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Abstract

Information extraction (IE) from scientific
literature plays an important role in many
information-seeking pipelines. Large Lan-
guage Models (LLMs) have demonstrated
strong zero-shot and few-shot performance on
IE tasks. However, there are challenges in prac-
tical deployment, especially in scenarios that
involve sensitive information, such as industrial
research or limited budgets. A key question is
whether there is a need for a fine-tuned model
for optimal domain adaptation (i.e., whether
in-domain labelled training data is needed, or
zero-shot to few-shot effectiveness is enough).
In this paper, we explore this question in the
context of IE on scientific literature. We fur-
ther consider methodological questions, such as
alternatives to cloud-based proprietary LLMs
(e.g., GPT and Claude) when these are unsuit-
able due to data privacy, data sensitivity, or
cost reasons. This paper outlines empirical re-
sults to recommend which locally hosted open-
source LLM approach to adopt and illustrates
the trade-offs in domain adaptation.

We focus on several instruction-tuning frame-
works leveraging IE benchmark datasets to cap-
ture task-specific knowledge whilst maintain-
ing model generalisability. We refer to this
class of LLM models as Specialised LLMs (s-
LLMs). We show that instruction-tuned (IE
task-adapted) s-LLMs can outperform open-
source and proprietary LLMs for entity extrac-
tion from scientific documents. Furthermore,
this improvement gain is substantial, highlight-
ing the value of the in-domain (continual) fine-
tuning.

1 Introduction

Information Extraction (IE) from the scientific
literature (e.g., scientific documents, technical
reports) is a critical component of scientific
information-seeking pipelines (Luan et al., 2018;
Nasar et al., 2018; Cai et al., 2025). IE supports
tasks such as knowledge-base construction (e.g.,

BRENDA (Chang et al., 2021) and ChEMBL (Pa-
padatos et al., 2015)), advancing knowledge dis-
covery (Horawalavithana et al., 2022), and support-
ing predictive modelling (Li et al., 2022). In such
pipelines, Named Entity Recognition (NER) is of-
ten the initial step used to extract structured output
from unstructured text, enabling downstream tasks,
such as relation extraction (RE) (Luan et al., 2018)
or knowledge-graph construction (Zhang and Soh,
2024). As a result, improving NER accuracy is crit-
ical, as errors introduced at this stage can propagate
and impact the reliability of the entire pipeline.

As IE pipelines evolve, they are increasingly
designed as agentic systems, where multiple spe-
cialised models, or agents, collaborate to complete
complex tasks (Belcak et al., 2025; Sharma and
Mehta, 2025). Within such systems, smaller fine-
tuned models play a key role: they can be assigned
to specific subtasks, such as NER, RE, or valida-
tion, and interact with other agents to balance ac-
curacy, efficiency, and scalability. In this context,
NER is not only a technical bottleneck but also a
foundational capability for multi-agent scientific
systems, motivating the study of models that can be
adapted to domain-specific tasks while remaining
lightweight and composable.

Recent advances in large language models
(LLMs) such as GPT-51 and Claude 3.7 Sonnet2

have improved our ability to extract information
from scientific documents. Commercial APIs
built in proprietary LLMs offer a strong perfor-
mance. Using these models becomes problematic,
however, in scenarios that involve sensitive data
(e.g., biomedical records, confidential industrial
research), as privacy cannot be guaranteed. Conse-
quently, many research and industrial settings rely
on open-source models as a practical alternative.

Although open-source LLMs provide significant

1https://openai.com/gpt-5
2https://www.anthropic.com/news/claude-3-7-sonnet
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flexibility, their zero-shot performance for IE tasks
often remains insufficient for practical IE scenar-
ios, as errors propagate to downstream tasks. In-
context learning (ICL) enables task and domain
adaptation through the inclusion of prototypical
examples in the prompt (Li et al., 2023; Ghosh
et al., 2024) without actually performing super-
vised learning (no parameter update) called few-
shot learning. While ICL markedly improves over
zero-shot performance, studies show that it still
lags behind state-of-the-art results for IE tasks (Li
et al., 2023; Ma et al., 2023; Xu et al., 2024; Wad-
hwa et al., 2023; Wan et al., 2023; Gao et al., 2023;
Jiao et al., 2023; Huang et al., 2024; Wang et al.,
2024; Gui et al., 2024b). For the domain of science
literature, similar trends have been observed; ICL
improves results but does not match supervised
fine-tuning models (SLM and LLM) (Xiao et al.,
2024; Zhou et al., 2024; Li et al., 2024; Zhang
et al., 2025b), and simpler fine-tuned models (e.g.,
RoBERTa (Liu et al., 2019)) can outperform LLMs
using ICL (Jimenez Gutierrez et al., 2022; Bölücü
et al., 2023).

To bridge this gap, researchers increasingly turn
to instruction-tuned LLMs for IE, which we refer
to as specialised LLMs (s-LLMs). These mod-
els are trained using instruction-tuning on task-
specific benchmark datasets (Zhou et al., 2024;
Gui et al., 2024b; Wang et al., 2023; Zhang et al.,
2025a), where each training instance pairs an in-
struction, an input text, and a structured output
that reflects the benchmark’s annotation scheme.
Instruction-tuning provides task-level adaptation
and enhances zero- and few-shot generalisation,
while still enabling local deployment—an essential
requirement for domains involving sensitive or pro-
prietary data. Typically built on open-source LLMs
such as Llama3 and Qwen4, s-LLMs provide cost-
effective alternatives to proprietary systems like
GPT-4 (Gui et al., 2024b,a; Yuan et al., 2025), mak-
ing them suitable for applications such as industrial
research.

