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Abstract

Multimodal Machine Translation aims to en-
hance conventional text-only translation sys-
tems by incorporating visual context, typically
in the form of images paired with captions.
In this work, we present our submission to
the WAT 2025 Multimodal Translation Shared
Task, which explores the role of visual infor-
mation in translating English captions into four
Indic languages: Hindi, Bengali, Malayalam,
and Odia. Our system builds upon the strong
multilingual text translation backbone Indic-
Trans, augmented with a CLIP-based selective
visual grounding mechanism. Specifically, we
compute cosine similarities between text and
image embeddings (both full and cropped re-
gions) and automatically select the most seman-
tically aligned image representation to integrate
into the translation model. We observe that
overall contribution of visual features is ques-
tionable. Our findings reaffirm recent evidence
that large multilingual translation models can
perform competitively without explicit visual
grounding.

1 Introduction

Multimodal Machine Translation (MMT) extends
traditional text-only translation by incorporating
auxiliary visual information typically an image
paired with the source sentence. The motivation
behind this integration is that images can provide
crucial contextual clues that help resolve linguistic
ambiguities and improve translation accuracy. For
example, consider the English sentence “The man
is standing near the court.” Without additional con-
text, the word “court” could refer to a sports court
(e.g., tennis or basketball), or a legal court. A text-
only translation model may incorrectly choose one
sense based solely on linguistic priors. However, if
the corresponding image depicts a tennis court, the
visual cue instantly clarifies the intended meaning,
guiding the model toward the correct translation in
the target language. This exemplifies how visual
grounding can disambiguate polysemous words
that textual context alone may not fully resolve.

“Equal contribution.

Although several studies have shown that incor-
porating image information improves translation
performance, most prior work trains their MMT
models from scratch, learning both textual and vi-
sual representations jointly. These models often re-
port improvements over text-only Neural Machine
Translation (NMT) systems trained under similar
conditions. However, while the relative gains ap-
pear significant, the absolute translation scores re-
main low compared to strong pretrained text-only
baselines. Moreover, in many benchmark datasets,
intra-sentence textual context is already sufficient
to produce correct translations, reducing the actual
necessity of visual input. Consequently, it remains
unclear whether the observed improvements truly
arise from visual grounding or from differences in
model training setups.

Another source of debate in MMT lies in the
choice of visual input. Given an image, its caption,
and a cropped version of the image focused specifi-
cally on the captioned region, should the model use
the full image or only the cropped area? The full
image may offer richer contextual information but
might also introduce irrelevant details. Conversely,
the cropped image may better correspond to the
caption but risk losing broader scene semantics.

To address this challenge, we propose a selec-
tive visual alignment approach that automatically
chooses the most relevant visual representation for
translation. Specifically, we extract CLIP embed-
dings from both the full and cropped versions of
each image and compute their cosine similarity
with the corresponding text embedding. The im-
age version that exhibits higher textual similarity is
selected and passed to the translation system. Our
MMT model integrates these CLIP-based features
through a Selective Attention mechanism, which
performs cross-attention between the image and
text representations, allowing the model to focus
on visually aligned information.

We use IndicTrans as our base model a strong
pretrained multilingual translation system covering
multiple Indic languages such as Hindi, Bengali,
Malayalam, and Odia. Interestingly, while our ap-
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Figure 1: Flow diagram illustrating the image—text similarity computation using CLIP ViT-B/16. The model
compares full-image and cropped-image features with text embeddings via cosine similarity, selecting the image
vector with the highest similarity score; it is further forwarded to the translation model

proach achieves high absolute translation quality,
we find that incorporating visual features does not
consistently improve results compared to the text-
only baseline. This observation is consistent with
previous findings in the literature. Prior work (Li
et al., 2022) has also questioned the real contribu-
tion of visual information in multimodal translation
systems. In this paper, we present the observations
in the WAT 2025 Multimodal Translation Task,
aiming to further investigate this phenomenon in a
competitive shared-task setting. Our system builds
upon the Selective Attention architecture (Li et al.,
2022; Gain et al., 2025), which effectively inte-
grates visual features into a Transformer-based
translation framework. We extend this system in
two key ways: (i) we retrain the model to addition-
ally support the Odia language, thereby expanding

its coverage, and (ii) we incorporate an image selec-
tion mechanism that compares the cosine similarity
between text embeddings and CLIP features ex-
tracted from both the full and cropped versions
of each image, forwarding the representation with
higher textual alignment. This selective image in-
tegration allows the model to better exploit visual
cues when relevant, while avoiding unnecessary
noise from less informative image regions.

