2 across all language pairs. This suggests that
the improvements we observe from data cleaning
with LoRA likely represent a lower bound on the po-
tential gains, and that combining our data cleaning
approach with full finetuning could yield further
performance improvements.

3.3 Limitations and Future Work

Test set quality. An important limitation of our
evaluation is that we applied data cleaning only to
the training set. Since the evaluation and challenge
test sets were curated using the same annotation
process as the training data, they likely contain sim-
ilar quality issues—mistranslations, visual ambi-
guities, and unnatural expressions. The presence
of errors in the reference translations could arti-
ficially suppress our reported BLEU and RIBES
scores, as these metrics penalize deviations from
the references even when our model’s output may
be more accurate or natural than the reference itself.
If the test set references were corrected using our
pipeline or through manual annotation by native
speakers, the true performance of our corrected-
data model would likely be higher, and the gap
between original and corrected models would be



more pronounced. This represents an important
direction for future work: applying our data clean-
ing methodology to create higher-quality evaluation
benchmarks for low-resource multimodal transla-
tion.

Language coverage. Due to resource and time
constraints, we submitted results for only three of
the four target languages (Hindi, Bengali, and Odia),
omitting Malayalam. Given that Malayalam exhib-
ited the highest correction rate (24.0%) in our data
cleaning analysis, it represents a particularly inter-
esting case for future investigation. The substantial
number of corrections in Malayalam suggests that
this language pair could benefit significantly from
our approach, and we encourage future work to val-
idate this hypothesis.

Model capacity. Our experiments focused ex-
clusively on parameter-efficient LoRA finetuning
rather than full model finetuning. While this en-
abled rapid experimentation and fair comparison
between original and corrected data, it likely under-
estimates the full potential of our data cleaning ap-
proach. Combining our corrected training data with
full finetuning could yield additional performance
gains, as evidenced by the strong results achieved
by teams employing full finetuning strategies.

3.4 Key Takeaways

Our experimental results validate three main find-
ings:

(1) Data quality significantly impacts transla-
tion performance: Across three language pairs,
training on corrected data yields consistent im-
provements or competitive performance compared
to original data, with Bengali showing substan-
tial gains (+1.30 BLEU on evaluation, +0.70 on
challenge). This demonstrates that automated data
cleaning can meaningfully improve translation qual-
ity for low-resource languages, even when correct-
ing a relatively small proportion (16-17%) of the
training data.

(2) Correction effectiveness varies by initial
data quality: Languages with moderate error rates
(Bengali: 16.1%) and balanced error distributions
benefit most from automated correction, while lan-
guages with very low error rates (Odia: 12.1%)
show more modest or mixed improvements. This
suggests that automated cleaning provides the great-
est value for datasets with known quality issues, and
that careful analysis of error rates should guide the
decision to apply automated correction.

(3) Vision-guided correction addresses a

real need: The improvements on the challenge
set—specifically designed to test ambiguous cases
requiring visual context—validate the core hypothe-
sis that multimodal language models can effectively
resolve translation ambiguities that text-only ap-
proaches miss. However, the mixed results on some
language pairs indicate that automated multimodal
correction works best when applied to datasets
with moderate error rates rather than already high-
quality data. The success on Bengali (+0.70 BLEU
on challenge set) demonstrates that when error rates
justify intervention, vision-guided correction pro-
vides measurable value.

4 Conclusion

We presented a vision-guided judge-corrector sys-
tem that addresses training data quality in low-
resource multimodal translation. Our automated
pipeline processed 28,928 examples across four lan-
guages, correcting 17.1% of captions through in-
telligent routing between multimodal LLMs (for
visual ambiguities) and IndicTrans2 (for translation
errors). LoRA finetuning on corrected data yields
measurable BLEU improvements: +1.30 for Ben-
gali (eval), +0.70 (challenge), +0.60 for Odia (eval),
and +0.10 for Hindi (challenge).

Our approach demonstrates that automated data
cleaning can meaningfully improve low-resource
MT, particularly for datasets with moderate error
rates. However, important limitations remain: test
set quality issues likely suppress reported scores,
automated correction cannot perfectly replicate hu-
man judgment (as seen in Odia’s mixed results),
and our LoRA-only experiments likely underesti-
mate the full potential when combined with full
finetuning.

Future work should focus on three key directions:
(1) human evaluation by native speakers to vali-
date improvements beyond automatic metrics, (2)
applying our pipeline to create higher-quality test
(eval and challenge) sets for more accurate evalu-
ation, and (3) combining corrected data with full
model finetuning to validate whether quality im-
provements compound with increased capacity.

We hope that our publicly released dataset, code,
and models provide a foundation for future re-
search in automated quality assurance for multi-
modal datasets, potentially enabling more robust
and equitable Al systems across diverse languages.
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A Dataset and Task Description

We utilize the official datasets provided by the
WAT 2025 organizers for the English-to-Indic Mul-
timodal Translation Task. The datasets are derived
from the Visual Genome corpus (Krishna et al.,
2017) and consist of image-caption pairs across
four target languages: Hindi (Parida et al., 2019),
Bengali (Sen et al., 2022), MalayalamS, and Odia®.
Each example comprises an image, bounding box
coordinates specifying a rectangular region of inter-
est, an English caption describing that region, and
corresponding translations in the target languages.