The s-LLMs require a large set of bench-
mark datasets for instruction-tuning, which is not
straightforward and requires substantial compu-
tational resources. Therefore, it is not practical
to instruction-tune a new model for each conceiv-
able domain for IE. For this reason, in this study,
we evaluate the adaptability of already instruction-

3https://huggingface.co/meta-llama
4https://huggingface.co/Qwen

tuned IE-specialised models to scientific domains.
Specifically, we focus on three examples of this
class of approach: IEPile (Gui et al., 2024b),
UniNER (Zhou et al., 2024), and YAYI-UIE (Xiao
et al., 2024) (Section 3). These models have been
instruction-tuned using a collection of datasets, in-
cluding scientific datasets (see Table 6), and are
designed to generalise across a wide range of IE
tasks (e.g., NER, RE, and Event Extraction (EE))
and domains (e.g., social media, biomedical).

Hence, we investigate the following research
questions.

• RQ1: How well do s-LLMs adapt to the sci-
entific NER task, a subtask of IE, compared
to the out-of-the-box (open-source and propri-
etary) LLMs?

• RQ2: What is the additional performance
gain of continual (in-domain) tuning of s-
LLMs on specific domains compared to their
open-source (vanilla) counterparts?

To address the research questions, we evalu-
ate the performance of these models (s-LLMs)
and compare them to “out-of-the-box” open-
source LLMs5 (e.g., Llama (Touvron et al., 2023),
Baichuan (Yang et al., 2023)), as well as proprietary
LLMs (e.g., Claude (Anthropic, 2024), GPT (Ope-
nAI, 2024)). We focus specifically on the case of
scientific NER, using four datasets: MeasEval, Sci-
ERC, STEM-ECR, and WLPC, each representing
a different scientific subdomain or text modality
(Section A.4 for an overview of the datasets) in
zero-shot, few-shot, and supervised settings. We
compare the s-LLMs to baselines under different
domain adaptation regimes (zero- and few-shot,
continual tuning).

In summary, the contributions of this paper in-
clude:

• Comparative analysis of instruction-tuned
LLMs against their open-source (vanilla)
counterparts and proprietary LLMs under dif-
ferent ‘learning’ regimes (corresponding to
different availability of training data).

• Exploratory experiments of models on the
NER task to reveal the impact of task-specific
instruction-tuning.

• Practical guidelines for researchers aiming to
use LLMs for scientific IE.

5That is, without any further specialisation beyond the
foundation model training.
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To the best of our knowledge, this is the first
extensive evaluation of instruction-tuned LLMs for
IE from scientific literature, providing a compre-
hensive analysis that compares foundation, open-
source, and proprietary LLMs and their domain
adaptation capabilities across diverse datasets un-
der zero-shot, few-shot and supervised fine-tuning
settings.

2 Related Work

LLMs (Brown et al., 2020; Ouyang et al., 2022;
Touvron et al., 2023) have already been success-
fully used in IE (Gao et al., 2023). LLM-based
IE methods are divided into In-Context Learning
(ICL) and Supervised Fine-tuning (SFT) based ap-
proaches. ICL-based models (Jimenez Gutierrez
et al., 2022; Li et al., 2023; Wang et al., 2025) rely
on prompting with a few labelled examples in addi-
tion to instructions, while SFT-based models utilise
annotated datasets for fine-tuning LLMs (Zhou
et al., 2024; Xiao et al., 2024; Gui et al., 2024b; Li
et al., 2024). Research indicates that ICL-based
models tend to exhibit relatively inferior effec-
tiveness on IE tasks compared to SFT-based mod-
els (Jimenez Gutierrez et al., 2022; Wang et al.,
2022; Zhou et al., 2024).

To improve the task and domain adaptability
of LLMs, instruction-tuning has become a com-
mon technique. This involved fine-tuning LLMs
on instruction-based benchmark datasets (a set of
datasets specific to a task or domain). Instruction-
tuning has been explored across various domains,
including Dialogue (Gupta et al., 2022), Intent Clas-
sification and Slot Filling (Rosenbaum et al., 2022),
Sentiment Analysis (Varia et al., 2023), and Emo-
tion Classification (Liu et al., 2024).

In the context of IE, several studies have ad-
vanced instruction-tuning approaches. Zhou et al.
(2024) introduce UniNER, which reformulates IE
as a Question-Answer (QA) task and instruction-
tune Llama using knowledge-distilled datasets
from ChatGPT within conversation-style setup, tar-
geting the NER task across diverse domains. Gui
et al. (2024b) propose a schema-based instruction-
tuning framework for IE (NER, RE and EE) and
present IEPile, a bilingual IE instruction bench-
mark for instruction-tuning. Additionally, Xiao
et al. (2024) extend IEPile benchmark by adding
more Chinese IE datasets and introduce chat-
enhanced instruction tuning that helps gain a fun-
damental understanding of open-world understand-

ing. Wang et al. (2023) curate the IE INSTRUC-
TIONS benchmark containing expert-written in-
structions for diverse IE tasks and apply instruction-
tuning for IE tasks. Finally, Lu et al. (2023) fo-
cus on open-world entity profiling, which is a
sub-domain of open-world IE, and construct the
INSTRUCTOPEN-WIKI benchmark for the task.
They instruction-tune BLOOM to obtain a task-
specialised model named PIVOINE.

3 IE-specialised LLMs

Preliminaries Instruction tuning is a supervised
fine-tuning (SFT) method in which LLMs are
trained on datasets containing human-readable task
instructions alongside input-output examples to
guide the outputs of LLMs. Each training data-
point, d = ⟨instruction, input, output⟩, in the
dataset D consists of: (i) an explicit instruction
describing the task to be performed; (ii) the corre-
sponding input data; and (iii) the desired output in
a defined format.