2 Related Works

Multimodal Neural Machine Translation (MMT)
seeks to integrate both textual and visual modalities
in order to improve translation quality-particularly
by helping to disambiguate linguistic phenomena
or provide grounding beyond the source text. Early
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pioneering studies investigated the use of image
features (often extracted from convolutional neural
networks) alongside an encoder—decoder architec-
ture with attention over both text and image fea-
tures (Elliott et al., 2016),(Calixto et al., 2017). It
was also been observed thaty that MMT systems
could leverage visual input under conditions of de-
graded textual context, but that gains were modest
when textual input alone was sufficient (Caglayan
et al., 2019).

Subsequent research questioned the actual utility
of the visual modality in standard benchmarks, not-
ing that when images were replaced by mismatched
or random images, model performance often did
not degrade significantly. The authors in (Li et al.,
2021) highlighted that existing MMT datasets and
architectures might encourage models to ignore the
image input altogether. Related work also explored
the integration of visual features via fused or hierar-
chical attention mechanisms (Yao and Wan, 2020)
and in low-resource scenarios where the textual
signal is weaker.

Multimodal translation in Indian languages has
been underexplored, with most studies focusing
on the English—Hindi pair. The majority of these
works are adaptations of architectures originally
designed for high-resource settings.

The earliest work on integrating visual infor-
mation into Indian language translation can be
traced to the approach proposed in (Laskar et al.,
2020), which utilized a doubly attentive decoder
capable of simultaneously attending to both tex-
tual and visual modalities. This model was later
refined in (Laskar et al., 2021) through additional
text-only pre-training on the II'TB parallel corpus
(Kunchukuttan et al., 2018) and data augmentation
using phrase pairs generated with the Giza++ tool
(Marchisio et al., 2022). The visual representa-
tions were obtained using a pre-trained VGG19
network (Simonyan and Zisserman, 2015). The
same framework was subsequently extended to the
English—Bengali language pair in (Laskar et al.,
2022), where the model achieved BLEU scores of
43.90 and 28.70 on the Test and Challenge sets,
respectively.

Following these early studies, the work pre-
sented in (Gupta et al., 2021) introduced an al-
ternative strategy that enriched textual input with
object-level visual cues. An object detection model
was employed to identify entities within the im-
age, and their class labels were appended to the
source sentence to provide additional semantic con-

text. The system, built upon mBART (Liu et al.,
2020), achieved state-of-the-art performance for
English—Hindi translation; however, the improve-
ment was primarily attributed to large-scale pre-
training rather than genuine multimodal fusion.
Specifically, the model exhibited a modest gain
of +0.52 BLEU on the standard test set while show-
ing a slight decline of 0.06 BLEU on the Challenge
set. A subsequent extension of this framework to
English—Bengali and English—Malayalam transla-
tion was reported in (Parida et al., 2022), yielding
comparable trends.

More recent work in (Gain et al., 2021) ex-
plored a multimodal transformer architecture for
English—Hindi translation. The study demonstrated
that focusing on cropped regions of the image cor-
responding to the textual referents produced more
accurate translations than utilizing full-image fea-
tures. Later, the methodology was revisited in (Shi
and Yu, 2022), which introduced refined prepro-
cessing steps such as the removal of duplicate and
grayscale images. By employing ResNet50-based
features (He et al., 2015) and optimized hyperpa-
rameters, this system achieved BLEU scores of
42.29 and 42.70 on the Test and Challenge sets, re-
spectively, highlighting the significant role of data
quality and preprocessing in multimodal translation
performance.

Overall, while these studies represent significant
steps toward integrating visual information in In-
dian language translation, they collectively indicate
that the performance gains from multimodality re-
main limited. Most improvements appear to arise
from better pre-training and data curation rather
than from truly leveraging visual grounding.