A.1 Task Definition

The task requires generating captions in the target
language given three inputs: (1) an image, (2) a
rectangular region within that image specified by
bounding box coordinates, and (3) an English cap-
tion describing the visual content of that region.
Participants may choose to utilize any combination
of these inputs, leading to three possible translation
modalities: text-only translation (using only the En-
glish caption), image-only captioning (using only
the visual information), or multimodal translation
(leveraging both text and image).

A.2 Dataset Statistics

Task Source

English—Hindi Hindi Visual Genome 1.1 (Parida
et al., 2019)

English—Bengali Bengali Visual Genome 1.0 (Sen
et al., 2022)

English—Malayalam Malayalam Visual Genome 1.0’
English—Odia Odia Visual Genome 1.0°

Table 3: Tasks and their corresponding dataset sources.

The training set contains 28,928 examples per
language, while three evaluation sets are provided
for assessment: (1) a development set (Dev) with
998 examples for model validation, (2) an evalua-
tion set (Eval) with 1,595 examples for primary as-
sessment, and (3) a challenge set (Challenge) with
1,400 examples specifically designed to test am-
biguous cases where visual context is crucial for
disambiguation (Parida et al., 2024). Our official

Shttps://lindat.mff.cuni.cz/repository/
items/7ed34663-0bd4-4163-8ae9-89b2a8323269

*https://lindat.mff.cuni.cz/repository/
items/58e6a33d-4f0f-413b-a3f3-c921e0489022

"https://ufal.mff.cuni.cz/
malayalam-visual-genome

$https://ufal.mff.cuni.cz/
odia-visual-genome
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submissions were evaluated on both the Eval and
Challenge sets.

Table 3 shows the data sources of datasets for
each task. Table 4 shows the parallel corpus statis-
tics across the various languages.

B Prompts


https://lindat.mff.cuni.cz/repository/items/7ed34663-0bd4-4163-8ae9-89b2a8323269
https://lindat.mff.cuni.cz/repository/items/7ed34663-0bd4-4163-8ae9-89b2a8323269
https://lindat.mff.cuni.cz/repository/items/58e6a33d-4f0f-413b-a3f3-c921e0489022
https://lindat.mff.cuni.cz/repository/items/58e6a33d-4f0f-413b-a3f3-c921e0489022
https://ufal.mff.cuni.cz/malayalam-visual-genome
https://ufal.mff.cuni.cz/malayalam-visual-genome
https://ufal.mff.cuni.cz/odia-visual-genome
https://ufal.mff.cuni.cz/odia-visual-genome

Set Sentences English Hindi Bengali Malayalam Odia

Train 28,930 143,164 145,448 113,978 107,126 141,652
Dev 998 4,922 4,978 3,936 3,619 4912
Test 1,595 7,853 7,852 6,408 5,689 7,734
Challenge 1,400 8,186 8,639 6,657 6,044 8,100
Total 32,923 164,125 166917 130,979 122,478 162,398

Table 4: Parallel corpus statistics (word counts) for each dataset split across different language pairs.

Judge Module: Caption Quality Evaluation Prompt

System Role: You are an expert multilingual translator evaluating Indian language captions.
Primary Task: Determine if the target language caption correctly represents what’s shown in the image and accurately
conveys the English caption meaning.

Focus on MAJOR issues — ignore minor stylistic differences:

Category 1: VISUAL CONTEXT NEEDED — Translation depends on visual information

¢ Ambiguous words with multiple meanings (e.g., “dish” = food vs. container)
* Gender-specific terms requiring visual verification

* Spatial/directional terms (left/right/above/beside)

* Physical attributes (color, size, material, quantity)

* Object types/categories visible in image

Category 2: POOR TRANSLATION — Incorrect, incomplete, or unnatural

* Mistranslation or wrong meaning (semantic error)

* Missing key information from English

» Severe grammatical errors making it hard to understand

* Completely unnatural phrasing (not just stylistic preference)
* Wrong script or excessive script mixing

IGNORE these minor issues — mark as CORRECT:
* Minor punctuation differences (|, ., etc.)
* Optional articles or particles (a/the/one equivalents)
* Stylistic word order variations (both correct)
* Minor postposition variations if meaning is clear

Special handling: Empty captions — mark “incorrect” with “visual_context_needed”

Required Outputs:
e status: “correct” or “incorrect”
e reason: “visual_context_needed”, “poor_translation”, or “none”
e confidence: Score 0-1
¢ explanation: Brief justification citing the specific issue (1-2 sentences)

Table 5: Judge module prompt template. The judge evaluates caption quality using visual context and classifies
captions into three categories: correct, requiring visual context for disambiguation, or poor translation quality.
Explicit instructions guide the model to focus on major issues while ignoring minor stylistic variations.
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Corrector Module: Natural Caption Generation Prompt

System Role: Expert translator creating natural Indian language captions.
Generation Process:
1. Analyze the IMAGE to understand visual context
2. Use visual details to resolve ambiguities (e.g., ’dish” = food vs. container)
3. Create natural captions that native speakers would use
4. Match English meaning while respecting target language style

Target Language Length Guidelines (be concise, not verbose):
e Hindi: Similar word count to English
* Bengali: ~20% fewer words than English
¢ Malayalam: ~25% fewer words than English
* Odia: Similar word count to English

Important Note: Original caption may be wrong/missing — trust the IMAGE first

Required Outputs:
* corrected_caption: Natural, accurate caption in target language

¢ explanation: What you corrected and why (1-2 sentences)

Table 6: Corrector module prompt template. The corrector generates natural captions using visual evidence
with language-specific length guidelines to ensure native-like output. The model is instructed to prioritize image

information when the original caption may be incorrect or missing.
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