Unlike standard SFT, which fine-tunes a model
on input-output pairs for a specific task without ex-
plicit instructions, instruction-tuning conditions the
model on natural language task descriptions. This
enables better generalisation to unseen domains for
the same task (Zhou et al., 2024; Gui et al., 2024b).

Several instruction-tuned LLMs have recently
been developed to improve IE performance across
diverse domains. We introduce these models (spe-
cialised LLMs for IE, henceforth ‘IE s-LLMs’ or
simply ‘s-LLMs’) with some discussion of how the
approaches vary the basic instruction fine-tuning
problem framing.

IEPile (Gui et al., 2024b)6 proposed a schema-
based instruction-tuning, where a schema defines
the information to be modelled and extracted, such
as entity types, relations, events, etc. This method
involves hard-negative schema construction and
batched instruction generation. The schemas are
defined as positive (relevant types) and negative
(non-relevant types), where negative types can be
considered as a kind of “negative” case from a ma-
chine learning perspective; the model should not
make predictions for this type. To control the com-
plexity of each instruction, the method applies a
batching strategy that limits the number of schemas
included per instruction using a tunable hyperpa-
rameter. The IEPile model training specifically

6https://github.com/zjunlp/IEPile
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chooses hard negatives, labels that are easily con-
fused with positive (i.e., relevant) labels. At infer-
ence time, the union set of all schema types across
dataset D is presented for prediction.

For instruction-tuning, the IEPile benchmark is
constructed from a bilingual dataset D that com-
prises 26 English and 7 Chinese datasets. The
dataset spans 3 different tasks: NER, RE, and EE,
as exemplified by the datasets ConLL2004 (Car-
reras and Màrquez, 2004), FabNER (Kumar and
Starly, 2022), and BC5CDR (Li et al., 2016), re-
spectively. As a result, the instruction will differ
for these datasets, with content specific to each of
the task descriptions.

UniNER (Zhou et al., 2024)7 is a framework
that uses ChatGPT for knowledge distillation to
generate instruction-tuning data for the NER task.
It uses broad-coverage, unlabeled web text and
distils this information into an instruction-tuned
model built on an open-source LLM (LLaMA),
resulting in the UniversalNER models.

Unlike traditional NER, which frames the task
as entity detection, UniNER reformulates it as a
question-answering (QA) task. The model input
is a question about what entity is present in the
accompanying text (e.g., What describes t1 in the
text?), and the output is the corresponding entity
span. These QA pairs are generated using GPT,
which is prompted to answer such questions based
on given texts. The responses are collected as “con-
versation” transcripts and subsequently segmented
into QA tuples t, forming a training dataset for in-
struction tuning. In data construction, they apply
negative sampling where non-relevant entity types
are included in the dataset. This process creates a
distilled dataset suitable for fine-tuning LLaMA-
2 (Touvron et al., 2023), resulting in instruction-
tuned models that generalise well across domains.

Additionally, the authors introduce a benchmark
dataset D consisting of 43 datasets from a wide
range of domains, including biomedicine, law, and
finance, to evaluate models.

YAYI-UIE (Xiao et al., 2024)8 is an instruction-
tuning framework that consists of two steps:
(i) instruction-tuning for chat, where an open-
source dialogue data with instructions and a self-
constructed corpus is used to train a chat-enhanced
language model to gain a fundamental understand-

7github.com/universal-ner/universal-ner
8huggingface.co/wenge-research/yayi-uie

(a) Open-source LLMs

(b) Proprietary LLMs

(c) s-LLMs

Figure 1: Zero-shot performance comparison of open-
source, proprietary, and IE s-LLMs on the SciERC
dataset.

ing of open-world language and enhance Chinese
language capabilities. A key step in the chat-based
training is to filter low-quality samples, such as
meaningless, incomplete, sensitive, or duplicate
samples; (ii) instruction-tuning for IE, where the
chat-based model is used to tune for IE tasks with
a benchmark dataset. The benchmark D includes
a combined dataset of 16 Chinese IE datasets and
the InstructUIE benchmark (Wang et al., 2023) for
IE instruction-tuning, spanning data from diverse
sources such as finance, politics, and security.

Statistical details of scientific datasets used in
instruction-tuning of IE (s-LLMs) are given in Ap-
pendix A.4 in Table 6.
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Method SciERC Stem-ECR MeasEval WLPC

Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot

Proprietary LLMs
GPT-4 31.56 41.12 21.39 35.59 15.67 24.47 52.95 59.16
Claude 3.5 Sonnet 27.32 34.19 21.70 34.06 14.70 22.47 36.21 41.05

Open-source LLMs
Baichuan2 6.45 11.56 8.18 14.12 12.48 16.18 6.75 14.10
Llama2 7B 7.24 13.20 9.47 15.01 11.18 18.14 10.67 19.78
Llama2 13B 12.45 22.38 10.52 19.42 11.36 19.21 12.44 21.45
Llama2 70B 18.12 26.89 12.89 20.17 12.45 20.56 15.74 22.49
Llama3.1 8B 14.52 24.80 10.14 20.17 11.72 20.10 9.32 19.17
Llama3.1 70B 24.43 29.45 14.73 21.45 12.14 21.49 18.42 25.19

IE s-LLMs
Baichuan2-IEPile 19.53 32.15 15.22 23.10 16.78 26.32 28.79 35.17
Llama2-IEPile 20.48 18.49 18.49 25.42 24.18 29.12 30.40 36.56
UniNER-7B 37.01 46.43 17.26 24.37 11.29 19.47 30.13 35.49
YAYI-UIE 22.55 35.19 25.89 32.17 24.62 30.15 33.13 37.10

Table 1: Zero-shot and few-shot (1-shot) performance on NER datasets (of note, SciERC is in-domain for the three
s-LLMs (IEPile, UniNER and YAYI-UIE); the other datasets are out-of-domain). The best zero-shot results for each
dataset are underlined, and the best few-shot results for each dataset are boldfaced.