3 Methodology

3.1 Datasets

The dataset used in this work is part of the WAT
2025 Multimodal Translation shared task (Parida
et al., 2024) and is designed to facilitate research on
multimodal translation between English and multi-
ple Indic languages. Each data instance comprises
an English caption paired with its reference trans-
lations in four target languages: Hindi (Parida and
Bojar, 2020) , Bengali (Sen et al., 2022), Malay-
alam (Parida and Bojar, 2021), and Odia (Parida
et al., 2025).

In addition to the text pairs, each example is
associated with an image that visually represents
the described scene. To support fine-grained visual
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Avg. Tgt Words

Subset Sentences Avg. Src (en)

hi bn ml or
train 28930 495 503 394 370 490
test 1595 492 492 402 3.57 485
valid 998 493 499 394 3.63 492
challenge 1400 585 6.17 476 432 579

Table 1: Statistics of the multilingual parallel datasets showing the number of sentences and average word counts

for English source and four target languages.

grounding, the dataset also provides bounding box
coordinates corresponding to the region of interest
(ROI) within the image that the caption explicitly
refers to.

The multimodal nature of this dataset allows
translation models to learn both linguistic map-
pings and visual alignments, thereby grounding the
translation process in contextual image informa-
tion. Table 1 presents the detailed statistics of the
dataset, including the number of sentence pairs and
the average word counts for the English source and
the four target languages. The corpus contains ap-
proximately 29K training examples, along with
dedicated validation, test, and challenge subsets
to facilitate comprehensive evaluation.

This multimodal setup provides a valuable
benchmark for assessing whether and how visual
information contributes to disambiguating textual
input during translation, particularly in resource-
constrained Indic language settings.

3.2 Experimental Setup

For the multimodal experiments, we enrich the
textual input with visual representations extracted
from the images paired with the parallel data. To
obtain these representations, we use CLIP ViT-
B/16 encoder to compute fixed-dimensional embed-
dings for every image. The encoder outputs a 512-
dimensional feature vector that captures high-level
semantic attributes relevant for translation. These
features are pre-computed offline to avoid addi-
tional computational overhead during model train-
ing. All models are trained using the Fairseq (Ott
et al., 2019) framework and adapted from (Gain
etal., 2025) !, following a consistent configuration
across both text-only and multimodal settings to
facilitate controlled comparison. Training is car-
ried out using the inverse square root learning rate
schedule with 4,000 warm-up steps, Adam opti-
mization with 8; = 0.9 and 8 = 0.98, and label-

"https://github.com/babangain/indicMMT/

smoothed cross-entropy with a smoothing factor of
0.1. We constrain the maximum source and target
lengths to 210 tokens and train for up to 20,000 up-
dates with mixed-precision (FP16). A dropout rate
of 0.3 is applied uniformly across the model, and
early stopping is triggered based on validation loss
with a patience of 5 epochs. For the multimodal
system, the base Transformer architecture is aug-
mented with an image-aware fusion module, where
the pre-extracted CLIP features are injected into
the encoder using a shallow self-attention fusion
layer. Additional dropout is applied to the image
features and the fusion attention to enhance robust-
ness. Apart from this cross-modal extension, all
hyperparameters remain consistent with the text-
only baseline. Decoding is performed using beam
search with a beam width of 5 and a batch size of 64.
All predictions undergo standard post-processing,
including the removal of subword segmentation
markers.

3.3 Visual Feature Extraction

We employ CLIP (Radford et al., 2021), a vi-
sion—language model developed by OpenAl, to in-
tegrate visual grounding into our translation frame-
work. CLIP learns joint representations of images
and text through contrastive learning on large-scale
image—caption pairs, mapping both modalities into
a shared embedding space where semantic simi-
larity can be effectively measured. This allows
the model to capture fine-grained correspondences
between visual and linguistic concepts.

In our setup, each data instance contains both a
full image and a cropped region specified by bound-
ing box coordinates provided in the dataset. We
use CLIP to extract embeddings for both these vari-
ants one representing the global context and the
other focusing on the region of interest. The text
caption accompanying the image is also encoded
using CLIP’s text encoder, resulting in a dense se-
mantic representation. To determine which visual
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Model Name Image Used Eval. Dataset Bengali Hindi Malayalam  Odia Average
Textual finetune X Eval Set 49.50 45.40 51.20 64.30 52.60
Multimodal finetune v Eval Set 48.70 (-0.80)  44.90 (-0.50)  50.70 (-0.50)  63.50 (-0.80) 51.95 (-0.65)
Textual finetune X Challenge Set  47.50 56.10 40.30 55.40 49.83
Multimodal finetune v Challenge Set  47.00 (-0.50)  56.60 ( ) 3890 (-1.40) 55.20(-0.20) 49.43 (-0.40)

Table 2: BLEU Score of our models on different Indic languages from WAT evaluations.