4 Results and Analyses

We design our experiments to evaluate the per-
formance of s-LLMs on the scientific NER task9.
Our goal is threefold: (1) evaluation of zero-
shot and few-shot (1-shot) capabilities of s-LLMs
against their open-source (vanilla) counterparts and
proprietary LLMs; (2) comparison of continual
fine-tuning (in-domain) of s-LLMs’ performance
against their open-source counterparts’ fine-tuning;
and (3) exploration of the generalisability of in-
domain adapted models to a specific dataset to
other scientific datasets. Finally, we present exper-
imental results on the general domain to compare
them with findings from the scientific domain.

4.1 Experiments in Zero-shot and Few-shot
Settings for Scientific Domain

Our first experiment focuses on examining whether
the entity extraction capability learned by s-LLMs
is transferable across scientific domain datasets un-
der zero-shot and few-shot settings (RQ1). Table 1
reports performance across datasets. Of these, only
SciERC was used during the instruction-tuning of
the s-LLMs and is thus considered the in-domain
(seen in training) dataset (see Table 6)10. The
remaining datasets (STEM-ECR, MeasEval and
WLPC) are out-of-domain (unseen in training), rep-
resenting unseen entity type sets (covariate shift)

9Experimental settings are given in Appendix A.
10Results on it are not strictly zero-shot.

and datasets.
Table 1 enables direct comparison across the

prior work for the first time. Here, our results in-
clude results for open-source and proprietary LLMs
that are state-of-the-art at the time of writing.

To begin with, as expected, we note that pro-
prietary LLMs (GPT-4 and Claude 3.5 Sonnet)
stand out as strong baselines across the board.
Their performance is particularly impressive given
the presumed absence of task-specific fine-tuning.
Their effectiveness is the best/second-highest per-
formance on most datasets. This demonstrates
their ability to generalise across interpretable entity
types (e.g., SciERC: Material, Method, Metric, · · ·;
STEM-ECR: Data, Material, · · ·; WLPC: Ph, Size,
Action, · · ·). However, our aim in this paper is to
explore the best methods to obtain alternatives to
these cloud-based models, which may be locally
hosted by an organisation (particularly if they are
responsible for sensitive data). We thus turn our
focus to open-source LLMs.

In general, we find that zero-shot inference
from IE s-LLMs is better than using open-source
LLMs without any task specialisation. For Sci-
ERC, UniNER-7B (based on Llama2-7B) achieves
a higher F1 score than both open-source and propri-
etary LLMs. This demonstrates the benefit of task-
specific instruction-tuning. Note that the SciERC
dataset is used for the NER task in the UniNER
model, whereas it is used as the RE dataset for the
IEPile (based on Llama2-13B & Baichuan2-13B)

60



and YAYI-UIE (based on Baichuan2-13B) mod-
els (see Table 6). Indeed, the s-LLMs, UniNER-
7B and YAYI-UIE, generally outperform the pro-
prietary models for all the datasets except WLPC
(which includes text from technical documentation
instead of scientific publications), which is particu-
larly interesting given the generally smaller param-
eter size of s-LLMs compared to GPT-4 and Claude
3.5 Sonnet. However, we note that the margin only
has a maximum difference of approximately 9 F1

points in the case of MeasEval (YAYI-UIE vs GPT-
4). In a few-shot setting (1-shot), all models (open-
source, proprietary and s-LLMs) benefit from ICL
examples, leading to performance gains over zero-
shot baselines. Excluding proprietary LLMs, the
trend remains consistent. s-LLMs outperform their
open-source(vanilla) counterparts.

To understand why s-LLMs exhibit performance
gains, we analyse the precision and recall metrics
for the models (open-source, proprietary and s-
LLMs), presented in Figure 1. This figure presents
a comparative analysis of zero-shot performance
on the SciERC dataset. Notably, the s-LLMs lead
to increased precision, at the expense of recall. In
the case of the UniNER approach, the precision
gains strongly outweigh any drop in recall. This in-
dicates that targeted training on IE tasks enhances
the models’ ability to identify relevant entities with
greater accuracy. Additionally, these models tend
to be relatively conservative and precise in their
positive predictions, though they may miss some
relevant instances.

In conclusion, while s-LLMs benefit from fine-
tuning, they still face generalisation challenges
in scientific domains (i.e., the low recall). More-
over, although the s-LLMs are competitive against
proprietary LLMs, the performance gap remains
narrow in some cases, underscoring the need for
further advancements in training and fine-tuning
strategies to improve robustness. As a result, we
turn our attention to the continued fine-tuning of
the IE capability of both open-source LLMs and IE
s-LLMs for supervised domain adaptation.

4.2 On the Benefits of Continual In-domain
Fine-tuning for Scientific Writing

The results from the previous section show that
IE s-LLMs remain competitive against proprietary
LLMs under zero-shot and few-shot settings. How-
ever, despite their strengths, a performance gap
remains compared to SFT models in scientific do-
main datasets, indicating that there is still room for

further improvement.
In this section, we ask: does continual in-domain

tuning on the target dataset lead to additional per-
formance gains, or do IE s-LLMs already reach
peak performance on scientific datasets through
their general instruction-tuning? (RQ2) In the con-
text of our motivation in Section 1, one might con-
sider how further fine-tuning of a local model on a
sensitive or private dataset might improve results.

Following prior work (Zhou et al., 2024; Gui
et al., 2024b), we refer to this addition as continual
in-domain fine-tuning, a next step after instruction-
tuning that further adapts the model to a specific
dataset and denote this in our results tables as SFT
(for supervised fine-tuning).

To explore the impact of continual in-domain
fine-tuning, we fine-tune both open-source (vanilla)
LLMs and IE s-LLMs using the training sets of the
scientific datasets (Appendix A.4). Table 2 presents
the results of the SFT regime compared to zero-
shot performance, alongside GPT-4 (zero-shot) and
BERT-base (fine-tuned) as baselines; BERT-base
represents the task-specific supervised models com-
monly used across studies in the literature (Xiao
et al., 2024; Zhou et al., 2024; Gui et al., 2024b).
The table shows that all SFT models improve sig-
nificantly on all datasets compared to their untuned
counterparts. Notably, they outperform GPT-4 in
zero-shot settings by a considerable margin. For
example, for the STEM-ECR dataset, the differ-
ence is over 55 F1 points, demonstrating clearly
that fine-tuning is still a preferred approach in the
presence of annotated training data.

The results demonstrate that in-domain fine-
tuning on a specific dataset helps, whether this
is the original open-source LLMs or the s-LLMs.
However, performance gains from in-domain fine-
tuning are greater when starting with IE s-LLMs,
indicating learning from the multiple datasets used
in the s-LLMs training is transferable, demon-
strating the benefits of instruction tuning and sub-
sequent in-domain optimisation. Among the in-
domain fine-tuned models, the YAYI-UIE model
achieves the highest Micro F1 score among the
SFT models across all datasets, showing its strong
performance in NER. This reflects its ability to han-
dle diverse scientific NER tasks, possibly related
to its larger benchmark datasets covering a wide
range of IE tasks and domains in instruction tuning.
YAYI-UIE differs from other methods (UniNER
and IEPIle) in that dialogue data is used to perform
general instruction tuning to train a chat-enhanced
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SciERC STEM-ECR MeasEval WLPC

Model Zero-shot SFT Zero-shot SFT Zero-shot SFT Zero-shot SFT

Open-source LLMs
Baichuan2 6.45 52.18 8.18 51.08 12.48 48.47 6.75 35.23
Llama2 7B 7.24 53.14 9.47 50.98 11.18 52.78 10.67 39.56
Llama2 13B 12.45 55.45 10.52 57.14 11.36 54.10 12.44 42.21
Llama2 70B 15.12 56.48 12.89 59.24 12.45 53.18 15.74 45.40
Llama3.1 8B 14.52 56.20 10.14 56.74 11.72 54.10 9.32 43.18
Llama3.1 70B 24.43 55.26 14.73 58.31 12.14 52.85 18.42 46.12

LLMs optimised for IE tasks
Baichuan2-IEPile 19.53 73.18 15.22 75.12 16.78 59.14 28.79 60.19
Llama2-IEPile 20.48 76.08 18.49 78.17 24.18 64.10 30.40 62.58
UniNER-7B 37.01 78.41 17.26 79.02 11.29 66.18 30.13 60.45
YAYI-UIE 21.17 80.47 25.89 82.52 24.62 69.71 33.13 64.17

BERT-base - 62.81 ±0.85 - 68.17 ±0.76 - 55.43 ±1.15 - 39.52 ±0.52

GPT-4 31.56 - 21.39 - 15.67 - 52.95 -

Table 2: Strict Micro F1 on NER datasets for zero-shot and SFT settings. The best zero-shot results for each dataset
are underlined, and the best SFT results for each dataset are boldfaced.

model using a dialogue corpus in both English and
Chinese instead of using an instruction model.

Of note, SFT appears somewhat ineffective
for base open-source LLMs. Specifically, the
BERT baseline yielded higher effectiveness on
most datasets. While IE s-LLMs achieved the best
performance among all SFT models, this comes at a
cost. These models require extensive data resources
for training (YAYI-UIE: 49 datasets, IEPile: 33
datasets, and UniNER: 43 datasets) and signifi-
cant computational resources for instruction-tuning
and supervised fine-tuning compared to fine-tuning
PLMs for the NER task. The model complexity
alone can limit their accessibility and scalability
for researchers or practitioners with resource con-
straints.

This highlights a fundamental trade-off between
effectiveness and efficiency: IE s-LLMs deliver
state-of-the-art performance but with higher train-
ing and inference cost, while smaller models like
BERT offer a practical balance of accuracy and
affordability.

In summary, continual fine-tuning remains criti-
cal for achieving optimal performance in scientific
IE. When paired with general instruction tuning,
this two-stage process supports both generalisabil-
ity and domain specialisation (dataset adaptation),
enabling robust and adaptable solutions for real-
world applications.

4.3 Generalisability of Fine-tuned s-LLMs

To assess whether the continual in-domain fine-
tuning also leads to generalisable models (to other
scientific datasets), we take the IE s-LLM models

(a) STEM-ECR

(b) MeasEval

Figure 2: Strict Micro F1 on NER datasets obtained
from IE s-LLMs and fine-tuned on the SciERC dataset.

obtained by continual fine-tuning on the SciERC
dataset (X-SciERC) and use these models for
zero-shot inference on the MeasEval and STEM-
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ECR datasets. We choose the SciERC dataset be-
cause there is an entity type overlap with the STEM-
ECR dataset (‘Material’, ‘Method’), but not with
the MeasEval dataset. The results are presented in
Figure 2.