Model Name Image Used Eval. Dataset Bengali Hindi Malayalam Odia Average
Textual finetune X Eval Set 80.17 83.50 76.08 90.65 82.60
Multimodal finetune v Eval Set 79.97 83.08 76.55 90.36 82.49
Textual finetune X Challenge Set  81.97 87.09 75.73 91.68 84.12
Multimodal finetune v Challenge Set  81.54 87.22 7494 91.60 83.83

Table 3: RIBES Score of our models on different Indic languages from WAT evaluations.

variant best aligns with the caption, we compute
two cosine similarity scores: (a) between the text
embedding and the full-image embedding, and (b)
between the text embedding and the cropped-image
embedding. Since it is not known a priori which of
the two visual representations (global or localized)
provides more relevant contextual cues, we adopt
a simple yet effective heuristic selecting the image
feature that yields the higher similarity score with
the text. This strategy allows the system to auto-
matically adapt to the most semantically aligned
visual cue for each instance, ensuring that the trans-
lation model attends to the most meaningful image
content while ignoring irrelevant background noise.
The overall CLIP-based image selection process is
illustrated in Figure 1.

3.4 IndicTrans

IndicTrans (Ramesh et al., 2023) is a multilin-
gual neural machine translation model designed for
translation between English and multiple Indic lan-
guages. It is trained on large-scale parallel corpora
and optimized for high-quality translation across di-
verse language pairs such as Hindi, Bengali, Malay-
alam, and Odia. Leveraging a transformer-based ar-
chitecture and multilingual pretraining, IndicTrans
achieves strong performance even in low-resource
scenarios, making it a robust baseline for multilin-
gual and multimodal translation research. In this
work, we adopt IndicTrans as the underlying trans-
lation backbone due to its strong pretraining across
Indic languages and its ability to provide robust
sentence-level representations and cross-lingual
transfer capabilities, making it a suitable founda-
tion for multimodal extensions.

3.5 Model Architecture

We use the Selective Attention architecture (Li
et al., 2022) for incorporating visual information
into our multimodal translation framework. The
model combines the visual features extracted as
described in Section 3.3 with the pretrained Indic-
Trans model detailed in Section 3.4. This architec-
ture enables fine-grained alignment between image
regions and text tokens through a combination of
gated fusion and selective attention mechanisms.

Formally, let the textual input sequence be Xiext
and the corresponding image (either full or cropped,
selected via the CLIP-based mechanism) be Xjjp,.
The IndicTrans encoder processes the source text
to obtain the hidden representation:

Hexy = TransformerEncoder( Xiext),

©)

while the visual encoder (e.g., ViT) produces image
representations:

Himg = W - ViT(Ximg), 2)
where W is a projection matrix that matches the
dimensionality of image and text features.

Following Li et al. (2022), a gated fusion mech-
anism is used to control the relative contribution of
the two modalities:

A= U(UHtext + VHimg)v
Hout - (1 - /\) O] Htext +A0O Himg;

3)
“)

where U and V are trainable parameters and o is
the sigmoid activation. The gating variable A regu-
lates the degree to which visual information influ-
ences the textual representation, allowing adaptive
fusion based on semantic relevance.
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Image

Source

date when taken in yellow

knife block sitting on
counter with knives in it

player running on court

date when the photo was taken is
depicted in yellow. However, the
reference is not reflecting this.
Although the “text+image”
translation meaning is somewhat

Unimodal: Awkward and
incorrect.

Multimodal: Clearer and
closer to ground truth, just
slightly verbose.

Ground Truth | ST T T (ST 2 AT elleh H AT AT I T el g3 fGermey
FRBX WIS
Unimodal T Selieh H AT A [CEIEEAA LRGN
O ERRECEGIC R ER) FER WIS
Multimodal T TOH ST Sifay SHH I & T FEX T | HIE R s g31 ey
& 9T, selleh
Explanation The original text conveys that the Incorrect verb, says “walking”

instead of “running” in case
of unimodal

accurate, the real improvement is
not captured as due to reference.