The findings indicate that IEPile models
fine-tuned in-domain on the SciERC dataset
(X-IEPile-SciERC) exhibit lower perfor-
mance on the STEM-ECR dataset, while the
UniNER and YAYI-UIE models demonstrate
improved performance. The reason behind
this might be the knowledge distillation used
in the instruction-tuning of UniNER and
the larger benchmark used in the tuning of
YAYI-UIE and UniNER models. For the
MeasEval dataset, the UniNER-7B-SciERC
model provides a slight improvement, and
Baichuan2-IEPile-SciERC outperforms
the zero-shot Baichuan2-IEPile. In contrast,
the continually trained YAYI-UIE model yields a
performance drop.

From these results, we conclude that the gen-
eral applicability of the model depends on how
close the out-of-domain data is to the data used
for continual training. As the SciERC and STEM-
ECR entity types share some overlap (being about
general concepts relating to the scientific method),
we observe better cross-domain effectiveness in
UniNER and YAYI-UIE models. In contrast, for
the MeasEval dataset, given its particular focus on
quantitative measurements, we see no meaningful
improvements stemming from out-of-domain train-
ing, and, in one case (the YAYI-UIE model), we
actually observe a marked performance drop.

4.4 General Domain Evaluation
To assess the generalisability of our findings to
domains beyond scientific information extraction,
we evaluated s-LLMs using the CrossNER (Liu
et al., 2021) and CoNLL2003 (Tjong Kim Sang
and De Meulder, 2003) datasets (statistical details
are provided in Table 5). ConLL2003 is used
for in-domain and CrossNER is used for out-of-
domain, as outlined by Wang et al. (2023); Zhou
et al. (2024).

As shown in Table 3, s-LLMs outperform
their open-source (vanilla) counterparts on the in-
domain dataset (CoNLL2003). However, GPT-4
(a proprietary LLM) outperforms these models on
the CrossNER dataset. This performance gap may
be related to two possible factors: (i) the model’s
undisclosed pretraining data, which may include

broader coverage of domains or overlap with simi-
lar data; and (ii) a similar trend observed in sci-
entific domain evaluations (Section 4.1), where
s-LLMs struggle with generalisation to unseen
datasets.

These findings show a key limitation of s-LLMs:
instruction-tuning improves performance within do-
mains present in the instruction-tuning data; how-
ever, it does not guarantee robustness to domain
shifts. In contrast, large-scale proprietary LLMs
like GPT-4 benefit from diverse pretraining data
or emergent generalisation capabilities (although
these are difficult to verify given the lack of trans-
parency around the training data and regime).

Model CoNLL2003 AI Literature Music Politics Science
Proprietary LLMs
GPT-4 68.68 61.95 52.32 70.79 63.99 62.66
Claude 3.5 Sonnet 55.10 32.78 30.18 43.52 45.37 47.12

Open-source LLMs
Baichuan2 20.50 4.17 12.14 16.89 20.47 8.52
Llama2 7B 17.06 5.19 13.87 17.42 11.96 9.24
Llama2 13B 33.47 13.92 28.92 33.96 36.97 23.85
Llama2 70B 43.39 39.10 40.67 49.30 53.49 39.50
Llama3.1 8B 62.48 40.12 42.17 48.82 30.15 45.12
Llama3.1 70B 70.47 51.42 56.08 64.02 38.34 52.49

IE s-LLMs
Baichuan2-IEPile 70.41 56.12 50.52 59.18 53.17 55.10
Llama2-IEPile 72.40 53.47 62.15 58.72 55.67 57.68
UniNER-7B 81.14 60.25 62.98 66.35 65.30 69.23
YAYI-UIE 78.18 51.60 43.38 61.46 47.43 48.45

Table 3: Zero-shot performance on general domain NER
datasets (CoNLL2003 is in-domain; CrossNER is out-
of-domain). The best results are boldfaced.

4.5 Practical Recommendations

Based on our evaluation of s-LLMs compared to
proprietary and open-source LLMs for the scien-
tific domain, we make the following recommenda-
tions for practitioners, especially those working in
privacy-sensitive or resource-constrained environ-
ments in the domain of scientific literature informa-
tion extraction:

1. Domain adaptation as a solution for lo-
cal (open-source) models. For open-source
LLMs, task adaptation (instruction-tuning) is
required to enhance the task-specific zero- and
few-shot generalisation capabilities of LLMs;
i.e., open-source models without it perform
poorly, perhaps too poorly for prototyping.

2. s-LLMs as a starting point for dataset adap-
tation. For in-domain adaptation in the sci-
entific domain, starting with an s-LLM that
has already adapted to the task yields stronger
performance. The prior multi-task training
often provides a useful foundation that can
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be transferred across domains. On the flip-
side, direct instruction tuning of a base open-
source model provides limited value (or re-
quires much more training data, see below).

3. YAYI-UIE demonstrates the best overall
performance and generalisation across s-
LLMs. Among s-LLMs, YAYI-UIE achieves
the highest and most consistent results after
continual in-domain fine-tuning, making it a
strong choice for scientific IE applications.

4. Task adaptation with a larger benchmark.
Gathering in-domain training data and using it
for instruction-tuning is still the most effective
way of task adaptation. For LLMs, instruction-
tuning for task adaptation appears to require
a prior step (instruction tuning), as direct in-
domain fine-tuning vanilla open-source LLMs
appears to yield subpar results.

5. Smaller PLMs remain viable cost-effective
alternatives. Although s-LLMs offer im-
proved performance, smaller PLMs like BERT
can still provide competitive results, if in-
domain training data can be sourced. Their
lower computational demands make them
practical options for projects with limited re-
sources.