Figure 2: Examples of outputs from unimodal and multimodal model. The major improvements are generally from

grammatical issues.

To capture localized visual textual correspon-
dences, the model further applies a Selective Atten-
tion layer that correlates textual queries with image
patches:

QKT
Hipg = Softmax < N V, 3)

where () is derived from Hi.y, and K and V are
obtained from Hjyg. The attention weighted vi-
sual representation Hf‘;fg is subsequently used in
the gated fusion equations above, ensuring that the
model focuses on semantically relevant visual re-

gions while down-weighting background noise.

The resulting fused representation Hy, is then
provided to the IndicTrans decoder for translation
generation. In summary, our framework directly
employs the Selective Attention architecture (Li
et al., 2022), integrating it with IndicTrans and
CLIP-based image selection to ground translation
in visually relevant content.

4 Results and Analysis

We evaluated our proposed CLIP-based multimodal
translation approach on the English—Indic Multi-
modal Translation Task using four target languages:
Bengali, Hindi, Malayalam and Odia. The results
are reported in terms of BLEU and RIBES scores
on both the Eval and Challenge sets, as shown in
Table 2 and Table 3. The Textual finetune mod-
els correspond to the IndicTrans baseline trained
purely on text, while the Multimodal finetune mod-
els integrate visual features selected through our
CLIP-based image—text similarity mechanism.

4.1 Quantitative Evaluation

The BLEU results (Table 2) show that the text-
only IndicTrans baseline achieves strong perfor-
mance across all languages, with average BLEU
scores of 52.60 on the Eval Set and 49.83 on the
Challenge Set. Incorporating visual information
through CLIP-based multimodal fine-tuning yields
small but consistent variations across languages.
On the Eval Set, multimodal finetuning slightly de-
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creases the average BLEU by 0.65 points, while
on the Challenge Set, it results in a marginal aver-
age reduction of 0.40 points. Interestingly, Hindi
demonstrates a minor improvement (+0.50 BLEU)
under noisy or out-of-domain conditions, suggest-
ing that visual grounding may be helpful when
textual cues are ambiguous or degraded.

For other languages, the observed differences
remain within +1 BLEU, which aligns with prior
findings that visual information contributes weakly
to translation quality when the text provides suffi-
cient context. Malayalam and Odia, in particular,
show small declines, possibly due to the limited
correlation between the visual content and sentence
semantics in the dataset, leading to minor noise in-
troduction during fusion.

The RIBES results (Table 3) mirror these trends.
The textual baseline achieves an average RIBES of
82.60 and 84.12 on the Eval and Challenge sets,
respectively. The multimodal variants record com-
parable averages of 82.49 and 83.83, indicating
no statistically significant degradation. These con-
sistent RIBES values suggest that the inclusion of
visual embeddings does not disrupt sentence-level
reordering or fluency, even though it provides lim-
ited benefits to lexical adequacy.

4.2 Cross-Language Observations

Among all Indic languages, Hindi exhibits the most
stable and slightly positive response to multimodal
cues, showing improvements in both BLEU (+0.50)
and RIBES (+0.13) on the Challenge Set. This is
likely due to Hindi’s richer contextual grounding in
the shared training corpus and its relatively better
alignment with English sentence structures. In con-
trast, Malayalam shows the largest negative shift,
consistent with its morphological complexity and
looser syntactic alignment, which may hinder ef-
fective multimodal fusion.

5 Conclusion

This work presented a systematic investigation of
the impact of visual information in multilingual
MMT for Indic languages. Building upon the
strong text-only IndicTrans model, we proposed
a CLIP-based selective visual grounding mecha-
nism that dynamically identifies the most seman-
tically aligned image representation between the
full and cropped variants. We observed that visual
grounding offers limited gains in translation quality
compared to strong text-only baselines. While the

absolute BLEU and RIBES scores remain competi-
tive across all languages, the improvements from
multimodal finetuning are modest and often lower
than text-only model. These findings are consistent
with recent studies questioning the necessity of vi-
sual input in multimodal translation, particularly
when models are pretrained on large-scale textual
corpora.
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