5 Conclusion

In this paper, we investigate instruction-tuned IE
specialised LLMs (s-LLMs), specifically focusing
on their performance in scientific entity extraction
compared to open-source and proprietary LLMs.
The experimental results show that s-LLMs per-
form better than their open-source (vanilla) coun-
terparts, showing that instruction-tuning benefits in
task-adaptation. However, s-LLMs still face a gen-
eralisation problem in the scientific domain. Con-
tinual in-domain fine-tuning of IE s-LLMs leads
to the best results, particularly for specific scien-
tific datasets of interest. In our experiments, these
models outperformed proprietary ones by up to an
order of magnitude, achieving over 55 F1 points in
zero-shot and 20 F1 points in few-shot settings.

We also observe that models like YAYI-UIE per-
form well across a variety of datasets, highlighting
their adaptability to unseen datasets in zero-shot
and few-shot settings. However, the choice of s-
LLM and its suitability for a given dataset remains
a hyperparameter defined in the study. Despite
the success of s-LLMs, PLMs (BERT) continue
to offer competitive and cost-effective alternatives
for NER, particularly when in-domain train data is

available, often outperforming open-source LLMS
in-domain tuned directly for specific tasks.

This work highlights the strengths and weak-
nesses of s-LLMs in scientific NER and provides
a comparative analysis across zero-shot, few-shot
and fine-tuned settings. However, our study is lim-
ited in scope: we focused exclusively on sentence-
level NER within the scientific domain and relied
on publicly available s-LLMs without modifica-
tions. As such, the performance and limitations
of these models inherently constrain our findings.
Additionally, due to resource limitations, we did
not evaluate large proprietary LLMs such as GPT-4
or Claude under fine-tuned conditions. We also did
not explore the problem of catastrophic forgetting
in s-LLMs, which is important to understand how
well these models retain knowledge and problem-
solving skills learned from previous tasks.

Future work will extend this evaluation to other
IE tasks such as relation and event extraction, and
investigate how combining the strengths of differ-
ent s-LLMs (e.g., UniNER’s strong zero-shot per-
formance vs. YAYI-UIE’s fine-tuning responsive-
ness) can lead to more robust pipelines. Expanding
the diversity and number of datasets may also help
in identifying better general-purpose starting points
for scientific information extraction.

Limitations

Our study is centred exclusively on the sentence-
level Named Entity Recognition (NER) task.
Specifically, we concentrate on the scientific do-
main, which may require further exploration to
apply our findings to other domains. Additionally,
due to resource constraints, we were unable to fine-
tune large language models with more parameters
(e.g., GPT-4, Claude). We use the IE s-LLMs pro-
vided by the papers. The limitations derived from
these models are also limitations of our study.
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A Experiments

A.1 Baseline Models

We compare the s-LLMs against two categories of
foundation LLMs:

1. Proprietary LLMs: We use GPT4 (GPT-
4o) (Achiam et al., 2023) and Claude (Claude
3-5 Sonnet) (Anthropic, 2024).

2. Open-source base LLMs: We include
the open-source (vanilla) counterparts of s-
LLMs in our evaluation, including Baichuan2
(Baichuan2-7B-Chat) (Yang et al., 2023), and
Llama (Llama2-7B-Chat, Llama2-13B-Chat,
Llama2-70B-Chat, Llama-3.1-8B-Instruct,
and Llama-3.1-70B-Instruct) (Touvron et al.,
2023).

In addition, we also compare the performance of
LLMs against a fine-tuned PLM, i.e., BERT (De-
vlin et al., 2019) (BERT-base), which consists of
an encoder and a span-based classifier on top of the
encoder (Zhong and Chen, 2021).
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A.2 Evaluation Metrics
We follow prior studies (Lu et al., 2022; Lin et al.,
2020) and use strict entity-level micro-F1 as our
evaluation metric, where both the entity boundary
and entity type must be correctly predicted.

A.3 Training Environment
We use NVIDIA H100 GPUs for inference and fine-
tuning of open-source LLMs and s-LLMs. Our
experiments are conducted on a node with two
NVIDIA H100 GPUs.

A.4 Datasets
A.4.1 Scientific Domain Datasets
We use four sentence-level datasets, each with a
slightly different focus for scientific IE:

1. MeasEval11 (Harper et al., 2021) is a dataset
collected from scientific documents from 10
different domains (e.g., agriculture, chemistry
and materials science), annotated for four en-
tity types: Quantity, Measured Property, Mea-
sured Entity, Qualifier.

2. SciERC12 (Luan et al., 2018) is a dataset
collected from the Artificial Intelligence (AI)
domain, describing general AI, NLP, Speech
Recognition (SR), Machine Learning (ML),
and Computer Vision (CV). The entity types:
Generic, Material, Method, Metric, OtherSci-
entificTerm and Task.

3. STEM-ECR13 (D’Souza et al., 2020) is a
dataset containing scientific abstracts anno-
tated at the sentence-level, covering ten do-
mains (e.g., agriculture and astronomy). En-
tity types are Material, Data, Process and
Method14.

4. WLPC15 (Kulkarni et al., 2018) is a dataset
of technical writing (as opposed to peer-
reviewed scientific publications) collected
from wet lab protocols for biology and chem-
istry experiments, providing entity, relation,
and event annotations.

The descriptive statistics of all four datasets are
listed in Table 4.

11https://github.com/harperco/MeasEval
12http://nlp.cs.washington.edu/sciIE
13https://data.uni-hannover.de/dataset/stem-ecr-v1-0
14Although originally there are 7 entity types, we follow

previous work (D’Souza et al., 2020) and leave Task, Object,
and Results entity types out.

15https://github.com/chaitanya2334/WLP-Dataset

Data Split MeasEval SciERC STEM-ECR WLPC

# Train 542 1,861 942 8.581
# Dev 155 275 118 2,589
# Test 294 551 118 2,861

# Sentences 991 2,687 1,178 14,301
#Word Count 34,779 65,334 25,968 181,908

# Unique Entity Types 4 6 4 18

Table 4: Statistical details of datasets. “#” denotes the
number of samples in the specific dataset.

Characteristics of Datasets We note that the
first three of the datasets focus on text found in
scientific publications, though the scope of the en-
tity detection may be different. For example, the
MeasEval dataset focuses on the general concept
of quantitative measurements in empirical inves-
tigations (e.g., Measured Property). SciERC and
STEM-ECR include a combination of specific con-
cepts from the science disciplines as well as general
concepts from the scientific method (e.g., Mate-
rial, Method), although the publication set of Sci-
ERC is narrower than that of STEM-ECR. Finally,
the WLPC dataset focuses on experimental reports
with entity types that differ from the other datasets
(given the physical experiment focus), including
measure-based (e.g., Numerical, Generic-Measure,
Size, Ph, Measure-Type) and science discipline-
specific object entities (e.g., Action, Amount, Lo-
cation).

Of these datasets, only the SciERC was used
in the instruction fine-tuning steps for the three
models, as the NER task for the UniNER model and
the RE task for the IEPile and YAYI-UIE models
(Table 6). That is, the data points for the entities
and entity types of MeasEval, STEM-ECR, and
WLPC datasets were not seen during the initial
instruction fine-tuning of the s-LLMs.

A.4.2 General Domain Datasets
The descriptive statistics of general domain
datasets are given in Table 5.

Dataset Domain Type # Test

CrossNER Politics Political 9 650
CrossNER Literature Literary 12 416

CrossNE Music Musical 13 465
CrossNER AI AI 14 431

CrossNER Science Scientific 17 543
CoNLL2003 News 4 3,453

Table 5: The statistical details of the CrossNER dataset.
“#” denotes the number of samples in the specific dataset.
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Model Base LLM Dataset # Entity Type

IEPile
Llama2-13B

&
Baichuan2-13B

FabNER (NER) (Kumar and Starly, 2022) 12
SciERC (RE) (Luan et al., 2018) 4

SemEval (RE) (Hendrickx et al., 2010) -

UniNER-7B Llama2-7B

WLP (Kulkarni et al., 2018) 16
SoMeSci (Schindler et al., 2021) 14

SciREX (Jain et al., 2020) 4
SciERC (Luan et al., 2018) 4

SOFC (Friedrich et al., 2020) 3
FabNER (Kumar and Starly, 2022) 12

DEAL (Grezes et al., 2022) 30

YAYI-UIE Baichuan2-13B
FabNER (NER) (Kumar and Starly, 2022) 12

SciERC (RE) 4

Table 6: Statistical details of scientific datasets used in instruction-tuning of IE s-LLMs. “#” denotes the number of
entity types in the entity type set. Details are from Zhou et al. (2024).

A.4.3 Benchmark Datasets
Statistical details of scientific datasets used in
instruction-tuning of IE (s-LLMs) are given in Ta-
ble 6. You can find the complete list of datasets in
the respective original papers.

A.5 Models and Fine-tuning
For further supervised fine-tuning (SFT) experi-
ments, we use IE s-LLMs (UniNER, IEPile, YAYI-
UIE), which are open-source LLMs instruction-
tuned for IE tasks and open-source LLMs. Specif-
ically, we employ LoRA (Hu et al., 2022) for
parameter-efficient fine-tuning. We follow the pre-
vious works for the hyperparameters of SFT (Gui
et al., 2024b; Zhou et al., 2024). We set the LoRA
rank and alpha parameters to 16 and 32, respec-
tively. The dropout ratio is set to 0.05. The learning
rate is set to 5e-5. We limit the input source length
to 400 and the target length to 512. The training
epoch size is 10, and the batch size is 2.

Baseline BERT-base PLM is fine-tuned utilising
the Hugging Face16 (Wolf et al., 2020) library. The
hyperparameters used in the fine-tuning PLM are
the batch size of 32, the max length of 128, the
learning rate of 1e-5, and 15 epochs of training.

A.6 Zero-Shot and Few-Shot Settings
We conduct zero-shot and few-shot experiments on
open-source and proprietary LLMs using the NER
prompt of EasyInstruct17 (Ou et al., 2023). We
use random sampling for a few-shot setting, where

16https://huggingface.co
17https://github.com/zjunlp/EasyInstruct

we select 1 sample from the train set. We set the
temperature to 0.0 for results with less variability
and set the top probability to 0.95. We use the
original prompt templates used in the training of the
respective IE s-LLMs in the experiments with these
models to align with the setup of the respective
NER-specific training regimes.

Prompts We follow EasyInstruct (Ou et al.,
2023) in our experiments for open-source and pro-
prietary LLMs. For each dataset, we use its defined
entity types and samples (text) from the test set.
IEPile:

User: You are an expert in named entity
recognition. Please extract

entities that match the schema
definition from the input. Return
an empty list if the entity type
does not exist. Please respond in
the format of a JSON string.,
schema: {entity_types}, input: {
Text}

UniNER:

User: Text: {Text}
Assistant: I’ve read this text.
User: What describes {entity_type} in

the text?

YAYI-UIE:

User: Text: {Text}
From the given text, extract all the

entities and types. Please format
the answer in JSON {{{’, ’.join(
entity_types)}: [entities]}}

General:
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User: You are a highly intelligent and
accurate {domain} domain Named-
entity recognition(NER) system. You
take Passage as input and your

task is to recognize and extract
specific types of {domain} domain
named entities in that given
passage and classify into a set of
following predefined entity types:

{entity_types}
our output format is only [{’E’: type

of entity from predefined entity
types, ’W’: entity in the input
text},...] form, no other form.

Input: {Text}
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